//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements decl-related attribute processing. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/Mangle.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/Type.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/DarwinSDKInfo.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetBuiltins.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/DelayedDiagnostic.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ParsedAttr.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaInternal.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Assumptions.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Support/Error.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" using namespace clang; using namespace sema; namespace AttributeLangSupport { enum LANG { C, Cpp, ObjC }; } // end namespace AttributeLangSupport //===----------------------------------------------------------------------===// // Helper functions //===----------------------------------------------------------------------===// /// isFunctionOrMethod - Return true if the given decl has function /// type (function or function-typed variable) or an Objective-C /// method. static bool isFunctionOrMethod(const Decl *D) { return (D->getFunctionType() != nullptr) || isa(D); } /// Return true if the given decl has function type (function or /// function-typed variable) or an Objective-C method or a block. static bool isFunctionOrMethodOrBlock(const Decl *D) { return isFunctionOrMethod(D) || isa(D); } /// Return true if the given decl has a declarator that should have /// been processed by Sema::GetTypeForDeclarator. static bool hasDeclarator(const Decl *D) { // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl. return isa(D) || isa(D) || isa(D) || isa(D); } /// hasFunctionProto - Return true if the given decl has a argument /// information. This decl should have already passed /// isFunctionOrMethod or isFunctionOrMethodOrBlock. static bool hasFunctionProto(const Decl *D) { if (const FunctionType *FnTy = D->getFunctionType()) return isa(FnTy); return isa(D) || isa(D); } /// getFunctionOrMethodNumParams - Return number of function or method /// parameters. It is an error to call this on a K&R function (use /// hasFunctionProto first). static unsigned getFunctionOrMethodNumParams(const Decl *D) { if (const FunctionType *FnTy = D->getFunctionType()) return cast(FnTy)->getNumParams(); if (const auto *BD = dyn_cast(D)) return BD->getNumParams(); return cast(D)->param_size(); } static const ParmVarDecl *getFunctionOrMethodParam(const Decl *D, unsigned Idx) { if (const auto *FD = dyn_cast(D)) return FD->getParamDecl(Idx); if (const auto *MD = dyn_cast(D)) return MD->getParamDecl(Idx); if (const auto *BD = dyn_cast(D)) return BD->getParamDecl(Idx); return nullptr; } static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) { if (const FunctionType *FnTy = D->getFunctionType()) return cast(FnTy)->getParamType(Idx); if (const auto *BD = dyn_cast(D)) return BD->getParamDecl(Idx)->getType(); return cast(D)->parameters()[Idx]->getType(); } static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) { if (auto *PVD = getFunctionOrMethodParam(D, Idx)) return PVD->getSourceRange(); return SourceRange(); } static QualType getFunctionOrMethodResultType(const Decl *D) { if (const FunctionType *FnTy = D->getFunctionType()) return FnTy->getReturnType(); return cast(D)->getReturnType(); } static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) { if (const auto *FD = dyn_cast(D)) return FD->getReturnTypeSourceRange(); if (const auto *MD = dyn_cast(D)) return MD->getReturnTypeSourceRange(); return SourceRange(); } static bool isFunctionOrMethodVariadic(const Decl *D) { if (const FunctionType *FnTy = D->getFunctionType()) return cast(FnTy)->isVariadic(); if (const auto *BD = dyn_cast(D)) return BD->isVariadic(); return cast(D)->isVariadic(); } static bool isInstanceMethod(const Decl *D) { if (const auto *MethodDecl = dyn_cast(D)) return MethodDecl->isInstance(); return false; } static inline bool isNSStringType(QualType T, ASTContext &Ctx, bool AllowNSAttributedString = false) { const auto *PT = T->getAs(); if (!PT) return false; ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface(); if (!Cls) return false; IdentifierInfo* ClsName = Cls->getIdentifier(); if (AllowNSAttributedString && ClsName == &Ctx.Idents.get("NSAttributedString")) return true; // FIXME: Should we walk the chain of classes? return ClsName == &Ctx.Idents.get("NSString") || ClsName == &Ctx.Idents.get("NSMutableString"); } static inline bool isCFStringType(QualType T, ASTContext &Ctx) { const auto *PT = T->getAs(); if (!PT) return false; const auto *RT = PT->getPointeeType()->getAs(); if (!RT) return false; const RecordDecl *RD = RT->getDecl(); if (RD->getTagKind() != TTK_Struct) return false; return RD->getIdentifier() == &Ctx.Idents.get("__CFString"); } static unsigned getNumAttributeArgs(const ParsedAttr &AL) { // FIXME: Include the type in the argument list. return AL.getNumArgs() + AL.hasParsedType(); } /// A helper function to provide Attribute Location for the Attr types /// AND the ParsedAttr. template static std::enable_if_t::value, SourceLocation> getAttrLoc(const AttrInfo &AL) { return AL.getLocation(); } static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); } /// If Expr is a valid integer constant, get the value of the integer /// expression and return success or failure. May output an error. /// /// Negative argument is implicitly converted to unsigned, unless /// \p StrictlyUnsigned is true. template static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr, uint32_t &Val, unsigned Idx = UINT_MAX, bool StrictlyUnsigned = false) { Optional I = llvm::APSInt(32); if (Expr->isTypeDependent() || Expr->isValueDependent() || !(I = Expr->getIntegerConstantExpr(S.Context))) { if (Idx != UINT_MAX) S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) << &AI << Idx << AANT_ArgumentIntegerConstant << Expr->getSourceRange(); else S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type) << &AI << AANT_ArgumentIntegerConstant << Expr->getSourceRange(); return false; } if (!I->isIntN(32)) { S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) << toString(*I, 10, false) << 32 << /* Unsigned */ 1; return false; } if (StrictlyUnsigned && I->isSigned() && I->isNegative()) { S.Diag(getAttrLoc(AI), diag::err_attribute_requires_positive_integer) << &AI << /*non-negative*/ 1; return false; } Val = (uint32_t)I->getZExtValue(); return true; } /// Wrapper around checkUInt32Argument, with an extra check to be sure /// that the result will fit into a regular (signed) int. All args have the same /// purpose as they do in checkUInt32Argument. template static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, int &Val, unsigned Idx = UINT_MAX) { uint32_t UVal; if (!checkUInt32Argument(S, AI, Expr, UVal, Idx)) return false; if (UVal > (uint32_t)std::numeric_limits::max()) { llvm::APSInt I(32); // for toString I = UVal; S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) << toString(I, 10, false) << 32 << /* Unsigned */ 0; return false; } Val = UVal; return true; } /// Diagnose mutually exclusive attributes when present on a given /// declaration. Returns true if diagnosed. template static bool checkAttrMutualExclusion(Sema &S, Decl *D, const ParsedAttr &AL) { if (const auto *A = D->getAttr()) { S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << A; S.Diag(A->getLocation(), diag::note_conflicting_attribute); return true; } return false; } template static bool checkAttrMutualExclusion(Sema &S, Decl *D, const Attr &AL) { if (const auto *A = D->getAttr()) { S.Diag(AL.getLocation(), diag::err_attributes_are_not_compatible) << &AL << A; S.Diag(A->getLocation(), diag::note_conflicting_attribute); return true; } return false; } /// Check if IdxExpr is a valid parameter index for a function or /// instance method D. May output an error. /// /// \returns true if IdxExpr is a valid index. template static bool checkFunctionOrMethodParameterIndex( Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum, const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) { assert(isFunctionOrMethodOrBlock(D)); // In C++ the implicit 'this' function parameter also counts. // Parameters are counted from one. bool HP = hasFunctionProto(D); bool HasImplicitThisParam = isInstanceMethod(D); bool IV = HP && isFunctionOrMethodVariadic(D); unsigned NumParams = (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam; Optional IdxInt; if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() || !(IdxInt = IdxExpr->getIntegerConstantExpr(S.Context))) { S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type) << &AI << AttrArgNum << AANT_ArgumentIntegerConstant << IdxExpr->getSourceRange(); return false; } unsigned IdxSource = IdxInt->getLimitedValue(UINT_MAX); if (IdxSource < 1 || (!IV && IdxSource > NumParams)) { S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds) << &AI << AttrArgNum << IdxExpr->getSourceRange(); return false; } if (HasImplicitThisParam && !CanIndexImplicitThis) { if (IdxSource == 1) { S.Diag(getAttrLoc(AI), diag::err_attribute_invalid_implicit_this_argument) << &AI << IdxExpr->getSourceRange(); return false; } } Idx = ParamIdx(IdxSource, D); return true; } /// Check if the argument \p ArgNum of \p Attr is a ASCII string literal. /// If not emit an error and return false. If the argument is an identifier it /// will emit an error with a fixit hint and treat it as if it was a string /// literal. bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, StringRef &Str, SourceLocation *ArgLocation) { // Look for identifiers. If we have one emit a hint to fix it to a literal. if (AL.isArgIdent(ArgNum)) { IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum); Diag(Loc->Loc, diag::err_attribute_argument_type) << AL << AANT_ArgumentString << FixItHint::CreateInsertion(Loc->Loc, "\"") << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\""); Str = Loc->Ident->getName(); if (ArgLocation) *ArgLocation = Loc->Loc; return true; } // Now check for an actual string literal. Expr *ArgExpr = AL.getArgAsExpr(ArgNum); const auto *Literal = dyn_cast(ArgExpr->IgnoreParenCasts()); if (ArgLocation) *ArgLocation = ArgExpr->getBeginLoc(); if (!Literal || !Literal->isAscii()) { Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentString; return false; } Str = Literal->getString(); return true; } /// Applies the given attribute to the Decl without performing any /// additional semantic checking. template static void handleSimpleAttribute(Sema &S, Decl *D, const AttributeCommonInfo &CI) { D->addAttr(::new (S.Context) AttrType(S.Context, CI)); } template static const Sema::SemaDiagnosticBuilder& appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr) { return Bldr; } template static const Sema::SemaDiagnosticBuilder& appendDiagnostics(const Sema::SemaDiagnosticBuilder &Bldr, T &&ExtraArg, DiagnosticArgs &&... ExtraArgs) { return appendDiagnostics(Bldr << std::forward(ExtraArg), std::forward(ExtraArgs)...); } /// Add an attribute @c AttrType to declaration @c D, provided that /// @c PassesCheck is true. /// Otherwise, emit diagnostic @c DiagID, passing in all parameters /// specified in @c ExtraArgs. template static void handleSimpleAttributeOrDiagnose(Sema &S, Decl *D, const AttributeCommonInfo &CI, bool PassesCheck, unsigned DiagID, DiagnosticArgs &&... ExtraArgs) { if (!PassesCheck) { Sema::SemaDiagnosticBuilder DB = S.Diag(D->getBeginLoc(), DiagID); appendDiagnostics(DB, std::forward(ExtraArgs)...); return; } handleSimpleAttribute(S, D, CI); } /// Check if the passed-in expression is of type int or bool. static bool isIntOrBool(Expr *Exp) { QualType QT = Exp->getType(); return QT->isBooleanType() || QT->isIntegerType(); } // Check to see if the type is a smart pointer of some kind. We assume // it's a smart pointer if it defines both operator-> and operator*. static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, OverloadedOperatorKind Op) { DeclContextLookupResult Result = Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op)); return !Result.empty(); }; const RecordDecl *Record = RT->getDecl(); bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); if (foundStarOperator && foundArrowOperator) return true; const CXXRecordDecl *CXXRecord = dyn_cast(Record); if (!CXXRecord) return false; for (auto BaseSpecifier : CXXRecord->bases()) { if (!foundStarOperator) foundStarOperator = IsOverloadedOperatorPresent( BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); if (!foundArrowOperator) foundArrowOperator = IsOverloadedOperatorPresent( BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); } if (foundStarOperator && foundArrowOperator) return true; return false; } /// Check if passed in Decl is a pointer type. /// Note that this function may produce an error message. /// \return true if the Decl is a pointer type; false otherwise static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, const ParsedAttr &AL) { const auto *VD = cast(D); QualType QT = VD->getType(); if (QT->isAnyPointerType()) return true; if (const auto *RT = QT->getAs()) { // If it's an incomplete type, it could be a smart pointer; skip it. // (We don't want to force template instantiation if we can avoid it, // since that would alter the order in which templates are instantiated.) if (RT->isIncompleteType()) return true; if (threadSafetyCheckIsSmartPointer(S, RT)) return true; } S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT; return false; } /// Checks that the passed in QualType either is of RecordType or points /// to RecordType. Returns the relevant RecordType, null if it does not exit. static const RecordType *getRecordType(QualType QT) { if (const auto *RT = QT->getAs()) return RT; // Now check if we point to record type. if (const auto *PT = QT->getAs()) return PT->getPointeeType()->getAs(); return nullptr; } template static bool checkRecordDeclForAttr(const RecordDecl *RD) { // Check if the record itself has the attribute. if (RD->hasAttr()) return true; // Else check if any base classes have the attribute. if (const auto *CRD = dyn_cast(RD)) { if (!CRD->forallBases([](const CXXRecordDecl *Base) { return !Base->hasAttr(); })) return true; } return false; } static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { const RecordType *RT = getRecordType(Ty); if (!RT) return false; // Don't check for the capability if the class hasn't been defined yet. if (RT->isIncompleteType()) return true; // Allow smart pointers to be used as capability objects. // FIXME -- Check the type that the smart pointer points to. if (threadSafetyCheckIsSmartPointer(S, RT)) return true; return checkRecordDeclForAttr(RT->getDecl()); } static bool checkTypedefTypeForCapability(QualType Ty) { const auto *TD = Ty->getAs(); if (!TD) return false; TypedefNameDecl *TN = TD->getDecl(); if (!TN) return false; return TN->hasAttr(); } static bool typeHasCapability(Sema &S, QualType Ty) { if (checkTypedefTypeForCapability(Ty)) return true; if (checkRecordTypeForCapability(S, Ty)) return true; return false; } static bool isCapabilityExpr(Sema &S, const Expr *Ex) { // Capability expressions are simple expressions involving the boolean logic // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once // a DeclRefExpr is found, its type should be checked to determine whether it // is a capability or not. if (const auto *E = dyn_cast(Ex)) return isCapabilityExpr(S, E->getSubExpr()); else if (const auto *E = dyn_cast(Ex)) return isCapabilityExpr(S, E->getSubExpr()); else if (const auto *E = dyn_cast(Ex)) { if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || E->getOpcode() == UO_Deref) return isCapabilityExpr(S, E->getSubExpr()); return false; } else if (const auto *E = dyn_cast(Ex)) { if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) return isCapabilityExpr(S, E->getLHS()) && isCapabilityExpr(S, E->getRHS()); return false; } return typeHasCapability(S, Ex->getType()); } /// Checks that all attribute arguments, starting from Sidx, resolve to /// a capability object. /// \param Sidx The attribute argument index to start checking with. /// \param ParamIdxOk Whether an argument can be indexing into a function /// parameter list. static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl &Args, unsigned Sidx = 0, bool ParamIdxOk = false) { if (Sidx == AL.getNumArgs()) { // If we don't have any capability arguments, the attribute implicitly // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're // a non-static method, and that the class is a (scoped) capability. const auto *MD = dyn_cast(D); if (MD && !MD->isStatic()) { const CXXRecordDecl *RD = MD->getParent(); // FIXME -- need to check this again on template instantiation if (!checkRecordDeclForAttr(RD) && !checkRecordDeclForAttr(RD)) S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_capability_member) << AL << MD->getParent(); } else { S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member) << AL; } } for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { Expr *ArgExp = AL.getArgAsExpr(Idx); if (ArgExp->isTypeDependent()) { // FIXME -- need to check this again on template instantiation Args.push_back(ArgExp); continue; } if (const auto *StrLit = dyn_cast(ArgExp)) { if (StrLit->getLength() == 0 || (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) { // Pass empty strings to the analyzer without warnings. // Treat "*" as the universal lock. Args.push_back(ArgExp); continue; } // We allow constant strings to be used as a placeholder for expressions // that are not valid C++ syntax, but warn that they are ignored. S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL; Args.push_back(ArgExp); continue; } QualType ArgTy = ArgExp->getType(); // A pointer to member expression of the form &MyClass::mu is treated // specially -- we need to look at the type of the member. if (const auto *UOp = dyn_cast(ArgExp)) if (UOp->getOpcode() == UO_AddrOf) if (const auto *DRE = dyn_cast(UOp->getSubExpr())) if (DRE->getDecl()->isCXXInstanceMember()) ArgTy = DRE->getDecl()->getType(); // First see if we can just cast to record type, or pointer to record type. const RecordType *RT = getRecordType(ArgTy); // Now check if we index into a record type function param. if(!RT && ParamIdxOk) { const auto *FD = dyn_cast(D); const auto *IL = dyn_cast(ArgExp); if(FD && IL) { unsigned int NumParams = FD->getNumParams(); llvm::APInt ArgValue = IL->getValue(); uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds_extra_info) << AL << Idx + 1 << NumParams; continue; } ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); } } // If the type does not have a capability, see if the components of the // expression have capabilities. This allows for writing C code where the // capability may be on the type, and the expression is a capability // boolean logic expression. Eg) requires_capability(A || B && !C) if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable) << AL << ArgTy; Args.push_back(ArgExp); } } //===----------------------------------------------------------------------===// // Attribute Implementations //===----------------------------------------------------------------------===// static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!threadSafetyCheckIsPointer(S, D, AL)) return; D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL)); } static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, Expr *&Arg) { SmallVector Args; // check that all arguments are lockable objects checkAttrArgsAreCapabilityObjs(S, D, AL, Args); unsigned Size = Args.size(); if (Size != 1) return false; Arg = Args[0]; return true; } static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *Arg = nullptr; if (!checkGuardedByAttrCommon(S, D, AL, Arg)) return; D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg)); } static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *Arg = nullptr; if (!checkGuardedByAttrCommon(S, D, AL, Arg)) return; if (!threadSafetyCheckIsPointer(S, D, AL)) return; D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg)); } static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl &Args) { if (!AL.checkAtLeastNumArgs(S, 1)) return false; // Check that this attribute only applies to lockable types. QualType QT = cast(D)->getType(); if (!QT->isDependentType() && !typeHasCapability(S, QT)) { S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL; return false; } // Check that all arguments are lockable objects. checkAttrArgsAreCapabilityObjs(S, D, AL, Args); if (Args.empty()) return false; return true; } static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) AcquiredAfterAttr(S.Context, AL, StartArg, Args.size())); } static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size())); } static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl &Args) { // zero or more arguments ok // check that all arguments are lockable objects checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true); return true; } static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, AL, Args)) return; unsigned Size = Args.size(); Expr **StartArg = Size == 0 ? nullptr : &Args[0]; D->addAttr(::new (S.Context) AssertSharedLockAttr(S.Context, AL, StartArg, Size)); } static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, AL, Args)) return; unsigned Size = Args.size(); Expr **StartArg = Size == 0 ? nullptr : &Args[0]; D->addAttr(::new (S.Context) AssertExclusiveLockAttr(S.Context, AL, StartArg, Size)); } /// Checks to be sure that the given parameter number is in bounds, and /// is an integral type. Will emit appropriate diagnostics if this returns /// false. /// /// AttrArgNo is used to actually retrieve the argument, so it's base-0. template static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNo) { assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument"); Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); ParamIdx Idx; if (!checkFunctionOrMethodParameterIndex(S, D, AI, AttrArgNo + 1, AttrArg, Idx)) return false; QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex()); if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) { SourceLocation SrcLoc = AttrArg->getBeginLoc(); S.Diag(SrcLoc, diag::err_attribute_integers_only) << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex()); return false; } return true; } static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2)) return; assert(isFunctionOrMethod(D) && hasFunctionProto(D)); QualType RetTy = getFunctionOrMethodResultType(D); if (!RetTy->isPointerType()) { S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL; return; } const Expr *SizeExpr = AL.getArgAsExpr(0); int SizeArgNoVal; // Parameter indices are 1-indexed, hence Index=1 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1)) return; if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0)) return; ParamIdx SizeArgNo(SizeArgNoVal, D); ParamIdx NumberArgNo; if (AL.getNumArgs() == 2) { const Expr *NumberExpr = AL.getArgAsExpr(1); int Val; // Parameter indices are 1-based, hence Index=2 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2)) return; if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1)) return; NumberArgNo = ParamIdx(Val, D); } D->addAttr(::new (S.Context) AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo)); } static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl &Args) { if (!AL.checkAtLeastNumArgs(S, 1)) return false; if (!isIntOrBool(AL.getArgAsExpr(0))) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIntOrBool; return false; } // check that all arguments are lockable objects checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1); return true; } static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkTryLockFunAttrCommon(S, D, AL, Args)) return; D->addAttr(::new (S.Context) SharedTrylockFunctionAttr( S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); } static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkTryLockFunAttrCommon(S, D, AL, Args)) return; D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr( S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); } static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // check that the argument is lockable object SmallVector Args; checkAttrArgsAreCapabilityObjs(S, D, AL, Args); unsigned Size = Args.size(); if (Size == 0) return; D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0])); } static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1)) return; // check that all arguments are lockable objects SmallVector Args; checkAttrArgsAreCapabilityObjs(S, D, AL, Args); unsigned Size = Args.size(); if (Size == 0) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) LocksExcludedAttr(S.Context, AL, StartArg, Size)); } static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, Expr *&Cond, StringRef &Msg) { Cond = AL.getArgAsExpr(0); if (!Cond->isTypeDependent()) { ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); if (Converted.isInvalid()) return false; Cond = Converted.get(); } if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg)) return false; if (Msg.empty()) Msg = ""; SmallVector Diags; if (isa(D) && !Cond->isValueDependent() && !Expr::isPotentialConstantExprUnevaluated(Cond, cast(D), Diags)) { S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL; for (const PartialDiagnosticAt &PDiag : Diags) S.Diag(PDiag.first, PDiag.second); return false; } return true; } static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { S.Diag(AL.getLoc(), diag::ext_clang_enable_if); Expr *Cond; StringRef Msg; if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg)); } namespace { /// Determines if a given Expr references any of the given function's /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). class ArgumentDependenceChecker : public RecursiveASTVisitor { #ifndef NDEBUG const CXXRecordDecl *ClassType; #endif llvm::SmallPtrSet Parms; bool Result; public: ArgumentDependenceChecker(const FunctionDecl *FD) { #ifndef NDEBUG if (const auto *MD = dyn_cast(FD)) ClassType = MD->getParent(); else ClassType = nullptr; #endif Parms.insert(FD->param_begin(), FD->param_end()); } bool referencesArgs(Expr *E) { Result = false; TraverseStmt(E); return Result; } bool VisitCXXThisExpr(CXXThisExpr *E) { assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && "`this` doesn't refer to the enclosing class?"); Result = true; return false; } bool VisitDeclRefExpr(DeclRefExpr *DRE) { if (const auto *PVD = dyn_cast(DRE->getDecl())) if (Parms.count(PVD)) { Result = true; return false; } return true; } }; } static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if); Expr *Cond; StringRef Msg; if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) return; StringRef DiagTypeStr; if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr)) return; DiagnoseIfAttr::DiagnosticType DiagType; if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) { S.Diag(AL.getArgAsExpr(2)->getBeginLoc(), diag::err_diagnose_if_invalid_diagnostic_type); return; } bool ArgDependent = false; if (const auto *FD = dyn_cast(D)) ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond); D->addAttr(::new (S.Context) DiagnoseIfAttr( S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast(D))); } static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { static constexpr const StringRef kWildcard = "*"; llvm::SmallVector Names; bool HasWildcard = false; const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) { if (Name == kWildcard) HasWildcard = true; Names.push_back(Name); }; // Add previously defined attributes. if (const auto *NBA = D->getAttr()) for (StringRef BuiltinName : NBA->builtinNames()) AddBuiltinName(BuiltinName); // Add current attributes. if (AL.getNumArgs() == 0) AddBuiltinName(kWildcard); else for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { StringRef BuiltinName; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc)) return; if (Builtin::Context::isBuiltinFunc(BuiltinName)) AddBuiltinName(BuiltinName); else S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name) << BuiltinName << AL; } // Repeating the same attribute is fine. llvm::sort(Names); Names.erase(std::unique(Names.begin(), Names.end()), Names.end()); // Empty no_builtin must be on its own. if (HasWildcard && Names.size() > 1) S.Diag(D->getLocation(), diag::err_attribute_no_builtin_wildcard_or_builtin_name) << AL; if (D->hasAttr()) D->dropAttr(); D->addAttr(::new (S.Context) NoBuiltinAttr(S.Context, AL, Names.data(), Names.size())); } static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (D->hasAttr()) { S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL; return; } Expr *E = AL.getArgAsExpr(0); uint32_t Type; if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1)) return; // pass_object_size's argument is passed in as the second argument of // __builtin_object_size. So, it has the same constraints as that second // argument; namely, it must be in the range [0, 3]. if (Type > 3) { S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range) << AL << 0 << 3 << E->getSourceRange(); return; } // pass_object_size is only supported on constant pointer parameters; as a // kindness to users, we allow the parameter to be non-const for declarations. // At this point, we have no clue if `D` belongs to a function declaration or // definition, so we defer the constness check until later. if (!cast(D)->getType()->isPointerType()) { S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1; return; } D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type)); } static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { ConsumableAttr::ConsumedState DefaultState; if (AL.isArgIdent(0)) { IdentifierLoc *IL = AL.getArgAsIdent(0); if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), DefaultState)) { S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; return; } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState)); } static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, const ParsedAttr &AL) { QualType ThisType = MD->getThisType()->getPointeeType(); if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { if (!RD->hasAttr()) { S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD; return false; } } return true; } static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1)) return; if (!checkForConsumableClass(S, cast(D), AL)) return; SmallVector States; for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { CallableWhenAttr::ConsumedState CallableState; StringRef StateString; SourceLocation Loc; if (AL.isArgIdent(ArgIndex)) { IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex); StateString = Ident->Ident->getName(); Loc = Ident->Loc; } else { if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc)) return; } if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, CallableState)) { S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString; return; } States.push_back(CallableState); } D->addAttr(::new (S.Context) CallableWhenAttr(S.Context, AL, States.data(), States.size())); } static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { ParamTypestateAttr::ConsumedState ParamState; if (AL.isArgIdent(0)) { IdentifierLoc *Ident = AL.getArgAsIdent(0); StringRef StateString = Ident->Ident->getName(); if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, ParamState)) { S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL << StateString; return; } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } // FIXME: This check is currently being done in the analysis. It can be // enabled here only after the parser propagates attributes at // template specialization definition, not declaration. //QualType ReturnType = cast(D)->getType(); //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); // //if (!RD || !RD->hasAttr()) { // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << // ReturnType.getAsString(); // return; //} D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState)); } static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { ReturnTypestateAttr::ConsumedState ReturnState; if (AL.isArgIdent(0)) { IdentifierLoc *IL = AL.getArgAsIdent(0); if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), ReturnState)) { S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; return; } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } // FIXME: This check is currently being done in the analysis. It can be // enabled here only after the parser propagates attributes at // template specialization definition, not declaration. //QualType ReturnType; // //if (const ParmVarDecl *Param = dyn_cast(D)) { // ReturnType = Param->getType(); // //} else if (const CXXConstructorDecl *Constructor = // dyn_cast(D)) { // ReturnType = Constructor->getThisType()->getPointeeType(); // //} else { // // ReturnType = cast(D)->getCallResultType(); //} // //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); // //if (!RD || !RD->hasAttr()) { // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << // ReturnType.getAsString(); // return; //} D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState)); } static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!checkForConsumableClass(S, cast(D), AL)) return; SetTypestateAttr::ConsumedState NewState; if (AL.isArgIdent(0)) { IdentifierLoc *Ident = AL.getArgAsIdent(0); StringRef Param = Ident->Ident->getName(); if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL << Param; return; } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState)); } static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!checkForConsumableClass(S, cast(D), AL)) return; TestTypestateAttr::ConsumedState TestState; if (AL.isArgIdent(0)) { IdentifierLoc *Ident = AL.getArgAsIdent(0); StringRef Param = Ident->Ident->getName(); if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL << Param; return; } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState)); } static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Remember this typedef decl, we will need it later for diagnostics. S.ExtVectorDecls.push_back(cast(D)); } static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (auto *TD = dyn_cast(D)) TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); else if (auto *FD = dyn_cast(D)) { bool BitfieldByteAligned = (!FD->getType()->isDependentType() && !FD->getType()->isIncompleteType() && FD->isBitField() && S.Context.getTypeAlign(FD->getType()) <= 8); if (S.getASTContext().getTargetInfo().getTriple().isPS4()) { if (BitfieldByteAligned) // The PS4 target needs to maintain ABI backwards compatibility. S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type) << AL << FD->getType(); else FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); } else { // Report warning about changed offset in the newer compiler versions. if (BitfieldByteAligned) S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield); FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); } } else S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; } static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) { auto *RD = cast(D); ClassTemplateDecl *CTD = RD->getDescribedClassTemplate(); assert(CTD && "attribute does not appertain to this declaration"); ParsedType PT = AL.getTypeArg(); TypeSourceInfo *TSI = nullptr; QualType T = S.GetTypeFromParser(PT, &TSI); if (!TSI) TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc()); if (!T.hasQualifiers() && T->isTypedefNameType()) { // Find the template name, if this type names a template specialization. const TemplateDecl *Template = nullptr; if (const auto *CTSD = dyn_cast_or_null( T->getAsCXXRecordDecl())) { Template = CTSD->getSpecializedTemplate(); } else if (const auto *TST = T->getAs()) { while (TST && TST->isTypeAlias()) TST = TST->getAliasedType()->getAs(); if (TST) Template = TST->getTemplateName().getAsTemplateDecl(); } if (Template && declaresSameEntity(Template, CTD)) { D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI)); return; } } S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid) << T << CTD; if (const auto *TT = T->getAs()) S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at) << TT->getDecl(); } static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) { // The IBOutlet/IBOutletCollection attributes only apply to instance // variables or properties of Objective-C classes. The outlet must also // have an object reference type. if (const auto *VD = dyn_cast(D)) { if (!VD->getType()->getAs()) { S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) << AL << VD->getType() << 0; return false; } } else if (const auto *PD = dyn_cast(D)) { if (!PD->getType()->getAs()) { S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type) << AL << PD->getType() << 1; return false; } } else { S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL; return false; } return true; } static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) { if (!checkIBOutletCommon(S, D, AL)) return; D->addAttr(::new (S.Context) IBOutletAttr(S.Context, AL)); } static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) { // The iboutletcollection attribute can have zero or one arguments. if (AL.getNumArgs() > 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; return; } if (!checkIBOutletCommon(S, D, AL)) return; ParsedType PT; if (AL.hasParsedType()) PT = AL.getTypeArg(); else { PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(), S.getScopeForContext(D->getDeclContext()->getParent())); if (!PT) { S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject"; return; } } TypeSourceInfo *QTLoc = nullptr; QualType QT = S.GetTypeFromParser(PT, &QTLoc); if (!QTLoc) QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc()); // Diagnose use of non-object type in iboutletcollection attribute. // FIXME. Gnu attribute extension ignores use of builtin types in // attributes. So, __attribute__((iboutletcollection(char))) will be // treated as __attribute__((iboutletcollection())). if (!QT->isObjCIdType() && !QT->isObjCObjectType()) { S.Diag(AL.getLoc(), QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype : diag::err_iboutletcollection_type) << QT; return; } D->addAttr(::new (S.Context) IBOutletCollectionAttr(S.Context, AL, QTLoc)); } bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { if (RefOkay) { if (T->isReferenceType()) return true; } else { T = T.getNonReferenceType(); } // The nonnull attribute, and other similar attributes, can be applied to a // transparent union that contains a pointer type. if (const RecordType *UT = T->getAsUnionType()) { if (UT && UT->getDecl()->hasAttr()) { RecordDecl *UD = UT->getDecl(); for (const auto *I : UD->fields()) { QualType QT = I->getType(); if (QT->isAnyPointerType() || QT->isBlockPointerType()) return true; } } } return T->isAnyPointerType() || T->isBlockPointerType(); } static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, SourceRange AttrParmRange, SourceRange TypeRange, bool isReturnValue = false) { if (!S.isValidPointerAttrType(T)) { if (isReturnValue) S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL << AttrParmRange << TypeRange; else S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) << AL << AttrParmRange << TypeRange << 0; return false; } return true; } static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector NonNullArgs; for (unsigned I = 0; I < AL.getNumArgs(); ++I) { Expr *Ex = AL.getArgAsExpr(I); ParamIdx Idx; if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx)) return; // Is the function argument a pointer type? if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && !attrNonNullArgCheck( S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL, Ex->getSourceRange(), getFunctionOrMethodParamRange(D, Idx.getASTIndex()))) continue; NonNullArgs.push_back(Idx); } // If no arguments were specified to __attribute__((nonnull)) then all pointer // arguments have a nonnull attribute; warn if there aren't any. Skip this // check if the attribute came from a macro expansion or a template // instantiation. if (NonNullArgs.empty() && AL.getLoc().isFileID() && !S.inTemplateInstantiation()) { bool AnyPointers = isFunctionOrMethodVariadic(D); for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E && !AnyPointers; ++I) { QualType T = getFunctionOrMethodParamType(D, I); if (T->isDependentType() || S.isValidPointerAttrType(T)) AnyPointers = true; } if (!AnyPointers) S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers); } ParamIdx *Start = NonNullArgs.data(); unsigned Size = NonNullArgs.size(); llvm::array_pod_sort(Start, Start + Size); D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size)); } static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, const ParsedAttr &AL) { if (AL.getNumArgs() > 0) { if (D->getFunctionType()) { handleNonNullAttr(S, D, AL); } else { S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args) << D->getSourceRange(); } return; } // Is the argument a pointer type? if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(), D->getSourceRange())) return; D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0)); } static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { QualType ResultType = getFunctionOrMethodResultType(D); SourceRange SR = getFunctionOrMethodResultSourceRange(D); if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR, /* isReturnValue */ true)) return; D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL)); } static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (D->isInvalidDecl()) return; // noescape only applies to pointer types. QualType T = cast(D)->getType(); if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) << AL << AL.getRange() << 0; return; } D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL)); } static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *E = AL.getArgAsExpr(0), *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr; S.AddAssumeAlignedAttr(D, AL, E, OE); } static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0)); } void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, Expr *OE) { QualType ResultType = getFunctionOrMethodResultType(D); SourceRange SR = getFunctionOrMethodResultSourceRange(D); AssumeAlignedAttr TmpAttr(Context, CI, E, OE); SourceLocation AttrLoc = TmpAttr.getLocation(); if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) { Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) << &TmpAttr << TmpAttr.getRange() << SR; return; } if (!E->isValueDependent()) { Optional I = llvm::APSInt(64); if (!(I = E->getIntegerConstantExpr(Context))) { if (OE) Diag(AttrLoc, diag::err_attribute_argument_n_type) << &TmpAttr << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); else Diag(AttrLoc, diag::err_attribute_argument_type) << &TmpAttr << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } if (!I->isPowerOf2()) { Diag(AttrLoc, diag::err_alignment_not_power_of_two) << E->getSourceRange(); return; } if (*I > Sema::MaximumAlignment) Diag(CI.getLoc(), diag::warn_assume_aligned_too_great) << CI.getRange() << Sema::MaximumAlignment; } if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) { Diag(AttrLoc, diag::err_attribute_argument_n_type) << &TmpAttr << 2 << AANT_ArgumentIntegerConstant << OE->getSourceRange(); return; } D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE)); } void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, Expr *ParamExpr) { QualType ResultType = getFunctionOrMethodResultType(D); AllocAlignAttr TmpAttr(Context, CI, ParamIdx()); SourceLocation AttrLoc = CI.getLoc(); if (!ResultType->isDependentType() && !isValidPointerAttrType(ResultType, /* RefOkay */ true)) { Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D); return; } ParamIdx Idx; const auto *FuncDecl = cast(D); if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr, /*AttrArgNum=*/1, ParamExpr, Idx)) return; QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); if (!Ty->isDependentType() && !Ty->isIntegralType(Context) && !Ty->isAlignValT()) { Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only) << &TmpAttr << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange(); return; } D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx)); } /// Check if \p AssumptionStr is a known assumption and warn if not. static void checkAssumptionAttr(Sema &S, SourceLocation Loc, StringRef AssumptionStr) { if (llvm::KnownAssumptionStrings.count(AssumptionStr)) return; unsigned BestEditDistance = 3; StringRef Suggestion; for (const auto &KnownAssumptionIt : llvm::KnownAssumptionStrings) { unsigned EditDistance = AssumptionStr.edit_distance(KnownAssumptionIt.getKey()); if (EditDistance < BestEditDistance) { Suggestion = KnownAssumptionIt.getKey(); BestEditDistance = EditDistance; } } if (!Suggestion.empty()) S.Diag(Loc, diag::warn_assume_attribute_string_unknown_suggested) << AssumptionStr << Suggestion; else S.Diag(Loc, diag::warn_assume_attribute_string_unknown) << AssumptionStr; } static void handleAssumumptionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Handle the case where the attribute has a text message. StringRef Str; SourceLocation AttrStrLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &AttrStrLoc)) return; checkAssumptionAttr(S, AttrStrLoc, Str); D->addAttr(::new (S.Context) AssumptionAttr(S.Context, AL, Str)); } /// Normalize the attribute, __foo__ becomes foo. /// Returns true if normalization was applied. static bool normalizeName(StringRef &AttrName) { if (AttrName.size() > 4 && AttrName.startswith("__") && AttrName.endswith("__")) { AttrName = AttrName.drop_front(2).drop_back(2); return true; } return false; } static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // This attribute must be applied to a function declaration. The first // argument to the attribute must be an identifier, the name of the resource, // for example: malloc. The following arguments must be argument indexes, the // arguments must be of integer type for Returns, otherwise of pointer type. // The difference between Holds and Takes is that a pointer may still be used // after being held. free() should be __attribute((ownership_takes)), whereas // a list append function may well be __attribute((ownership_holds)). if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } // Figure out our Kind. OwnershipAttr::OwnershipKind K = OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind(); // Check arguments. switch (K) { case OwnershipAttr::Takes: case OwnershipAttr::Holds: if (AL.getNumArgs() < 2) { S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2; return; } break; case OwnershipAttr::Returns: if (AL.getNumArgs() > 2) { S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; return; } break; } IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident; StringRef ModuleName = Module->getName(); if (normalizeName(ModuleName)) { Module = &S.PP.getIdentifierTable().get(ModuleName); } SmallVector OwnershipArgs; for (unsigned i = 1; i < AL.getNumArgs(); ++i) { Expr *Ex = AL.getArgAsExpr(i); ParamIdx Idx; if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx)) return; // Is the function argument a pointer type? QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex()); int Err = -1; // No error switch (K) { case OwnershipAttr::Takes: case OwnershipAttr::Holds: if (!T->isAnyPointerType() && !T->isBlockPointerType()) Err = 0; break; case OwnershipAttr::Returns: if (!T->isIntegerType()) Err = 1; break; } if (-1 != Err) { S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err << Ex->getSourceRange(); return; } // Check we don't have a conflict with another ownership attribute. for (const auto *I : D->specific_attrs()) { // Cannot have two ownership attributes of different kinds for the same // index. if (I->getOwnKind() != K && I->args_end() != std::find(I->args_begin(), I->args_end(), Idx)) { S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I; return; } else if (K == OwnershipAttr::Returns && I->getOwnKind() == OwnershipAttr::Returns) { // A returns attribute conflicts with any other returns attribute using // a different index. if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) { S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch) << I->args_begin()->getSourceIndex(); if (I->args_size()) S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch) << Idx.getSourceIndex() << Ex->getSourceRange(); return; } } } OwnershipArgs.push_back(Idx); } ParamIdx *Start = OwnershipArgs.data(); unsigned Size = OwnershipArgs.size(); llvm::array_pod_sort(Start, Start + Size); D->addAttr(::new (S.Context) OwnershipAttr(S.Context, AL, Module, Start, Size)); } static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Check the attribute arguments. if (AL.getNumArgs() > 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; return; } // gcc rejects // class c { // static int a __attribute__((weakref ("v2"))); // static int b() __attribute__((weakref ("f3"))); // }; // and ignores the attributes of // void f(void) { // static int a __attribute__((weakref ("v2"))); // } // we reject them const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); if (!Ctx->isFileContext()) { S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context) << cast(D); return; } // The GCC manual says // // At present, a declaration to which `weakref' is attached can only // be `static'. // // It also says // // Without a TARGET, // given as an argument to `weakref' or to `alias', `weakref' is // equivalent to `weak'. // // gcc 4.4.1 will accept // int a7 __attribute__((weakref)); // as // int a7 __attribute__((weak)); // This looks like a bug in gcc. We reject that for now. We should revisit // it if this behaviour is actually used. // GCC rejects // static ((alias ("y"), weakref)). // Should we? How to check that weakref is before or after alias? // FIXME: it would be good for us to keep the WeakRefAttr as-written instead // of transforming it into an AliasAttr. The WeakRefAttr never uses the // StringRef parameter it was given anyway. StringRef Str; if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str)) // GCC will accept anything as the argument of weakref. Should we // check for an existing decl? D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL)); } static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; // Aliases should be on declarations, not definitions. const auto *FD = cast(D); if (FD->isThisDeclarationADefinition()) { S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1; return; } D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str)); } static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin); return; } if (S.Context.getTargetInfo().getTriple().isNVPTX()) { S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx); } // Aliases should be on declarations, not definitions. if (const auto *FD = dyn_cast(D)) { if (FD->isThisDeclarationADefinition()) { S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0; return; } } else { const auto *VD = cast(D); if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0; return; } } // Mark target used to prevent unneeded-internal-declaration warnings. if (!S.LangOpts.CPlusPlus) { // FIXME: demangle Str for C++, as the attribute refers to the mangled // linkage name, not the pre-mangled identifier. const DeclarationNameInfo target(&S.Context.Idents.get(Str), AL.getLoc()); LookupResult LR(S, target, Sema::LookupOrdinaryName); if (S.LookupQualifiedName(LR, S.getCurLexicalContext())) for (NamedDecl *ND : LR) ND->markUsed(S.Context); } D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); } static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Model; SourceLocation LiteralLoc; // Check that it is a string. if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc)) return; // Check that the value. if (Model != "global-dynamic" && Model != "local-dynamic" && Model != "initial-exec" && Model != "local-exec") { S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); return; } if (S.Context.getTargetInfo().getTriple().isOSAIX() && Model != "global-dynamic") { S.Diag(LiteralLoc, diag::err_aix_attr_unsupported_tls_model) << Model; return; } D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model)); } static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { QualType ResultType = getFunctionOrMethodResultType(D); if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) { D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL)); return; } S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL << getFunctionOrMethodResultSourceRange(D); } static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { FunctionDecl *FD = cast(D); if (const auto *MD = dyn_cast(D)) { if (MD->getParent()->isLambda()) { S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL; return; } } if (!AL.checkAtLeastNumArgs(S, 1)) return; SmallVector CPUs; for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { if (!AL.isArgIdent(ArgNo)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo); StringRef CPUName = CPUArg->Ident->getName().trim(); if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) { S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value) << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); return; } const TargetInfo &Target = S.Context.getTargetInfo(); if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) { return Target.CPUSpecificManglingCharacter(CPUName) == Target.CPUSpecificManglingCharacter(Cur->getName()); })) { S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries); return; } CPUs.push_back(CPUArg->Ident); } FD->setIsMultiVersion(true); if (AL.getKind() == ParsedAttr::AT_CPUSpecific) D->addAttr(::new (S.Context) CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size())); else D->addAttr(::new (S.Context) CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size())); } static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (S.LangOpts.CPlusPlus) { S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) << AL << AttributeLangSupport::Cpp; return; } D->addAttr(::new (S.Context) CommonAttr(S.Context, AL)); } static void handleCmseNSEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (S.LangOpts.CPlusPlus && !D->getDeclContext()->isExternCContext()) { S.Diag(AL.getLoc(), diag::err_attribute_not_clinkage) << AL; return; } const auto *FD = cast(D); if (!FD->isExternallyVisible()) { S.Diag(AL.getLoc(), diag::warn_attribute_cmse_entry_static); return; } D->addAttr(::new (S.Context) CmseNSEntryAttr(S.Context, AL)); } static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (AL.isDeclspecAttribute()) { const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); const auto &Arch = Triple.getArch(); if (Arch != llvm::Triple::x86 && (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch) << AL << Triple.getArchName(); return; } } D->addAttr(::new (S.Context) NakedAttr(S.Context, AL)); } static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { if (hasDeclarator(D)) return; if (!isa(D)) { S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type) << Attrs << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs)); } static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { if (!S.getLangOpts().CFProtectionBranch) S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored); else handleSimpleAttribute(S, D, Attrs); } bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { if (!Attrs.checkExactlyNumArgs(*this, 0)) { Attrs.setInvalid(); return true; } return false; } bool Sema::CheckAttrTarget(const ParsedAttr &AL) { // Check whether the attribute is valid on the current target. if (!AL.existsInTarget(Context.getTargetInfo())) { Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL << AL.getRange(); AL.setInvalid(); return true; } return false; } static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // The checking path for 'noreturn' and 'analyzer_noreturn' are different // because 'analyzer_noreturn' does not impact the type. if (!isFunctionOrMethodOrBlock(D)) { ValueDecl *VD = dyn_cast(D); if (!VD || (!VD->getType()->isBlockPointerType() && !VD->getType()->isFunctionPointerType())) { S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax() ? diag::err_attribute_wrong_decl_type : diag::warn_attribute_wrong_decl_type) << AL << ExpectedFunctionMethodOrBlock; return; } } D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL)); } // PS3 PPU-specific. static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { /* Returning a Vector Class in Registers According to the PPU ABI specifications, a class with a single member of vector type is returned in memory when used as the return value of a function. This results in inefficient code when implementing vector classes. To return the value in a single vector register, add the vecreturn attribute to the class definition. This attribute is also applicable to struct types. Example: struct Vector { __vector float xyzw; } __attribute__((vecreturn)); Vector Add(Vector lhs, Vector rhs) { Vector result; result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); return result; // This will be returned in a register } */ if (VecReturnAttr *A = D->getAttr()) { S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A; return; } const auto *R = cast(D); int count = 0; if (!isa(R)) { S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); return; } if (!cast(R)->isPOD()) { S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record); return; } for (const auto *I : R->fields()) { if ((count == 1) || !I->getType()->isVectorType()) { S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); return; } count++; } D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL)); } static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, const ParsedAttr &AL) { if (isa(D)) { // [[carries_dependency]] can only be applied to a parameter if it is a // parameter of a function declaration or lambda. if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { S.Diag(AL.getLoc(), diag::err_carries_dependency_param_not_function_decl); return; } } D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL)); } static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); // If this is spelled as the standard C++17 attribute, but not in C++17, warn // about using it as an extension. if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL)); } static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t priority = ConstructorAttr::DefaultPriority; if (AL.getNumArgs() && !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) return; D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority)); } static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t priority = DestructorAttr::DefaultPriority; if (AL.getNumArgs() && !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority)) return; D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority)); } template static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { // Handle the case where the attribute has a text message. StringRef Str; if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str)); } static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!cast(D)->isThisDeclarationADefinition()) { S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition) << AL << AL.getRange(); return; } D->addAttr(::new (S.Context) ObjCExplicitProtocolImplAttr(S.Context, AL)); } static bool checkAvailabilityAttr(Sema &S, SourceRange Range, IdentifierInfo *Platform, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted) { StringRef PlatformName = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); if (PlatformName.empty()) PlatformName = Platform->getName(); // Ensure that Introduced <= Deprecated <= Obsoleted (although not all // of these steps are needed). if (!Introduced.empty() && !Deprecated.empty() && !(Introduced <= Deprecated)) { S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) << 1 << PlatformName << Deprecated.getAsString() << 0 << Introduced.getAsString(); return true; } if (!Introduced.empty() && !Obsoleted.empty() && !(Introduced <= Obsoleted)) { S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) << 2 << PlatformName << Obsoleted.getAsString() << 0 << Introduced.getAsString(); return true; } if (!Deprecated.empty() && !Obsoleted.empty() && !(Deprecated <= Obsoleted)) { S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) << 2 << PlatformName << Obsoleted.getAsString() << 1 << Deprecated.getAsString(); return true; } return false; } /// Check whether the two versions match. /// /// If either version tuple is empty, then they are assumed to match. If /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, bool BeforeIsOkay) { if (X.empty() || Y.empty()) return true; if (X == Y) return true; if (BeforeIsOkay && X < Y) return true; return false; } AvailabilityAttr *Sema::mergeAvailabilityAttr( NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, int Priority) { VersionTuple MergedIntroduced = Introduced; VersionTuple MergedDeprecated = Deprecated; VersionTuple MergedObsoleted = Obsoleted; bool FoundAny = false; bool OverrideOrImpl = false; switch (AMK) { case AMK_None: case AMK_Redeclaration: OverrideOrImpl = false; break; case AMK_Override: case AMK_ProtocolImplementation: case AMK_OptionalProtocolImplementation: OverrideOrImpl = true; break; } if (D->hasAttrs()) { AttrVec &Attrs = D->getAttrs(); for (unsigned i = 0, e = Attrs.size(); i != e;) { const auto *OldAA = dyn_cast(Attrs[i]); if (!OldAA) { ++i; continue; } IdentifierInfo *OldPlatform = OldAA->getPlatform(); if (OldPlatform != Platform) { ++i; continue; } // If there is an existing availability attribute for this platform that // has a lower priority use the existing one and discard the new // attribute. if (OldAA->getPriority() < Priority) return nullptr; // If there is an existing attribute for this platform that has a higher // priority than the new attribute then erase the old one and continue // processing the attributes. if (OldAA->getPriority() > Priority) { Attrs.erase(Attrs.begin() + i); --e; continue; } FoundAny = true; VersionTuple OldIntroduced = OldAA->getIntroduced(); VersionTuple OldDeprecated = OldAA->getDeprecated(); VersionTuple OldObsoleted = OldAA->getObsoleted(); bool OldIsUnavailable = OldAA->getUnavailable(); if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) || !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) || !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) || !(OldIsUnavailable == IsUnavailable || (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { if (OverrideOrImpl) { int Which = -1; VersionTuple FirstVersion; VersionTuple SecondVersion; if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) { Which = 0; FirstVersion = OldIntroduced; SecondVersion = Introduced; } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) { Which = 1; FirstVersion = Deprecated; SecondVersion = OldDeprecated; } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) { Which = 2; FirstVersion = Obsoleted; SecondVersion = OldObsoleted; } if (Which == -1) { Diag(OldAA->getLocation(), diag::warn_mismatched_availability_override_unavail) << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) << (AMK == AMK_Override); } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) { // Allow different 'introduced' / 'obsoleted' availability versions // on a method that implements an optional protocol requirement. It // makes less sense to allow this for 'deprecated' as the user can't // see if the method is 'deprecated' as 'respondsToSelector' will // still return true when the method is deprecated. ++i; continue; } else { Diag(OldAA->getLocation(), diag::warn_mismatched_availability_override) << Which << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) << FirstVersion.getAsString() << SecondVersion.getAsString() << (AMK == AMK_Override); } if (AMK == AMK_Override) Diag(CI.getLoc(), diag::note_overridden_method); else Diag(CI.getLoc(), diag::note_protocol_method); } else { Diag(OldAA->getLocation(), diag::warn_mismatched_availability); Diag(CI.getLoc(), diag::note_previous_attribute); } Attrs.erase(Attrs.begin() + i); --e; continue; } VersionTuple MergedIntroduced2 = MergedIntroduced; VersionTuple MergedDeprecated2 = MergedDeprecated; VersionTuple MergedObsoleted2 = MergedObsoleted; if (MergedIntroduced2.empty()) MergedIntroduced2 = OldIntroduced; if (MergedDeprecated2.empty()) MergedDeprecated2 = OldDeprecated; if (MergedObsoleted2.empty()) MergedObsoleted2 = OldObsoleted; if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, MergedIntroduced2, MergedDeprecated2, MergedObsoleted2)) { Attrs.erase(Attrs.begin() + i); --e; continue; } MergedIntroduced = MergedIntroduced2; MergedDeprecated = MergedDeprecated2; MergedObsoleted = MergedObsoleted2; ++i; } } if (FoundAny && MergedIntroduced == Introduced && MergedDeprecated == Deprecated && MergedObsoleted == Obsoleted) return nullptr; // Only create a new attribute if !OverrideOrImpl, but we want to do // the checking. if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced, MergedDeprecated, MergedObsoleted) && !OverrideOrImpl) { auto *Avail = ::new (Context) AvailabilityAttr( Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, Message, IsStrict, Replacement, Priority); Avail->setImplicit(Implicit); return Avail; } return nullptr; } static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (isa( D)) { S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using) << AL; return; } if (!AL.checkExactlyNumArgs(S, 1)) return; IdentifierLoc *Platform = AL.getArgAsIdent(0); IdentifierInfo *II = Platform->Ident; if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) << Platform->Ident; auto *ND = dyn_cast(D); if (!ND) // We warned about this already, so just return. return; AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); bool IsUnavailable = AL.getUnavailableLoc().isValid(); bool IsStrict = AL.getStrictLoc().isValid(); StringRef Str; if (const auto *SE = dyn_cast_or_null(AL.getMessageExpr())) Str = SE->getString(); StringRef Replacement; if (const auto *SE = dyn_cast_or_null(AL.getReplacementExpr())) Replacement = SE->getString(); if (II->isStr("swift")) { if (Introduced.isValid() || Obsoleted.isValid() || (!IsUnavailable && !Deprecated.isValid())) { S.Diag(AL.getLoc(), diag::warn_availability_swift_unavailable_deprecated_only); return; } } int PriorityModifier = AL.isPragmaClangAttribute() ? Sema::AP_PragmaClangAttribute : Sema::AP_Explicit; AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement, Sema::AMK_None, PriorityModifier); if (NewAttr) D->addAttr(NewAttr); // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning // matches before the start of the watchOS platform. if (S.Context.getTargetInfo().getTriple().isWatchOS()) { IdentifierInfo *NewII = nullptr; if (II->getName() == "ios") NewII = &S.Context.Idents.get("watchos"); else if (II->getName() == "ios_app_extension") NewII = &S.Context.Idents.get("watchos_app_extension"); if (NewII) { auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple { if (Version.empty()) return Version; auto Major = Version.getMajor(); auto NewMajor = Major >= 9 ? Major - 7 : 0; if (NewMajor >= 2) { if (Version.getMinor().hasValue()) { if (Version.getSubminor().hasValue()) return VersionTuple(NewMajor, Version.getMinor().getValue(), Version.getSubminor().getValue()); else return VersionTuple(NewMajor, Version.getMinor().getValue()); } return VersionTuple(NewMajor); } return VersionTuple(2, 0); }; auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, Sema::AMK_None, PriorityModifier + Sema::AP_InferredFromOtherPlatform); if (NewAttr) D->addAttr(NewAttr); } } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning // matches before the start of the tvOS platform. IdentifierInfo *NewII = nullptr; if (II->getName() == "ios") NewII = &S.Context.Idents.get("tvos"); else if (II->getName() == "ios_app_extension") NewII = &S.Context.Idents.get("tvos_app_extension"); if (NewII) { AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( ND, AL, NewII, true /*Implicit*/, Introduced.Version, Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement, Sema::AMK_None, PriorityModifier + Sema::AP_InferredFromOtherPlatform); if (NewAttr) D->addAttr(NewAttr); } } else if (S.Context.getTargetInfo().getTriple().getOS() == llvm::Triple::IOS && S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) { auto GetSDKInfo = [&]() { return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(), "macOS"); }; // Transcribe "ios" to "maccatalyst" (and add a new attribute). IdentifierInfo *NewII = nullptr; if (II->getName() == "ios") NewII = &S.Context.Idents.get("maccatalyst"); else if (II->getName() == "ios_app_extension") NewII = &S.Context.Idents.get("maccatalyst_app_extension"); if (NewII) { auto MinMacCatalystVersion = [](const VersionTuple &V) { if (V.empty()) return V; if (V.getMajor() < 13 || (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1)) return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1. return V; }; AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( ND, AL.getRange(), NewII, true /*Implicit*/, MinMacCatalystVersion(Introduced.Version), MinMacCatalystVersion(Deprecated.Version), MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str, IsStrict, Replacement, Sema::AMK_None, PriorityModifier + Sema::AP_InferredFromOtherPlatform); if (NewAttr) D->addAttr(NewAttr); } else if (II->getName() == "macos" && GetSDKInfo() && (!Introduced.Version.empty() || !Deprecated.Version.empty() || !Obsoleted.Version.empty())) { if (const auto *MacOStoMacCatalystMapping = GetSDKInfo()->getVersionMapping( DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) { // Infer Mac Catalyst availability from the macOS availability attribute // if it has versioned availability. Don't infer 'unavailable'. This // inferred availability has lower priority than the other availability // attributes that are inferred from 'ios'. NewII = &S.Context.Idents.get("maccatalyst"); auto RemapMacOSVersion = [&](const VersionTuple &V) -> Optional { if (V.empty()) return None; // API_TO_BE_DEPRECATED is 100000. if (V.getMajor() == 100000) return VersionTuple(100000); // The minimum iosmac version is 13.1 return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1), None); }; Optional NewIntroduced = RemapMacOSVersion(Introduced.Version), NewDeprecated = RemapMacOSVersion(Deprecated.Version), NewObsoleted = RemapMacOSVersion(Obsoleted.Version); if (NewIntroduced || NewDeprecated || NewObsoleted) { auto VersionOrEmptyVersion = [](const Optional &V) -> VersionTuple { return V ? *V : VersionTuple(); }; AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( ND, AL.getRange(), NewII, true /*Implicit*/, VersionOrEmptyVersion(NewIntroduced), VersionOrEmptyVersion(NewDeprecated), VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str, IsStrict, Replacement, Sema::AMK_None, PriorityModifier + Sema::AP_InferredFromOtherPlatform + Sema::AP_InferredFromOtherPlatform); if (NewAttr) D->addAttr(NewAttr); } } } } } static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3)) return; StringRef Language; if (const auto *SE = dyn_cast_or_null(AL.getArgAsExpr(0))) Language = SE->getString(); StringRef DefinedIn; if (const auto *SE = dyn_cast_or_null(AL.getArgAsExpr(1))) DefinedIn = SE->getString(); bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr; D->addAttr(::new (S.Context) ExternalSourceSymbolAttr( S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration)); } template static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, typename T::VisibilityType value) { T *existingAttr = D->getAttr(); if (existingAttr) { typename T::VisibilityType existingValue = existingAttr->getVisibility(); if (existingValue == value) return nullptr; S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); S.Diag(CI.getLoc(), diag::note_previous_attribute); D->dropAttr(); } return ::new (S.Context) T(S.Context, CI, value); } VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, VisibilityAttr::VisibilityType Vis) { return ::mergeVisibilityAttr(*this, D, CI, Vis); } TypeVisibilityAttr * Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, TypeVisibilityAttr::VisibilityType Vis) { return ::mergeVisibilityAttr(*this, D, CI, Vis); } static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, bool isTypeVisibility) { // Visibility attributes don't mean anything on a typedef. if (isa(D)) { S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL; return; } // 'type_visibility' can only go on a type or namespace. if (isTypeVisibility && !(isa(D) || isa(D) || isa(D))) { S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type) << AL << ExpectedTypeOrNamespace; return; } // Check that the argument is a string literal. StringRef TypeStr; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc)) return; VisibilityAttr::VisibilityType type; if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL << TypeStr; return; } // Complain about attempts to use protected visibility on targets // (like Darwin) that don't support it. if (type == VisibilityAttr::Protected && !S.Context.getTargetInfo().hasProtectedVisibility()) { S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility); type = VisibilityAttr::Default; } Attr *newAttr; if (isTypeVisibility) { newAttr = S.mergeTypeVisibilityAttr( D, AL, (TypeVisibilityAttr::VisibilityType)type); } else { newAttr = S.mergeVisibilityAttr(D, AL, type); } if (newAttr) D->addAttr(newAttr); } static void handleObjCDirectAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // objc_direct cannot be set on methods declared in the context of a protocol if (isa(D->getDeclContext())) { S.Diag(AL.getLoc(), diag::err_objc_direct_on_protocol) << false; return; } if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { handleSimpleAttribute(S, D, AL); } else { S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; } } static void handleObjCDirectMembersAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (S.getLangOpts().ObjCRuntime.allowsDirectDispatch()) { handleSimpleAttribute(S, D, AL); } else { S.Diag(AL.getLoc(), diag::warn_objc_direct_ignored) << AL; } } static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *M = cast(D); if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } IdentifierLoc *IL = AL.getArgAsIdent(0); ObjCMethodFamilyAttr::FamilyKind F; if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) { S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; return; } if (F == ObjCMethodFamilyAttr::OMF_init && !M->getReturnType()->isObjCObjectPointerType()) { S.Diag(M->getLocation(), diag::err_init_method_bad_return_type) << M->getReturnType(); // Ignore the attribute. return; } D->addAttr(new (S.Context) ObjCMethodFamilyAttr(S.Context, AL, F)); } static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) { if (const auto *TD = dyn_cast(D)) { QualType T = TD->getUnderlyingType(); if (!T->isCARCBridgableType()) { S.Diag(TD->getLocation(), diag::err_nsobject_attribute); return; } } else if (const auto *PD = dyn_cast(D)) { QualType T = PD->getType(); if (!T->isCARCBridgableType()) { S.Diag(PD->getLocation(), diag::err_nsobject_attribute); return; } } else { // It is okay to include this attribute on properties, e.g.: // // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject)); // // In this case it follows tradition and suppresses an error in the above // case. S.Diag(D->getLocation(), diag::warn_nsobject_attribute); } D->addAttr(::new (S.Context) ObjCNSObjectAttr(S.Context, AL)); } static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) { if (const auto *TD = dyn_cast(D)) { QualType T = TD->getUnderlyingType(); if (!T->isObjCObjectPointerType()) { S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute); return; } } else { S.Diag(D->getLocation(), diag::warn_independentclass_attribute); return; } D->addAttr(::new (S.Context) ObjCIndependentClassAttr(S.Context, AL)); } static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; BlocksAttr::BlockType type; if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; return; } D->addAttr(::new (S.Context) BlocksAttr(S.Context, AL, type)); } static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; if (AL.getNumArgs() > 0) { Expr *E = AL.getArgAsExpr(0); Optional Idx = llvm::APSInt(32); if (E->isTypeDependent() || E->isValueDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } if (Idx->isSigned() && Idx->isNegative()) { S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero) << E->getSourceRange(); return; } sentinel = Idx->getZExtValue(); } unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; if (AL.getNumArgs() > 1) { Expr *E = AL.getArgAsExpr(1); Optional Idx = llvm::APSInt(32); if (E->isTypeDependent() || E->isValueDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } nullPos = Idx->getZExtValue(); if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) { // FIXME: This error message could be improved, it would be nice // to say what the bounds actually are. S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) << E->getSourceRange(); return; } } if (const auto *FD = dyn_cast(D)) { const FunctionType *FT = FD->getType()->castAs(); if (isa(FT)) { S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments); return; } if (!cast(FT)->isVariadic()) { S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; return; } } else if (const auto *MD = dyn_cast(D)) { if (!MD->isVariadic()) { S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; return; } } else if (const auto *BD = dyn_cast(D)) { if (!BD->isVariadic()) { S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; return; } } else if (const auto *V = dyn_cast(D)) { QualType Ty = V->getType(); if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { const FunctionType *FT = Ty->isFunctionPointerType() ? D->getFunctionType() : Ty->castAs() ->getPointeeType() ->castAs(); if (!cast(FT)->isVariadic()) { int m = Ty->isFunctionPointerType() ? 0 : 1; S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; return; } } else { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << ExpectedFunctionMethodOrBlock; return; } } else { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << ExpectedFunctionMethodOrBlock; return; } D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos)); } static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { if (D->getFunctionType() && D->getFunctionType()->getReturnType()->isVoidType() && !isa(D)) { S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0; return; } if (const auto *MD = dyn_cast(D)) if (MD->getReturnType()->isVoidType()) { S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1; return; } StringRef Str; if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) { // The standard attribute cannot be applied to variable declarations such // as a function pointer. if (isa(D)) S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str) << AL << "functions, classes, or enumerations"; // If this is spelled as the standard C++17 attribute, but not in C++17, // warn about using it as an extension. If there are attribute arguments, // then claim it's a C++2a extension instead. // FIXME: If WG14 does not seem likely to adopt the same feature, add an // extension warning for C2x mode. const LangOptions &LO = S.getLangOpts(); if (AL.getNumArgs() == 1) { if (LO.CPlusPlus && !LO.CPlusPlus20) S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL; // Since this this is spelled [[nodiscard]], get the optional string // literal. If in C++ mode, but not in C++2a mode, diagnose as an // extension. // FIXME: C2x should support this feature as well, even as an extension. if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr)) return; } else if (LO.CPlusPlus && !LO.CPlusPlus17) S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; } D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str)); } static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // weak_import only applies to variable & function declarations. bool isDef = false; if (!D->canBeWeakImported(isDef)) { if (isDef) S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition) << "weak_import"; else if (isa(D) || isa(D) || (S.Context.getTargetInfo().getTriple().isOSDarwin() && (isa(D) || isa(D)))) { // Nothing to warn about here. } else S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << ExpectedVariableOrFunction; return; } D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL)); } // Handles reqd_work_group_size and work_group_size_hint. template static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t WGSize[3]; for (unsigned i = 0; i < 3; ++i) { const Expr *E = AL.getArgAsExpr(i); if (!checkUInt32Argument(S, AL, E, WGSize[i], i, /*StrictlyUnsigned=*/true)) return; if (WGSize[i] == 0) { S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) << AL << E->getSourceRange(); return; } } WorkGroupAttr *Existing = D->getAttr(); if (Existing && !(Existing->getXDim() == WGSize[0] && Existing->getYDim() == WGSize[1] && Existing->getZDim() == WGSize[2])) S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; D->addAttr(::new (S.Context) WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2])); } // Handles intel_reqd_sub_group_size. static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t SGSize; const Expr *E = AL.getArgAsExpr(0); if (!checkUInt32Argument(S, AL, E, SGSize)) return; if (SGSize == 0) { S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) << AL << E->getSourceRange(); return; } OpenCLIntelReqdSubGroupSizeAttr *Existing = D->getAttr(); if (Existing && Existing->getSubGroupSize() != SGSize) S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; D->addAttr(::new (S.Context) OpenCLIntelReqdSubGroupSizeAttr(S.Context, AL, SGSize)); } static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.hasParsedType()) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; return; } TypeSourceInfo *ParmTSI = nullptr; QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI); assert(ParmTSI && "no type source info for attribute argument"); if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && (ParmType->isBooleanType() || !ParmType->isIntegralType(S.getASTContext()))) { S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL; return; } if (VecTypeHintAttr *A = D->getAttr()) { if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; return; } } D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI)); } SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name) { // Explicit or partial specializations do not inherit // the section attribute from the primary template. if (const auto *FD = dyn_cast(D)) { if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate && FD->isFunctionTemplateSpecialization()) return nullptr; } if (SectionAttr *ExistingAttr = D->getAttr()) { if (ExistingAttr->getName() == Name) return nullptr; Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) << 1 /*section*/; Diag(CI.getLoc(), diag::note_previous_attribute); return nullptr; } return ::new (Context) SectionAttr(Context, CI, Name); } /// Used to implement to perform semantic checking on /// attribute((section("foo"))) specifiers. /// /// In this case, "foo" is passed in to be checked. If the section /// specifier is invalid, return an Error that indicates the problem. /// /// This is a simple quality of implementation feature to catch errors /// and give good diagnostics in cases when the assembler or code generator /// would otherwise reject the section specifier. llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) { if (!Context.getTargetInfo().getTriple().isOSDarwin()) return llvm::Error::success(); // Let MCSectionMachO validate this. StringRef Segment, Section; unsigned TAA, StubSize; bool HasTAA; return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section, TAA, HasTAA, StubSize); } bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { if (llvm::Error E = isValidSectionSpecifier(SecName)) { Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << toString(std::move(E)) << 1 /*'section'*/; return false; } return true; } static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Make sure that there is a string literal as the sections's single // argument. StringRef Str; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) return; if (!S.checkSectionName(LiteralLoc, Str)) return; SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str); if (NewAttr) { D->addAttr(NewAttr); if (isa(D)) S.UnifySection(NewAttr->getName(), ASTContext::PSF_Execute | ASTContext::PSF_Read, cast(D)); } } // This is used for `__declspec(code_seg("segname"))` on a decl. // `#pragma code_seg("segname")` uses checkSectionName() instead. static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, StringRef CodeSegName) { if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) { S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << toString(std::move(E)) << 0 /*'code-seg'*/; return false; } return true; } CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name) { // Explicit or partial specializations do not inherit // the code_seg attribute from the primary template. if (const auto *FD = dyn_cast(D)) { if (FD->isFunctionTemplateSpecialization()) return nullptr; } if (const auto *ExistingAttr = D->getAttr()) { if (ExistingAttr->getName() == Name) return nullptr; Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) << 0 /*codeseg*/; Diag(CI.getLoc(), diag::note_previous_attribute); return nullptr; } return ::new (Context) CodeSegAttr(Context, CI, Name); } static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) return; if (!checkCodeSegName(S, LiteralLoc, Str)) return; if (const auto *ExistingAttr = D->getAttr()) { if (!ExistingAttr->isImplicit()) { S.Diag(AL.getLoc(), ExistingAttr->getName() == Str ? diag::warn_duplicate_codeseg_attribute : diag::err_conflicting_codeseg_attribute); return; } D->dropAttr(); } if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str)) D->addAttr(CSA); } // Check for things we'd like to warn about. Multiversioning issues are // handled later in the process, once we know how many exist. bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { enum FirstParam { Unsupported, Duplicate, Unknown }; enum SecondParam { None, Architecture, Tune }; if (AttrStr.find("fpmath=") != StringRef::npos) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << "fpmath="; // Diagnose use of tune if target doesn't support it. if (!Context.getTargetInfo().supportsTargetAttributeTune() && AttrStr.find("tune=") != StringRef::npos) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << "tune="; ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr); if (!ParsedAttrs.Architecture.empty() && !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture)) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unknown << Architecture << ParsedAttrs.Architecture; if (!ParsedAttrs.Tune.empty() && !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune)) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unknown << Tune << ParsedAttrs.Tune; if (ParsedAttrs.DuplicateArchitecture) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Duplicate << None << "arch="; if (ParsedAttrs.DuplicateTune) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Duplicate << None << "tune="; for (const auto &Feature : ParsedAttrs.Features) { auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. if (!Context.getTargetInfo().isValidFeatureName(CurFeature)) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << CurFeature; } TargetInfo::BranchProtectionInfo BPI; StringRef Error; if (!ParsedAttrs.BranchProtection.empty() && !Context.getTargetInfo().validateBranchProtection( ParsedAttrs.BranchProtection, BPI, Error)) { if (Error.empty()) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << "branch-protection"; else return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec) << Error; } return false; } static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) || S.checkTargetAttr(LiteralLoc, Str)) return; TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str); D->addAttr(NewAttr); } static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *E = AL.getArgAsExpr(0); uint32_t VecWidth; if (!checkUInt32Argument(S, AL, E, VecWidth)) { AL.setInvalid(); return; } MinVectorWidthAttr *Existing = D->getAttr(); if (Existing && Existing->getVectorWidth() != VecWidth) { S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; return; } D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth)); } static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *E = AL.getArgAsExpr(0); SourceLocation Loc = E->getExprLoc(); FunctionDecl *FD = nullptr; DeclarationNameInfo NI; // gcc only allows for simple identifiers. Since we support more than gcc, we // will warn the user. if (auto *DRE = dyn_cast(E)) { if (DRE->hasQualifier()) S.Diag(Loc, diag::warn_cleanup_ext); FD = dyn_cast(DRE->getDecl()); NI = DRE->getNameInfo(); if (!FD) { S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 << NI.getName(); return; } } else if (auto *ULE = dyn_cast(E)) { if (ULE->hasExplicitTemplateArgs()) S.Diag(Loc, diag::warn_cleanup_ext); FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); NI = ULE->getNameInfo(); if (!FD) { S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 << NI.getName(); if (ULE->getType() == S.Context.OverloadTy) S.NoteAllOverloadCandidates(ULE); return; } } else { S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; return; } if (FD->getNumParams() != 1) { S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) << NI.getName(); return; } // We're currently more strict than GCC about what function types we accept. // If this ever proves to be a problem it should be easy to fix. QualType Ty = S.Context.getPointerType(cast(D)->getType()); QualType ParamTy = FD->getParamDecl(0)->getType(); if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), ParamTy, Ty) != Sema::Compatible) { S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) << NI.getName() << ParamTy << Ty; return; } D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD)); } static void handleEnumExtensibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 0 << AANT_ArgumentIdentifier; return; } EnumExtensibilityAttr::Kind ExtensibilityKind; IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(), ExtensibilityKind)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; return; } D->addAttr(::new (S.Context) EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind)); } /// Handle __attribute__((format_arg((idx)))) attribute based on /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *IdxExpr = AL.getArgAsExpr(0); ParamIdx Idx; if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx)) return; // Make sure the format string is really a string. QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); bool NotNSStringTy = !isNSStringType(Ty, S.Context); if (NotNSStringTy && !isCFStringType(Ty, S.Context) && (!Ty->isPointerType() || !Ty->castAs()->getPointeeType()->isCharType())) { S.Diag(AL.getLoc(), diag::err_format_attribute_not) << "a string type" << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); return; } Ty = getFunctionOrMethodResultType(D); if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true) && !isCFStringType(Ty, S.Context) && (!Ty->isPointerType() || !Ty->castAs()->getPointeeType()->isCharType())) { S.Diag(AL.getLoc(), diag::err_format_attribute_result_not) << (NotNSStringTy ? "string type" : "NSString") << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); return; } D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx)); } enum FormatAttrKind { CFStringFormat, NSStringFormat, StrftimeFormat, SupportedFormat, IgnoredFormat, InvalidFormat }; /// getFormatAttrKind - Map from format attribute names to supported format /// types. static FormatAttrKind getFormatAttrKind(StringRef Format) { return llvm::StringSwitch(Format) // Check for formats that get handled specially. .Case("NSString", NSStringFormat) .Case("CFString", CFStringFormat) .Case("strftime", StrftimeFormat) // Otherwise, check for supported formats. .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) .Case("kprintf", SupportedFormat) // OpenBSD. .Case("freebsd_kprintf", SupportedFormat) // FreeBSD. .Case("os_trace", SupportedFormat) .Case("os_log", SupportedFormat) .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) .Default(InvalidFormat); } /// Handle __attribute__((init_priority(priority))) attributes based on /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!S.getLangOpts().CPlusPlus) { S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; return; } if (S.getCurFunctionOrMethodDecl()) { S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); AL.setInvalid(); return; } QualType T = cast(D)->getType(); if (S.Context.getAsArrayType(T)) T = S.Context.getBaseElementType(T); if (!T->getAs()) { S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); AL.setInvalid(); return; } Expr *E = AL.getArgAsExpr(0); uint32_t prioritynum; if (!checkUInt32Argument(S, AL, E, prioritynum)) { AL.setInvalid(); return; } // Only perform the priority check if the attribute is outside of a system // header. Values <= 100 are reserved for the implementation, and libc++ // benefits from being able to specify values in that range. if ((prioritynum < 101 || prioritynum > 65535) && !S.getSourceManager().isInSystemHeader(AL.getLoc())) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range) << E->getSourceRange() << AL << 101 << 65535; AL.setInvalid(); return; } D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum)); } FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, int FirstArg) { // Check whether we already have an equivalent format attribute. for (auto *F : D->specific_attrs()) { if (F->getType() == Format && F->getFormatIdx() == FormatIdx && F->getFirstArg() == FirstArg) { // If we don't have a valid location for this attribute, adopt the // location. if (F->getLocation().isInvalid()) F->setRange(CI.getRange()); return nullptr; } } return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg); } /// Handle __attribute__((format(type,idx,firstarg))) attributes based on /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } // In C++ the implicit 'this' function parameter also counts, and they are // counted from one. bool HasImplicitThisParam = isInstanceMethod(D); unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; StringRef Format = II->getName(); if (normalizeName(Format)) { // If we've modified the string name, we need a new identifier for it. II = &S.Context.Idents.get(Format); } // Check for supported formats. FormatAttrKind Kind = getFormatAttrKind(Format); if (Kind == IgnoredFormat) return; if (Kind == InvalidFormat) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II->getName(); return; } // checks for the 2nd argument Expr *IdxExpr = AL.getArgAsExpr(1); uint32_t Idx; if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2)) return; if (Idx < 1 || Idx > NumArgs) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << 2 << IdxExpr->getSourceRange(); return; } // FIXME: Do we need to bounds check? unsigned ArgIdx = Idx - 1; if (HasImplicitThisParam) { if (ArgIdx == 0) { S.Diag(AL.getLoc(), diag::err_format_attribute_implicit_this_format_string) << IdxExpr->getSourceRange(); return; } ArgIdx--; } // make sure the format string is really a string QualType Ty = getFunctionOrMethodParamType(D, ArgIdx); if (Kind == CFStringFormat) { if (!isCFStringType(Ty, S.Context)) { S.Diag(AL.getLoc(), diag::err_format_attribute_not) << "a CFString" << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, ArgIdx); return; } } else if (Kind == NSStringFormat) { // FIXME: do we need to check if the type is NSString*? What are the // semantics? if (!isNSStringType(Ty, S.Context, /*AllowNSAttributedString=*/true)) { S.Diag(AL.getLoc(), diag::err_format_attribute_not) << "an NSString" << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, ArgIdx); return; } } else if (!Ty->isPointerType() || !Ty->castAs()->getPointeeType()->isCharType()) { S.Diag(AL.getLoc(), diag::err_format_attribute_not) << "a string type" << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, ArgIdx); return; } // check the 3rd argument Expr *FirstArgExpr = AL.getArgAsExpr(2); uint32_t FirstArg; if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3)) return; // check if the function is variadic if the 3rd argument non-zero if (FirstArg != 0) { if (isFunctionOrMethodVariadic(D)) { ++NumArgs; // +1 for ... } else { S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic); return; } } // strftime requires FirstArg to be 0 because it doesn't read from any // variable the input is just the current time + the format string. if (Kind == StrftimeFormat) { if (FirstArg != 0) { S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter) << FirstArgExpr->getSourceRange(); return; } // if 0 it disables parameter checking (to use with e.g. va_list) } else if (FirstArg != 0 && FirstArg != NumArgs) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << 3 << FirstArgExpr->getSourceRange(); return; } FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg); if (NewAttr) D->addAttr(NewAttr); } /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes. static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // The index that identifies the callback callee is mandatory. if (AL.getNumArgs() == 0) { S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee) << AL.getRange(); return; } bool HasImplicitThisParam = isInstanceMethod(D); int32_t NumArgs = getFunctionOrMethodNumParams(D); FunctionDecl *FD = D->getAsFunction(); assert(FD && "Expected a function declaration!"); llvm::StringMap NameIdxMapping; NameIdxMapping["__"] = -1; NameIdxMapping["this"] = 0; int Idx = 1; for (const ParmVarDecl *PVD : FD->parameters()) NameIdxMapping[PVD->getName()] = Idx++; auto UnknownName = NameIdxMapping.end(); SmallVector EncodingIndices; for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) { SourceRange SR; int32_t ArgIdx; if (AL.isArgIdent(I)) { IdentifierLoc *IdLoc = AL.getArgAsIdent(I); auto It = NameIdxMapping.find(IdLoc->Ident->getName()); if (It == UnknownName) { S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown) << IdLoc->Ident << IdLoc->Loc; return; } SR = SourceRange(IdLoc->Loc); ArgIdx = It->second; } else if (AL.isArgExpr(I)) { Expr *IdxExpr = AL.getArgAsExpr(I); // If the expression is not parseable as an int32_t we have a problem. if (!checkUInt32Argument(S, AL, IdxExpr, (uint32_t &)ArgIdx, I + 1, false)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << (I + 1) << IdxExpr->getSourceRange(); return; } // Check oob, excluding the special values, 0 and -1. if (ArgIdx < -1 || ArgIdx > NumArgs) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << (I + 1) << IdxExpr->getSourceRange(); return; } SR = IdxExpr->getSourceRange(); } else { llvm_unreachable("Unexpected ParsedAttr argument type!"); } if (ArgIdx == 0 && !HasImplicitThisParam) { S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available) << (I + 1) << SR; return; } // Adjust for the case we do not have an implicit "this" parameter. In this // case we decrease all positive values by 1 to get LLVM argument indices. if (!HasImplicitThisParam && ArgIdx > 0) ArgIdx -= 1; EncodingIndices.push_back(ArgIdx); } int CalleeIdx = EncodingIndices.front(); // Check if the callee index is proper, thus not "this" and not "unknown". // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam" // is false and positive if "HasImplicitThisParam" is true. if (CalleeIdx < (int)HasImplicitThisParam) { S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee) << AL.getRange(); return; } // Get the callee type, note the index adjustment as the AST doesn't contain // the this type (which the callee cannot reference anyway!). const Type *CalleeType = getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam) .getTypePtr(); if (!CalleeType || !CalleeType->isFunctionPointerType()) { S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) << AL.getRange(); return; } const Type *CalleeFnType = CalleeType->getPointeeType()->getUnqualifiedDesugaredType(); // TODO: Check the type of the callee arguments. const auto *CalleeFnProtoType = dyn_cast(CalleeFnType); if (!CalleeFnProtoType) { S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) << AL.getRange(); return; } if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << (unsigned)(EncodingIndices.size() - 1); return; } if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << (unsigned)(EncodingIndices.size() - 1); return; } if (CalleeFnProtoType->isVariadic()) { S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange(); return; } // Do not allow multiple callback attributes. if (D->hasAttr()) { S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange(); return; } D->addAttr(::new (S.Context) CallbackAttr( S.Context, AL, EncodingIndices.data(), EncodingIndices.size())); } static bool isFunctionLike(const Type &T) { // Check for explicit function types. // 'called_once' is only supported in Objective-C and it has // function pointers and block pointers. return T.isFunctionPointerType() || T.isBlockPointerType(); } /// Handle 'called_once' attribute. static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // 'called_once' only applies to parameters representing functions. QualType T = cast(D)->getType(); if (!isFunctionLike(*T)) { S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type); return; } D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL)); } static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Try to find the underlying union declaration. RecordDecl *RD = nullptr; const auto *TD = dyn_cast(D); if (TD && TD->getUnderlyingType()->isUnionType()) RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); else RD = dyn_cast(D); if (!RD || !RD->isUnion()) { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << ExpectedUnion; return; } if (!RD->isCompleteDefinition()) { if (!RD->isBeingDefined()) S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_not_definition); return; } RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); if (Field == FieldEnd) { S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields); return; } FieldDecl *FirstField = *Field; QualType FirstType = FirstField->getType(); if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { S.Diag(FirstField->getLocation(), diag::warn_transparent_union_attribute_floating) << FirstType->isVectorType() << FirstType; return; } if (FirstType->isIncompleteType()) return; uint64_t FirstSize = S.Context.getTypeSize(FirstType); uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); for (; Field != FieldEnd; ++Field) { QualType FieldType = Field->getType(); if (FieldType->isIncompleteType()) return; // FIXME: this isn't fully correct; we also need to test whether the // members of the union would all have the same calling convention as the // first member of the union. Checking just the size and alignment isn't // sufficient (consider structs passed on the stack instead of in registers // as an example). if (S.Context.getTypeSize(FieldType) != FirstSize || S.Context.getTypeAlign(FieldType) > FirstAlign) { // Warn if we drop the attribute. bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType) : S.Context.getTypeAlign(FieldType); S.Diag(Field->getLocation(), diag::warn_transparent_union_attribute_field_size_align) << isSize << *Field << FieldBits; unsigned FirstBits = isSize ? FirstSize : FirstAlign; S.Diag(FirstField->getLocation(), diag::note_transparent_union_first_field_size_align) << isSize << FirstBits; return; } } RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL)); } void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Str, MutableArrayRef Args) { auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI); llvm::SmallVector Notes; for (unsigned Idx = 0; Idx < Attr->args_size(); Idx++) { Expr *&E = Attr->args_begin()[Idx]; assert(E && "error are handled before"); if (E->isValueDependent() || E->isTypeDependent()) continue; if (E->getType()->isArrayType()) E = ImpCastExprToType(E, Context.getPointerType(E->getType()), clang::CK_ArrayToPointerDecay) .get(); if (E->getType()->isFunctionType()) E = ImplicitCastExpr::Create(Context, Context.getPointerType(E->getType()), clang::CK_FunctionToPointerDecay, E, nullptr, VK_PRValue, FPOptionsOverride()); if (E->isLValue()) E = ImplicitCastExpr::Create(Context, E->getType().getNonReferenceType(), clang::CK_LValueToRValue, E, nullptr, VK_PRValue, FPOptionsOverride()); Expr::EvalResult Eval; Notes.clear(); Eval.Diag = &Notes; bool Result = E->EvaluateAsConstantExpr(Eval, Context); /// Result means the expression can be folded to a constant. /// Note.empty() means the expression is a valid constant expression in the /// current language mode. if (!Result || !Notes.empty()) { Diag(E->getBeginLoc(), diag::err_attribute_argument_n_type) << CI << (Idx + 1) << AANT_ArgumentConstantExpr; for (auto &Note : Notes) Diag(Note.first, Note.second); return; } assert(Eval.Val.hasValue()); E = ConstantExpr::Create(Context, E, Eval.Val); } D->addAttr(Attr); } static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Make sure that there is a string literal as the annotation's first // argument. StringRef Str; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; llvm::SmallVector Args; Args.reserve(AL.getNumArgs() - 1); for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) { assert(!AL.isArgIdent(Idx)); Args.push_back(AL.getArgAsExpr(Idx)); } S.AddAnnotationAttr(D, AL, Str, Args); } static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0)); } void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) { AlignValueAttr TmpAttr(Context, CI, E); SourceLocation AttrLoc = CI.getLoc(); QualType T; if (const auto *TD = dyn_cast(D)) T = TD->getUnderlyingType(); else if (const auto *VD = dyn_cast(D)) T = VD->getType(); else llvm_unreachable("Unknown decl type for align_value"); if (!T->isDependentType() && !T->isAnyPointerType() && !T->isReferenceType() && !T->isMemberPointerType()) { Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only) << &TmpAttr << T << D->getSourceRange(); return; } if (!E->isValueDependent()) { llvm::APSInt Alignment; ExprResult ICE = VerifyIntegerConstantExpression( E, &Alignment, diag::err_align_value_attribute_argument_not_int); if (ICE.isInvalid()) return; if (!Alignment.isPowerOf2()) { Diag(AttrLoc, diag::err_alignment_not_power_of_two) << E->getSourceRange(); return; } D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get())); return; } // Save dependent expressions in the AST to be instantiated. D->addAttr(::new (Context) AlignValueAttr(Context, CI, E)); } static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // check the attribute arguments. if (AL.getNumArgs() > 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; return; } if (AL.getNumArgs() == 0) { D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr)); return; } Expr *E = AL.getArgAsExpr(0); if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { S.Diag(AL.getEllipsisLoc(), diag::err_pack_expansion_without_parameter_packs); return; } if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) return; S.AddAlignedAttr(D, AL, E, AL.isPackExpansion()); } void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, bool IsPackExpansion) { AlignedAttr TmpAttr(Context, CI, true, E); SourceLocation AttrLoc = CI.getLoc(); // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. if (TmpAttr.isAlignas()) { // C++11 [dcl.align]p1: // An alignment-specifier may be applied to a variable or to a class // data member, but it shall not be applied to a bit-field, a function // parameter, the formal parameter of a catch clause, or a variable // declared with the register storage class specifier. An // alignment-specifier may also be applied to the declaration of a class // or enumeration type. // C11 6.7.5/2: // An alignment attribute shall not be specified in a declaration of // a typedef, or a bit-field, or a function, or a parameter, or an // object declared with the register storage-class specifier. int DiagKind = -1; if (isa(D)) { DiagKind = 0; } else if (const auto *VD = dyn_cast(D)) { if (VD->getStorageClass() == SC_Register) DiagKind = 1; if (VD->isExceptionVariable()) DiagKind = 2; } else if (const auto *FD = dyn_cast(D)) { if (FD->isBitField()) DiagKind = 3; } else if (!isa(D)) { Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr << (TmpAttr.isC11() ? ExpectedVariableOrField : ExpectedVariableFieldOrTag); return; } if (DiagKind != -1) { Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) << &TmpAttr << DiagKind; return; } } if (E->isValueDependent()) { // We can't support a dependent alignment on a non-dependent type, // because we have no way to model that a type is "alignment-dependent" // but not dependent in any other way. if (const auto *TND = dyn_cast(D)) { if (!TND->getUnderlyingType()->isDependentType()) { Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) << E->getSourceRange(); return; } } // Save dependent expressions in the AST to be instantiated. AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E); AA->setPackExpansion(IsPackExpansion); D->addAttr(AA); return; } // FIXME: Cache the number on the AL object? llvm::APSInt Alignment; ExprResult ICE = VerifyIntegerConstantExpression( E, &Alignment, diag::err_aligned_attribute_argument_not_int); if (ICE.isInvalid()) return; uint64_t AlignVal = Alignment.getZExtValue(); // 16 byte ByVal alignment not due to a vector member is not honoured by XL // on AIX. Emit a warning here that users are generating binary incompatible // code to be safe. if (AlignVal >= 16 && isa(D) && Context.getTargetInfo().getTriple().isOSAIX()) Diag(AttrLoc, diag::warn_not_xl_compatible) << E->getSourceRange(); // C++11 [dcl.align]p2: // -- if the constant expression evaluates to zero, the alignment // specifier shall have no effect // C11 6.7.5p6: // An alignment specification of zero has no effect. if (!(TmpAttr.isAlignas() && !Alignment)) { if (!llvm::isPowerOf2_64(AlignVal)) { Diag(AttrLoc, diag::err_alignment_not_power_of_two) << E->getSourceRange(); return; } } unsigned MaximumAlignment = Sema::MaximumAlignment; if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF()) MaximumAlignment = std::min(MaximumAlignment, 8192u); if (AlignVal > MaximumAlignment) { Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaximumAlignment << E->getSourceRange(); return; } if (Context.getTargetInfo().isTLSSupported()) { unsigned MaxTLSAlign = Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign()) .getQuantity(); const auto *VD = dyn_cast(D); if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD && VD->getTLSKind() != VarDecl::TLS_None) { Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) << (unsigned)AlignVal << VD << MaxTLSAlign; return; } } AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get()); AA->setPackExpansion(IsPackExpansion); D->addAttr(AA); } void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *TS, bool IsPackExpansion) { // FIXME: Cache the number on the AL object if non-dependent? // FIXME: Perform checking of type validity AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); AA->setPackExpansion(IsPackExpansion); D->addAttr(AA); } void Sema::CheckAlignasUnderalignment(Decl *D) { assert(D->hasAttrs() && "no attributes on decl"); QualType UnderlyingTy, DiagTy; if (const auto *VD = dyn_cast(D)) { UnderlyingTy = DiagTy = VD->getType(); } else { UnderlyingTy = DiagTy = Context.getTagDeclType(cast(D)); if (const auto *ED = dyn_cast(D)) UnderlyingTy = ED->getIntegerType(); } if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) return; // C++11 [dcl.align]p5, C11 6.7.5/4: // The combined effect of all alignment attributes in a declaration shall // not specify an alignment that is less strict than the alignment that // would otherwise be required for the entity being declared. AlignedAttr *AlignasAttr = nullptr; AlignedAttr *LastAlignedAttr = nullptr; unsigned Align = 0; for (auto *I : D->specific_attrs()) { if (I->isAlignmentDependent()) return; if (I->isAlignas()) AlignasAttr = I; Align = std::max(Align, I->getAlignment(Context)); LastAlignedAttr = I; } if (Align && DiagTy->isSizelessType()) { Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type) << LastAlignedAttr << DiagTy; } else if (AlignasAttr && Align) { CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy); if (NaturalAlign > RequestedAlign) Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) << DiagTy << (unsigned)NaturalAlign.getQuantity(); } } bool Sema::checkMSInheritanceAttrOnDefinition( CXXRecordDecl *RD, SourceRange Range, bool BestCase, MSInheritanceModel ExplicitModel) { assert(RD->hasDefinition() && "RD has no definition!"); // We may not have seen base specifiers or any virtual methods yet. We will // have to wait until the record is defined to catch any mismatches. if (!RD->getDefinition()->isCompleteDefinition()) return false; // The unspecified model never matches what a definition could need. if (ExplicitModel == MSInheritanceModel::Unspecified) return false; if (BestCase) { if (RD->calculateInheritanceModel() == ExplicitModel) return false; } else { if (RD->calculateInheritanceModel() <= ExplicitModel) return false; } Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) << 0 /*definition*/; Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD; return true; } /// parseModeAttrArg - Parses attribute mode string and returns parsed type /// attribute. static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, bool &IntegerMode, bool &ComplexMode, bool &ExplicitIEEE) { IntegerMode = true; ComplexMode = false; switch (Str.size()) { case 2: switch (Str[0]) { case 'Q': DestWidth = 8; break; case 'H': DestWidth = 16; break; case 'S': DestWidth = 32; break; case 'D': DestWidth = 64; break; case 'X': DestWidth = 96; break; case 'K': // KFmode - IEEE quad precision (__float128) ExplicitIEEE = true; DestWidth = Str[1] == 'I' ? 0 : 128; break; case 'T': ExplicitIEEE = false; DestWidth = 128; break; } if (Str[1] == 'F') { IntegerMode = false; } else if (Str[1] == 'C') { IntegerMode = false; ComplexMode = true; } else if (Str[1] != 'I') { DestWidth = 0; } break; case 4: // FIXME: glibc uses 'word' to define register_t; this is narrower than a // pointer on PIC16 and other embedded platforms. if (Str == "word") DestWidth = S.Context.getTargetInfo().getRegisterWidth(); else if (Str == "byte") DestWidth = S.Context.getTargetInfo().getCharWidth(); break; case 7: if (Str == "pointer") DestWidth = S.Context.getTargetInfo().getPointerWidth(0); break; case 11: if (Str == "unwind_word") DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); break; } } /// handleModeAttr - This attribute modifies the width of a decl with primitive /// type. /// /// Despite what would be logical, the mode attribute is a decl attribute, not a /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be /// HImode, not an intermediate pointer. static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // This attribute isn't documented, but glibc uses it. It changes // the width of an int or unsigned int to the specified size. if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident; S.AddModeAttr(D, AL, Name); } void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name, bool InInstantiation) { StringRef Str = Name->getName(); normalizeName(Str); SourceLocation AttrLoc = CI.getLoc(); unsigned DestWidth = 0; bool IntegerMode = true; bool ComplexMode = false; bool ExplicitIEEE = false; llvm::APInt VectorSize(64, 0); if (Str.size() >= 4 && Str[0] == 'V') { // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). size_t StrSize = Str.size(); size_t VectorStringLength = 0; while ((VectorStringLength + 1) < StrSize && isdigit(Str[VectorStringLength + 1])) ++VectorStringLength; if (VectorStringLength && !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) && VectorSize.isPowerOf2()) { parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth, IntegerMode, ComplexMode, ExplicitIEEE); // Avoid duplicate warning from template instantiation. if (!InInstantiation) Diag(AttrLoc, diag::warn_vector_mode_deprecated); } else { VectorSize = 0; } } if (!VectorSize) parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode, ExplicitIEEE); // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t // and friends, at least with glibc. // FIXME: Make sure floating-point mappings are accurate // FIXME: Support XF and TF types if (!DestWidth) { Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name; return; } QualType OldTy; if (const auto *TD = dyn_cast(D)) OldTy = TD->getUnderlyingType(); else if (const auto *ED = dyn_cast(D)) { // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. // Try to get type from enum declaration, default to int. OldTy = ED->getIntegerType(); if (OldTy.isNull()) OldTy = Context.IntTy; } else OldTy = cast(D)->getType(); if (OldTy->isDependentType()) { D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); return; } // Base type can also be a vector type (see PR17453). // Distinguish between base type and base element type. QualType OldElemTy = OldTy; if (const auto *VT = OldTy->getAs()) OldElemTy = VT->getElementType(); // GCC allows 'mode' attribute on enumeration types (even incomplete), except // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. if ((isa(D) || OldElemTy->getAs()) && VectorSize.getBoolValue()) { Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange(); return; } bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() && !OldElemTy->isExtIntType()) || OldElemTy->getAs(); if (!OldElemTy->getAs() && !OldElemTy->isComplexType() && !IntegralOrAnyEnumType) Diag(AttrLoc, diag::err_mode_not_primitive); else if (IntegerMode) { if (!IntegralOrAnyEnumType) Diag(AttrLoc, diag::err_mode_wrong_type); } else if (ComplexMode) { if (!OldElemTy->isComplexType()) Diag(AttrLoc, diag::err_mode_wrong_type); } else { if (!OldElemTy->isFloatingType()) Diag(AttrLoc, diag::err_mode_wrong_type); } QualType NewElemTy; if (IntegerMode) NewElemTy = Context.getIntTypeForBitwidth(DestWidth, OldElemTy->isSignedIntegerType()); else NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitIEEE); if (NewElemTy.isNull()) { Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name; return; } if (ComplexMode) { NewElemTy = Context.getComplexType(NewElemTy); } QualType NewTy = NewElemTy; if (VectorSize.getBoolValue()) { NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(), VectorType::GenericVector); } else if (const auto *OldVT = OldTy->getAs()) { // Complex machine mode does not support base vector types. if (ComplexMode) { Diag(AttrLoc, diag::err_complex_mode_vector_type); return; } unsigned NumElements = Context.getTypeSize(OldElemTy) * OldVT->getNumElements() / Context.getTypeSize(NewElemTy); NewTy = Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind()); } if (NewTy.isNull()) { Diag(AttrLoc, diag::err_mode_wrong_type); return; } // Install the new type. if (auto *TD = dyn_cast(D)) TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); else if (auto *ED = dyn_cast(D)) ED->setIntegerType(NewTy); else cast(D)->setType(NewTy); D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); } static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL)); } AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, const AttributeCommonInfo &CI, const IdentifierInfo *Ident) { if (OptimizeNoneAttr *Optnone = D->getAttr()) { Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident; Diag(Optnone->getLocation(), diag::note_conflicting_attribute); return nullptr; } if (D->hasAttr()) return nullptr; return ::new (Context) AlwaysInlineAttr(Context, CI); } InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL) { if (const auto *VD = dyn_cast(D)) { // Attribute applies to Var but not any subclass of it (like ParmVar, // ImplicitParm or VarTemplateSpecialization). if (VD->getKind() != Decl::Var) { Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass : ExpectedVariableOrFunction); return nullptr; } // Attribute does not apply to non-static local variables. if (VD->hasLocalStorage()) { Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); return nullptr; } } return ::new (Context) InternalLinkageAttr(Context, AL); } InternalLinkageAttr * Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { if (const auto *VD = dyn_cast(D)) { // Attribute applies to Var but not any subclass of it (like ParmVar, // ImplicitParm or VarTemplateSpecialization). if (VD->getKind() != Decl::Var) { Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type) << &AL << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass : ExpectedVariableOrFunction); return nullptr; } // Attribute does not apply to non-static local variables. if (VD->hasLocalStorage()) { Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); return nullptr; } } return ::new (Context) InternalLinkageAttr(Context, AL); } MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) { if (OptimizeNoneAttr *Optnone = D->getAttr()) { Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'"; Diag(Optnone->getLocation(), diag::note_conflicting_attribute); return nullptr; } if (D->hasAttr()) return nullptr; return ::new (Context) MinSizeAttr(Context, CI); } SwiftNameAttr *Sema::mergeSwiftNameAttr(Decl *D, const SwiftNameAttr &SNA, StringRef Name) { if (const auto *PrevSNA = D->getAttr()) { if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) { Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible) << PrevSNA << &SNA; Diag(SNA.getLoc(), diag::note_conflicting_attribute); } D->dropAttr(); } return ::new (Context) SwiftNameAttr(Context, SNA, Name); } OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, const AttributeCommonInfo &CI) { if (AlwaysInlineAttr *Inline = D->getAttr()) { Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline; Diag(CI.getLoc(), diag::note_conflicting_attribute); D->dropAttr(); } if (MinSizeAttr *MinSize = D->getAttr()) { Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize; Diag(CI.getLoc(), diag::note_conflicting_attribute); D->dropAttr(); } if (D->hasAttr()) return nullptr; return ::new (Context) OptimizeNoneAttr(Context, CI); } static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName())) D->addAttr(Inline); } static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL)) D->addAttr(MinSize); } static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL)) D->addAttr(Optnone); } static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *VD = cast(D); if (VD->hasLocalStorage()) { S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); return; } // constexpr variable may already get an implicit constant attr, which should // be replaced by the explicit constant attr. if (auto *A = D->getAttr()) { if (!A->isImplicit()) return; D->dropAttr(); } D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL)); } static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *VD = cast(D); // extern __shared__ is only allowed on arrays with no length (e.g. // "int x[]"). if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() && !isa(VD->getType())) { S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD; return; } if (S.getLangOpts().CUDA && VD->hasLocalStorage() && S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared) << S.CurrentCUDATarget()) return; D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL)); } static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *FD = cast(D); if (!FD->getReturnType()->isVoidType() && !FD->getReturnType()->getAs() && !FD->getReturnType()->isInstantiationDependentType()) { SourceRange RTRange = FD->getReturnTypeSourceRange(); S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) << FD->getType() << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") : FixItHint()); return; } if (const auto *Method = dyn_cast(FD)) { if (Method->isInstance()) { S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method) << Method; return; } S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method; } // Only warn for "inline" when compiling for host, to cut down on noise. if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD; D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL)); // In host compilation the kernel is emitted as a stub function, which is // a helper function for launching the kernel. The instructions in the helper // function has nothing to do with the source code of the kernel. Do not emit // debug info for the stub function to avoid confusing the debugger. if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice) D->addAttr(NoDebugAttr::CreateImplicit(S.Context)); } static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (const auto *VD = dyn_cast(D)) { if (VD->hasLocalStorage()) { S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); return; } } if (auto *A = D->getAttr()) { if (!A->isImplicit()) return; D->dropAttr(); } D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL)); } static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (const auto *VD = dyn_cast(D)) { if (VD->hasLocalStorage()) { S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); return; } } if (!D->hasAttr()) D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL)); if (!D->hasAttr()) D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context)); } static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *Fn = cast(D); if (!Fn->isInlineSpecified()) { S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); return; } if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern) S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern); D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL)); } static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (hasDeclarator(D)) return; // Diagnostic is emitted elsewhere: here we store the (valid) AL // in the Decl node for syntactic reasoning, e.g., pretty-printing. CallingConv CC; if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr)) return; if (!isa(D)) { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << ExpectedFunctionOrMethod; return; } switch (AL.getKind()) { case ParsedAttr::AT_FastCall: D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL)); return; case ParsedAttr::AT_StdCall: D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL)); return; case ParsedAttr::AT_ThisCall: D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL)); return; case ParsedAttr::AT_CDecl: D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL)); return; case ParsedAttr::AT_Pascal: D->addAttr(::new (S.Context) PascalAttr(S.Context, AL)); return; case ParsedAttr::AT_SwiftCall: D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL)); return; case ParsedAttr::AT_SwiftAsyncCall: D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL)); return; case ParsedAttr::AT_VectorCall: D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL)); return; case ParsedAttr::AT_MSABI: D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL)); return; case ParsedAttr::AT_SysVABI: D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL)); return; case ParsedAttr::AT_RegCall: D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL)); return; case ParsedAttr::AT_Pcs: { PcsAttr::PCSType PCS; switch (CC) { case CC_AAPCS: PCS = PcsAttr::AAPCS; break; case CC_AAPCS_VFP: PCS = PcsAttr::AAPCS_VFP; break; default: llvm_unreachable("unexpected calling convention in pcs attribute"); } D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS)); return; } case ParsedAttr::AT_AArch64VectorPcs: D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL)); return; case ParsedAttr::AT_IntelOclBicc: D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL)); return; case ParsedAttr::AT_PreserveMost: D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL)); return; case ParsedAttr::AT_PreserveAll: D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL)); return; default: llvm_unreachable("unexpected attribute kind"); } } static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1)) return; std::vector DiagnosticIdentifiers; for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { StringRef RuleName; if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr)) return; // FIXME: Warn if the rule name is unknown. This is tricky because only // clang-tidy knows about available rules. DiagnosticIdentifiers.push_back(RuleName); } D->addAttr(::new (S.Context) SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(), DiagnosticIdentifiers.size())); } static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { TypeSourceInfo *DerefTypeLoc = nullptr; QualType ParmType; if (AL.hasParsedType()) { ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc); unsigned SelectIdx = ~0U; if (ParmType->isReferenceType()) SelectIdx = 0; else if (ParmType->isArrayType()) SelectIdx = 1; if (SelectIdx != ~0U) { S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << SelectIdx << AL; return; } } // To check if earlier decl attributes do not conflict the newly parsed ones // we always add (and check) the attribute to the cannonical decl. We need // to repeat the check for attribute mutual exclusion because we're attaching // all of the attributes to the canonical declaration rather than the current // declaration. D = D->getCanonicalDecl(); if (AL.getKind() == ParsedAttr::AT_Owner) { if (checkAttrMutualExclusion(S, D, AL)) return; if (const auto *OAttr = D->getAttr()) { const Type *ExistingDerefType = OAttr->getDerefTypeLoc() ? OAttr->getDerefType().getTypePtr() : nullptr; if (ExistingDerefType != ParmType.getTypePtrOrNull()) { S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << OAttr; S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute); } return; } for (Decl *Redecl : D->redecls()) { Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc)); } } else { if (checkAttrMutualExclusion(S, D, AL)) return; if (const auto *PAttr = D->getAttr()) { const Type *ExistingDerefType = PAttr->getDerefTypeLoc() ? PAttr->getDerefType().getTypePtr() : nullptr; if (ExistingDerefType != ParmType.getTypePtrOrNull()) { S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << PAttr; S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute); } return; } for (Decl *Redecl : D->redecls()) { Redecl->addAttr(::new (S.Context) PointerAttr(S.Context, AL, DerefTypeLoc)); } } } bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, const FunctionDecl *FD) { if (Attrs.isInvalid()) return true; if (Attrs.hasProcessingCache()) { CC = (CallingConv) Attrs.getProcessingCache(); return false; } unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) { Attrs.setInvalid(); return true; } // TODO: diagnose uses of these conventions on the wrong target. switch (Attrs.getKind()) { case ParsedAttr::AT_CDecl: CC = CC_C; break; case ParsedAttr::AT_FastCall: CC = CC_X86FastCall; break; case ParsedAttr::AT_StdCall: CC = CC_X86StdCall; break; case ParsedAttr::AT_ThisCall: CC = CC_X86ThisCall; break; case ParsedAttr::AT_Pascal: CC = CC_X86Pascal; break; case ParsedAttr::AT_SwiftCall: CC = CC_Swift; break; case ParsedAttr::AT_SwiftAsyncCall: CC = CC_SwiftAsync; break; case ParsedAttr::AT_VectorCall: CC = CC_X86VectorCall; break; case ParsedAttr::AT_AArch64VectorPcs: CC = CC_AArch64VectorCall; break; case ParsedAttr::AT_RegCall: CC = CC_X86RegCall; break; case ParsedAttr::AT_MSABI: CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : CC_Win64; break; case ParsedAttr::AT_SysVABI: CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : CC_C; break; case ParsedAttr::AT_Pcs: { StringRef StrRef; if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) { Attrs.setInvalid(); return true; } if (StrRef == "aapcs") { CC = CC_AAPCS; break; } else if (StrRef == "aapcs-vfp") { CC = CC_AAPCS_VFP; break; } Attrs.setInvalid(); Diag(Attrs.getLoc(), diag::err_invalid_pcs); return true; } case ParsedAttr::AT_IntelOclBicc: CC = CC_IntelOclBicc; break; case ParsedAttr::AT_PreserveMost: CC = CC_PreserveMost; break; case ParsedAttr::AT_PreserveAll: CC = CC_PreserveAll; break; default: llvm_unreachable("unexpected attribute kind"); } TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK; const TargetInfo &TI = Context.getTargetInfo(); // CUDA functions may have host and/or device attributes which indicate // their targeted execution environment, therefore the calling convention // of functions in CUDA should be checked against the target deduced based // on their host/device attributes. if (LangOpts.CUDA) { auto *Aux = Context.getAuxTargetInfo(); auto CudaTarget = IdentifyCUDATarget(FD); bool CheckHost = false, CheckDevice = false; switch (CudaTarget) { case CFT_HostDevice: CheckHost = true; CheckDevice = true; break; case CFT_Host: CheckHost = true; break; case CFT_Device: case CFT_Global: CheckDevice = true; break; case CFT_InvalidTarget: llvm_unreachable("unexpected cuda target"); } auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI; auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux; if (CheckHost && HostTI) A = HostTI->checkCallingConvention(CC); if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI) A = DeviceTI->checkCallingConvention(CC); } else { A = TI.checkCallingConvention(CC); } switch (A) { case TargetInfo::CCCR_OK: break; case TargetInfo::CCCR_Ignore: // Treat an ignored convention as if it was an explicit C calling convention // attribute. For example, __stdcall on Win x64 functions as __cdecl, so // that command line flags that change the default convention to // __vectorcall don't affect declarations marked __stdcall. CC = CC_C; break; case TargetInfo::CCCR_Error: Diag(Attrs.getLoc(), diag::error_cconv_unsupported) << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; break; case TargetInfo::CCCR_Warning: { Diag(Attrs.getLoc(), diag::warn_cconv_unsupported) << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; // This convention is not valid for the target. Use the default function or // method calling convention. bool IsCXXMethod = false, IsVariadic = false; if (FD) { IsCXXMethod = FD->isCXXInstanceMember(); IsVariadic = FD->isVariadic(); } CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); break; } } Attrs.setProcessingCache((unsigned) CC); return false; } /// Pointer-like types in the default address space. static bool isValidSwiftContextType(QualType Ty) { if (!Ty->hasPointerRepresentation()) return Ty->isDependentType(); return Ty->getPointeeType().getAddressSpace() == LangAS::Default; } /// Pointers and references in the default address space. static bool isValidSwiftIndirectResultType(QualType Ty) { if (const auto *PtrType = Ty->getAs()) { Ty = PtrType->getPointeeType(); } else if (const auto *RefType = Ty->getAs()) { Ty = RefType->getPointeeType(); } else { return Ty->isDependentType(); } return Ty.getAddressSpace() == LangAS::Default; } /// Pointers and references to pointers in the default address space. static bool isValidSwiftErrorResultType(QualType Ty) { if (const auto *PtrType = Ty->getAs()) { Ty = PtrType->getPointeeType(); } else if (const auto *RefType = Ty->getAs()) { Ty = RefType->getPointeeType(); } else { return Ty->isDependentType(); } if (!Ty.getQualifiers().empty()) return false; return isValidSwiftContextType(Ty); } void Sema::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI, ParameterABI abi) { QualType type = cast(D)->getType(); if (auto existingAttr = D->getAttr()) { if (existingAttr->getABI() != abi) { Diag(CI.getLoc(), diag::err_attributes_are_not_compatible) << getParameterABISpelling(abi) << existingAttr; Diag(existingAttr->getLocation(), diag::note_conflicting_attribute); return; } } switch (abi) { case ParameterABI::Ordinary: llvm_unreachable("explicit attribute for ordinary parameter ABI?"); case ParameterABI::SwiftContext: if (!isValidSwiftContextType(type)) { Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type; } D->addAttr(::new (Context) SwiftContextAttr(Context, CI)); return; case ParameterABI::SwiftAsyncContext: if (!isValidSwiftContextType(type)) { Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) << getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type; } D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI)); return; case ParameterABI::SwiftErrorResult: if (!isValidSwiftErrorResultType(type)) { Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) << getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type; } D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI)); return; case ParameterABI::SwiftIndirectResult: if (!isValidSwiftIndirectResultType(type)) { Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type) << getParameterABISpelling(abi) << /*pointer*/ 0 << type; } D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI)); return; } llvm_unreachable("bad parameter ABI attribute"); } /// Checks a regparm attribute, returning true if it is ill-formed and /// otherwise setting numParams to the appropriate value. bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { if (AL.isInvalid()) return true; if (!AL.checkExactlyNumArgs(*this, 1)) { AL.setInvalid(); return true; } uint32_t NP; Expr *NumParamsExpr = AL.getArgAsExpr(0); if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) { AL.setInvalid(); return true; } if (Context.getTargetInfo().getRegParmMax() == 0) { Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform) << NumParamsExpr->getSourceRange(); AL.setInvalid(); return true; } numParams = NP; if (numParams > Context.getTargetInfo().getRegParmMax()) { Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number) << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); AL.setInvalid(); return true; } return false; } // Checks whether an argument of launch_bounds attribute is // acceptable, performs implicit conversion to Rvalue, and returns // non-nullptr Expr result on success. Otherwise, it returns nullptr // and may output an error. static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, const CUDALaunchBoundsAttr &AL, const unsigned Idx) { if (S.DiagnoseUnexpandedParameterPack(E)) return nullptr; // Accept template arguments for now as they depend on something else. // We'll get to check them when they eventually get instantiated. if (E->isValueDependent()) return E; Optional I = llvm::APSInt(64); if (!(I = E->getIntegerConstantExpr(S.Context))) { S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type) << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); return nullptr; } // Make sure we can fit it in 32 bits. if (!I->isIntN(32)) { S.Diag(E->getExprLoc(), diag::err_ice_too_large) << toString(*I, 10, false) << 32 << /* Unsigned */ 1; return nullptr; } if (*I < 0) S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative) << &AL << Idx << E->getSourceRange(); // We may need to perform implicit conversion of the argument. InitializedEntity Entity = InitializedEntity::InitializeParameter( S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false); ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E); assert(!ValArg.isInvalid() && "Unexpected PerformCopyInitialization() failure."); return ValArg.getAs(); } void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks) { CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks); MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0); if (MaxThreads == nullptr) return; if (MinBlocks) { MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1); if (MinBlocks == nullptr) return; } D->addAttr(::new (Context) CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks)); } static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2)) return; S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0), AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr); } static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; return; } ParamIdx ArgumentIdx; if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1), ArgumentIdx)) return; ParamIdx TypeTagIdx; if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2), TypeTagIdx)) return; bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag"; if (IsPointer) { // Ensure that buffer has a pointer type. unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType()) S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0; } D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr( S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx, IsPointer)); } static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } if (!AL.checkExactlyNumArgs(S, 1)) return; if (!isa(D)) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type) << AL << ExpectedVariable; return; } IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident; TypeSourceInfo *MatchingCTypeLoc = nullptr; S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc); assert(MatchingCTypeLoc && "no type source info for attribute argument"); D->addAttr(::new (S.Context) TypeTagForDatatypeAttr( S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(), AL.getMustBeNull())); } static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { ParamIdx ArgCount; if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0), ArgCount, true /* CanIndexImplicitThis */)) return; // ArgCount isn't a parameter index [0;n), it's a count [1;n] D->addAttr(::new (S.Context) XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex())); } static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t Count = 0, Offset = 0; if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Count, 0, true)) return; if (AL.getNumArgs() == 2) { Expr *Arg = AL.getArgAsExpr(1); if (!checkUInt32Argument(S, AL, Arg, Offset, 1, true)) return; if (Count < Offset) { S.Diag(getAttrLoc(AL), diag::err_attribute_argument_out_of_range) << &AL << 0 << Count << Arg->getBeginLoc(); return; } } D->addAttr(::new (S.Context) PatchableFunctionEntryAttr(S.Context, AL, Count, Offset)); } namespace { struct IntrinToName { uint32_t Id; int32_t FullName; int32_t ShortName; }; } // unnamed namespace static bool ArmBuiltinAliasValid(unsigned BuiltinID, StringRef AliasName, ArrayRef Map, const char *IntrinNames) { if (AliasName.startswith("__arm_")) AliasName = AliasName.substr(6); const IntrinToName *It = std::lower_bound( Map.begin(), Map.end(), BuiltinID, [](const IntrinToName &L, unsigned Id) { return L.Id < Id; }); if (It == Map.end() || It->Id != BuiltinID) return false; StringRef FullName(&IntrinNames[It->FullName]); if (AliasName == FullName) return true; if (It->ShortName == -1) return false; StringRef ShortName(&IntrinNames[It->ShortName]); return AliasName == ShortName; } static bool ArmMveAliasValid(unsigned BuiltinID, StringRef AliasName) { #include "clang/Basic/arm_mve_builtin_aliases.inc" // The included file defines: // - ArrayRef Map // - const char IntrinNames[] return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames); } static bool ArmCdeAliasValid(unsigned BuiltinID, StringRef AliasName) { #include "clang/Basic/arm_cde_builtin_aliases.inc" return ArmBuiltinAliasValid(BuiltinID, AliasName, Map, IntrinNames); } static bool ArmSveAliasValid(ASTContext &Context, unsigned BuiltinID, StringRef AliasName) { if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) BuiltinID = Context.BuiltinInfo.getAuxBuiltinID(BuiltinID); return BuiltinID >= AArch64::FirstSVEBuiltin && BuiltinID <= AArch64::LastSVEBuiltin; } static void handleArmBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident; unsigned BuiltinID = Ident->getBuiltinID(); StringRef AliasName = cast(D)->getIdentifier()->getName(); bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) || (!IsAArch64 && !ArmMveAliasValid(BuiltinID, AliasName) && !ArmCdeAliasValid(BuiltinID, AliasName))) { S.Diag(AL.getLoc(), diag::err_attribute_arm_builtin_alias); return; } D->addAttr(::new (S.Context) ArmBuiltinAliasAttr(S.Context, AL, Ident)); } static bool RISCVAliasValid(unsigned BuiltinID, StringRef AliasName) { return BuiltinID >= Builtin::FirstTSBuiltin && BuiltinID < RISCV::LastTSBuiltin; } static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident; unsigned BuiltinID = Ident->getBuiltinID(); StringRef AliasName = cast(D)->getIdentifier()->getName(); bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); bool IsARM = S.Context.getTargetInfo().getTriple().isARM(); bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV(); if ((IsAArch64 && !ArmSveAliasValid(S.Context, BuiltinID, AliasName)) || (IsARM && !ArmMveAliasValid(BuiltinID, AliasName) && !ArmCdeAliasValid(BuiltinID, AliasName)) || (IsRISCV && !RISCVAliasValid(BuiltinID, AliasName)) || (!IsAArch64 && !IsARM && !IsRISCV)) { S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL; return; } D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident)); } //===----------------------------------------------------------------------===// // Checker-specific attribute handlers. //===----------------------------------------------------------------------===// static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) { return QT->isDependentType() || QT->isObjCRetainableType(); } static bool isValidSubjectOfNSAttribute(QualType QT) { return QT->isDependentType() || QT->isObjCObjectPointerType() || QT->isObjCNSObjectType(); } static bool isValidSubjectOfCFAttribute(QualType QT) { return QT->isDependentType() || QT->isPointerType() || isValidSubjectOfNSAttribute(QT); } static bool isValidSubjectOfOSAttribute(QualType QT) { if (QT->isDependentType()) return true; QualType PT = QT->getPointeeType(); return !PT.isNull() && PT->getAsCXXRecordDecl() != nullptr; } void Sema::AddXConsumedAttr(Decl *D, const AttributeCommonInfo &CI, RetainOwnershipKind K, bool IsTemplateInstantiation) { ValueDecl *VD = cast(D); switch (K) { case RetainOwnershipKind::OS: handleSimpleAttributeOrDiagnose( *this, VD, CI, isValidSubjectOfOSAttribute(VD->getType()), diag::warn_ns_attribute_wrong_parameter_type, /*ExtraArgs=*/CI.getRange(), "os_consumed", /*pointers*/ 1); return; case RetainOwnershipKind::NS: handleSimpleAttributeOrDiagnose( *this, VD, CI, isValidSubjectOfNSAttribute(VD->getType()), // These attributes are normally just advisory, but in ARC, ns_consumed // is significant. Allow non-dependent code to contain inappropriate // attributes even in ARC, but require template instantiations to be // set up correctly. ((IsTemplateInstantiation && getLangOpts().ObjCAutoRefCount) ? diag::err_ns_attribute_wrong_parameter_type : diag::warn_ns_attribute_wrong_parameter_type), /*ExtraArgs=*/CI.getRange(), "ns_consumed", /*objc pointers*/ 0); return; case RetainOwnershipKind::CF: handleSimpleAttributeOrDiagnose( *this, VD, CI, isValidSubjectOfCFAttribute(VD->getType()), diag::warn_ns_attribute_wrong_parameter_type, /*ExtraArgs=*/CI.getRange(), "cf_consumed", /*pointers*/ 1); return; } } static Sema::RetainOwnershipKind parsedAttrToRetainOwnershipKind(const ParsedAttr &AL) { switch (AL.getKind()) { case ParsedAttr::AT_CFConsumed: case ParsedAttr::AT_CFReturnsRetained: case ParsedAttr::AT_CFReturnsNotRetained: return Sema::RetainOwnershipKind::CF; case ParsedAttr::AT_OSConsumesThis: case ParsedAttr::AT_OSConsumed: case ParsedAttr::AT_OSReturnsRetained: case ParsedAttr::AT_OSReturnsNotRetained: case ParsedAttr::AT_OSReturnsRetainedOnZero: case ParsedAttr::AT_OSReturnsRetainedOnNonZero: return Sema::RetainOwnershipKind::OS; case ParsedAttr::AT_NSConsumesSelf: case ParsedAttr::AT_NSConsumed: case ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NSReturnsNotRetained: case ParsedAttr::AT_NSReturnsAutoreleased: return Sema::RetainOwnershipKind::NS; default: llvm_unreachable("Wrong argument supplied"); } } bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) { if (isValidSubjectOfNSReturnsRetainedAttribute(QT)) return false; Diag(Loc, diag::warn_ns_attribute_wrong_return_type) << "'ns_returns_retained'" << 0 << 0; return true; } /// \return whether the parameter is a pointer to OSObject pointer. static bool isValidOSObjectOutParameter(const Decl *D) { const auto *PVD = dyn_cast(D); if (!PVD) return false; QualType QT = PVD->getType(); QualType PT = QT->getPointeeType(); return !PT.isNull() && isValidSubjectOfOSAttribute(PT); } static void handleXReturnsXRetainedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { QualType ReturnType; Sema::RetainOwnershipKind K = parsedAttrToRetainOwnershipKind(AL); if (const auto *MD = dyn_cast(D)) { ReturnType = MD->getReturnType(); } else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) && (AL.getKind() == ParsedAttr::AT_NSReturnsRetained)) { return; // ignore: was handled as a type attribute } else if (const auto *PD = dyn_cast(D)) { ReturnType = PD->getType(); } else if (const auto *FD = dyn_cast(D)) { ReturnType = FD->getReturnType(); } else if (const auto *Param = dyn_cast(D)) { // Attributes on parameters are used for out-parameters, // passed as pointers-to-pointers. unsigned DiagID = K == Sema::RetainOwnershipKind::CF ? /*pointer-to-CF-pointer*/2 : /*pointer-to-OSObject-pointer*/3; ReturnType = Param->getType()->getPointeeType(); if (ReturnType.isNull()) { S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) << AL << DiagID << AL.getRange(); return; } } else if (AL.isUsedAsTypeAttr()) { return; } else { AttributeDeclKind ExpectedDeclKind; switch (AL.getKind()) { default: llvm_unreachable("invalid ownership attribute"); case ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_NSReturnsAutoreleased: case ParsedAttr::AT_NSReturnsNotRetained: ExpectedDeclKind = ExpectedFunctionOrMethod; break; case ParsedAttr::AT_OSReturnsRetained: case ParsedAttr::AT_OSReturnsNotRetained: case ParsedAttr::AT_CFReturnsRetained: case ParsedAttr::AT_CFReturnsNotRetained: ExpectedDeclKind = ExpectedFunctionMethodOrParameter; break; } S.Diag(D->getBeginLoc(), diag::warn_attribute_wrong_decl_type) << AL.getRange() << AL << ExpectedDeclKind; return; } bool TypeOK; bool Cf; unsigned ParmDiagID = 2; // Pointer-to-CF-pointer switch (AL.getKind()) { default: llvm_unreachable("invalid ownership attribute"); case ParsedAttr::AT_NSReturnsRetained: TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType); Cf = false; break; case ParsedAttr::AT_NSReturnsAutoreleased: case ParsedAttr::AT_NSReturnsNotRetained: TypeOK = isValidSubjectOfNSAttribute(ReturnType); Cf = false; break; case ParsedAttr::AT_CFReturnsRetained: case ParsedAttr::AT_CFReturnsNotRetained: TypeOK = isValidSubjectOfCFAttribute(ReturnType); Cf = true; break; case ParsedAttr::AT_OSReturnsRetained: case ParsedAttr::AT_OSReturnsNotRetained: TypeOK = isValidSubjectOfOSAttribute(ReturnType); Cf = true; ParmDiagID = 3; // Pointer-to-OSObject-pointer break; } if (!TypeOK) { if (AL.isUsedAsTypeAttr()) return; if (isa(D)) { S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_parameter_type) << AL << ParmDiagID << AL.getRange(); } else { // Needs to be kept in sync with warn_ns_attribute_wrong_return_type. enum : unsigned { Function, Method, Property } SubjectKind = Function; if (isa(D)) SubjectKind = Method; else if (isa(D)) SubjectKind = Property; S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) << AL << SubjectKind << Cf << AL.getRange(); } return; } switch (AL.getKind()) { default: llvm_unreachable("invalid ownership attribute"); case ParsedAttr::AT_NSReturnsAutoreleased: handleSimpleAttribute(S, D, AL); return; case ParsedAttr::AT_CFReturnsNotRetained: handleSimpleAttribute(S, D, AL); return; case ParsedAttr::AT_NSReturnsNotRetained: handleSimpleAttribute(S, D, AL); return; case ParsedAttr::AT_CFReturnsRetained: handleSimpleAttribute(S, D, AL); return; case ParsedAttr::AT_NSReturnsRetained: handleSimpleAttribute(S, D, AL); return; case ParsedAttr::AT_OSReturnsRetained: handleSimpleAttribute(S, D, AL); return; case ParsedAttr::AT_OSReturnsNotRetained: handleSimpleAttribute(S, D, AL); return; }; } static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { const int EP_ObjCMethod = 1; const int EP_ObjCProperty = 2; SourceLocation loc = Attrs.getLoc(); QualType resultType; if (isa(D)) resultType = cast(D)->getReturnType(); else resultType = cast(D)->getType(); if (!resultType->isReferenceType() && (!resultType->isPointerType() || resultType->isObjCRetainableType())) { S.Diag(D->getBeginLoc(), diag::warn_ns_attribute_wrong_return_type) << SourceRange(loc) << Attrs << (isa(D) ? EP_ObjCMethod : EP_ObjCProperty) << /*non-retainable pointer*/ 2; // Drop the attribute. return; } D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(S.Context, Attrs)); } static void handleObjCRequiresSuperAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { const auto *Method = cast(D); const DeclContext *DC = Method->getDeclContext(); if (const auto *PDecl = dyn_cast_or_null(DC)) { S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs << 0; S.Diag(PDecl->getLocation(), diag::note_protocol_decl); return; } if (Method->getMethodFamily() == OMF_dealloc) { S.Diag(D->getBeginLoc(), diag::warn_objc_requires_super_protocol) << Attrs << 1; return; } D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(S.Context, Attrs)); } static void handleNSErrorDomain(Sema &S, Decl *D, const ParsedAttr &AL) { auto *E = AL.getArgAsExpr(0); auto Loc = E ? E->getBeginLoc() : AL.getLoc(); auto *DRE = dyn_cast(AL.getArgAsExpr(0)); if (!DRE) { S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 0; return; } auto *VD = dyn_cast(DRE->getDecl()); if (!VD) { S.Diag(Loc, diag::err_nserrordomain_invalid_decl) << 1 << DRE->getDecl(); return; } if (!isNSStringType(VD->getType(), S.Context) && !isCFStringType(VD->getType(), S.Context)) { S.Diag(Loc, diag::err_nserrordomain_wrong_type) << VD; return; } D->addAttr(::new (S.Context) NSErrorDomainAttr(S.Context, AL, VD)); } static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; if (!Parm) { S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; return; } // Typedefs only allow objc_bridge(id) and have some additional checking. if (const auto *TD = dyn_cast(D)) { if (!Parm->Ident->isStr("id")) { S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id) << AL; return; } // Only allow 'cv void *'. QualType T = TD->getUnderlyingType(); if (!T->isVoidPointerType()) { S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer); return; } } D->addAttr(::new (S.Context) ObjCBridgeAttr(S.Context, AL, Parm->Ident)); } static void handleObjCBridgeMutableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr; if (!Parm) { S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; return; } D->addAttr(::new (S.Context) ObjCBridgeMutableAttr(S.Context, AL, Parm->Ident)); } static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { IdentifierInfo *RelatedClass = AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr; if (!RelatedClass) { S.Diag(D->getBeginLoc(), diag::err_objc_attr_not_id) << AL << 0; return; } IdentifierInfo *ClassMethod = AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr; IdentifierInfo *InstanceMethod = AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr; D->addAttr(::new (S.Context) ObjCBridgeRelatedAttr( S.Context, AL, RelatedClass, ClassMethod, InstanceMethod)); } static void handleObjCDesignatedInitializer(Sema &S, Decl *D, const ParsedAttr &AL) { DeclContext *Ctx = D->getDeclContext(); // This attribute can only be applied to methods in interfaces or class // extensions. if (!isa(Ctx) && !(isa(Ctx) && cast(Ctx)->IsClassExtension())) { S.Diag(D->getLocation(), diag::err_designated_init_attr_non_init); return; } ObjCInterfaceDecl *IFace; if (auto *CatDecl = dyn_cast(Ctx)) IFace = CatDecl->getClassInterface(); else IFace = cast(Ctx); if (!IFace) return; IFace->setHasDesignatedInitializers(); D->addAttr(::new (S.Context) ObjCDesignatedInitializerAttr(S.Context, AL)); } static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef MetaDataName; if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName)) return; D->addAttr(::new (S.Context) ObjCRuntimeNameAttr(S.Context, AL, MetaDataName)); } // When a user wants to use objc_boxable with a union or struct // but they don't have access to the declaration (legacy/third-party code) // then they can 'enable' this feature with a typedef: // typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct; static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) { bool notify = false; auto *RD = dyn_cast(D); if (RD && RD->getDefinition()) { RD = RD->getDefinition(); notify = true; } if (RD) { ObjCBoxableAttr *BoxableAttr = ::new (S.Context) ObjCBoxableAttr(S.Context, AL); RD->addAttr(BoxableAttr); if (notify) { // we need to notify ASTReader/ASTWriter about // modification of existing declaration if (ASTMutationListener *L = S.getASTMutationListener()) L->AddedAttributeToRecord(BoxableAttr, RD); } } } static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (hasDeclarator(D)) return; S.Diag(D->getBeginLoc(), diag::err_attribute_wrong_decl_type) << AL.getRange() << AL << ExpectedVariable; } static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *VD = cast(D); QualType QT = VD->getType(); if (!QT->isDependentType() && !QT->isObjCLifetimeType()) { S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type) << QT; return; } Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime(); // If we have no lifetime yet, check the lifetime we're presumably // going to infer. if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType()) Lifetime = QT->getObjCARCImplicitLifetime(); switch (Lifetime) { case Qualifiers::OCL_None: assert(QT->isDependentType() && "didn't infer lifetime for non-dependent type?"); break; case Qualifiers::OCL_Weak: // meaningful case Qualifiers::OCL_Strong: // meaningful break; case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless) << (Lifetime == Qualifiers::OCL_Autoreleasing); break; } D->addAttr(::new (S.Context) ObjCPreciseLifetimeAttr(S.Context, AL)); } static void handleSwiftAttrAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Make sure that there is a string literal as the annotation's single // argument. StringRef Str; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; D->addAttr(::new (S.Context) SwiftAttrAttr(S.Context, AL, Str)); } static void handleSwiftBridge(Sema &S, Decl *D, const ParsedAttr &AL) { // Make sure that there is a string literal as the annotation's single // argument. StringRef BT; if (!S.checkStringLiteralArgumentAttr(AL, 0, BT)) return; // Warn about duplicate attributes if they have different arguments, but drop // any duplicate attributes regardless. if (const auto *Other = D->getAttr()) { if (Other->getSwiftType() != BT) S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; return; } D->addAttr(::new (S.Context) SwiftBridgeAttr(S.Context, AL, BT)); } static bool isErrorParameter(Sema &S, QualType QT) { const auto *PT = QT->getAs(); if (!PT) return false; QualType Pointee = PT->getPointeeType(); // Check for NSError**. if (const auto *OPT = Pointee->getAs()) if (const auto *ID = OPT->getInterfaceDecl()) if (ID->getIdentifier() == S.getNSErrorIdent()) return true; // Check for CFError**. if (const auto *PT = Pointee->getAs()) if (const auto *RT = PT->getPointeeType()->getAs()) if (S.isCFError(RT->getDecl())) return true; return false; } static void handleSwiftError(Sema &S, Decl *D, const ParsedAttr &AL) { auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) { if (isErrorParameter(S, getFunctionOrMethodParamType(D, I))) return true; } S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter) << AL << isa(D); return false; }; auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { // - C, ObjC, and block pointers are definitely okay. // - References are definitely not okay. // - nullptr_t is weird, but acceptable. QualType RT = getFunctionOrMethodResultType(D); if (RT->hasPointerRepresentation() && !RT->isReferenceType()) return true; S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type) << AL << AL.getArgAsIdent(0)->Ident->getName() << isa(D) << /*pointer*/ 1; return false; }; auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool { QualType RT = getFunctionOrMethodResultType(D); if (RT->isIntegralType(S.Context)) return true; S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type) << AL << AL.getArgAsIdent(0)->Ident->getName() << isa(D) << /*integral*/ 0; return false; }; if (D->isInvalidDecl()) return; IdentifierLoc *Loc = AL.getArgAsIdent(0); SwiftErrorAttr::ConventionKind Convention; if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(), Convention)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Loc->Ident; return; } switch (Convention) { case SwiftErrorAttr::None: // No additional validation required. break; case SwiftErrorAttr::NonNullError: if (!hasErrorParameter(S, D, AL)) return; break; case SwiftErrorAttr::NullResult: if (!hasErrorParameter(S, D, AL) || !hasPointerResult(S, D, AL)) return; break; case SwiftErrorAttr::NonZeroResult: case SwiftErrorAttr::ZeroResult: if (!hasErrorParameter(S, D, AL) || !hasIntegerResult(S, D, AL)) return; break; } D->addAttr(::new (S.Context) SwiftErrorAttr(S.Context, AL, Convention)); } static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D, const SwiftAsyncErrorAttr *ErrorAttr, const SwiftAsyncAttr *AsyncAttr) { if (AsyncAttr->getKind() == SwiftAsyncAttr::None) { if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) { S.Diag(AsyncAttr->getLocation(), diag::err_swift_async_error_without_swift_async) << AsyncAttr << isa(D); } return; } const ParmVarDecl *HandlerParam = getFunctionOrMethodParam( D, AsyncAttr->getCompletionHandlerIndex().getASTIndex()); // handleSwiftAsyncAttr already verified the type is correct, so no need to // double-check it here. const auto *FuncTy = HandlerParam->getType() ->castAs() ->getPointeeType() ->getAs(); ArrayRef BlockParams; if (FuncTy) BlockParams = FuncTy->getParamTypes(); switch (ErrorAttr->getConvention()) { case SwiftAsyncErrorAttr::ZeroArgument: case SwiftAsyncErrorAttr::NonZeroArgument: { uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx(); if (ParamIdx == 0 || ParamIdx > BlockParams.size()) { S.Diag(ErrorAttr->getLocation(), diag::err_attribute_argument_out_of_bounds) << ErrorAttr << 2; return; } QualType ErrorParam = BlockParams[ParamIdx - 1]; if (!ErrorParam->isIntegralType(S.Context)) { StringRef ConvStr = ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument ? "zero_argument" : "nonzero_argument"; S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral) << ErrorAttr << ConvStr << ParamIdx << ErrorParam; return; } break; } case SwiftAsyncErrorAttr::NonNullError: { bool AnyErrorParams = false; for (QualType Param : BlockParams) { // Check for NSError *. if (const auto *ObjCPtrTy = Param->getAs()) { if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) { if (ID->getIdentifier() == S.getNSErrorIdent()) { AnyErrorParams = true; break; } } } // Check for CFError *. if (const auto *PtrTy = Param->getAs()) { if (const auto *RT = PtrTy->getPointeeType()->getAs()) { if (S.isCFError(RT->getDecl())) { AnyErrorParams = true; break; } } } } if (!AnyErrorParams) { S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_no_error_parameter) << ErrorAttr << isa(D); return; } break; } case SwiftAsyncErrorAttr::None: break; } } static void handleSwiftAsyncError(Sema &S, Decl *D, const ParsedAttr &AL) { IdentifierLoc *IDLoc = AL.getArgAsIdent(0); SwiftAsyncErrorAttr::ConventionKind ConvKind; if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(), ConvKind)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << IDLoc->Ident; return; } uint32_t ParamIdx = 0; switch (ConvKind) { case SwiftAsyncErrorAttr::ZeroArgument: case SwiftAsyncErrorAttr::NonZeroArgument: { if (!AL.checkExactlyNumArgs(S, 2)) return; Expr *IdxExpr = AL.getArgAsExpr(1); if (!checkUInt32Argument(S, AL, IdxExpr, ParamIdx)) return; break; } case SwiftAsyncErrorAttr::NonNullError: case SwiftAsyncErrorAttr::None: { if (!AL.checkExactlyNumArgs(S, 1)) return; break; } } auto *ErrorAttr = ::new (S.Context) SwiftAsyncErrorAttr(S.Context, AL, ConvKind, ParamIdx); D->addAttr(ErrorAttr); if (auto *AsyncAttr = D->getAttr()) checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr); } // For a function, this will validate a compound Swift name, e.g. // init(foo:bar:baz:) or controllerForName(_:), and // the function will output the number of parameter names, and whether this is a // single-arg initializer. // // For a type, enum constant, property, or variable declaration, this will // validate either a simple identifier, or a qualified // context.identifier name. static bool validateSwiftFunctionName(Sema &S, const ParsedAttr &AL, SourceLocation Loc, StringRef Name, unsigned &SwiftParamCount, bool &IsSingleParamInit) { SwiftParamCount = 0; IsSingleParamInit = false; // Check whether this will be mapped to a getter or setter of a property. bool IsGetter = false, IsSetter = false; if (Name.startswith("getter:")) { IsGetter = true; Name = Name.substr(7); } else if (Name.startswith("setter:")) { IsSetter = true; Name = Name.substr(7); } if (Name.back() != ')') { S.Diag(Loc, diag::warn_attr_swift_name_function) << AL; return false; } bool IsMember = false; StringRef ContextName, BaseName, Parameters; std::tie(BaseName, Parameters) = Name.split('('); // Split at the first '.', if it exists, which separates the context name // from the base name. std::tie(ContextName, BaseName) = BaseName.split('.'); if (BaseName.empty()) { BaseName = ContextName; ContextName = StringRef(); } else if (ContextName.empty() || !isValidIdentifier(ContextName)) { S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL << /*context*/ 1; return false; } else { IsMember = true; } if (!isValidIdentifier(BaseName) || BaseName == "_") { S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL << /*basename*/ 0; return false; } bool IsSubscript = BaseName == "subscript"; // A subscript accessor must be a getter or setter. if (IsSubscript && !IsGetter && !IsSetter) { S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) << AL << /* getter or setter */ 0; return false; } if (Parameters.empty()) { S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL; return false; } assert(Parameters.back() == ')' && "expected ')'"); Parameters = Parameters.drop_back(); // ')' if (Parameters.empty()) { // Setters and subscripts must have at least one parameter. if (IsSubscript) { S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) << AL << /* have at least one parameter */1; return false; } if (IsSetter) { S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL; return false; } return true; } if (Parameters.back() != ':') { S.Diag(Loc, diag::warn_attr_swift_name_function) << AL; return false; } StringRef CurrentParam; llvm::Optional SelfLocation; unsigned NewValueCount = 0; llvm::Optional NewValueLocation; do { std::tie(CurrentParam, Parameters) = Parameters.split(':'); if (!isValidIdentifier(CurrentParam)) { S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL << /*parameter*/2; return false; } if (IsMember && CurrentParam == "self") { // "self" indicates the "self" argument for a member. // More than one "self"? if (SelfLocation) { S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL; return false; } // The "self" location is the current parameter. SelfLocation = SwiftParamCount; } else if (CurrentParam == "newValue") { // "newValue" indicates the "newValue" argument for a setter. // There should only be one 'newValue', but it's only significant for // subscript accessors, so don't error right away. ++NewValueCount; NewValueLocation = SwiftParamCount; } ++SwiftParamCount; } while (!Parameters.empty()); // Only instance subscripts are currently supported. if (IsSubscript && !SelfLocation) { S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter) << AL << /*have a 'self:' parameter*/2; return false; } IsSingleParamInit = SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_"; // Check the number of parameters for a getter/setter. if (IsGetter || IsSetter) { // Setters have one parameter for the new value. unsigned NumExpectedParams = IsGetter ? 0 : 1; unsigned ParamDiag = IsGetter ? diag::warn_attr_swift_name_getter_parameters : diag::warn_attr_swift_name_setter_parameters; // Instance methods have one parameter for "self". if (SelfLocation) ++NumExpectedParams; // Subscripts may have additional parameters beyond the expected params for // the index. if (IsSubscript) { if (SwiftParamCount < NumExpectedParams) { S.Diag(Loc, ParamDiag) << AL; return false; } // A subscript setter must explicitly label its newValue parameter to // distinguish it from index parameters. if (IsSetter) { if (!NewValueLocation) { S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue) << AL; return false; } if (NewValueCount > 1) { S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_multiple_newValues) << AL; return false; } } else { // Subscript getters should have no 'newValue:' parameter. if (NewValueLocation) { S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue) << AL; return false; } } } else { // Property accessors must have exactly the number of expected params. if (SwiftParamCount != NumExpectedParams) { S.Diag(Loc, ParamDiag) << AL; return false; } } } return true; } bool Sema::DiagnoseSwiftName(Decl *D, StringRef Name, SourceLocation Loc, const ParsedAttr &AL, bool IsAsync) { if (isa(D) || isa(D)) { ArrayRef Params; unsigned ParamCount; if (const auto *Method = dyn_cast(D)) { ParamCount = Method->getSelector().getNumArgs(); Params = Method->parameters().slice(0, ParamCount); } else { const auto *F = cast(D); ParamCount = F->getNumParams(); Params = F->parameters(); if (!F->hasWrittenPrototype()) { Diag(Loc, diag::warn_attribute_wrong_decl_type) << AL << ExpectedFunctionWithProtoType; return false; } } // The async name drops the last callback parameter. if (IsAsync) { if (ParamCount == 0) { Diag(Loc, diag::warn_attr_swift_name_decl_missing_params) << AL << isa(D); return false; } ParamCount -= 1; } unsigned SwiftParamCount; bool IsSingleParamInit; if (!validateSwiftFunctionName(*this, AL, Loc, Name, SwiftParamCount, IsSingleParamInit)) return false; bool ParamCountValid; if (SwiftParamCount == ParamCount) { ParamCountValid = true; } else if (SwiftParamCount > ParamCount) { ParamCountValid = IsSingleParamInit && ParamCount == 0; } else { // We have fewer Swift parameters than Objective-C parameters, but that // might be because we've transformed some of them. Check for potential // "out" parameters and err on the side of not warning. unsigned MaybeOutParamCount = std::count_if(Params.begin(), Params.end(), [](const ParmVarDecl *Param) -> bool { QualType ParamTy = Param->getType(); if (ParamTy->isReferenceType() || ParamTy->isPointerType()) return !ParamTy->getPointeeType().isConstQualified(); return false; }); ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount; } if (!ParamCountValid) { Diag(Loc, diag::warn_attr_swift_name_num_params) << (SwiftParamCount > ParamCount) << AL << ParamCount << SwiftParamCount; return false; } } else if ((isa(D) || isa(D) || isa(D) || isa(D) || isa(D) || isa(D) || isa(D) || isa(D) || isa(D)) && !IsAsync) { StringRef ContextName, BaseName; std::tie(ContextName, BaseName) = Name.split('.'); if (BaseName.empty()) { BaseName = ContextName; ContextName = StringRef(); } else if (!isValidIdentifier(ContextName)) { Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL << /*context*/1; return false; } if (!isValidIdentifier(BaseName)) { Diag(Loc, diag::warn_attr_swift_name_invalid_identifier) << AL << /*basename*/0; return false; } } else { Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL; return false; } return true; } static void handleSwiftName(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Name; SourceLocation Loc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc)) return; if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/false)) return; D->addAttr(::new (S.Context) SwiftNameAttr(S.Context, AL, Name)); } static void handleSwiftAsyncName(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Name; SourceLocation Loc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc)) return; if (!S.DiagnoseSwiftName(D, Name, Loc, AL, /*IsAsync=*/true)) return; D->addAttr(::new (S.Context) SwiftAsyncNameAttr(S.Context, AL, Name)); } static void handleSwiftNewType(Sema &S, Decl *D, const ParsedAttr &AL) { // Make sure that there is an identifier as the annotation's single argument. if (!AL.checkExactlyNumArgs(S, 1)) return; if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } SwiftNewTypeAttr::NewtypeKind Kind; IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; return; } if (!isa(D)) { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str) << AL << "typedefs"; return; } D->addAttr(::new (S.Context) SwiftNewTypeAttr(S.Context, AL, Kind)); } static void handleSwiftAsyncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } SwiftAsyncAttr::Kind Kind; IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) { S.Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II; return; } ParamIdx Idx; if (Kind == SwiftAsyncAttr::None) { // If this is 'none', then there shouldn't be any additional arguments. if (!AL.checkExactlyNumArgs(S, 1)) return; } else { // Non-none swift_async requires a completion handler index argument. if (!AL.checkExactlyNumArgs(S, 2)) return; Expr *HandlerIdx = AL.getArgAsExpr(1); if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, HandlerIdx, Idx)) return; const ParmVarDecl *CompletionBlock = getFunctionOrMethodParam(D, Idx.getASTIndex()); QualType CompletionBlockType = CompletionBlock->getType(); if (!CompletionBlockType->isBlockPointerType()) { S.Diag(CompletionBlock->getLocation(), diag::err_swift_async_bad_block_type) << CompletionBlock->getType(); return; } QualType BlockTy = CompletionBlockType->castAs()->getPointeeType(); if (!BlockTy->castAs()->getReturnType()->isVoidType()) { S.Diag(CompletionBlock->getLocation(), diag::err_swift_async_bad_block_type) << CompletionBlock->getType(); return; } } auto *AsyncAttr = ::new (S.Context) SwiftAsyncAttr(S.Context, AL, Kind, Idx); D->addAttr(AsyncAttr); if (auto *ErrorAttr = D->getAttr()) checkSwiftAsyncErrorBlock(S, D, ErrorAttr, AsyncAttr); } //===----------------------------------------------------------------------===// // Microsoft specific attribute handlers. //===----------------------------------------------------------------------===// UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, StringRef UuidAsWritten, MSGuidDecl *GuidDecl) { if (const auto *UA = D->getAttr()) { if (declaresSameEntity(UA->getGuidDecl(), GuidDecl)) return nullptr; if (!UA->getGuid().empty()) { Diag(UA->getLocation(), diag::err_mismatched_uuid); Diag(CI.getLoc(), diag::note_previous_uuid); D->dropAttr(); } } return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl); } static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!S.LangOpts.CPlusPlus) { S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) << AL << AttributeLangSupport::C; return; } StringRef OrigStrRef; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc)) return; // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. StringRef StrRef = OrigStrRef; if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') StrRef = StrRef.drop_front().drop_back(); // Validate GUID length. if (StrRef.size() != 36) { S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); return; } for (unsigned i = 0; i < 36; ++i) { if (i == 8 || i == 13 || i == 18 || i == 23) { if (StrRef[i] != '-') { S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); return; } } else if (!isHexDigit(StrRef[i])) { S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); return; } } // Convert to our parsed format and canonicalize. MSGuidDecl::Parts Parsed; StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1); StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2); StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3); for (unsigned i = 0; i != 8; ++i) StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2) .getAsInteger(16, Parsed.Part4And5[i]); MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed); // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's // the only thing in the [] list, the [] too), and add an insertion of // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas // separating attributes nor of the [ and the ] are in the AST. // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" // on cfe-dev. if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated); UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid); if (UA) D->addAttr(UA); } static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!S.LangOpts.CPlusPlus) { S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) << AL << AttributeLangSupport::C; return; } MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling()); if (IA) { D->addAttr(IA); S.Consumer.AssignInheritanceModel(cast(D)); } } static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *VD = cast(D); if (!S.Context.getTargetInfo().isTLSSupported()) { S.Diag(AL.getLoc(), diag::err_thread_unsupported); return; } if (VD->getTSCSpec() != TSCS_unspecified) { S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable); return; } if (VD->hasLocalStorage()) { S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)"; return; } D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL)); } static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Tags; for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { StringRef Tag; if (!S.checkStringLiteralArgumentAttr(AL, I, Tag)) return; Tags.push_back(Tag); } if (const auto *NS = dyn_cast(D)) { if (!NS->isInline()) { S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0; return; } if (NS->isAnonymousNamespace()) { S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1; return; } if (AL.getNumArgs() == 0) Tags.push_back(NS->getName()); } else if (!AL.checkAtLeastNumArgs(S, 1)) return; // Store tags sorted and without duplicates. llvm::sort(Tags); Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end()); D->addAttr(::new (S.Context) AbiTagAttr(S.Context, AL, Tags.data(), Tags.size())); } static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Check the attribute arguments. if (AL.getNumArgs() > 1) { S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; return; } StringRef Str; SourceLocation ArgLoc; if (AL.getNumArgs() == 0) Str = ""; else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) return; ARMInterruptAttr::InterruptType Kind; if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str << ArgLoc; return; } D->addAttr(::new (S.Context) ARMInterruptAttr(S.Context, AL, Kind)); } static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // MSP430 'interrupt' attribute is applied to // a function with no parameters and void return type. if (!isFunctionOrMethod(D)) { S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) << "'interrupt'" << ExpectedFunctionOrMethod; return; } if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) << /*MSP430*/ 1 << 0; return; } if (!getFunctionOrMethodResultType(D)->isVoidType()) { S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) << /*MSP430*/ 1 << 1; return; } // The attribute takes one integer argument. if (!AL.checkExactlyNumArgs(S, 1)) return; if (!AL.isArgExpr(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIntegerConstant; return; } Expr *NumParamsExpr = static_cast(AL.getArgAsExpr(0)); Optional NumParams = llvm::APSInt(32); if (!(NumParams = NumParamsExpr->getIntegerConstantExpr(S.Context))) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIntegerConstant << NumParamsExpr->getSourceRange(); return; } // The argument should be in range 0..63. unsigned Num = NumParams->getLimitedValue(255); if (Num > 63) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << (int)NumParams->getSExtValue() << NumParamsExpr->getSourceRange(); return; } D->addAttr(::new (S.Context) MSP430InterruptAttr(S.Context, AL, Num)); D->addAttr(UsedAttr::CreateImplicit(S.Context)); } static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Only one optional argument permitted. if (AL.getNumArgs() > 1) { S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; return; } StringRef Str; SourceLocation ArgLoc; if (AL.getNumArgs() == 0) Str = ""; else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) return; // Semantic checks for a function with the 'interrupt' attribute for MIPS: // a) Must be a function. // b) Must have no parameters. // c) Must have the 'void' return type. // d) Cannot have the 'mips16' attribute, as that instruction set // lacks the 'eret' instruction. // e) The attribute itself must either have no argument or one of the // valid interrupt types, see [MipsInterruptDocs]. if (!isFunctionOrMethod(D)) { S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) << "'interrupt'" << ExpectedFunctionOrMethod; return; } if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) << /*MIPS*/ 0 << 0; return; } if (!getFunctionOrMethodResultType(D)->isVoidType()) { S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) << /*MIPS*/ 0 << 1; return; } // We still have to do this manually because the Interrupt attributes are // a bit special due to sharing their spellings across targets. if (checkAttrMutualExclusion(S, D, AL)) return; MipsInterruptAttr::InterruptType Kind; if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << "'" + std::string(Str) + "'"; return; } D->addAttr(::new (S.Context) MipsInterruptAttr(S.Context, AL, Kind)); } static void handleM68kInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkExactlyNumArgs(S, 1)) return; if (!AL.isArgExpr(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIntegerConstant; return; } // FIXME: Check for decl - it should be void ()(void). Expr *NumParamsExpr = static_cast(AL.getArgAsExpr(0)); auto MaybeNumParams = NumParamsExpr->getIntegerConstantExpr(S.Context); if (!MaybeNumParams) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIntegerConstant << NumParamsExpr->getSourceRange(); return; } unsigned Num = MaybeNumParams->getLimitedValue(255); if ((Num & 1) || Num > 30) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << (int)MaybeNumParams->getSExtValue() << NumParamsExpr->getSourceRange(); return; } D->addAttr(::new (S.Context) M68kInterruptAttr(S.Context, AL, Num)); D->addAttr(UsedAttr::CreateImplicit(S.Context)); } static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Semantic checks for a function with the 'interrupt' attribute. // a) Must be a function. // b) Must have the 'void' return type. // c) Must take 1 or 2 arguments. // d) The 1st argument must be a pointer. // e) The 2nd argument (if any) must be an unsigned integer. if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) || CXXMethodDecl::isStaticOverloadedOperator( cast(D)->getDeclName().getCXXOverloadedOperator())) { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << ExpectedFunctionWithProtoType; return; } // Interrupt handler must have void return type. if (!getFunctionOrMethodResultType(D)->isVoidType()) { S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(), diag::err_anyx86_interrupt_attribute) << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 ? 0 : 1) << 0; return; } // Interrupt handler must have 1 or 2 parameters. unsigned NumParams = getFunctionOrMethodNumParams(D); if (NumParams < 1 || NumParams > 2) { S.Diag(D->getBeginLoc(), diag::err_anyx86_interrupt_attribute) << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 ? 0 : 1) << 1; return; } // The first argument must be a pointer. if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) { S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(), diag::err_anyx86_interrupt_attribute) << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 ? 0 : 1) << 2; return; } // The second argument, if present, must be an unsigned integer. unsigned TypeSize = S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64 ? 64 : 32; if (NumParams == 2 && (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() || S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) { S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(), diag::err_anyx86_interrupt_attribute) << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86 ? 0 : 1) << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false); return; } D->addAttr(::new (S.Context) AnyX86InterruptAttr(S.Context, AL)); D->addAttr(UsedAttr::CreateImplicit(S.Context)); } static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!isFunctionOrMethod(D)) { S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) << "'interrupt'" << ExpectedFunction; return; } if (!AL.checkExactlyNumArgs(S, 0)) return; handleSimpleAttribute(S, D, AL); } static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!isFunctionOrMethod(D)) { S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) << "'signal'" << ExpectedFunction; return; } if (!AL.checkExactlyNumArgs(S, 0)) return; handleSimpleAttribute(S, D, AL); } static void handleBPFPreserveAIRecord(Sema &S, RecordDecl *RD) { // Add preserve_access_index attribute to all fields and inner records. for (auto D : RD->decls()) { if (D->hasAttr()) continue; D->addAttr(BPFPreserveAccessIndexAttr::CreateImplicit(S.Context)); if (auto *Rec = dyn_cast(D)) handleBPFPreserveAIRecord(S, Rec); } } static void handleBPFPreserveAccessIndexAttr(Sema &S, Decl *D, const ParsedAttr &AL) { auto *Rec = cast(D); handleBPFPreserveAIRecord(S, Rec); Rec->addAttr(::new (S.Context) BPFPreserveAccessIndexAttr(S.Context, AL)); } static void handleWebAssemblyExportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!isFunctionOrMethod(D)) { S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) << "'export_name'" << ExpectedFunction; return; } auto *FD = cast(D); if (FD->isThisDeclarationADefinition()) { S.Diag(D->getLocation(), diag::err_alias_is_definition) << FD << 0; return; } StringRef Str; SourceLocation ArgLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) return; D->addAttr(::new (S.Context) WebAssemblyExportNameAttr(S.Context, AL, Str)); D->addAttr(UsedAttr::CreateImplicit(S.Context)); } WebAssemblyImportModuleAttr * Sema::mergeImportModuleAttr(Decl *D, const WebAssemblyImportModuleAttr &AL) { auto *FD = cast(D); if (const auto *ExistingAttr = FD->getAttr()) { if (ExistingAttr->getImportModule() == AL.getImportModule()) return nullptr; Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 0 << ExistingAttr->getImportModule() << AL.getImportModule(); Diag(AL.getLoc(), diag::note_previous_attribute); return nullptr; } if (FD->hasBody()) { Diag(AL.getLoc(), diag::warn_import_on_definition) << 0; return nullptr; } return ::new (Context) WebAssemblyImportModuleAttr(Context, AL, AL.getImportModule()); } WebAssemblyImportNameAttr * Sema::mergeImportNameAttr(Decl *D, const WebAssemblyImportNameAttr &AL) { auto *FD = cast(D); if (const auto *ExistingAttr = FD->getAttr()) { if (ExistingAttr->getImportName() == AL.getImportName()) return nullptr; Diag(ExistingAttr->getLocation(), diag::warn_mismatched_import) << 1 << ExistingAttr->getImportName() << AL.getImportName(); Diag(AL.getLoc(), diag::note_previous_attribute); return nullptr; } if (FD->hasBody()) { Diag(AL.getLoc(), diag::warn_import_on_definition) << 1; return nullptr; } return ::new (Context) WebAssemblyImportNameAttr(Context, AL, AL.getImportName()); } static void handleWebAssemblyImportModuleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { auto *FD = cast(D); StringRef Str; SourceLocation ArgLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) return; if (FD->hasBody()) { S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 0; return; } FD->addAttr(::new (S.Context) WebAssemblyImportModuleAttr(S.Context, AL, Str)); } static void handleWebAssemblyImportNameAttr(Sema &S, Decl *D, const ParsedAttr &AL) { auto *FD = cast(D); StringRef Str; SourceLocation ArgLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) return; if (FD->hasBody()) { S.Diag(AL.getLoc(), diag::warn_import_on_definition) << 1; return; } FD->addAttr(::new (S.Context) WebAssemblyImportNameAttr(S.Context, AL, Str)); } static void handleRISCVInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Warn about repeated attributes. if (const auto *A = D->getAttr()) { S.Diag(AL.getRange().getBegin(), diag::warn_riscv_repeated_interrupt_attribute); S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute); return; } // Check the attribute argument. Argument is optional. if (!AL.checkAtMostNumArgs(S, 1)) return; StringRef Str; SourceLocation ArgLoc; // 'machine'is the default interrupt mode. if (AL.getNumArgs() == 0) Str = "machine"; else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc)) return; // Semantic checks for a function with the 'interrupt' attribute: // - Must be a function. // - Must have no parameters. // - Must have the 'void' return type. // - The attribute itself must either have no argument or one of the // valid interrupt types, see [RISCVInterruptDocs]. if (D->getFunctionType() == nullptr) { S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type) << "'interrupt'" << ExpectedFunction; return; } if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) { S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) << /*RISC-V*/ 2 << 0; return; } if (!getFunctionOrMethodResultType(D)->isVoidType()) { S.Diag(D->getLocation(), diag::warn_interrupt_attribute_invalid) << /*RISC-V*/ 2 << 1; return; } RISCVInterruptAttr::InterruptType Kind; if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << Str << ArgLoc; return; } D->addAttr(::new (S.Context) RISCVInterruptAttr(S.Context, AL, Kind)); } static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Dispatch the interrupt attribute based on the current target. switch (S.Context.getTargetInfo().getTriple().getArch()) { case llvm::Triple::msp430: handleMSP430InterruptAttr(S, D, AL); break; case llvm::Triple::mipsel: case llvm::Triple::mips: handleMipsInterruptAttr(S, D, AL); break; case llvm::Triple::m68k: handleM68kInterruptAttr(S, D, AL); break; case llvm::Triple::x86: case llvm::Triple::x86_64: handleAnyX86InterruptAttr(S, D, AL); break; case llvm::Triple::avr: handleAVRInterruptAttr(S, D, AL); break; case llvm::Triple::riscv32: case llvm::Triple::riscv64: handleRISCVInterruptAttr(S, D, AL); break; default: handleARMInterruptAttr(S, D, AL); break; } } static bool checkAMDGPUFlatWorkGroupSizeArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr, const AMDGPUFlatWorkGroupSizeAttr &Attr) { // Accept template arguments for now as they depend on something else. // We'll get to check them when they eventually get instantiated. if (MinExpr->isValueDependent() || MaxExpr->isValueDependent()) return false; uint32_t Min = 0; if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) return true; uint32_t Max = 0; if (!checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) return true; if (Min == 0 && Max != 0) { S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) << &Attr << 0; return true; } if (Min > Max) { S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) << &Attr << 1; return true; } return false; } void Sema::addAMDGPUFlatWorkGroupSizeAttr(Decl *D, const AttributeCommonInfo &CI, Expr *MinExpr, Expr *MaxExpr) { AMDGPUFlatWorkGroupSizeAttr TmpAttr(Context, CI, MinExpr, MaxExpr); if (checkAMDGPUFlatWorkGroupSizeArguments(*this, MinExpr, MaxExpr, TmpAttr)) return; D->addAttr(::new (Context) AMDGPUFlatWorkGroupSizeAttr(Context, CI, MinExpr, MaxExpr)); } static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *MinExpr = AL.getArgAsExpr(0); Expr *MaxExpr = AL.getArgAsExpr(1); S.addAMDGPUFlatWorkGroupSizeAttr(D, AL, MinExpr, MaxExpr); } static bool checkAMDGPUWavesPerEUArguments(Sema &S, Expr *MinExpr, Expr *MaxExpr, const AMDGPUWavesPerEUAttr &Attr) { if (S.DiagnoseUnexpandedParameterPack(MinExpr) || (MaxExpr && S.DiagnoseUnexpandedParameterPack(MaxExpr))) return true; // Accept template arguments for now as they depend on something else. // We'll get to check them when they eventually get instantiated. if (MinExpr->isValueDependent() || (MaxExpr && MaxExpr->isValueDependent())) return false; uint32_t Min = 0; if (!checkUInt32Argument(S, Attr, MinExpr, Min, 0)) return true; uint32_t Max = 0; if (MaxExpr && !checkUInt32Argument(S, Attr, MaxExpr, Max, 1)) return true; if (Min == 0 && Max != 0) { S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) << &Attr << 0; return true; } if (Max != 0 && Min > Max) { S.Diag(Attr.getLocation(), diag::err_attribute_argument_invalid) << &Attr << 1; return true; } return false; } void Sema::addAMDGPUWavesPerEUAttr(Decl *D, const AttributeCommonInfo &CI, Expr *MinExpr, Expr *MaxExpr) { AMDGPUWavesPerEUAttr TmpAttr(Context, CI, MinExpr, MaxExpr); if (checkAMDGPUWavesPerEUArguments(*this, MinExpr, MaxExpr, TmpAttr)) return; D->addAttr(::new (Context) AMDGPUWavesPerEUAttr(Context, CI, MinExpr, MaxExpr)); } static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2)) return; Expr *MinExpr = AL.getArgAsExpr(0); Expr *MaxExpr = (AL.getNumArgs() > 1) ? AL.getArgAsExpr(1) : nullptr; S.addAMDGPUWavesPerEUAttr(D, AL, MinExpr, MaxExpr); } static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t NumSGPR = 0; Expr *NumSGPRExpr = AL.getArgAsExpr(0); if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR)) return; D->addAttr(::new (S.Context) AMDGPUNumSGPRAttr(S.Context, AL, NumSGPR)); } static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t NumVGPR = 0; Expr *NumVGPRExpr = AL.getArgAsExpr(0); if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR)) return; D->addAttr(::new (S.Context) AMDGPUNumVGPRAttr(S.Context, AL, NumVGPR)); } static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // If we try to apply it to a function pointer, don't warn, but don't // do anything, either. It doesn't matter anyway, because there's nothing // special about calling a force_align_arg_pointer function. const auto *VD = dyn_cast(D); if (VD && VD->getType()->isFunctionPointerType()) return; // Also don't warn on function pointer typedefs. const auto *TD = dyn_cast(D); if (TD && (TD->getUnderlyingType()->isFunctionPointerType() || TD->getUnderlyingType()->isFunctionType())) return; // Attribute can only be applied to function types. if (!isa(D)) { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << ExpectedFunction; return; } D->addAttr(::new (S.Context) X86ForceAlignArgPointerAttr(S.Context, AL)); } static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t Version; Expr *VersionExpr = static_cast(AL.getArgAsExpr(0)); if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version)) return; // TODO: Investigate what happens with the next major version of MSVC. if (Version != LangOptions::MSVC2015 / 100) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << Version << VersionExpr->getSourceRange(); return; } // The attribute expects a "major" version number like 19, but new versions of // MSVC have moved to updating the "minor", or less significant numbers, so we // have to multiply by 100 now. Version *= 100; D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version)); } DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI) { if (D->hasAttr()) { Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'"; return nullptr; } if (D->hasAttr()) return nullptr; return ::new (Context) DLLImportAttr(Context, CI); } DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI) { if (DLLImportAttr *Import = D->getAttr()) { Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; D->dropAttr(); } if (D->hasAttr()) return nullptr; return ::new (Context) DLLExportAttr(Context, CI); } static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { if (isa(D) && (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A; return; } if (const auto *FD = dyn_cast(D)) { if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { // MinGW doesn't allow dllimport on inline functions. S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline) << A; return; } } if (const auto *MD = dyn_cast(D)) { if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) && MD->getParent()->isLambda()) { S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A; return; } } Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport ? (Attr *)S.mergeDLLExportAttr(D, A) : (Attr *)S.mergeDLLImportAttr(D, A); if (NewAttr) D->addAttr(NewAttr); } MSInheritanceAttr * Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, bool BestCase, MSInheritanceModel Model) { if (MSInheritanceAttr *IA = D->getAttr()) { if (IA->getInheritanceModel() == Model) return nullptr; Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) << 1 /*previous declaration*/; Diag(CI.getLoc(), diag::note_previous_ms_inheritance); D->dropAttr(); } auto *RD = cast(D); if (RD->hasDefinition()) { if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase, Model)) { return nullptr; } } else { if (isa(RD)) { Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) << 1 /*partial specialization*/; return nullptr; } if (RD->getDescribedClassTemplate()) { Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) << 0 /*primary template*/; return nullptr; } } return ::new (Context) MSInheritanceAttr(Context, CI, BestCase); } static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // The capability attributes take a single string parameter for the name of // the capability they represent. The lockable attribute does not take any // parameters. However, semantically, both attributes represent the same // concept, and so they use the same semantic attribute. Eventually, the // lockable attribute will be removed. // // For backward compatibility, any capability which has no specified string // literal will be considered a "mutex." StringRef N("mutex"); SourceLocation LiteralLoc; if (AL.getKind() == ParsedAttr::AT_Capability && !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc)) return; D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N)); } static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, AL, Args)) return; D->addAttr(::new (S.Context) AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size())); } static void handleAcquireCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, AL, Args)) return; D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(), Args.size())); } static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkTryLockFunAttrCommon(S, D, AL, Args)) return; D->addAttr(::new (S.Context) TryAcquireCapabilityAttr( S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); } static void handleReleaseCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Check that all arguments are lockable objects. SmallVector Args; checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true); D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(), Args.size())); } static void handleRequiresCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1)) return; // check that all arguments are lockable objects SmallVector Args; checkAttrArgsAreCapabilityObjs(S, D, AL, Args); if (Args.empty()) return; RequiresCapabilityAttr *RCA = ::new (S.Context) RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size()); D->addAttr(RCA); } static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (const auto *NSD = dyn_cast(D)) { if (NSD->isAnonymousNamespace()) { S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace); // Do not want to attach the attribute to the namespace because that will // cause confusing diagnostic reports for uses of declarations within the // namespace. return; } } else if (isa(D)) { S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using) << AL; return; } // Handle the cases where the attribute has a text message. StringRef Str, Replacement; if (AL.isArgExpr(0) && AL.getArgAsExpr(0) && !S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; // Support a single optional message only for Declspec and [[]] spellings. if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax()) AL.checkAtMostNumArgs(S, 1); else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) && !S.checkStringLiteralArgumentAttr(AL, 1, Replacement)) return; if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope()) S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL; D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement)); } static bool isGlobalVar(const Decl *D) { if (const auto *S = dyn_cast(D)) return S->hasGlobalStorage(); return false; } static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1)) return; std::vector Sanitizers; for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { StringRef SanitizerName; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc)) return; if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == SanitizerMask() && SanitizerName != "coverage") S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName; else if (isGlobalVar(D) && SanitizerName != "address") S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << AL << ExpectedFunctionOrMethod; Sanitizers.push_back(SanitizerName); } D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(), Sanitizers.size())); } static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef AttrName = AL.getAttrName()->getName(); normalizeName(AttrName); StringRef SanitizerName = llvm::StringSwitch(AttrName) .Case("no_address_safety_analysis", "address") .Case("no_sanitize_address", "address") .Case("no_sanitize_thread", "thread") .Case("no_sanitize_memory", "memory"); if (isGlobalVar(D) && SanitizerName != "address") S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << AL << ExpectedFunction; // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a // NoSanitizeAttr object; but we need to calculate the correct spelling list // index rather than incorrectly assume the index for NoSanitizeSpecificAttr // has the same spellings as the index for NoSanitizeAttr. We don't have a // general way to "translate" between the two, so this hack attempts to work // around the issue with hard-coded indicies. This is critical for calling // getSpelling() or prettyPrint() on the resulting semantic attribute object // without failing assertions. unsigned TranslatedSpellingIndex = 0; if (AL.isStandardAttributeSyntax()) TranslatedSpellingIndex = 1; AttributeCommonInfo Info = AL; Info.setAttributeSpellingListIndex(TranslatedSpellingIndex); D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, Info, &SanitizerName, 1)); } static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) D->addAttr(Internal); } static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (S.LangOpts.OpenCLVersion != 200) S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version) << AL << "2.0" << 0; else S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored) << AL << "2.0"; } static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (D->isInvalidDecl()) return; // Check if there is only one access qualifier. if (D->hasAttr()) { if (D->getAttr()->getSemanticSpelling() == AL.getSemanticSpelling()) { S.Diag(AL.getLoc(), diag::warn_duplicate_declspec) << AL.getAttrName()->getName() << AL.getRange(); } else { S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers) << D->getSourceRange(); D->setInvalidDecl(true); return; } } // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that // an image object can be read and written. OpenCL v2.0 s6.13.6 - A kernel // cannot read from and write to the same pipe object. Using the read_write // (or __read_write) qualifier with the pipe qualifier is a compilation error. // OpenCL v3.0 s6.8 - For OpenCL C 2.0, or with the // __opencl_c_read_write_images feature, image objects specified as arguments // to a kernel can additionally be declared to be read-write. // C++ for OpenCL inherits rule from OpenCL C v2.0. if (const auto *PDecl = dyn_cast(D)) { const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr(); if (AL.getAttrName()->getName().find("read_write") != StringRef::npos) { bool ReadWriteImagesUnsupportedForOCLC = (S.getLangOpts().OpenCLVersion < 200) || (S.getLangOpts().OpenCLVersion == 300 && !S.getOpenCLOptions().isSupported("__opencl_c_read_write_images", S.getLangOpts())); if ((!S.getLangOpts().OpenCLCPlusPlus && ReadWriteImagesUnsupportedForOCLC) || DeclTy->isPipeType()) { S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write) << AL << PDecl->getType() << DeclTy->isImageType(); D->setInvalidDecl(true); return; } } } D->addAttr(::new (S.Context) OpenCLAccessAttr(S.Context, AL)); } static void handleSYCLKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // The 'sycl_kernel' attribute applies only to function templates. const auto *FD = cast(D); const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate(); assert(FT && "Function template is expected"); // Function template must have at least two template parameters. const TemplateParameterList *TL = FT->getTemplateParameters(); if (TL->size() < 2) { S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params); return; } // Template parameters must be typenames. for (unsigned I = 0; I < 2; ++I) { const NamedDecl *TParam = TL->getParam(I); if (isa(TParam)) { S.Diag(FT->getLocation(), diag::warn_sycl_kernel_invalid_template_param_type); return; } } // Function must have at least one argument. if (getFunctionOrMethodNumParams(D) != 1) { S.Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params); return; } // Function must return void. QualType RetTy = getFunctionOrMethodResultType(D); if (!RetTy->isVoidType()) { S.Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type); return; } handleSimpleAttribute(S, D, AL); } static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { if (!cast(D)->hasGlobalStorage()) { S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var) << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); return; } if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) handleSimpleAttribute(S, D, A); else handleSimpleAttribute(S, D, A); } static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { assert(cast(D)->getStorageDuration() == SD_Automatic && "uninitialized is only valid on automatic duration variables"); D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL)); } static bool tryMakeVariablePseudoStrong(Sema &S, VarDecl *VD, bool DiagnoseFailure) { QualType Ty = VD->getType(); if (!Ty->isObjCRetainableType()) { if (DiagnoseFailure) { S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) << 0; } return false; } Qualifiers::ObjCLifetime LifetimeQual = Ty.getQualifiers().getObjCLifetime(); // Sema::inferObjCARCLifetime must run after processing decl attributes // (because __block lowers to an attribute), so if the lifetime hasn't been // explicitly specified, infer it locally now. if (LifetimeQual == Qualifiers::OCL_None) LifetimeQual = Ty->getObjCARCImplicitLifetime(); // The attributes only really makes sense for __strong variables; ignore any // attempts to annotate a parameter with any other lifetime qualifier. if (LifetimeQual != Qualifiers::OCL_Strong) { if (DiagnoseFailure) { S.Diag(VD->getBeginLoc(), diag::warn_ignored_objc_externally_retained) << 1; } return false; } // Tampering with the type of a VarDecl here is a bit of a hack, but we need // to ensure that the variable is 'const' so that we can error on // modification, which can otherwise over-release. VD->setType(Ty.withConst()); VD->setARCPseudoStrong(true); return true; } static void handleObjCExternallyRetainedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (auto *VD = dyn_cast(D)) { assert(!isa(VD) && "should be diagnosed automatically"); if (!VD->hasLocalStorage()) { S.Diag(D->getBeginLoc(), diag::warn_ignored_objc_externally_retained) << 0; return; } if (!tryMakeVariablePseudoStrong(S, VD, /*DiagnoseFailure=*/true)) return; handleSimpleAttribute(S, D, AL); return; } // If D is a function-like declaration (method, block, or function), then we // make every parameter psuedo-strong. unsigned NumParams = hasFunctionProto(D) ? getFunctionOrMethodNumParams(D) : 0; for (unsigned I = 0; I != NumParams; ++I) { auto *PVD = const_cast(getFunctionOrMethodParam(D, I)); QualType Ty = PVD->getType(); // If a user wrote a parameter with __strong explicitly, then assume they // want "real" strong semantics for that parameter. This works because if // the parameter was written with __strong, then the strong qualifier will // be non-local. if (Ty.getLocalUnqualifiedType().getQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) continue; tryMakeVariablePseudoStrong(S, PVD, /*DiagnoseFailure=*/false); } handleSimpleAttribute(S, D, AL); } static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Check that the return type is a `typedef int kern_return_t` or a typedef // around it, because otherwise MIG convention checks make no sense. // BlockDecl doesn't store a return type, so it's annoying to check, // so let's skip it for now. if (!isa(D)) { QualType T = getFunctionOrMethodResultType(D); bool IsKernReturnT = false; while (const auto *TT = T->getAs()) { IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t"); T = TT->desugar(); } if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) { S.Diag(D->getBeginLoc(), diag::warn_mig_server_routine_does_not_return_kern_return_t); return; } } handleSimpleAttribute(S, D, AL); } static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Warn if the return type is not a pointer or reference type. if (auto *FD = dyn_cast(D)) { QualType RetTy = FD->getReturnType(); if (!RetTy->isPointerType() && !RetTy->isReferenceType()) { S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer) << AL.getRange() << RetTy; return; } } handleSimpleAttribute(S, D, AL); } static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (AL.isUsedAsTypeAttr()) return; // Warn if the parameter is definitely not an output parameter. if (const auto *PVD = dyn_cast(D)) { if (PVD->getType()->isIntegerType()) { S.Diag(AL.getLoc(), diag::err_attribute_output_parameter) << AL.getRange(); return; } } StringRef Argument; if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) return; D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL)); } template static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Argument; if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) return; D->addAttr(Attr::Create(S.Context, Argument, AL)); } static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // The guard attribute takes a single identifier argument. if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } CFGuardAttr::GuardArg Arg; IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; return; } D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg)); } template static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) { auto Attrs = D->specific_attrs(); auto I = llvm::find_if(Attrs, [Name](const AttrTy *A) { return A->getTCBName() == Name; }); return I == Attrs.end() ? nullptr : *I; } template static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Argument; if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) return; // A function cannot be have both regular and leaf membership in the same TCB. if (const ConflictingAttrTy *ConflictingAttr = findEnforceTCBAttrByName(D, Argument)) { // We could attach a note to the other attribute but in this case // there's no need given how the two are very close to each other. S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes) << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName() << Argument; // Error recovery: drop the non-leaf attribute so that to suppress // all future warnings caused by erroneous attributes. The leaf attribute // needs to be kept because it can only suppresses warnings, not cause them. D->dropAttr(); return; } D->addAttr(AttrTy::Create(S.Context, Argument, AL)); } template static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) { // Check if the new redeclaration has different leaf-ness in the same TCB. StringRef TCBName = AL.getTCBName(); if (const ConflictingAttrTy *ConflictingAttr = findEnforceTCBAttrByName(D, TCBName)) { S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes) << ConflictingAttr->getAttrName()->getName() << AL.getAttrName()->getName() << TCBName; // Add a note so that the user could easily find the conflicting attribute. S.Diag(AL.getLoc(), diag::note_conflicting_attribute); // More error recovery. D->dropAttr(); return nullptr; } ASTContext &Context = S.getASTContext(); return ::new(Context) AttrTy(Context, AL, AL.getTCBName()); } EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) { return mergeEnforceTCBAttrImpl( *this, D, AL); } EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr( Decl *D, const EnforceTCBLeafAttr &AL) { return mergeEnforceTCBAttrImpl( *this, D, AL); } //===----------------------------------------------------------------------===// // Top Level Sema Entry Points //===----------------------------------------------------------------------===// /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if /// the attribute applies to decls. If the attribute is a type attribute, just /// silently ignore it if a GNU attribute. static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL, bool IncludeCXX11Attributes) { if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) return; // Ignore C++11 attributes on declarator chunks: they appertain to the type // instead. if (AL.isCXX11Attribute() && !IncludeCXX11Attributes) return; // Unknown attributes are automatically warned on. Target-specific attributes // which do not apply to the current target architecture are treated as // though they were unknown attributes. if (AL.getKind() == ParsedAttr::UnknownAttribute || !AL.existsInTarget(S.Context.getTargetInfo())) { S.Diag(AL.getLoc(), AL.isDeclspecAttribute() ? (unsigned)diag::warn_unhandled_ms_attribute_ignored : (unsigned)diag::warn_unknown_attribute_ignored) << AL << AL.getRange(); return; } if (S.checkCommonAttributeFeatures(D, AL)) return; switch (AL.getKind()) { default: if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled) break; if (!AL.isStmtAttr()) { // Type attributes are handled elsewhere; silently move on. assert(AL.isTypeAttr() && "Non-type attribute not handled"); break; } // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a // statement attribute is not written on a declaration, but this code is // needed for attributes in Attr.td that do not list any subjects. S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl) << AL << D->getLocation(); break; case ParsedAttr::AT_Interrupt: handleInterruptAttr(S, D, AL); break; case ParsedAttr::AT_X86ForceAlignArgPointer: handleX86ForceAlignArgPointerAttr(S, D, AL); break; case ParsedAttr::AT_DLLExport: case ParsedAttr::AT_DLLImport: handleDLLAttr(S, D, AL); break; case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL); break; case ParsedAttr::AT_AMDGPUWavesPerEU: handleAMDGPUWavesPerEUAttr(S, D, AL); break; case ParsedAttr::AT_AMDGPUNumSGPR: handleAMDGPUNumSGPRAttr(S, D, AL); break; case ParsedAttr::AT_AMDGPUNumVGPR: handleAMDGPUNumVGPRAttr(S, D, AL); break; case ParsedAttr::AT_AVRSignal: handleAVRSignalAttr(S, D, AL); break; case ParsedAttr::AT_BPFPreserveAccessIndex: handleBPFPreserveAccessIndexAttr(S, D, AL); break; case ParsedAttr::AT_WebAssemblyExportName: handleWebAssemblyExportNameAttr(S, D, AL); break; case ParsedAttr::AT_WebAssemblyImportModule: handleWebAssemblyImportModuleAttr(S, D, AL); break; case ParsedAttr::AT_WebAssemblyImportName: handleWebAssemblyImportNameAttr(S, D, AL); break; case ParsedAttr::AT_IBOutlet: handleIBOutlet(S, D, AL); break; case ParsedAttr::AT_IBOutletCollection: handleIBOutletCollection(S, D, AL); break; case ParsedAttr::AT_IFunc: handleIFuncAttr(S, D, AL); break; case ParsedAttr::AT_Alias: handleAliasAttr(S, D, AL); break; case ParsedAttr::AT_Aligned: handleAlignedAttr(S, D, AL); break; case ParsedAttr::AT_AlignValue: handleAlignValueAttr(S, D, AL); break; case ParsedAttr::AT_AllocSize: handleAllocSizeAttr(S, D, AL); break; case ParsedAttr::AT_AlwaysInline: handleAlwaysInlineAttr(S, D, AL); break; case ParsedAttr::AT_AnalyzerNoReturn: handleAnalyzerNoReturnAttr(S, D, AL); break; case ParsedAttr::AT_TLSModel: handleTLSModelAttr(S, D, AL); break; case ParsedAttr::AT_Annotate: handleAnnotateAttr(S, D, AL); break; case ParsedAttr::AT_Availability: handleAvailabilityAttr(S, D, AL); break; case ParsedAttr::AT_CarriesDependency: handleDependencyAttr(S, scope, D, AL); break; case ParsedAttr::AT_CPUDispatch: case ParsedAttr::AT_CPUSpecific: handleCPUSpecificAttr(S, D, AL); break; case ParsedAttr::AT_Common: handleCommonAttr(S, D, AL); break; case ParsedAttr::AT_CUDAConstant: handleConstantAttr(S, D, AL); break; case ParsedAttr::AT_PassObjectSize: handlePassObjectSizeAttr(S, D, AL); break; case ParsedAttr::AT_Constructor: handleConstructorAttr(S, D, AL); break; case ParsedAttr::AT_Deprecated: handleDeprecatedAttr(S, D, AL); break; case ParsedAttr::AT_Destructor: handleDestructorAttr(S, D, AL); break; case ParsedAttr::AT_EnableIf: handleEnableIfAttr(S, D, AL); break; case ParsedAttr::AT_DiagnoseIf: handleDiagnoseIfAttr(S, D, AL); break; case ParsedAttr::AT_NoBuiltin: handleNoBuiltinAttr(S, D, AL); break; case ParsedAttr::AT_ExtVectorType: handleExtVectorTypeAttr(S, D, AL); break; case ParsedAttr::AT_ExternalSourceSymbol: handleExternalSourceSymbolAttr(S, D, AL); break; case ParsedAttr::AT_MinSize: handleMinSizeAttr(S, D, AL); break; case ParsedAttr::AT_OptimizeNone: handleOptimizeNoneAttr(S, D, AL); break; case ParsedAttr::AT_EnumExtensibility: handleEnumExtensibilityAttr(S, D, AL); break; case ParsedAttr::AT_SYCLKernel: handleSYCLKernelAttr(S, D, AL); break; case ParsedAttr::AT_Format: handleFormatAttr(S, D, AL); break; case ParsedAttr::AT_FormatArg: handleFormatArgAttr(S, D, AL); break; case ParsedAttr::AT_Callback: handleCallbackAttr(S, D, AL); break; case ParsedAttr::AT_CalledOnce: handleCalledOnceAttr(S, D, AL); break; case ParsedAttr::AT_CUDAGlobal: handleGlobalAttr(S, D, AL); break; case ParsedAttr::AT_CUDADevice: handleDeviceAttr(S, D, AL); break; case ParsedAttr::AT_HIPManaged: handleManagedAttr(S, D, AL); break; case ParsedAttr::AT_GNUInline: handleGNUInlineAttr(S, D, AL); break; case ParsedAttr::AT_CUDALaunchBounds: handleLaunchBoundsAttr(S, D, AL); break; case ParsedAttr::AT_Restrict: handleRestrictAttr(S, D, AL); break; case ParsedAttr::AT_Mode: handleModeAttr(S, D, AL); break; case ParsedAttr::AT_NonNull: if (auto *PVD = dyn_cast(D)) handleNonNullAttrParameter(S, PVD, AL); else handleNonNullAttr(S, D, AL); break; case ParsedAttr::AT_ReturnsNonNull: handleReturnsNonNullAttr(S, D, AL); break; case ParsedAttr::AT_NoEscape: handleNoEscapeAttr(S, D, AL); break; case ParsedAttr::AT_AssumeAligned: handleAssumeAlignedAttr(S, D, AL); break; case ParsedAttr::AT_AllocAlign: handleAllocAlignAttr(S, D, AL); break; case ParsedAttr::AT_Ownership: handleOwnershipAttr(S, D, AL); break; case ParsedAttr::AT_Naked: handleNakedAttr(S, D, AL); break; case ParsedAttr::AT_NoReturn: handleNoReturnAttr(S, D, AL); break; case ParsedAttr::AT_AnyX86NoCfCheck: handleNoCfCheckAttr(S, D, AL); break; case ParsedAttr::AT_NoThrow: if (!AL.isUsedAsTypeAttr()) handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_CUDAShared: handleSharedAttr(S, D, AL); break; case ParsedAttr::AT_VecReturn: handleVecReturnAttr(S, D, AL); break; case ParsedAttr::AT_ObjCOwnership: handleObjCOwnershipAttr(S, D, AL); break; case ParsedAttr::AT_ObjCPreciseLifetime: handleObjCPreciseLifetimeAttr(S, D, AL); break; case ParsedAttr::AT_ObjCReturnsInnerPointer: handleObjCReturnsInnerPointerAttr(S, D, AL); break; case ParsedAttr::AT_ObjCRequiresSuper: handleObjCRequiresSuperAttr(S, D, AL); break; case ParsedAttr::AT_ObjCBridge: handleObjCBridgeAttr(S, D, AL); break; case ParsedAttr::AT_ObjCBridgeMutable: handleObjCBridgeMutableAttr(S, D, AL); break; case ParsedAttr::AT_ObjCBridgeRelated: handleObjCBridgeRelatedAttr(S, D, AL); break; case ParsedAttr::AT_ObjCDesignatedInitializer: handleObjCDesignatedInitializer(S, D, AL); break; case ParsedAttr::AT_ObjCRuntimeName: handleObjCRuntimeName(S, D, AL); break; case ParsedAttr::AT_ObjCBoxable: handleObjCBoxable(S, D, AL); break; case ParsedAttr::AT_NSErrorDomain: handleNSErrorDomain(S, D, AL); break; case ParsedAttr::AT_CFConsumed: case ParsedAttr::AT_NSConsumed: case ParsedAttr::AT_OSConsumed: S.AddXConsumedAttr(D, AL, parsedAttrToRetainOwnershipKind(AL), /*IsTemplateInstantiation=*/false); break; case ParsedAttr::AT_OSReturnsRetainedOnZero: handleSimpleAttributeOrDiagnose( S, D, AL, isValidOSObjectOutParameter(D), diag::warn_ns_attribute_wrong_parameter_type, /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange()); break; case ParsedAttr::AT_OSReturnsRetainedOnNonZero: handleSimpleAttributeOrDiagnose( S, D, AL, isValidOSObjectOutParameter(D), diag::warn_ns_attribute_wrong_parameter_type, /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange()); break; case ParsedAttr::AT_NSReturnsAutoreleased: case ParsedAttr::AT_NSReturnsNotRetained: case ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_CFReturnsNotRetained: case ParsedAttr::AT_CFReturnsRetained: case ParsedAttr::AT_OSReturnsNotRetained: case ParsedAttr::AT_OSReturnsRetained: handleXReturnsXRetainedAttr(S, D, AL); break; case ParsedAttr::AT_WorkGroupSizeHint: handleWorkGroupSize(S, D, AL); break; case ParsedAttr::AT_ReqdWorkGroupSize: handleWorkGroupSize(S, D, AL); break; case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: handleSubGroupSize(S, D, AL); break; case ParsedAttr::AT_VecTypeHint: handleVecTypeHint(S, D, AL); break; case ParsedAttr::AT_InitPriority: handleInitPriorityAttr(S, D, AL); break; case ParsedAttr::AT_Packed: handlePackedAttr(S, D, AL); break; case ParsedAttr::AT_PreferredName: handlePreferredName(S, D, AL); break; case ParsedAttr::AT_Section: handleSectionAttr(S, D, AL); break; case ParsedAttr::AT_CodeSeg: handleCodeSegAttr(S, D, AL); break; case ParsedAttr::AT_Target: handleTargetAttr(S, D, AL); break; case ParsedAttr::AT_MinVectorWidth: handleMinVectorWidthAttr(S, D, AL); break; case ParsedAttr::AT_Unavailable: handleAttrWithMessage(S, D, AL); break; case ParsedAttr::AT_Assumption: handleAssumumptionAttr(S, D, AL); break; case ParsedAttr::AT_ObjCDirect: handleObjCDirectAttr(S, D, AL); break; case ParsedAttr::AT_ObjCDirectMembers: handleObjCDirectMembersAttr(S, D, AL); handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_ObjCExplicitProtocolImpl: handleObjCSuppresProtocolAttr(S, D, AL); break; case ParsedAttr::AT_Unused: handleUnusedAttr(S, D, AL); break; case ParsedAttr::AT_Visibility: handleVisibilityAttr(S, D, AL, false); break; case ParsedAttr::AT_TypeVisibility: handleVisibilityAttr(S, D, AL, true); break; case ParsedAttr::AT_WarnUnusedResult: handleWarnUnusedResult(S, D, AL); break; case ParsedAttr::AT_WeakRef: handleWeakRefAttr(S, D, AL); break; case ParsedAttr::AT_WeakImport: handleWeakImportAttr(S, D, AL); break; case ParsedAttr::AT_TransparentUnion: handleTransparentUnionAttr(S, D, AL); break; case ParsedAttr::AT_ObjCMethodFamily: handleObjCMethodFamilyAttr(S, D, AL); break; case ParsedAttr::AT_ObjCNSObject: handleObjCNSObject(S, D, AL); break; case ParsedAttr::AT_ObjCIndependentClass: handleObjCIndependentClass(S, D, AL); break; case ParsedAttr::AT_Blocks: handleBlocksAttr(S, D, AL); break; case ParsedAttr::AT_Sentinel: handleSentinelAttr(S, D, AL); break; case ParsedAttr::AT_Cleanup: handleCleanupAttr(S, D, AL); break; case ParsedAttr::AT_NoDebug: handleNoDebugAttr(S, D, AL); break; case ParsedAttr::AT_CmseNSEntry: handleCmseNSEntryAttr(S, D, AL); break; case ParsedAttr::AT_StdCall: case ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_ThisCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr::AT_PreserveAll: case ParsedAttr::AT_AArch64VectorPcs: handleCallConvAttr(S, D, AL); break; case ParsedAttr::AT_Suppress: handleSuppressAttr(S, D, AL); break; case ParsedAttr::AT_Owner: case ParsedAttr::AT_Pointer: handleLifetimeCategoryAttr(S, D, AL); break; case ParsedAttr::AT_OpenCLAccess: handleOpenCLAccessAttr(S, D, AL); break; case ParsedAttr::AT_OpenCLNoSVM: handleOpenCLNoSVMAttr(S, D, AL); break; case ParsedAttr::AT_SwiftContext: S.AddParameterABIAttr(D, AL, ParameterABI::SwiftContext); break; case ParsedAttr::AT_SwiftAsyncContext: S.AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext); break; case ParsedAttr::AT_SwiftErrorResult: S.AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult); break; case ParsedAttr::AT_SwiftIndirectResult: S.AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult); break; case ParsedAttr::AT_InternalLinkage: handleInternalLinkageAttr(S, D, AL); break; // Microsoft attributes: case ParsedAttr::AT_LayoutVersion: handleLayoutVersion(S, D, AL); break; case ParsedAttr::AT_Uuid: handleUuidAttr(S, D, AL); break; case ParsedAttr::AT_MSInheritance: handleMSInheritanceAttr(S, D, AL); break; case ParsedAttr::AT_Thread: handleDeclspecThreadAttr(S, D, AL); break; case ParsedAttr::AT_AbiTag: handleAbiTagAttr(S, D, AL); break; case ParsedAttr::AT_CFGuard: handleCFGuardAttr(S, D, AL); break; // Thread safety attributes: case ParsedAttr::AT_AssertExclusiveLock: handleAssertExclusiveLockAttr(S, D, AL); break; case ParsedAttr::AT_AssertSharedLock: handleAssertSharedLockAttr(S, D, AL); break; case ParsedAttr::AT_PtGuardedVar: handlePtGuardedVarAttr(S, D, AL); break; case ParsedAttr::AT_NoSanitize: handleNoSanitizeAttr(S, D, AL); break; case ParsedAttr::AT_NoSanitizeSpecific: handleNoSanitizeSpecificAttr(S, D, AL); break; case ParsedAttr::AT_GuardedBy: handleGuardedByAttr(S, D, AL); break; case ParsedAttr::AT_PtGuardedBy: handlePtGuardedByAttr(S, D, AL); break; case ParsedAttr::AT_ExclusiveTrylockFunction: handleExclusiveTrylockFunctionAttr(S, D, AL); break; case ParsedAttr::AT_LockReturned: handleLockReturnedAttr(S, D, AL); break; case ParsedAttr::AT_LocksExcluded: handleLocksExcludedAttr(S, D, AL); break; case ParsedAttr::AT_SharedTrylockFunction: handleSharedTrylockFunctionAttr(S, D, AL); break; case ParsedAttr::AT_AcquiredBefore: handleAcquiredBeforeAttr(S, D, AL); break; case ParsedAttr::AT_AcquiredAfter: handleAcquiredAfterAttr(S, D, AL); break; // Capability analysis attributes. case ParsedAttr::AT_Capability: case ParsedAttr::AT_Lockable: handleCapabilityAttr(S, D, AL); break; case ParsedAttr::AT_RequiresCapability: handleRequiresCapabilityAttr(S, D, AL); break; case ParsedAttr::AT_AssertCapability: handleAssertCapabilityAttr(S, D, AL); break; case ParsedAttr::AT_AcquireCapability: handleAcquireCapabilityAttr(S, D, AL); break; case ParsedAttr::AT_ReleaseCapability: handleReleaseCapabilityAttr(S, D, AL); break; case ParsedAttr::AT_TryAcquireCapability: handleTryAcquireCapabilityAttr(S, D, AL); break; // Consumed analysis attributes. case ParsedAttr::AT_Consumable: handleConsumableAttr(S, D, AL); break; case ParsedAttr::AT_CallableWhen: handleCallableWhenAttr(S, D, AL); break; case ParsedAttr::AT_ParamTypestate: handleParamTypestateAttr(S, D, AL); break; case ParsedAttr::AT_ReturnTypestate: handleReturnTypestateAttr(S, D, AL); break; case ParsedAttr::AT_SetTypestate: handleSetTypestateAttr(S, D, AL); break; case ParsedAttr::AT_TestTypestate: handleTestTypestateAttr(S, D, AL); break; // Type safety attributes. case ParsedAttr::AT_ArgumentWithTypeTag: handleArgumentWithTypeTagAttr(S, D, AL); break; case ParsedAttr::AT_TypeTagForDatatype: handleTypeTagForDatatypeAttr(S, D, AL); break; // Swift attributes. case ParsedAttr::AT_SwiftAsyncName: handleSwiftAsyncName(S, D, AL); break; case ParsedAttr::AT_SwiftAttr: handleSwiftAttrAttr(S, D, AL); break; case ParsedAttr::AT_SwiftBridge: handleSwiftBridge(S, D, AL); break; case ParsedAttr::AT_SwiftError: handleSwiftError(S, D, AL); break; case ParsedAttr::AT_SwiftName: handleSwiftName(S, D, AL); break; case ParsedAttr::AT_SwiftNewType: handleSwiftNewType(S, D, AL); break; case ParsedAttr::AT_SwiftAsync: handleSwiftAsyncAttr(S, D, AL); break; case ParsedAttr::AT_SwiftAsyncError: handleSwiftAsyncError(S, D, AL); break; // XRay attributes. case ParsedAttr::AT_XRayLogArgs: handleXRayLogArgsAttr(S, D, AL); break; case ParsedAttr::AT_PatchableFunctionEntry: handlePatchableFunctionEntryAttr(S, D, AL); break; case ParsedAttr::AT_AlwaysDestroy: case ParsedAttr::AT_NoDestroy: handleDestroyAttr(S, D, AL); break; case ParsedAttr::AT_Uninitialized: handleUninitializedAttr(S, D, AL); break; case ParsedAttr::AT_ObjCExternallyRetained: handleObjCExternallyRetainedAttr(S, D, AL); break; case ParsedAttr::AT_MIGServerRoutine: handleMIGServerRoutineAttr(S, D, AL); break; case ParsedAttr::AT_MSAllocator: handleMSAllocatorAttr(S, D, AL); break; case ParsedAttr::AT_ArmBuiltinAlias: handleArmBuiltinAliasAttr(S, D, AL); break; case ParsedAttr::AT_AcquireHandle: handleAcquireHandleAttr(S, D, AL); break; case ParsedAttr::AT_ReleaseHandle: handleHandleAttr(S, D, AL); break; case ParsedAttr::AT_UseHandle: handleHandleAttr(S, D, AL); break; case ParsedAttr::AT_EnforceTCB: handleEnforceTCBAttr(S, D, AL); break; case ParsedAttr::AT_EnforceTCBLeaf: handleEnforceTCBAttr(S, D, AL); break; case ParsedAttr::AT_BuiltinAlias: handleBuiltinAliasAttr(S, D, AL); break; case ParsedAttr::AT_UsingIfExists: handleSimpleAttribute(S, D, AL); break; } } /// ProcessDeclAttributeList - Apply all the decl attributes in the specified /// attribute list to the specified decl, ignoring any type attributes. void Sema::ProcessDeclAttributeList(Scope *S, Decl *D, const ParsedAttributesView &AttrList, bool IncludeCXX11Attributes) { if (AttrList.empty()) return; for (const ParsedAttr &AL : AttrList) ProcessDeclAttribute(*this, S, D, AL, IncludeCXX11Attributes); // FIXME: We should be able to handle these cases in TableGen. // GCC accepts // static int a9 __attribute__((weakref)); // but that looks really pointless. We reject it. if (D->hasAttr() && !D->hasAttr()) { Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias) << cast(D); D->dropAttr(); return; } // FIXME: We should be able to handle this in TableGen as well. It would be // good to have a way to specify "these attributes must appear as a group", // for these. Additionally, it would be good to have a way to specify "these // attribute must never appear as a group" for attributes like cold and hot. if (!D->hasAttr()) { // These attributes cannot be applied to a non-kernel function. if (const auto *A = D->getAttr()) { // FIXME: This emits a different error message than // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; D->setInvalidDecl(); } else if (!D->hasAttr()) { if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << A << ExpectedKernelFunction; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << A << ExpectedKernelFunction; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << A << ExpectedKernelFunction; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << A << ExpectedKernelFunction; D->setInvalidDecl(); } } } // Do this check after processing D's attributes because the attribute // objc_method_family can change whether the given method is in the init // family, and it can be applied after objc_designated_initializer. This is a // bit of a hack, but we need it to be compatible with versions of clang that // processed the attribute list in the wrong order. if (D->hasAttr() && cast(D)->getMethodFamily() != OMF_init) { Diag(D->getLocation(), diag::err_designated_init_attr_non_init); D->dropAttr(); } } // Helper for delayed processing TransparentUnion or BPFPreserveAccessIndexAttr // attribute. void Sema::ProcessDeclAttributeDelayed(Decl *D, const ParsedAttributesView &AttrList) { for (const ParsedAttr &AL : AttrList) if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { handleTransparentUnionAttr(*this, D, AL); break; } // For BPFPreserveAccessIndexAttr, we want to populate the attributes // to fields and inner records as well. if (D && D->hasAttr()) handleBPFPreserveAIRecord(*this, cast(D)); } // Annotation attributes are the only attributes allowed after an access // specifier. bool Sema::ProcessAccessDeclAttributeList( AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { for (const ParsedAttr &AL : AttrList) { if (AL.getKind() == ParsedAttr::AT_Annotate) { ProcessDeclAttribute(*this, nullptr, ASDecl, AL, AL.isCXX11Attribute()); } else { Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec); return true; } } return false; } /// checkUnusedDeclAttributes - Check a list of attributes to see if it /// contains any decl attributes that we should warn about. static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { for (const ParsedAttr &AL : A) { // Only warn if the attribute is an unignored, non-type attribute. if (AL.isUsedAsTypeAttr() || AL.isInvalid()) continue; if (AL.getKind() == ParsedAttr::IgnoredAttribute) continue; if (AL.getKind() == ParsedAttr::UnknownAttribute) { S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL << AL.getRange(); } else { S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL << AL.getRange(); } } } /// checkUnusedDeclAttributes - Given a declarator which is not being /// used to build a declaration, complain about any decl attributes /// which might be lying around on it. void Sema::checkUnusedDeclAttributes(Declarator &D) { ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes()); ::checkUnusedDeclAttributes(*this, D.getAttributes()); for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); } /// DeclClonePragmaWeak - clone existing decl (maybe definition), /// \#pragma weak needs a non-definition decl and source may not have one. NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II, SourceLocation Loc) { assert(isa(ND) || isa(ND)); NamedDecl *NewD = nullptr; if (auto *FD = dyn_cast(ND)) { FunctionDecl *NewFD; // FIXME: Missing call to CheckFunctionDeclaration(). // FIXME: Mangling? // FIXME: Is the qualifier info correct? // FIXME: Is the DeclContext correct? NewFD = FunctionDecl::Create( FD->getASTContext(), FD->getDeclContext(), Loc, Loc, DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None, false /*isInlineSpecified*/, FD->hasPrototype(), ConstexprSpecKind::Unspecified, FD->getTrailingRequiresClause()); NewD = NewFD; if (FD->getQualifier()) NewFD->setQualifierInfo(FD->getQualifierLoc()); // Fake up parameter variables; they are declared as if this were // a typedef. QualType FDTy = FD->getType(); if (const auto *FT = FDTy->getAs()) { SmallVector Params; for (const auto &AI : FT->param_types()) { ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); Param->setScopeInfo(0, Params.size()); Params.push_back(Param); } NewFD->setParams(Params); } } else if (auto *VD = dyn_cast(ND)) { NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), VD->getInnerLocStart(), VD->getLocation(), II, VD->getType(), VD->getTypeSourceInfo(), VD->getStorageClass()); if (VD->getQualifier()) cast(NewD)->setQualifierInfo(VD->getQualifierLoc()); } return NewD; } /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak /// applied to it, possibly with an alias. void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) { if (W.getUsed()) return; // only do this once W.setUsed(true); if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) IdentifierInfo *NDId = ND->getIdentifier(); NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); NewD->addAttr( AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation())); NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(), AttributeCommonInfo::AS_Pragma)); WeakTopLevelDecl.push_back(NewD); // FIXME: "hideous" code from Sema::LazilyCreateBuiltin // to insert Decl at TU scope, sorry. DeclContext *SavedContext = CurContext; CurContext = Context.getTranslationUnitDecl(); NewD->setDeclContext(CurContext); NewD->setLexicalDeclContext(CurContext); PushOnScopeChains(NewD, S); CurContext = SavedContext; } else { // just add weak to existing ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation(), AttributeCommonInfo::AS_Pragma)); } } void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { // It's valid to "forward-declare" #pragma weak, in which case we // have to do this. LoadExternalWeakUndeclaredIdentifiers(); if (!WeakUndeclaredIdentifiers.empty()) { NamedDecl *ND = nullptr; if (auto *VD = dyn_cast(D)) if (VD->isExternC()) ND = VD; if (auto *FD = dyn_cast(D)) if (FD->isExternC()) ND = FD; if (ND) { if (IdentifierInfo *Id = ND->getIdentifier()) { auto I = WeakUndeclaredIdentifiers.find(Id); if (I != WeakUndeclaredIdentifiers.end()) { WeakInfo W = I->second; DeclApplyPragmaWeak(S, ND, W); WeakUndeclaredIdentifiers[Id] = W; } } } } } /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in /// it, apply them to D. This is a bit tricky because PD can have attributes /// specified in many different places, and we need to find and apply them all. void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { // Apply decl attributes from the DeclSpec if present. if (!PD.getDeclSpec().getAttributes().empty()) ProcessDeclAttributeList(S, D, PD.getDeclSpec().getAttributes()); // Walk the declarator structure, applying decl attributes that were in a type // position to the decl itself. This handles cases like: // int *__attr__(x)** D; // when X is a decl attribute. for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(), /*IncludeCXX11Attributes=*/false); // Finally, apply any attributes on the decl itself. ProcessDeclAttributeList(S, D, PD.getAttributes()); // Apply additional attributes specified by '#pragma clang attribute'. AddPragmaAttributes(S, D); } /// Is the given declaration allowed to use a forbidden type? /// If so, it'll still be annotated with an attribute that makes it /// illegal to actually use. static bool isForbiddenTypeAllowed(Sema &S, Decl *D, const DelayedDiagnostic &diag, UnavailableAttr::ImplicitReason &reason) { // Private ivars are always okay. Unfortunately, people don't // always properly make their ivars private, even in system headers. // Plus we need to make fields okay, too. if (!isa(D) && !isa(D) && !isa(D)) return false; // Silently accept unsupported uses of __weak in both user and system // declarations when it's been disabled, for ease of integration with // -fno-objc-arc files. We do have to take some care against attempts // to define such things; for now, we've only done that for ivars // and properties. if ((isa(D) || isa(D))) { if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { reason = UnavailableAttr::IR_ForbiddenWeak; return true; } } // Allow all sorts of things in system headers. if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) { // Currently, all the failures dealt with this way are due to ARC // restrictions. reason = UnavailableAttr::IR_ARCForbiddenType; return true; } return false; } /// Handle a delayed forbidden-type diagnostic. static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, Decl *D) { auto Reason = UnavailableAttr::IR_None; if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) { assert(Reason && "didn't set reason?"); D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc)); return; } if (S.getLangOpts().ObjCAutoRefCount) if (const auto *FD = dyn_cast(D)) { // FIXME: we may want to suppress diagnostics for all // kind of forbidden type messages on unavailable functions. if (FD->hasAttr() && DD.getForbiddenTypeDiagnostic() == diag::err_arc_array_param_no_ownership) { DD.Triggered = true; return; } } S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic()) << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); DD.Triggered = true; } void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { assert(DelayedDiagnostics.getCurrentPool()); DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); DelayedDiagnostics.popWithoutEmitting(state); // When delaying diagnostics to run in the context of a parsed // declaration, we only want to actually emit anything if parsing // succeeds. if (!decl) return; // We emit all the active diagnostics in this pool or any of its // parents. In general, we'll get one pool for the decl spec // and a child pool for each declarator; in a decl group like: // deprecated_typedef foo, *bar, baz(); // only the declarator pops will be passed decls. This is correct; // we really do need to consider delayed diagnostics from the decl spec // for each of the different declarations. const DelayedDiagnosticPool *pool = &poppedPool; do { bool AnyAccessFailures = false; for (DelayedDiagnosticPool::pool_iterator i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { // This const_cast is a bit lame. Really, Triggered should be mutable. DelayedDiagnostic &diag = const_cast(*i); if (diag.Triggered) continue; switch (diag.Kind) { case DelayedDiagnostic::Availability: // Don't bother giving deprecation/unavailable diagnostics if // the decl is invalid. if (!decl->isInvalidDecl()) handleDelayedAvailabilityCheck(diag, decl); break; case DelayedDiagnostic::Access: // Only produce one access control diagnostic for a structured binding // declaration: we don't need to tell the user that all the fields are // inaccessible one at a time. if (AnyAccessFailures && isa(decl)) continue; HandleDelayedAccessCheck(diag, decl); if (diag.Triggered) AnyAccessFailures = true; break; case DelayedDiagnostic::ForbiddenType: handleDelayedForbiddenType(*this, diag, decl); break; } } } while ((pool = pool->getParent())); } /// Given a set of delayed diagnostics, re-emit them as if they had /// been delayed in the current context instead of in the given pool. /// Essentially, this just moves them to the current pool. void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); assert(curPool && "re-emitting in undelayed context not supported"); curPool->steal(pool); }