//===--- Sema.cpp - AST Builder and Semantic Analysis Implementation ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the actions class which performs semantic analysis and // builds an AST out of a parse stream. // //===----------------------------------------------------------------------===// #include "UsedDeclVisitor.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/PrettyDeclStackTrace.h" #include "clang/AST/StmtCXX.h" #include "clang/Basic/DarwinSDKInfo.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Stack.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/HeaderSearchOptions.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/CXXFieldCollector.h" #include "clang/Sema/DelayedDiagnostic.h" #include "clang/Sema/ExternalSemaSource.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/MultiplexExternalSemaSource.h" #include "clang/Sema/ObjCMethodList.h" #include "clang/Sema/RISCVIntrinsicManager.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaConsumer.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/TemplateDeduction.h" #include "clang/Sema/TemplateInstCallback.h" #include "clang/Sema/TypoCorrection.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/TimeProfiler.h" #include using namespace clang; using namespace sema; SourceLocation Sema::getLocForEndOfToken(SourceLocation Loc, unsigned Offset) { return Lexer::getLocForEndOfToken(Loc, Offset, SourceMgr, LangOpts); } ModuleLoader &Sema::getModuleLoader() const { return PP.getModuleLoader(); } DarwinSDKInfo * Sema::getDarwinSDKInfoForAvailabilityChecking(SourceLocation Loc, StringRef Platform) { auto *SDKInfo = getDarwinSDKInfoForAvailabilityChecking(); if (!SDKInfo && !WarnedDarwinSDKInfoMissing) { Diag(Loc, diag::warn_missing_sdksettings_for_availability_checking) << Platform; WarnedDarwinSDKInfoMissing = true; } return SDKInfo; } DarwinSDKInfo *Sema::getDarwinSDKInfoForAvailabilityChecking() { if (CachedDarwinSDKInfo) return CachedDarwinSDKInfo->get(); auto SDKInfo = parseDarwinSDKInfo( PP.getFileManager().getVirtualFileSystem(), PP.getHeaderSearchInfo().getHeaderSearchOpts().Sysroot); if (SDKInfo && *SDKInfo) { CachedDarwinSDKInfo = std::make_unique(std::move(**SDKInfo)); return CachedDarwinSDKInfo->get(); } if (!SDKInfo) llvm::consumeError(SDKInfo.takeError()); CachedDarwinSDKInfo = std::unique_ptr(); return nullptr; } IdentifierInfo * Sema::InventAbbreviatedTemplateParameterTypeName(IdentifierInfo *ParamName, unsigned int Index) { std::string InventedName; llvm::raw_string_ostream OS(InventedName); if (!ParamName) OS << "auto:" << Index + 1; else OS << ParamName->getName() << ":auto"; OS.flush(); return &Context.Idents.get(OS.str()); } PrintingPolicy Sema::getPrintingPolicy(const ASTContext &Context, const Preprocessor &PP) { PrintingPolicy Policy = Context.getPrintingPolicy(); // In diagnostics, we print _Bool as bool if the latter is defined as the // former. Policy.Bool = Context.getLangOpts().Bool; if (!Policy.Bool) { if (const MacroInfo *BoolMacro = PP.getMacroInfo(Context.getBoolName())) { Policy.Bool = BoolMacro->isObjectLike() && BoolMacro->getNumTokens() == 1 && BoolMacro->getReplacementToken(0).is(tok::kw__Bool); } } // Shorten the data output if needed Policy.EntireContentsOfLargeArray = false; return Policy; } void Sema::ActOnTranslationUnitScope(Scope *S) { TUScope = S; PushDeclContext(S, Context.getTranslationUnitDecl()); } namespace clang { namespace sema { class SemaPPCallbacks : public PPCallbacks { Sema *S = nullptr; llvm::SmallVector IncludeStack; public: void set(Sema &S) { this->S = &S; } void reset() { S = nullptr; } void FileChanged(SourceLocation Loc, FileChangeReason Reason, SrcMgr::CharacteristicKind FileType, FileID PrevFID) override { if (!S) return; switch (Reason) { case EnterFile: { SourceManager &SM = S->getSourceManager(); SourceLocation IncludeLoc = SM.getIncludeLoc(SM.getFileID(Loc)); if (IncludeLoc.isValid()) { if (llvm::timeTraceProfilerEnabled()) { const FileEntry *FE = SM.getFileEntryForID(SM.getFileID(Loc)); llvm::timeTraceProfilerBegin( "Source", FE != nullptr ? FE->getName() : StringRef("")); } IncludeStack.push_back(IncludeLoc); S->DiagnoseNonDefaultPragmaAlignPack( Sema::PragmaAlignPackDiagnoseKind::NonDefaultStateAtInclude, IncludeLoc); } break; } case ExitFile: if (!IncludeStack.empty()) { if (llvm::timeTraceProfilerEnabled()) llvm::timeTraceProfilerEnd(); S->DiagnoseNonDefaultPragmaAlignPack( Sema::PragmaAlignPackDiagnoseKind::ChangedStateAtExit, IncludeStack.pop_back_val()); } break; default: break; } } }; } // end namespace sema } // end namespace clang const unsigned Sema::MaxAlignmentExponent; const uint64_t Sema::MaximumAlignment; Sema::Sema(Preprocessor &pp, ASTContext &ctxt, ASTConsumer &consumer, TranslationUnitKind TUKind, CodeCompleteConsumer *CodeCompleter) : ExternalSource(nullptr), CurFPFeatures(pp.getLangOpts()), LangOpts(pp.getLangOpts()), PP(pp), Context(ctxt), Consumer(consumer), Diags(PP.getDiagnostics()), SourceMgr(PP.getSourceManager()), CollectStats(false), CodeCompleter(CodeCompleter), CurContext(nullptr), OriginalLexicalContext(nullptr), MSStructPragmaOn(false), MSPointerToMemberRepresentationMethod( LangOpts.getMSPointerToMemberRepresentationMethod()), VtorDispStack(LangOpts.getVtorDispMode()), AlignPackStack(AlignPackInfo(getLangOpts().XLPragmaPack)), DataSegStack(nullptr), BSSSegStack(nullptr), ConstSegStack(nullptr), CodeSegStack(nullptr), StrictGuardStackCheckStack(false), FpPragmaStack(FPOptionsOverride()), CurInitSeg(nullptr), VisContext(nullptr), PragmaAttributeCurrentTargetDecl(nullptr), IsBuildingRecoveryCallExpr(false), LateTemplateParser(nullptr), LateTemplateParserCleanup(nullptr), OpaqueParser(nullptr), IdResolver(pp), StdExperimentalNamespaceCache(nullptr), StdInitializerList(nullptr), StdCoroutineTraitsCache(nullptr), CXXTypeInfoDecl(nullptr), MSVCGuidDecl(nullptr), StdSourceLocationImplDecl(nullptr), NSNumberDecl(nullptr), NSValueDecl(nullptr), NSStringDecl(nullptr), StringWithUTF8StringMethod(nullptr), ValueWithBytesObjCTypeMethod(nullptr), NSArrayDecl(nullptr), ArrayWithObjectsMethod(nullptr), NSDictionaryDecl(nullptr), DictionaryWithObjectsMethod(nullptr), GlobalNewDeleteDeclared(false), TUKind(TUKind), NumSFINAEErrors(0), FullyCheckedComparisonCategories( static_cast(ComparisonCategoryType::Last) + 1), SatisfactionCache(Context), AccessCheckingSFINAE(false), InNonInstantiationSFINAEContext(false), NonInstantiationEntries(0), ArgumentPackSubstitutionIndex(-1), CurrentInstantiationScope(nullptr), DisableTypoCorrection(false), TyposCorrected(0), AnalysisWarnings(*this), ThreadSafetyDeclCache(nullptr), VarDataSharingAttributesStack(nullptr), CurScope(nullptr), Ident_super(nullptr), Ident___float128(nullptr) { assert(pp.TUKind == TUKind); TUScope = nullptr; isConstantEvaluatedOverride = false; LoadedExternalKnownNamespaces = false; for (unsigned I = 0; I != NSAPI::NumNSNumberLiteralMethods; ++I) NSNumberLiteralMethods[I] = nullptr; if (getLangOpts().ObjC) NSAPIObj.reset(new NSAPI(Context)); if (getLangOpts().CPlusPlus) FieldCollector.reset(new CXXFieldCollector()); // Tell diagnostics how to render things from the AST library. Diags.SetArgToStringFn(&FormatASTNodeDiagnosticArgument, &Context); // This evaluation context exists to ensure that there's always at least one // valid evaluation context available. It is never removed from the // evaluation stack. ExprEvalContexts.emplace_back( ExpressionEvaluationContext::PotentiallyEvaluated, 0, CleanupInfo{}, nullptr, ExpressionEvaluationContextRecord::EK_Other); // Initialization of data sharing attributes stack for OpenMP InitDataSharingAttributesStack(); std::unique_ptr Callbacks = std::make_unique(); SemaPPCallbackHandler = Callbacks.get(); PP.addPPCallbacks(std::move(Callbacks)); SemaPPCallbackHandler->set(*this); CurFPFeatures.setFPEvalMethod(PP.getCurrentFPEvalMethod()); } // Anchor Sema's type info to this TU. void Sema::anchor() {} void Sema::addImplicitTypedef(StringRef Name, QualType T) { DeclarationName DN = &Context.Idents.get(Name); if (IdResolver.begin(DN) == IdResolver.end()) PushOnScopeChains(Context.buildImplicitTypedef(T, Name), TUScope); } void Sema::Initialize() { if (SemaConsumer *SC = dyn_cast(&Consumer)) SC->InitializeSema(*this); // Tell the external Sema source about this Sema object. if (ExternalSemaSource *ExternalSema = dyn_cast_or_null(Context.getExternalSource())) ExternalSema->InitializeSema(*this); // This needs to happen after ExternalSemaSource::InitializeSema(this) or we // will not be able to merge any duplicate __va_list_tag decls correctly. VAListTagName = PP.getIdentifierInfo("__va_list_tag"); if (!TUScope) return; // Initialize predefined 128-bit integer types, if needed. if (Context.getTargetInfo().hasInt128Type() || (Context.getAuxTargetInfo() && Context.getAuxTargetInfo()->hasInt128Type())) { // If either of the 128-bit integer types are unavailable to name lookup, // define them now. DeclarationName Int128 = &Context.Idents.get("__int128_t"); if (IdResolver.begin(Int128) == IdResolver.end()) PushOnScopeChains(Context.getInt128Decl(), TUScope); DeclarationName UInt128 = &Context.Idents.get("__uint128_t"); if (IdResolver.begin(UInt128) == IdResolver.end()) PushOnScopeChains(Context.getUInt128Decl(), TUScope); } // Initialize predefined Objective-C types: if (getLangOpts().ObjC) { // If 'SEL' does not yet refer to any declarations, make it refer to the // predefined 'SEL'. DeclarationName SEL = &Context.Idents.get("SEL"); if (IdResolver.begin(SEL) == IdResolver.end()) PushOnScopeChains(Context.getObjCSelDecl(), TUScope); // If 'id' does not yet refer to any declarations, make it refer to the // predefined 'id'. DeclarationName Id = &Context.Idents.get("id"); if (IdResolver.begin(Id) == IdResolver.end()) PushOnScopeChains(Context.getObjCIdDecl(), TUScope); // Create the built-in typedef for 'Class'. DeclarationName Class = &Context.Idents.get("Class"); if (IdResolver.begin(Class) == IdResolver.end()) PushOnScopeChains(Context.getObjCClassDecl(), TUScope); // Create the built-in forward declaratino for 'Protocol'. DeclarationName Protocol = &Context.Idents.get("Protocol"); if (IdResolver.begin(Protocol) == IdResolver.end()) PushOnScopeChains(Context.getObjCProtocolDecl(), TUScope); } // Create the internal type for the *StringMakeConstantString builtins. DeclarationName ConstantString = &Context.Idents.get("__NSConstantString"); if (IdResolver.begin(ConstantString) == IdResolver.end()) PushOnScopeChains(Context.getCFConstantStringDecl(), TUScope); // Initialize Microsoft "predefined C++ types". if (getLangOpts().MSVCCompat) { if (getLangOpts().CPlusPlus && IdResolver.begin(&Context.Idents.get("type_info")) == IdResolver.end()) PushOnScopeChains(Context.buildImplicitRecord("type_info", TTK_Class), TUScope); addImplicitTypedef("size_t", Context.getSizeType()); } // Initialize predefined OpenCL types and supported extensions and (optional) // core features. if (getLangOpts().OpenCL) { getOpenCLOptions().addSupport( Context.getTargetInfo().getSupportedOpenCLOpts(), getLangOpts()); addImplicitTypedef("sampler_t", Context.OCLSamplerTy); addImplicitTypedef("event_t", Context.OCLEventTy); auto OCLCompatibleVersion = getLangOpts().getOpenCLCompatibleVersion(); if (OCLCompatibleVersion >= 200) { if (getLangOpts().OpenCLCPlusPlus || getLangOpts().Blocks) { addImplicitTypedef("clk_event_t", Context.OCLClkEventTy); addImplicitTypedef("queue_t", Context.OCLQueueTy); } if (getLangOpts().OpenCLPipes) addImplicitTypedef("reserve_id_t", Context.OCLReserveIDTy); addImplicitTypedef("atomic_int", Context.getAtomicType(Context.IntTy)); addImplicitTypedef("atomic_uint", Context.getAtomicType(Context.UnsignedIntTy)); addImplicitTypedef("atomic_float", Context.getAtomicType(Context.FloatTy)); // OpenCLC v2.0, s6.13.11.6 requires that atomic_flag is implemented as // 32-bit integer and OpenCLC v2.0, s6.1.1 int is always 32-bit wide. addImplicitTypedef("atomic_flag", Context.getAtomicType(Context.IntTy)); // OpenCL v2.0 s6.13.11.6: // - The atomic_long and atomic_ulong types are supported if the // cl_khr_int64_base_atomics and cl_khr_int64_extended_atomics // extensions are supported. // - The atomic_double type is only supported if double precision // is supported and the cl_khr_int64_base_atomics and // cl_khr_int64_extended_atomics extensions are supported. // - If the device address space is 64-bits, the data types // atomic_intptr_t, atomic_uintptr_t, atomic_size_t and // atomic_ptrdiff_t are supported if the cl_khr_int64_base_atomics and // cl_khr_int64_extended_atomics extensions are supported. auto AddPointerSizeDependentTypes = [&]() { auto AtomicSizeT = Context.getAtomicType(Context.getSizeType()); auto AtomicIntPtrT = Context.getAtomicType(Context.getIntPtrType()); auto AtomicUIntPtrT = Context.getAtomicType(Context.getUIntPtrType()); auto AtomicPtrDiffT = Context.getAtomicType(Context.getPointerDiffType()); addImplicitTypedef("atomic_size_t", AtomicSizeT); addImplicitTypedef("atomic_intptr_t", AtomicIntPtrT); addImplicitTypedef("atomic_uintptr_t", AtomicUIntPtrT); addImplicitTypedef("atomic_ptrdiff_t", AtomicPtrDiffT); }; if (Context.getTypeSize(Context.getSizeType()) == 32) { AddPointerSizeDependentTypes(); } if (getOpenCLOptions().isSupported("cl_khr_fp16", getLangOpts())) { auto AtomicHalfT = Context.getAtomicType(Context.HalfTy); addImplicitTypedef("atomic_half", AtomicHalfT); } std::vector Atomic64BitTypes; if (getOpenCLOptions().isSupported("cl_khr_int64_base_atomics", getLangOpts()) && getOpenCLOptions().isSupported("cl_khr_int64_extended_atomics", getLangOpts())) { if (getOpenCLOptions().isSupported("cl_khr_fp64", getLangOpts())) { auto AtomicDoubleT = Context.getAtomicType(Context.DoubleTy); addImplicitTypedef("atomic_double", AtomicDoubleT); Atomic64BitTypes.push_back(AtomicDoubleT); } auto AtomicLongT = Context.getAtomicType(Context.LongTy); auto AtomicULongT = Context.getAtomicType(Context.UnsignedLongTy); addImplicitTypedef("atomic_long", AtomicLongT); addImplicitTypedef("atomic_ulong", AtomicULongT); if (Context.getTypeSize(Context.getSizeType()) == 64) { AddPointerSizeDependentTypes(); } } } #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ if (getOpenCLOptions().isSupported(#Ext, getLangOpts())) { \ addImplicitTypedef(#ExtType, Context.Id##Ty); \ } #include "clang/Basic/OpenCLExtensionTypes.def" } if (Context.getTargetInfo().hasAArch64SVETypes()) { #define SVE_TYPE(Name, Id, SingletonId) \ addImplicitTypedef(Name, Context.SingletonId); #include "clang/Basic/AArch64SVEACLETypes.def" } if (Context.getTargetInfo().getTriple().isPPC64()) { #define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \ addImplicitTypedef(#Name, Context.Id##Ty); #include "clang/Basic/PPCTypes.def" #define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \ addImplicitTypedef(#Name, Context.Id##Ty); #include "clang/Basic/PPCTypes.def" } if (Context.getTargetInfo().hasRISCVVTypes()) { #define RVV_TYPE(Name, Id, SingletonId) \ addImplicitTypedef(Name, Context.SingletonId); #include "clang/Basic/RISCVVTypes.def" } if (Context.getTargetInfo().hasBuiltinMSVaList()) { DeclarationName MSVaList = &Context.Idents.get("__builtin_ms_va_list"); if (IdResolver.begin(MSVaList) == IdResolver.end()) PushOnScopeChains(Context.getBuiltinMSVaListDecl(), TUScope); } DeclarationName BuiltinVaList = &Context.Idents.get("__builtin_va_list"); if (IdResolver.begin(BuiltinVaList) == IdResolver.end()) PushOnScopeChains(Context.getBuiltinVaListDecl(), TUScope); } Sema::~Sema() { assert(InstantiatingSpecializations.empty() && "failed to clean up an InstantiatingTemplate?"); if (VisContext) FreeVisContext(); // Kill all the active scopes. for (sema::FunctionScopeInfo *FSI : FunctionScopes) delete FSI; // Tell the SemaConsumer to forget about us; we're going out of scope. if (SemaConsumer *SC = dyn_cast(&Consumer)) SC->ForgetSema(); // Detach from the external Sema source. if (ExternalSemaSource *ExternalSema = dyn_cast_or_null(Context.getExternalSource())) ExternalSema->ForgetSema(); // Delete cached satisfactions. std::vector Satisfactions; Satisfactions.reserve(Satisfactions.size()); for (auto &Node : SatisfactionCache) Satisfactions.push_back(&Node); for (auto *Node : Satisfactions) delete Node; threadSafety::threadSafetyCleanup(ThreadSafetyDeclCache); // Destroys data sharing attributes stack for OpenMP DestroyDataSharingAttributesStack(); // Detach from the PP callback handler which outlives Sema since it's owned // by the preprocessor. SemaPPCallbackHandler->reset(); } void Sema::warnStackExhausted(SourceLocation Loc) { // Only warn about this once. if (!WarnedStackExhausted) { Diag(Loc, diag::warn_stack_exhausted); WarnedStackExhausted = true; } } void Sema::runWithSufficientStackSpace(SourceLocation Loc, llvm::function_ref Fn) { clang::runWithSufficientStackSpace([&] { warnStackExhausted(Loc); }, Fn); } /// makeUnavailableInSystemHeader - There is an error in the current /// context. If we're still in a system header, and we can plausibly /// make the relevant declaration unavailable instead of erroring, do /// so and return true. bool Sema::makeUnavailableInSystemHeader(SourceLocation loc, UnavailableAttr::ImplicitReason reason) { // If we're not in a function, it's an error. FunctionDecl *fn = dyn_cast(CurContext); if (!fn) return false; // If we're in template instantiation, it's an error. if (inTemplateInstantiation()) return false; // If that function's not in a system header, it's an error. if (!Context.getSourceManager().isInSystemHeader(loc)) return false; // If the function is already unavailable, it's not an error. if (fn->hasAttr()) return true; fn->addAttr(UnavailableAttr::CreateImplicit(Context, "", reason, loc)); return true; } ASTMutationListener *Sema::getASTMutationListener() const { return getASTConsumer().GetASTMutationListener(); } ///Registers an external source. If an external source already exists, /// creates a multiplex external source and appends to it. /// ///\param[in] E - A non-null external sema source. /// void Sema::addExternalSource(ExternalSemaSource *E) { assert(E && "Cannot use with NULL ptr"); if (!ExternalSource) { ExternalSource = E; return; } if (auto *Ex = dyn_cast(ExternalSource)) Ex->AddSource(E); else ExternalSource = new MultiplexExternalSemaSource(ExternalSource.get(), E); } /// Print out statistics about the semantic analysis. void Sema::PrintStats() const { llvm::errs() << "\n*** Semantic Analysis Stats:\n"; llvm::errs() << NumSFINAEErrors << " SFINAE diagnostics trapped.\n"; BumpAlloc.PrintStats(); AnalysisWarnings.PrintStats(); } void Sema::diagnoseNullableToNonnullConversion(QualType DstType, QualType SrcType, SourceLocation Loc) { std::optional ExprNullability = SrcType->getNullability(); if (!ExprNullability || (*ExprNullability != NullabilityKind::Nullable && *ExprNullability != NullabilityKind::NullableResult)) return; std::optional TypeNullability = DstType->getNullability(); if (!TypeNullability || *TypeNullability != NullabilityKind::NonNull) return; Diag(Loc, diag::warn_nullability_lost) << SrcType << DstType; } void Sema::diagnoseZeroToNullptrConversion(CastKind Kind, const Expr *E) { // nullptr only exists from C++11 on, so don't warn on its absence earlier. if (!getLangOpts().CPlusPlus11) return; if (Kind != CK_NullToPointer && Kind != CK_NullToMemberPointer) return; if (E->IgnoreParenImpCasts()->getType()->isNullPtrType()) return; if (Diags.isIgnored(diag::warn_zero_as_null_pointer_constant, E->getBeginLoc())) return; // Don't diagnose the conversion from a 0 literal to a null pointer argument // in a synthesized call to operator<=>. if (!CodeSynthesisContexts.empty() && CodeSynthesisContexts.back().Kind == CodeSynthesisContext::RewritingOperatorAsSpaceship) return; // Ignore null pointers in defaulted comparison operators. FunctionDecl *FD = getCurFunctionDecl(); if (FD && FD->isDefaulted()) { return; } // If it is a macro from system header, and if the macro name is not "NULL", // do not warn. SourceLocation MaybeMacroLoc = E->getBeginLoc(); if (Diags.getSuppressSystemWarnings() && SourceMgr.isInSystemMacro(MaybeMacroLoc) && !findMacroSpelling(MaybeMacroLoc, "NULL")) return; Diag(E->getBeginLoc(), diag::warn_zero_as_null_pointer_constant) << FixItHint::CreateReplacement(E->getSourceRange(), "nullptr"); } /// ImpCastExprToType - If Expr is not of type 'Type', insert an implicit cast. /// If there is already an implicit cast, merge into the existing one. /// The result is of the given category. ExprResult Sema::ImpCastExprToType(Expr *E, QualType Ty, CastKind Kind, ExprValueKind VK, const CXXCastPath *BasePath, CheckedConversionKind CCK) { #ifndef NDEBUG if (VK == VK_PRValue && !E->isPRValue()) { switch (Kind) { default: llvm_unreachable( ("can't implicitly cast glvalue to prvalue with this cast " "kind: " + std::string(CastExpr::getCastKindName(Kind))) .c_str()); case CK_Dependent: case CK_LValueToRValue: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: case CK_ToVoid: case CK_NonAtomicToAtomic: break; } } assert((VK == VK_PRValue || Kind == CK_Dependent || !E->isPRValue()) && "can't cast prvalue to glvalue"); #endif diagnoseNullableToNonnullConversion(Ty, E->getType(), E->getBeginLoc()); diagnoseZeroToNullptrConversion(Kind, E); QualType ExprTy = Context.getCanonicalType(E->getType()); QualType TypeTy = Context.getCanonicalType(Ty); if (ExprTy == TypeTy) return E; if (Kind == CK_ArrayToPointerDecay) { // C++1z [conv.array]: The temporary materialization conversion is applied. // We also use this to fuel C++ DR1213, which applies to C++11 onwards. if (getLangOpts().CPlusPlus && E->isPRValue()) { // The temporary is an lvalue in C++98 and an xvalue otherwise. ExprResult Materialized = CreateMaterializeTemporaryExpr( E->getType(), E, !getLangOpts().CPlusPlus11); if (Materialized.isInvalid()) return ExprError(); E = Materialized.get(); } // C17 6.7.1p6 footnote 124: The implementation can treat any register // declaration simply as an auto declaration. However, whether or not // addressable storage is actually used, the address of any part of an // object declared with storage-class specifier register cannot be // computed, either explicitly(by use of the unary & operator as discussed // in 6.5.3.2) or implicitly(by converting an array name to a pointer as // discussed in 6.3.2.1).Thus, the only operator that can be applied to an // array declared with storage-class specifier register is sizeof. if (VK == VK_PRValue && !getLangOpts().CPlusPlus && !E->isPRValue()) { if (const auto *DRE = dyn_cast(E)) { if (const auto *VD = dyn_cast(DRE->getDecl())) { if (VD->getStorageClass() == SC_Register) { Diag(E->getExprLoc(), diag::err_typecheck_address_of) << /*register variable*/ 3 << E->getSourceRange(); return ExprError(); } } } } } if (ImplicitCastExpr *ImpCast = dyn_cast(E)) { if (ImpCast->getCastKind() == Kind && (!BasePath || BasePath->empty())) { ImpCast->setType(Ty); ImpCast->setValueKind(VK); return E; } } return ImplicitCastExpr::Create(Context, Ty, Kind, E, BasePath, VK, CurFPFeatureOverrides()); } /// ScalarTypeToBooleanCastKind - Returns the cast kind corresponding /// to the conversion from scalar type ScalarTy to the Boolean type. CastKind Sema::ScalarTypeToBooleanCastKind(QualType ScalarTy) { switch (ScalarTy->getScalarTypeKind()) { case Type::STK_Bool: return CK_NoOp; case Type::STK_CPointer: return CK_PointerToBoolean; case Type::STK_BlockPointer: return CK_PointerToBoolean; case Type::STK_ObjCObjectPointer: return CK_PointerToBoolean; case Type::STK_MemberPointer: return CK_MemberPointerToBoolean; case Type::STK_Integral: return CK_IntegralToBoolean; case Type::STK_Floating: return CK_FloatingToBoolean; case Type::STK_IntegralComplex: return CK_IntegralComplexToBoolean; case Type::STK_FloatingComplex: return CK_FloatingComplexToBoolean; case Type::STK_FixedPoint: return CK_FixedPointToBoolean; } llvm_unreachable("unknown scalar type kind"); } /// Used to prune the decls of Sema's UnusedFileScopedDecls vector. static bool ShouldRemoveFromUnused(Sema *SemaRef, const DeclaratorDecl *D) { if (D->getMostRecentDecl()->isUsed()) return true; if (D->isExternallyVisible()) return true; if (const FunctionDecl *FD = dyn_cast(D)) { // If this is a function template and none of its specializations is used, // we should warn. if (FunctionTemplateDecl *Template = FD->getDescribedFunctionTemplate()) for (const auto *Spec : Template->specializations()) if (ShouldRemoveFromUnused(SemaRef, Spec)) return true; // UnusedFileScopedDecls stores the first declaration. // The declaration may have become definition so check again. const FunctionDecl *DeclToCheck; if (FD->hasBody(DeclToCheck)) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); // Later redecls may add new information resulting in not having to warn, // so check again. DeclToCheck = FD->getMostRecentDecl(); if (DeclToCheck != FD) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); } if (const VarDecl *VD = dyn_cast(D)) { // If a variable usable in constant expressions is referenced, // don't warn if it isn't used: if the value of a variable is required // for the computation of a constant expression, it doesn't make sense to // warn even if the variable isn't odr-used. (isReferenced doesn't // precisely reflect that, but it's a decent approximation.) if (VD->isReferenced() && VD->mightBeUsableInConstantExpressions(SemaRef->Context)) return true; if (VarTemplateDecl *Template = VD->getDescribedVarTemplate()) // If this is a variable template and none of its specializations is used, // we should warn. for (const auto *Spec : Template->specializations()) if (ShouldRemoveFromUnused(SemaRef, Spec)) return true; // UnusedFileScopedDecls stores the first declaration. // The declaration may have become definition so check again. const VarDecl *DeclToCheck = VD->getDefinition(); if (DeclToCheck) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); // Later redecls may add new information resulting in not having to warn, // so check again. DeclToCheck = VD->getMostRecentDecl(); if (DeclToCheck != VD) return !SemaRef->ShouldWarnIfUnusedFileScopedDecl(DeclToCheck); } return false; } static bool isFunctionOrVarDeclExternC(NamedDecl *ND) { if (auto *FD = dyn_cast(ND)) return FD->isExternC(); return cast(ND)->isExternC(); } /// Determine whether ND is an external-linkage function or variable whose /// type has no linkage. bool Sema::isExternalWithNoLinkageType(ValueDecl *VD) { // Note: it's not quite enough to check whether VD has UniqueExternalLinkage, // because we also want to catch the case where its type has VisibleNoLinkage, // which does not affect the linkage of VD. return getLangOpts().CPlusPlus && VD->hasExternalFormalLinkage() && !isExternalFormalLinkage(VD->getType()->getLinkage()) && !isFunctionOrVarDeclExternC(VD); } /// Obtains a sorted list of functions and variables that are undefined but /// ODR-used. void Sema::getUndefinedButUsed( SmallVectorImpl > &Undefined) { for (const auto &UndefinedUse : UndefinedButUsed) { NamedDecl *ND = UndefinedUse.first; // Ignore attributes that have become invalid. if (ND->isInvalidDecl()) continue; // __attribute__((weakref)) is basically a definition. if (ND->hasAttr()) continue; if (isa(ND)) continue; if (ND->hasAttr() || ND->hasAttr()) { // An exported function will always be emitted when defined, so even if // the function is inline, it doesn't have to be emitted in this TU. An // imported function implies that it has been exported somewhere else. continue; } if (FunctionDecl *FD = dyn_cast(ND)) { if (FD->isDefined()) continue; if (FD->isExternallyVisible() && !isExternalWithNoLinkageType(FD) && !FD->getMostRecentDecl()->isInlined() && !FD->hasAttr()) continue; if (FD->getBuiltinID()) continue; } else { auto *VD = cast(ND); if (VD->hasDefinition() != VarDecl::DeclarationOnly) continue; if (VD->isExternallyVisible() && !isExternalWithNoLinkageType(VD) && !VD->getMostRecentDecl()->isInline() && !VD->hasAttr()) continue; // Skip VarDecls that lack formal definitions but which we know are in // fact defined somewhere. if (VD->isKnownToBeDefined()) continue; } Undefined.push_back(std::make_pair(ND, UndefinedUse.second)); } } /// checkUndefinedButUsed - Check for undefined objects with internal linkage /// or that are inline. static void checkUndefinedButUsed(Sema &S) { if (S.UndefinedButUsed.empty()) return; // Collect all the still-undefined entities with internal linkage. SmallVector, 16> Undefined; S.getUndefinedButUsed(Undefined); if (Undefined.empty()) return; for (auto Undef : Undefined) { ValueDecl *VD = cast(Undef.first); SourceLocation UseLoc = Undef.second; if (S.isExternalWithNoLinkageType(VD)) { // C++ [basic.link]p8: // A type without linkage shall not be used as the type of a variable // or function with external linkage unless // -- the entity has C language linkage // -- the entity is not odr-used or is defined in the same TU // // As an extension, accept this in cases where the type is externally // visible, since the function or variable actually can be defined in // another translation unit in that case. S.Diag(VD->getLocation(), isExternallyVisible(VD->getType()->getLinkage()) ? diag::ext_undefined_internal_type : diag::err_undefined_internal_type) << isa(VD) << VD; } else if (!VD->isExternallyVisible()) { // FIXME: We can promote this to an error. The function or variable can't // be defined anywhere else, so the program must necessarily violate the // one definition rule. bool IsImplicitBase = false; if (const auto *BaseD = dyn_cast(VD)) { auto *DVAttr = BaseD->getAttr(); if (DVAttr && !DVAttr->getTraitInfo().isExtensionActive( llvm::omp::TraitProperty:: implementation_extension_disable_implicit_base)) { const auto *Func = cast( cast(DVAttr->getVariantFuncRef())->getDecl()); IsImplicitBase = BaseD->isImplicit() && Func->getIdentifier()->isMangledOpenMPVariantName(); } } if (!S.getLangOpts().OpenMP || !IsImplicitBase) S.Diag(VD->getLocation(), diag::warn_undefined_internal) << isa(VD) << VD; } else if (auto *FD = dyn_cast(VD)) { (void)FD; assert(FD->getMostRecentDecl()->isInlined() && "used object requires definition but isn't inline or internal?"); // FIXME: This is ill-formed; we should reject. S.Diag(VD->getLocation(), diag::warn_undefined_inline) << VD; } else { assert(cast(VD)->getMostRecentDecl()->isInline() && "used var requires definition but isn't inline or internal?"); S.Diag(VD->getLocation(), diag::err_undefined_inline_var) << VD; } if (UseLoc.isValid()) S.Diag(UseLoc, diag::note_used_here); } S.UndefinedButUsed.clear(); } void Sema::LoadExternalWeakUndeclaredIdentifiers() { if (!ExternalSource) return; SmallVector, 4> WeakIDs; ExternalSource->ReadWeakUndeclaredIdentifiers(WeakIDs); for (auto &WeakID : WeakIDs) (void)WeakUndeclaredIdentifiers[WeakID.first].insert(WeakID.second); } typedef llvm::DenseMap RecordCompleteMap; /// Returns true, if all methods and nested classes of the given /// CXXRecordDecl are defined in this translation unit. /// /// Should only be called from ActOnEndOfTranslationUnit so that all /// definitions are actually read. static bool MethodsAndNestedClassesComplete(const CXXRecordDecl *RD, RecordCompleteMap &MNCComplete) { RecordCompleteMap::iterator Cache = MNCComplete.find(RD); if (Cache != MNCComplete.end()) return Cache->second; if (!RD->isCompleteDefinition()) return false; bool Complete = true; for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end(); I != E && Complete; ++I) { if (const CXXMethodDecl *M = dyn_cast(*I)) Complete = M->isDefined() || M->isDefaulted() || (M->isPure() && !isa(M)); else if (const FunctionTemplateDecl *F = dyn_cast(*I)) // If the template function is marked as late template parsed at this // point, it has not been instantiated and therefore we have not // performed semantic analysis on it yet, so we cannot know if the type // can be considered complete. Complete = !F->getTemplatedDecl()->isLateTemplateParsed() && F->getTemplatedDecl()->isDefined(); else if (const CXXRecordDecl *R = dyn_cast(*I)) { if (R->isInjectedClassName()) continue; if (R->hasDefinition()) Complete = MethodsAndNestedClassesComplete(R->getDefinition(), MNCComplete); else Complete = false; } } MNCComplete[RD] = Complete; return Complete; } /// Returns true, if the given CXXRecordDecl is fully defined in this /// translation unit, i.e. all methods are defined or pure virtual and all /// friends, friend functions and nested classes are fully defined in this /// translation unit. /// /// Should only be called from ActOnEndOfTranslationUnit so that all /// definitions are actually read. static bool IsRecordFullyDefined(const CXXRecordDecl *RD, RecordCompleteMap &RecordsComplete, RecordCompleteMap &MNCComplete) { RecordCompleteMap::iterator Cache = RecordsComplete.find(RD); if (Cache != RecordsComplete.end()) return Cache->second; bool Complete = MethodsAndNestedClassesComplete(RD, MNCComplete); for (CXXRecordDecl::friend_iterator I = RD->friend_begin(), E = RD->friend_end(); I != E && Complete; ++I) { // Check if friend classes and methods are complete. if (TypeSourceInfo *TSI = (*I)->getFriendType()) { // Friend classes are available as the TypeSourceInfo of the FriendDecl. if (CXXRecordDecl *FriendD = TSI->getType()->getAsCXXRecordDecl()) Complete = MethodsAndNestedClassesComplete(FriendD, MNCComplete); else Complete = false; } else { // Friend functions are available through the NamedDecl of FriendDecl. if (const FunctionDecl *FD = dyn_cast((*I)->getFriendDecl())) Complete = FD->isDefined(); else // This is a template friend, give up. Complete = false; } } RecordsComplete[RD] = Complete; return Complete; } void Sema::emitAndClearUnusedLocalTypedefWarnings() { if (ExternalSource) ExternalSource->ReadUnusedLocalTypedefNameCandidates( UnusedLocalTypedefNameCandidates); for (const TypedefNameDecl *TD : UnusedLocalTypedefNameCandidates) { if (TD->isReferenced()) continue; Diag(TD->getLocation(), diag::warn_unused_local_typedef) << isa(TD) << TD->getDeclName(); } UnusedLocalTypedefNameCandidates.clear(); } /// This is called before the very first declaration in the translation unit /// is parsed. Note that the ASTContext may have already injected some /// declarations. void Sema::ActOnStartOfTranslationUnit() { if (getLangOpts().CPlusPlusModules && getLangOpts().getCompilingModule() == LangOptions::CMK_HeaderUnit) HandleStartOfHeaderUnit(); else if (getLangOpts().ModulesTS && (getLangOpts().getCompilingModule() == LangOptions::CMK_ModuleInterface || getLangOpts().getCompilingModule() == LangOptions::CMK_None)) { // We start in an implied global module fragment. SourceLocation StartOfTU = SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); ActOnGlobalModuleFragmentDecl(StartOfTU); ModuleScopes.back().ImplicitGlobalModuleFragment = true; } } void Sema::ActOnEndOfTranslationUnitFragment(TUFragmentKind Kind) { // No explicit actions are required at the end of the global module fragment. if (Kind == TUFragmentKind::Global) return; // Transfer late parsed template instantiations over to the pending template // instantiation list. During normal compilation, the late template parser // will be installed and instantiating these templates will succeed. // // If we are building a TU prefix for serialization, it is also safe to // transfer these over, even though they are not parsed. The end of the TU // should be outside of any eager template instantiation scope, so when this // AST is deserialized, these templates will not be parsed until the end of // the combined TU. PendingInstantiations.insert(PendingInstantiations.end(), LateParsedInstantiations.begin(), LateParsedInstantiations.end()); LateParsedInstantiations.clear(); // If DefinedUsedVTables ends up marking any virtual member functions it // might lead to more pending template instantiations, which we then need // to instantiate. DefineUsedVTables(); // C++: Perform implicit template instantiations. // // FIXME: When we perform these implicit instantiations, we do not // carefully keep track of the point of instantiation (C++ [temp.point]). // This means that name lookup that occurs within the template // instantiation will always happen at the end of the translation unit, // so it will find some names that are not required to be found. This is // valid, but we could do better by diagnosing if an instantiation uses a // name that was not visible at its first point of instantiation. if (ExternalSource) { // Load pending instantiations from the external source. SmallVector Pending; ExternalSource->ReadPendingInstantiations(Pending); for (auto PII : Pending) if (auto Func = dyn_cast(PII.first)) Func->setInstantiationIsPending(true); PendingInstantiations.insert(PendingInstantiations.begin(), Pending.begin(), Pending.end()); } { llvm::TimeTraceScope TimeScope("PerformPendingInstantiations"); PerformPendingInstantiations(); } emitDeferredDiags(); assert(LateParsedInstantiations.empty() && "end of TU template instantiation should not create more " "late-parsed templates"); // Report diagnostics for uncorrected delayed typos. Ideally all of them // should have been corrected by that time, but it is very hard to cover all // cases in practice. for (const auto &Typo : DelayedTypos) { // We pass an empty TypoCorrection to indicate no correction was performed. Typo.second.DiagHandler(TypoCorrection()); } DelayedTypos.clear(); } /// ActOnEndOfTranslationUnit - This is called at the very end of the /// translation unit when EOF is reached and all but the top-level scope is /// popped. void Sema::ActOnEndOfTranslationUnit() { assert(DelayedDiagnostics.getCurrentPool() == nullptr && "reached end of translation unit with a pool attached?"); // If code completion is enabled, don't perform any end-of-translation-unit // work. if (PP.isCodeCompletionEnabled()) return; // Complete translation units and modules define vtables and perform implicit // instantiations. PCH files do not. if (TUKind != TU_Prefix) { DiagnoseUseOfUnimplementedSelectors(); ActOnEndOfTranslationUnitFragment( !ModuleScopes.empty() && ModuleScopes.back().Module->Kind == Module::PrivateModuleFragment ? TUFragmentKind::Private : TUFragmentKind::Normal); if (LateTemplateParserCleanup) LateTemplateParserCleanup(OpaqueParser); CheckDelayedMemberExceptionSpecs(); } else { // If we are building a TU prefix for serialization, it is safe to transfer // these over, even though they are not parsed. The end of the TU should be // outside of any eager template instantiation scope, so when this AST is // deserialized, these templates will not be parsed until the end of the // combined TU. PendingInstantiations.insert(PendingInstantiations.end(), LateParsedInstantiations.begin(), LateParsedInstantiations.end()); LateParsedInstantiations.clear(); if (LangOpts.PCHInstantiateTemplates) { llvm::TimeTraceScope TimeScope("PerformPendingInstantiations"); PerformPendingInstantiations(); } } DiagnoseUnterminatedPragmaAlignPack(); DiagnoseUnterminatedPragmaAttribute(); DiagnoseUnterminatedOpenMPDeclareTarget(); // All delayed member exception specs should be checked or we end up accepting // incompatible declarations. assert(DelayedOverridingExceptionSpecChecks.empty()); assert(DelayedEquivalentExceptionSpecChecks.empty()); // All dllexport classes should have been processed already. assert(DelayedDllExportClasses.empty()); assert(DelayedDllExportMemberFunctions.empty()); // Remove file scoped decls that turned out to be used. UnusedFileScopedDecls.erase( std::remove_if(UnusedFileScopedDecls.begin(nullptr, true), UnusedFileScopedDecls.end(), [this](const DeclaratorDecl *DD) { return ShouldRemoveFromUnused(this, DD); }), UnusedFileScopedDecls.end()); if (TUKind == TU_Prefix) { // Translation unit prefixes don't need any of the checking below. if (!PP.isIncrementalProcessingEnabled()) TUScope = nullptr; return; } // Check for #pragma weak identifiers that were never declared LoadExternalWeakUndeclaredIdentifiers(); for (const auto &WeakIDs : WeakUndeclaredIdentifiers) { if (WeakIDs.second.empty()) continue; Decl *PrevDecl = LookupSingleName(TUScope, WeakIDs.first, SourceLocation(), LookupOrdinaryName); if (PrevDecl != nullptr && !(isa(PrevDecl) || isa(PrevDecl))) for (const auto &WI : WeakIDs.second) Diag(WI.getLocation(), diag::warn_attribute_wrong_decl_type) << "'weak'" << ExpectedVariableOrFunction; else for (const auto &WI : WeakIDs.second) Diag(WI.getLocation(), diag::warn_weak_identifier_undeclared) << WeakIDs.first; } if (LangOpts.CPlusPlus11 && !Diags.isIgnored(diag::warn_delegating_ctor_cycle, SourceLocation())) CheckDelegatingCtorCycles(); if (!Diags.hasErrorOccurred()) { if (ExternalSource) ExternalSource->ReadUndefinedButUsed(UndefinedButUsed); checkUndefinedButUsed(*this); } // A global-module-fragment is only permitted within a module unit. bool DiagnosedMissingModuleDeclaration = false; if (!ModuleScopes.empty() && ModuleScopes.back().Module->Kind == Module::GlobalModuleFragment && !ModuleScopes.back().ImplicitGlobalModuleFragment) { Diag(ModuleScopes.back().BeginLoc, diag::err_module_declaration_missing_after_global_module_introducer); DiagnosedMissingModuleDeclaration = true; } if (TUKind == TU_Module) { // If we are building a module interface unit, we need to have seen the // module declaration by now. if (getLangOpts().getCompilingModule() == LangOptions::CMK_ModuleInterface && !isCurrentModulePurview() && !DiagnosedMissingModuleDeclaration) { // FIXME: Make a better guess as to where to put the module declaration. Diag(getSourceManager().getLocForStartOfFile( getSourceManager().getMainFileID()), diag::err_module_declaration_missing); } // If we are building a module, resolve all of the exported declarations // now. if (Module *CurrentModule = PP.getCurrentModule()) { ModuleMap &ModMap = PP.getHeaderSearchInfo().getModuleMap(); SmallVector Stack; Stack.push_back(CurrentModule); while (!Stack.empty()) { Module *Mod = Stack.pop_back_val(); // Resolve the exported declarations and conflicts. // FIXME: Actually complain, once we figure out how to teach the // diagnostic client to deal with complaints in the module map at this // point. ModMap.resolveExports(Mod, /*Complain=*/false); ModMap.resolveUses(Mod, /*Complain=*/false); ModMap.resolveConflicts(Mod, /*Complain=*/false); // Queue the submodules, so their exports will also be resolved. Stack.append(Mod->submodule_begin(), Mod->submodule_end()); } } // Warnings emitted in ActOnEndOfTranslationUnit() should be emitted for // modules when they are built, not every time they are used. emitAndClearUnusedLocalTypedefWarnings(); } // C++ standard modules. Diagnose cases where a function is declared inline // in the module purview but has no definition before the end of the TU or // the start of a Private Module Fragment (if one is present). if (!PendingInlineFuncDecls.empty()) { for (auto *D : PendingInlineFuncDecls) { if (auto *FD = dyn_cast(D)) { bool DefInPMF = false; if (auto *FDD = FD->getDefinition()) { assert(FDD->getOwningModule() && FDD->getOwningModule()->isModulePurview()); DefInPMF = FDD->getOwningModule()->isPrivateModule(); if (!DefInPMF) continue; } Diag(FD->getLocation(), diag::err_export_inline_not_defined) << DefInPMF; // If we have a PMF it should be at the end of the ModuleScopes. if (DefInPMF && ModuleScopes.back().Module->Kind == Module::PrivateModuleFragment) { Diag(ModuleScopes.back().BeginLoc, diag::note_private_module_fragment); } } } PendingInlineFuncDecls.clear(); } // C99 6.9.2p2: // A declaration of an identifier for an object that has file // scope without an initializer, and without a storage-class // specifier or with the storage-class specifier static, // constitutes a tentative definition. If a translation unit // contains one or more tentative definitions for an identifier, // and the translation unit contains no external definition for // that identifier, then the behavior is exactly as if the // translation unit contains a file scope declaration of that // identifier, with the composite type as of the end of the // translation unit, with an initializer equal to 0. llvm::SmallSet Seen; for (TentativeDefinitionsType::iterator T = TentativeDefinitions.begin(ExternalSource.get()), TEnd = TentativeDefinitions.end(); T != TEnd; ++T) { VarDecl *VD = (*T)->getActingDefinition(); // If the tentative definition was completed, getActingDefinition() returns // null. If we've already seen this variable before, insert()'s second // return value is false. if (!VD || VD->isInvalidDecl() || !Seen.insert(VD).second) continue; if (const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(VD->getType())) { // Set the length of the array to 1 (C99 6.9.2p5). Diag(VD->getLocation(), diag::warn_tentative_incomplete_array); llvm::APInt One(Context.getTypeSize(Context.getSizeType()), true); QualType T = Context.getConstantArrayType(ArrayT->getElementType(), One, nullptr, ArrayType::Normal, 0); VD->setType(T); } else if (RequireCompleteType(VD->getLocation(), VD->getType(), diag::err_tentative_def_incomplete_type)) VD->setInvalidDecl(); // No initialization is performed for a tentative definition. CheckCompleteVariableDeclaration(VD); // Notify the consumer that we've completed a tentative definition. if (!VD->isInvalidDecl()) Consumer.CompleteTentativeDefinition(VD); } for (auto *D : ExternalDeclarations) { if (!D || D->isInvalidDecl() || D->getPreviousDecl() || !D->isUsed()) continue; Consumer.CompleteExternalDeclaration(D); } // If there were errors, disable 'unused' warnings since they will mostly be // noise. Don't warn for a use from a module: either we should warn on all // file-scope declarations in modules or not at all, but whether the // declaration is used is immaterial. if (!Diags.hasErrorOccurred() && TUKind != TU_Module) { // Output warning for unused file scoped decls. for (UnusedFileScopedDeclsType::iterator I = UnusedFileScopedDecls.begin(ExternalSource.get()), E = UnusedFileScopedDecls.end(); I != E; ++I) { if (ShouldRemoveFromUnused(this, *I)) continue; if (const FunctionDecl *FD = dyn_cast(*I)) { const FunctionDecl *DiagD; if (!FD->hasBody(DiagD)) DiagD = FD; if (DiagD->isDeleted()) continue; // Deleted functions are supposed to be unused. if (DiagD->isReferenced()) { if (isa(DiagD)) Diag(DiagD->getLocation(), diag::warn_unneeded_member_function) << DiagD; else { if (FD->getStorageClass() == SC_Static && !FD->isInlineSpecified() && !SourceMgr.isInMainFile( SourceMgr.getExpansionLoc(FD->getLocation()))) Diag(DiagD->getLocation(), diag::warn_unneeded_static_internal_decl) << DiagD; else Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl) << /*function*/ 0 << DiagD; } } else { if (FD->getDescribedFunctionTemplate()) Diag(DiagD->getLocation(), diag::warn_unused_template) << /*function*/ 0 << DiagD; else Diag(DiagD->getLocation(), isa(DiagD) ? diag::warn_unused_member_function : diag::warn_unused_function) << DiagD; } } else { const VarDecl *DiagD = cast(*I)->getDefinition(); if (!DiagD) DiagD = cast(*I); if (DiagD->isReferenced()) { Diag(DiagD->getLocation(), diag::warn_unneeded_internal_decl) << /*variable*/ 1 << DiagD; } else if (DiagD->getType().isConstQualified()) { const SourceManager &SM = SourceMgr; if (SM.getMainFileID() != SM.getFileID(DiagD->getLocation()) || !PP.getLangOpts().IsHeaderFile) Diag(DiagD->getLocation(), diag::warn_unused_const_variable) << DiagD; } else { if (DiagD->getDescribedVarTemplate()) Diag(DiagD->getLocation(), diag::warn_unused_template) << /*variable*/ 1 << DiagD; else Diag(DiagD->getLocation(), diag::warn_unused_variable) << DiagD; } } } emitAndClearUnusedLocalTypedefWarnings(); } if (!Diags.isIgnored(diag::warn_unused_private_field, SourceLocation())) { // FIXME: Load additional unused private field candidates from the external // source. RecordCompleteMap RecordsComplete; RecordCompleteMap MNCComplete; for (NamedDeclSetType::iterator I = UnusedPrivateFields.begin(), E = UnusedPrivateFields.end(); I != E; ++I) { const NamedDecl *D = *I; const CXXRecordDecl *RD = dyn_cast(D->getDeclContext()); if (RD && !RD->isUnion() && IsRecordFullyDefined(RD, RecordsComplete, MNCComplete)) { Diag(D->getLocation(), diag::warn_unused_private_field) << D->getDeclName(); } } } if (!Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) { if (ExternalSource) ExternalSource->ReadMismatchingDeleteExpressions(DeleteExprs); for (const auto &DeletedFieldInfo : DeleteExprs) { for (const auto &DeleteExprLoc : DeletedFieldInfo.second) { AnalyzeDeleteExprMismatch(DeletedFieldInfo.first, DeleteExprLoc.first, DeleteExprLoc.second); } } } // Check we've noticed that we're no longer parsing the initializer for every // variable. If we miss cases, then at best we have a performance issue and // at worst a rejects-valid bug. assert(ParsingInitForAutoVars.empty() && "Didn't unmark var as having its initializer parsed"); if (!PP.isIncrementalProcessingEnabled()) TUScope = nullptr; } //===----------------------------------------------------------------------===// // Helper functions. //===----------------------------------------------------------------------===// DeclContext *Sema::getFunctionLevelDeclContext(bool AllowLambda) { DeclContext *DC = CurContext; while (true) { if (isa(DC) || isa(DC) || isa(DC) || isa(DC)) { DC = DC->getParent(); } else if (!AllowLambda && isa(DC) && cast(DC)->getOverloadedOperator() == OO_Call && cast(DC->getParent())->isLambda()) { DC = DC->getParent()->getParent(); } else break; } return DC; } /// getCurFunctionDecl - If inside of a function body, this returns a pointer /// to the function decl for the function being parsed. If we're currently /// in a 'block', this returns the containing context. FunctionDecl *Sema::getCurFunctionDecl(bool AllowLambda) { DeclContext *DC = getFunctionLevelDeclContext(AllowLambda); return dyn_cast(DC); } ObjCMethodDecl *Sema::getCurMethodDecl() { DeclContext *DC = getFunctionLevelDeclContext(); while (isa(DC)) DC = DC->getParent(); return dyn_cast(DC); } NamedDecl *Sema::getCurFunctionOrMethodDecl() { DeclContext *DC = getFunctionLevelDeclContext(); if (isa(DC) || isa(DC)) return cast(DC); return nullptr; } LangAS Sema::getDefaultCXXMethodAddrSpace() const { if (getLangOpts().OpenCL) return getASTContext().getDefaultOpenCLPointeeAddrSpace(); return LangAS::Default; } void Sema::EmitCurrentDiagnostic(unsigned DiagID) { // FIXME: It doesn't make sense to me that DiagID is an incoming argument here // and yet we also use the current diag ID on the DiagnosticsEngine. This has // been made more painfully obvious by the refactor that introduced this // function, but it is possible that the incoming argument can be // eliminated. If it truly cannot be (for example, there is some reentrancy // issue I am not seeing yet), then there should at least be a clarifying // comment somewhere. if (std::optional Info = isSFINAEContext()) { switch (DiagnosticIDs::getDiagnosticSFINAEResponse( Diags.getCurrentDiagID())) { case DiagnosticIDs::SFINAE_Report: // We'll report the diagnostic below. break; case DiagnosticIDs::SFINAE_SubstitutionFailure: // Count this failure so that we know that template argument deduction // has failed. ++NumSFINAEErrors; // Make a copy of this suppressed diagnostic and store it with the // template-deduction information. if (*Info && !(*Info)->hasSFINAEDiagnostic()) { Diagnostic DiagInfo(&Diags); (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(), PartialDiagnostic(DiagInfo, Context.getDiagAllocator())); } Diags.setLastDiagnosticIgnored(true); Diags.Clear(); return; case DiagnosticIDs::SFINAE_AccessControl: { // Per C++ Core Issue 1170, access control is part of SFINAE. // Additionally, the AccessCheckingSFINAE flag can be used to temporarily // make access control a part of SFINAE for the purposes of checking // type traits. if (!AccessCheckingSFINAE && !getLangOpts().CPlusPlus11) break; SourceLocation Loc = Diags.getCurrentDiagLoc(); // Suppress this diagnostic. ++NumSFINAEErrors; // Make a copy of this suppressed diagnostic and store it with the // template-deduction information. if (*Info && !(*Info)->hasSFINAEDiagnostic()) { Diagnostic DiagInfo(&Diags); (*Info)->addSFINAEDiagnostic(DiagInfo.getLocation(), PartialDiagnostic(DiagInfo, Context.getDiagAllocator())); } Diags.setLastDiagnosticIgnored(true); Diags.Clear(); // Now the diagnostic state is clear, produce a C++98 compatibility // warning. Diag(Loc, diag::warn_cxx98_compat_sfinae_access_control); // The last diagnostic which Sema produced was ignored. Suppress any // notes attached to it. Diags.setLastDiagnosticIgnored(true); return; } case DiagnosticIDs::SFINAE_Suppress: // Make a copy of this suppressed diagnostic and store it with the // template-deduction information; if (*Info) { Diagnostic DiagInfo(&Diags); (*Info)->addSuppressedDiagnostic(DiagInfo.getLocation(), PartialDiagnostic(DiagInfo, Context.getDiagAllocator())); } // Suppress this diagnostic. Diags.setLastDiagnosticIgnored(true); Diags.Clear(); return; } } // Copy the diagnostic printing policy over the ASTContext printing policy. // TODO: Stop doing that. See: https://reviews.llvm.org/D45093#1090292 Context.setPrintingPolicy(getPrintingPolicy()); // Emit the diagnostic. if (!Diags.EmitCurrentDiagnostic()) return; // If this is not a note, and we're in a template instantiation // that is different from the last template instantiation where // we emitted an error, print a template instantiation // backtrace. if (!DiagnosticIDs::isBuiltinNote(DiagID)) PrintContextStack(); } Sema::SemaDiagnosticBuilder Sema::Diag(SourceLocation Loc, const PartialDiagnostic &PD, bool DeferHint) { return Diag(Loc, PD.getDiagID(), DeferHint) << PD; } bool Sema::hasUncompilableErrorOccurred() const { if (getDiagnostics().hasUncompilableErrorOccurred()) return true; auto *FD = dyn_cast(CurContext); if (!FD) return false; auto Loc = DeviceDeferredDiags.find(FD); if (Loc == DeviceDeferredDiags.end()) return false; for (auto PDAt : Loc->second) { if (DiagnosticIDs::isDefaultMappingAsError(PDAt.second.getDiagID())) return true; } return false; } // Print notes showing how we can reach FD starting from an a priori // known-callable function. static void emitCallStackNotes(Sema &S, FunctionDecl *FD) { auto FnIt = S.DeviceKnownEmittedFns.find(FD); while (FnIt != S.DeviceKnownEmittedFns.end()) { // Respect error limit. if (S.Diags.hasFatalErrorOccurred()) return; DiagnosticBuilder Builder( S.Diags.Report(FnIt->second.Loc, diag::note_called_by)); Builder << FnIt->second.FD; FnIt = S.DeviceKnownEmittedFns.find(FnIt->second.FD); } } namespace { /// Helper class that emits deferred diagnostic messages if an entity directly /// or indirectly using the function that causes the deferred diagnostic /// messages is known to be emitted. /// /// During parsing of AST, certain diagnostic messages are recorded as deferred /// diagnostics since it is unknown whether the functions containing such /// diagnostics will be emitted. A list of potentially emitted functions and /// variables that may potentially trigger emission of functions are also /// recorded. DeferredDiagnosticsEmitter recursively visits used functions /// by each function to emit deferred diagnostics. /// /// During the visit, certain OpenMP directives or initializer of variables /// with certain OpenMP attributes will cause subsequent visiting of any /// functions enter a state which is called OpenMP device context in this /// implementation. The state is exited when the directive or initializer is /// exited. This state can change the emission states of subsequent uses /// of functions. /// /// Conceptually the functions or variables to be visited form a use graph /// where the parent node uses the child node. At any point of the visit, /// the tree nodes traversed from the tree root to the current node form a use /// stack. The emission state of the current node depends on two factors: /// 1. the emission state of the root node /// 2. whether the current node is in OpenMP device context /// If the function is decided to be emitted, its contained deferred diagnostics /// are emitted, together with the information about the use stack. /// class DeferredDiagnosticsEmitter : public UsedDeclVisitor { public: typedef UsedDeclVisitor Inherited; // Whether the function is already in the current use-path. llvm::SmallPtrSet, 4> InUsePath; // The current use-path. llvm::SmallVector, 4> UsePath; // Whether the visiting of the function has been done. Done[0] is for the // case not in OpenMP device context. Done[1] is for the case in OpenMP // device context. We need two sets because diagnostics emission may be // different depending on whether it is in OpenMP device context. llvm::SmallPtrSet, 4> DoneMap[2]; // Emission state of the root node of the current use graph. bool ShouldEmitRootNode; // Current OpenMP device context level. It is initialized to 0 and each // entering of device context increases it by 1 and each exit decreases // it by 1. Non-zero value indicates it is currently in device context. unsigned InOMPDeviceContext; DeferredDiagnosticsEmitter(Sema &S) : Inherited(S), ShouldEmitRootNode(false), InOMPDeviceContext(0) {} bool shouldVisitDiscardedStmt() const { return false; } void VisitOMPTargetDirective(OMPTargetDirective *Node) { ++InOMPDeviceContext; Inherited::VisitOMPTargetDirective(Node); --InOMPDeviceContext; } void visitUsedDecl(SourceLocation Loc, Decl *D) { if (isa(D)) return; if (auto *FD = dyn_cast(D)) checkFunc(Loc, FD); else Inherited::visitUsedDecl(Loc, D); } void checkVar(VarDecl *VD) { assert(VD->isFileVarDecl() && "Should only check file-scope variables"); if (auto *Init = VD->getInit()) { auto DevTy = OMPDeclareTargetDeclAttr::getDeviceType(VD); bool IsDev = DevTy && (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost || *DevTy == OMPDeclareTargetDeclAttr::DT_Any); if (IsDev) ++InOMPDeviceContext; this->Visit(Init); if (IsDev) --InOMPDeviceContext; } } void checkFunc(SourceLocation Loc, FunctionDecl *FD) { auto &Done = DoneMap[InOMPDeviceContext > 0 ? 1 : 0]; FunctionDecl *Caller = UsePath.empty() ? nullptr : UsePath.back(); if ((!ShouldEmitRootNode && !S.getLangOpts().OpenMP && !Caller) || S.shouldIgnoreInHostDeviceCheck(FD) || InUsePath.count(FD)) return; // Finalize analysis of OpenMP-specific constructs. if (Caller && S.LangOpts.OpenMP && UsePath.size() == 1 && (ShouldEmitRootNode || InOMPDeviceContext)) S.finalizeOpenMPDelayedAnalysis(Caller, FD, Loc); if (Caller) S.DeviceKnownEmittedFns[FD] = {Caller, Loc}; // Always emit deferred diagnostics for the direct users. This does not // lead to explosion of diagnostics since each user is visited at most // twice. if (ShouldEmitRootNode || InOMPDeviceContext) emitDeferredDiags(FD, Caller); // Do not revisit a function if the function body has been completely // visited before. if (!Done.insert(FD).second) return; InUsePath.insert(FD); UsePath.push_back(FD); if (auto *S = FD->getBody()) { this->Visit(S); } UsePath.pop_back(); InUsePath.erase(FD); } void checkRecordedDecl(Decl *D) { if (auto *FD = dyn_cast(D)) { ShouldEmitRootNode = S.getEmissionStatus(FD, /*Final=*/true) == Sema::FunctionEmissionStatus::Emitted; checkFunc(SourceLocation(), FD); } else checkVar(cast(D)); } // Emit any deferred diagnostics for FD void emitDeferredDiags(FunctionDecl *FD, bool ShowCallStack) { auto It = S.DeviceDeferredDiags.find(FD); if (It == S.DeviceDeferredDiags.end()) return; bool HasWarningOrError = false; bool FirstDiag = true; for (PartialDiagnosticAt &PDAt : It->second) { // Respect error limit. if (S.Diags.hasFatalErrorOccurred()) return; const SourceLocation &Loc = PDAt.first; const PartialDiagnostic &PD = PDAt.second; HasWarningOrError |= S.getDiagnostics().getDiagnosticLevel(PD.getDiagID(), Loc) >= DiagnosticsEngine::Warning; { DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID())); PD.Emit(Builder); } // Emit the note on the first diagnostic in case too many diagnostics // cause the note not emitted. if (FirstDiag && HasWarningOrError && ShowCallStack) { emitCallStackNotes(S, FD); FirstDiag = false; } } } }; } // namespace void Sema::emitDeferredDiags() { if (ExternalSource) ExternalSource->ReadDeclsToCheckForDeferredDiags( DeclsToCheckForDeferredDiags); if ((DeviceDeferredDiags.empty() && !LangOpts.OpenMP) || DeclsToCheckForDeferredDiags.empty()) return; DeferredDiagnosticsEmitter DDE(*this); for (auto *D : DeclsToCheckForDeferredDiags) DDE.checkRecordedDecl(D); } // In CUDA, there are some constructs which may appear in semantically-valid // code, but trigger errors if we ever generate code for the function in which // they appear. Essentially every construct you're not allowed to use on the // device falls into this category, because you are allowed to use these // constructs in a __host__ __device__ function, but only if that function is // never codegen'ed on the device. // // To handle semantic checking for these constructs, we keep track of the set of // functions we know will be emitted, either because we could tell a priori that // they would be emitted, or because they were transitively called by a // known-emitted function. // // We also keep a partial call graph of which not-known-emitted functions call // which other not-known-emitted functions. // // When we see something which is illegal if the current function is emitted // (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or // CheckCUDACall), we first check if the current function is known-emitted. If // so, we immediately output the diagnostic. // // Otherwise, we "defer" the diagnostic. It sits in Sema::DeviceDeferredDiags // until we discover that the function is known-emitted, at which point we take // it out of this map and emit the diagnostic. Sema::SemaDiagnosticBuilder::SemaDiagnosticBuilder(Kind K, SourceLocation Loc, unsigned DiagID, FunctionDecl *Fn, Sema &S) : S(S), Loc(Loc), DiagID(DiagID), Fn(Fn), ShowCallStack(K == K_ImmediateWithCallStack || K == K_Deferred) { switch (K) { case K_Nop: break; case K_Immediate: case K_ImmediateWithCallStack: ImmediateDiag.emplace( ImmediateDiagBuilder(S.Diags.Report(Loc, DiagID), S, DiagID)); break; case K_Deferred: assert(Fn && "Must have a function to attach the deferred diag to."); auto &Diags = S.DeviceDeferredDiags[Fn]; PartialDiagId.emplace(Diags.size()); Diags.emplace_back(Loc, S.PDiag(DiagID)); break; } } Sema::SemaDiagnosticBuilder::SemaDiagnosticBuilder(SemaDiagnosticBuilder &&D) : S(D.S), Loc(D.Loc), DiagID(D.DiagID), Fn(D.Fn), ShowCallStack(D.ShowCallStack), ImmediateDiag(D.ImmediateDiag), PartialDiagId(D.PartialDiagId) { // Clean the previous diagnostics. D.ShowCallStack = false; D.ImmediateDiag.reset(); D.PartialDiagId.reset(); } Sema::SemaDiagnosticBuilder::~SemaDiagnosticBuilder() { if (ImmediateDiag) { // Emit our diagnostic and, if it was a warning or error, output a callstack // if Fn isn't a priori known-emitted. bool IsWarningOrError = S.getDiagnostics().getDiagnosticLevel( DiagID, Loc) >= DiagnosticsEngine::Warning; ImmediateDiag.reset(); // Emit the immediate diag. if (IsWarningOrError && ShowCallStack) emitCallStackNotes(S, Fn); } else { assert((!PartialDiagId || ShowCallStack) && "Must always show call stack for deferred diags."); } } Sema::SemaDiagnosticBuilder Sema::targetDiag(SourceLocation Loc, unsigned DiagID, FunctionDecl *FD) { FD = FD ? FD : getCurFunctionDecl(); if (LangOpts.OpenMP) return LangOpts.OpenMPIsDevice ? diagIfOpenMPDeviceCode(Loc, DiagID, FD) : diagIfOpenMPHostCode(Loc, DiagID, FD); if (getLangOpts().CUDA) return getLangOpts().CUDAIsDevice ? CUDADiagIfDeviceCode(Loc, DiagID) : CUDADiagIfHostCode(Loc, DiagID); if (getLangOpts().SYCLIsDevice) return SYCLDiagIfDeviceCode(Loc, DiagID); return SemaDiagnosticBuilder(SemaDiagnosticBuilder::K_Immediate, Loc, DiagID, FD, *this); } Sema::SemaDiagnosticBuilder Sema::Diag(SourceLocation Loc, unsigned DiagID, bool DeferHint) { bool IsError = Diags.getDiagnosticIDs()->isDefaultMappingAsError(DiagID); bool ShouldDefer = getLangOpts().CUDA && LangOpts.GPUDeferDiag && DiagnosticIDs::isDeferrable(DiagID) && (DeferHint || DeferDiags || !IsError); auto SetIsLastErrorImmediate = [&](bool Flag) { if (IsError) IsLastErrorImmediate = Flag; }; if (!ShouldDefer) { SetIsLastErrorImmediate(true); return SemaDiagnosticBuilder(SemaDiagnosticBuilder::K_Immediate, Loc, DiagID, getCurFunctionDecl(), *this); } SemaDiagnosticBuilder DB = getLangOpts().CUDAIsDevice ? CUDADiagIfDeviceCode(Loc, DiagID) : CUDADiagIfHostCode(Loc, DiagID); SetIsLastErrorImmediate(DB.isImmediate()); return DB; } void Sema::checkTypeSupport(QualType Ty, SourceLocation Loc, ValueDecl *D) { if (isUnevaluatedContext() || Ty.isNull()) return; // The original idea behind checkTypeSupport function is that unused // declarations can be replaced with an array of bytes of the same size during // codegen, such replacement doesn't seem to be possible for types without // constant byte size like zero length arrays. So, do a deep check for SYCL. if (D && LangOpts.SYCLIsDevice) { llvm::DenseSet Visited; deepTypeCheckForSYCLDevice(Loc, Visited, D); } Decl *C = cast(getCurLexicalContext()); // Memcpy operations for structs containing a member with unsupported type // are ok, though. if (const auto *MD = dyn_cast(C)) { if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) && MD->isTrivial()) return; if (const auto *Ctor = dyn_cast(MD)) if (Ctor->isCopyOrMoveConstructor() && Ctor->isTrivial()) return; } // Try to associate errors with the lexical context, if that is a function, or // the value declaration otherwise. FunctionDecl *FD = isa(C) ? cast(C) : dyn_cast_or_null(D); auto CheckDeviceType = [&](QualType Ty) { if (Ty->isDependentType()) return; if (Ty->isBitIntType()) { if (!Context.getTargetInfo().hasBitIntType()) { PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type); if (D) PD << D; else PD << "expression"; targetDiag(Loc, PD, FD) << false /*show bit size*/ << 0 /*bitsize*/ << false /*return*/ << Ty << Context.getTargetInfo().getTriple().str(); } return; } // Check if we are dealing with two 'long double' but with different // semantics. bool LongDoubleMismatched = false; if (Ty->isRealFloatingType() && Context.getTypeSize(Ty) == 128) { const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(Ty); if ((&Sem != &llvm::APFloat::PPCDoubleDouble() && !Context.getTargetInfo().hasFloat128Type()) || (&Sem == &llvm::APFloat::PPCDoubleDouble() && !Context.getTargetInfo().hasIbm128Type())) LongDoubleMismatched = true; } if ((Ty->isFloat16Type() && !Context.getTargetInfo().hasFloat16Type()) || (Ty->isFloat128Type() && !Context.getTargetInfo().hasFloat128Type()) || (Ty->isIbm128Type() && !Context.getTargetInfo().hasIbm128Type()) || (Ty->isIntegerType() && Context.getTypeSize(Ty) == 128 && !Context.getTargetInfo().hasInt128Type()) || LongDoubleMismatched) { PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type); if (D) PD << D; else PD << "expression"; if (targetDiag(Loc, PD, FD) << true /*show bit size*/ << static_cast(Context.getTypeSize(Ty)) << Ty << false /*return*/ << Context.getTargetInfo().getTriple().str()) { if (D) D->setInvalidDecl(); } if (D) targetDiag(D->getLocation(), diag::note_defined_here, FD) << D; } }; auto CheckType = [&](QualType Ty, bool IsRetTy = false) { if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice) || LangOpts.CUDAIsDevice) CheckDeviceType(Ty); QualType UnqualTy = Ty.getCanonicalType().getUnqualifiedType(); const TargetInfo &TI = Context.getTargetInfo(); if (!TI.hasLongDoubleType() && UnqualTy == Context.LongDoubleTy) { PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type); if (D) PD << D; else PD << "expression"; if (Diag(Loc, PD, FD) << false /*show bit size*/ << 0 << Ty << false /*return*/ << Context.getTargetInfo().getTriple().str()) { if (D) D->setInvalidDecl(); } if (D) targetDiag(D->getLocation(), diag::note_defined_here, FD) << D; } bool IsDouble = UnqualTy == Context.DoubleTy; bool IsFloat = UnqualTy == Context.FloatTy; if (IsRetTy && !TI.hasFPReturn() && (IsDouble || IsFloat)) { PartialDiagnostic PD = PDiag(diag::err_target_unsupported_type); if (D) PD << D; else PD << "expression"; if (Diag(Loc, PD, FD) << false /*show bit size*/ << 0 << Ty << true /*return*/ << Context.getTargetInfo().getTriple().str()) { if (D) D->setInvalidDecl(); } if (D) targetDiag(D->getLocation(), diag::note_defined_here, FD) << D; } // Don't allow SVE types in functions without a SVE target. if (Ty->isSVESizelessBuiltinType() && FD && FD->hasBody()) { llvm::StringMap CallerFeatureMap; Context.getFunctionFeatureMap(CallerFeatureMap, FD); if (!Builtin::evaluateRequiredTargetFeatures( "sve", CallerFeatureMap)) Diag(D->getLocation(), diag::err_sve_vector_in_non_sve_target) << Ty; } }; CheckType(Ty); if (const auto *FPTy = dyn_cast(Ty)) { for (const auto &ParamTy : FPTy->param_types()) CheckType(ParamTy); CheckType(FPTy->getReturnType(), /*IsRetTy=*/true); } if (const auto *FNPTy = dyn_cast(Ty)) CheckType(FNPTy->getReturnType(), /*IsRetTy=*/true); } /// Looks through the macro-expansion chain for the given /// location, looking for a macro expansion with the given name. /// If one is found, returns true and sets the location to that /// expansion loc. bool Sema::findMacroSpelling(SourceLocation &locref, StringRef name) { SourceLocation loc = locref; if (!loc.isMacroID()) return false; // There's no good way right now to look at the intermediate // expansions, so just jump to the expansion location. loc = getSourceManager().getExpansionLoc(loc); // If that's written with the name, stop here. SmallString<16> buffer; if (getPreprocessor().getSpelling(loc, buffer) == name) { locref = loc; return true; } return false; } /// Determines the active Scope associated with the given declaration /// context. /// /// This routine maps a declaration context to the active Scope object that /// represents that declaration context in the parser. It is typically used /// from "scope-less" code (e.g., template instantiation, lazy creation of /// declarations) that injects a name for name-lookup purposes and, therefore, /// must update the Scope. /// /// \returns The scope corresponding to the given declaraion context, or NULL /// if no such scope is open. Scope *Sema::getScopeForContext(DeclContext *Ctx) { if (!Ctx) return nullptr; Ctx = Ctx->getPrimaryContext(); for (Scope *S = getCurScope(); S; S = S->getParent()) { // Ignore scopes that cannot have declarations. This is important for // out-of-line definitions of static class members. if (S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) if (DeclContext *Entity = S->getEntity()) if (Ctx == Entity->getPrimaryContext()) return S; } return nullptr; } /// Enter a new function scope void Sema::PushFunctionScope() { if (FunctionScopes.empty() && CachedFunctionScope) { // Use CachedFunctionScope to avoid allocating memory when possible. CachedFunctionScope->Clear(); FunctionScopes.push_back(CachedFunctionScope.release()); } else { FunctionScopes.push_back(new FunctionScopeInfo(getDiagnostics())); } if (LangOpts.OpenMP) pushOpenMPFunctionRegion(); } void Sema::PushBlockScope(Scope *BlockScope, BlockDecl *Block) { FunctionScopes.push_back(new BlockScopeInfo(getDiagnostics(), BlockScope, Block)); } LambdaScopeInfo *Sema::PushLambdaScope() { LambdaScopeInfo *const LSI = new LambdaScopeInfo(getDiagnostics()); FunctionScopes.push_back(LSI); return LSI; } void Sema::RecordParsingTemplateParameterDepth(unsigned Depth) { if (LambdaScopeInfo *const LSI = getCurLambda()) { LSI->AutoTemplateParameterDepth = Depth; return; } llvm_unreachable( "Remove assertion if intentionally called in a non-lambda context."); } // Check that the type of the VarDecl has an accessible copy constructor and // resolve its destructor's exception specification. // This also performs initialization of block variables when they are moved // to the heap. It uses the same rules as applicable for implicit moves // according to the C++ standard in effect ([class.copy.elision]p3). static void checkEscapingByref(VarDecl *VD, Sema &S) { QualType T = VD->getType(); EnterExpressionEvaluationContext scope( S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); SourceLocation Loc = VD->getLocation(); Expr *VarRef = new (S.Context) DeclRefExpr(S.Context, VD, false, T, VK_LValue, Loc); ExprResult Result; auto IE = InitializedEntity::InitializeBlock(Loc, T); if (S.getLangOpts().CPlusPlus2b) { auto *E = ImplicitCastExpr::Create(S.Context, T, CK_NoOp, VarRef, nullptr, VK_XValue, FPOptionsOverride()); Result = S.PerformCopyInitialization(IE, SourceLocation(), E); } else { Result = S.PerformMoveOrCopyInitialization( IE, Sema::NamedReturnInfo{VD, Sema::NamedReturnInfo::MoveEligible}, VarRef); } if (!Result.isInvalid()) { Result = S.MaybeCreateExprWithCleanups(Result); Expr *Init = Result.getAs(); S.Context.setBlockVarCopyInit(VD, Init, S.canThrow(Init)); } // The destructor's exception specification is needed when IRGen generates // block copy/destroy functions. Resolve it here. if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) if (CXXDestructorDecl *DD = RD->getDestructor()) { auto *FPT = DD->getType()->getAs(); S.ResolveExceptionSpec(Loc, FPT); } } static void markEscapingByrefs(const FunctionScopeInfo &FSI, Sema &S) { // Set the EscapingByref flag of __block variables captured by // escaping blocks. for (const BlockDecl *BD : FSI.Blocks) { for (const BlockDecl::Capture &BC : BD->captures()) { VarDecl *VD = BC.getVariable(); if (VD->hasAttr()) { // Nothing to do if this is a __block variable captured by a // non-escaping block. if (BD->doesNotEscape()) continue; VD->setEscapingByref(); } // Check whether the captured variable is or contains an object of // non-trivial C union type. QualType CapType = BC.getVariable()->getType(); if (CapType.hasNonTrivialToPrimitiveDestructCUnion() || CapType.hasNonTrivialToPrimitiveCopyCUnion()) S.checkNonTrivialCUnion(BC.getVariable()->getType(), BD->getCaretLocation(), Sema::NTCUC_BlockCapture, Sema::NTCUK_Destruct|Sema::NTCUK_Copy); } } for (VarDecl *VD : FSI.ByrefBlockVars) { // __block variables might require us to capture a copy-initializer. if (!VD->isEscapingByref()) continue; // It's currently invalid to ever have a __block variable with an // array type; should we diagnose that here? // Regardless, we don't want to ignore array nesting when // constructing this copy. if (VD->getType()->isStructureOrClassType()) checkEscapingByref(VD, S); } } /// Pop a function (or block or lambda or captured region) scope from the stack. /// /// \param WP The warning policy to use for CFG-based warnings, or null if such /// warnings should not be produced. /// \param D The declaration corresponding to this function scope, if producing /// CFG-based warnings. /// \param BlockType The type of the block expression, if D is a BlockDecl. Sema::PoppedFunctionScopePtr Sema::PopFunctionScopeInfo(const AnalysisBasedWarnings::Policy *WP, const Decl *D, QualType BlockType) { assert(!FunctionScopes.empty() && "mismatched push/pop!"); markEscapingByrefs(*FunctionScopes.back(), *this); PoppedFunctionScopePtr Scope(FunctionScopes.pop_back_val(), PoppedFunctionScopeDeleter(this)); if (LangOpts.OpenMP) popOpenMPFunctionRegion(Scope.get()); // Issue any analysis-based warnings. if (WP && D) AnalysisWarnings.IssueWarnings(*WP, Scope.get(), D, BlockType); else for (const auto &PUD : Scope->PossiblyUnreachableDiags) Diag(PUD.Loc, PUD.PD); return Scope; } void Sema::PoppedFunctionScopeDeleter:: operator()(sema::FunctionScopeInfo *Scope) const { // Stash the function scope for later reuse if it's for a normal function. if (Scope->isPlainFunction() && !Self->CachedFunctionScope) Self->CachedFunctionScope.reset(Scope); else delete Scope; } void Sema::PushCompoundScope(bool IsStmtExpr) { getCurFunction()->CompoundScopes.push_back( CompoundScopeInfo(IsStmtExpr, getCurFPFeatures())); } void Sema::PopCompoundScope() { FunctionScopeInfo *CurFunction = getCurFunction(); assert(!CurFunction->CompoundScopes.empty() && "mismatched push/pop"); CurFunction->CompoundScopes.pop_back(); } /// Determine whether any errors occurred within this function/method/ /// block. bool Sema::hasAnyUnrecoverableErrorsInThisFunction() const { return getCurFunction()->hasUnrecoverableErrorOccurred(); } void Sema::setFunctionHasBranchIntoScope() { if (!FunctionScopes.empty()) FunctionScopes.back()->setHasBranchIntoScope(); } void Sema::setFunctionHasBranchProtectedScope() { if (!FunctionScopes.empty()) FunctionScopes.back()->setHasBranchProtectedScope(); } void Sema::setFunctionHasIndirectGoto() { if (!FunctionScopes.empty()) FunctionScopes.back()->setHasIndirectGoto(); } void Sema::setFunctionHasMustTail() { if (!FunctionScopes.empty()) FunctionScopes.back()->setHasMustTail(); } BlockScopeInfo *Sema::getCurBlock() { if (FunctionScopes.empty()) return nullptr; auto CurBSI = dyn_cast(FunctionScopes.back()); if (CurBSI && CurBSI->TheDecl && !CurBSI->TheDecl->Encloses(CurContext)) { // We have switched contexts due to template instantiation. assert(!CodeSynthesisContexts.empty()); return nullptr; } return CurBSI; } FunctionScopeInfo *Sema::getEnclosingFunction() const { if (FunctionScopes.empty()) return nullptr; for (int e = FunctionScopes.size() - 1; e >= 0; --e) { if (isa(FunctionScopes[e])) continue; return FunctionScopes[e]; } return nullptr; } LambdaScopeInfo *Sema::getEnclosingLambda() const { for (auto *Scope : llvm::reverse(FunctionScopes)) { if (auto *LSI = dyn_cast(Scope)) { if (LSI->Lambda && !LSI->Lambda->Encloses(CurContext)) { // We have switched contexts due to template instantiation. // FIXME: We should swap out the FunctionScopes during code synthesis // so that we don't need to check for this. assert(!CodeSynthesisContexts.empty()); return nullptr; } return LSI; } } return nullptr; } LambdaScopeInfo *Sema::getCurLambda(bool IgnoreNonLambdaCapturingScope) { if (FunctionScopes.empty()) return nullptr; auto I = FunctionScopes.rbegin(); if (IgnoreNonLambdaCapturingScope) { auto E = FunctionScopes.rend(); while (I != E && isa(*I) && !isa(*I)) ++I; if (I == E) return nullptr; } auto *CurLSI = dyn_cast(*I); if (CurLSI && CurLSI->Lambda && !CurLSI->Lambda->Encloses(CurContext)) { // We have switched contexts due to template instantiation. assert(!CodeSynthesisContexts.empty()); return nullptr; } return CurLSI; } // We have a generic lambda if we parsed auto parameters, or we have // an associated template parameter list. LambdaScopeInfo *Sema::getCurGenericLambda() { if (LambdaScopeInfo *LSI = getCurLambda()) { return (LSI->TemplateParams.size() || LSI->GLTemplateParameterList) ? LSI : nullptr; } return nullptr; } void Sema::ActOnComment(SourceRange Comment) { if (!LangOpts.RetainCommentsFromSystemHeaders && SourceMgr.isInSystemHeader(Comment.getBegin())) return; RawComment RC(SourceMgr, Comment, LangOpts.CommentOpts, false); if (RC.isAlmostTrailingComment()) { SourceRange MagicMarkerRange(Comment.getBegin(), Comment.getBegin().getLocWithOffset(3)); StringRef MagicMarkerText; switch (RC.getKind()) { case RawComment::RCK_OrdinaryBCPL: MagicMarkerText = "///<"; break; case RawComment::RCK_OrdinaryC: MagicMarkerText = "/**<"; break; default: llvm_unreachable("if this is an almost Doxygen comment, " "it should be ordinary"); } Diag(Comment.getBegin(), diag::warn_not_a_doxygen_trailing_member_comment) << FixItHint::CreateReplacement(MagicMarkerRange, MagicMarkerText); } Context.addComment(RC); } // Pin this vtable to this file. ExternalSemaSource::~ExternalSemaSource() {} char ExternalSemaSource::ID; void ExternalSemaSource::ReadMethodPool(Selector Sel) { } void ExternalSemaSource::updateOutOfDateSelector(Selector Sel) { } void ExternalSemaSource::ReadKnownNamespaces( SmallVectorImpl &Namespaces) { } void ExternalSemaSource::ReadUndefinedButUsed( llvm::MapVector &Undefined) {} void ExternalSemaSource::ReadMismatchingDeleteExpressions(llvm::MapVector< FieldDecl *, llvm::SmallVector, 4>> &) {} /// Figure out if an expression could be turned into a call. /// /// Use this when trying to recover from an error where the programmer may have /// written just the name of a function instead of actually calling it. /// /// \param E - The expression to examine. /// \param ZeroArgCallReturnTy - If the expression can be turned into a call /// with no arguments, this parameter is set to the type returned by such a /// call; otherwise, it is set to an empty QualType. /// \param OverloadSet - If the expression is an overloaded function /// name, this parameter is populated with the decls of the various overloads. bool Sema::tryExprAsCall(Expr &E, QualType &ZeroArgCallReturnTy, UnresolvedSetImpl &OverloadSet) { ZeroArgCallReturnTy = QualType(); OverloadSet.clear(); const OverloadExpr *Overloads = nullptr; bool IsMemExpr = false; if (E.getType() == Context.OverloadTy) { OverloadExpr::FindResult FR = OverloadExpr::find(const_cast(&E)); // Ignore overloads that are pointer-to-member constants. if (FR.HasFormOfMemberPointer) return false; Overloads = FR.Expression; } else if (E.getType() == Context.BoundMemberTy) { Overloads = dyn_cast(E.IgnoreParens()); IsMemExpr = true; } bool Ambiguous = false; bool IsMV = false; if (Overloads) { for (OverloadExpr::decls_iterator it = Overloads->decls_begin(), DeclsEnd = Overloads->decls_end(); it != DeclsEnd; ++it) { OverloadSet.addDecl(*it); // Check whether the function is a non-template, non-member which takes no // arguments. if (IsMemExpr) continue; if (const FunctionDecl *OverloadDecl = dyn_cast((*it)->getUnderlyingDecl())) { if (OverloadDecl->getMinRequiredArguments() == 0) { if (!ZeroArgCallReturnTy.isNull() && !Ambiguous && (!IsMV || !(OverloadDecl->isCPUDispatchMultiVersion() || OverloadDecl->isCPUSpecificMultiVersion()))) { ZeroArgCallReturnTy = QualType(); Ambiguous = true; } else { ZeroArgCallReturnTy = OverloadDecl->getReturnType(); IsMV = OverloadDecl->isCPUDispatchMultiVersion() || OverloadDecl->isCPUSpecificMultiVersion(); } } } } // If it's not a member, use better machinery to try to resolve the call if (!IsMemExpr) return !ZeroArgCallReturnTy.isNull(); } // Attempt to call the member with no arguments - this will correctly handle // member templates with defaults/deduction of template arguments, overloads // with default arguments, etc. if (IsMemExpr && !E.isTypeDependent()) { Sema::TentativeAnalysisScope Trap(*this); ExprResult R = BuildCallToMemberFunction(nullptr, &E, SourceLocation(), std::nullopt, SourceLocation()); if (R.isUsable()) { ZeroArgCallReturnTy = R.get()->getType(); return true; } return false; } if (const DeclRefExpr *DeclRef = dyn_cast(E.IgnoreParens())) { if (const FunctionDecl *Fun = dyn_cast(DeclRef->getDecl())) { if (Fun->getMinRequiredArguments() == 0) ZeroArgCallReturnTy = Fun->getReturnType(); return true; } } // We don't have an expression that's convenient to get a FunctionDecl from, // but we can at least check if the type is "function of 0 arguments". QualType ExprTy = E.getType(); const FunctionType *FunTy = nullptr; QualType PointeeTy = ExprTy->getPointeeType(); if (!PointeeTy.isNull()) FunTy = PointeeTy->getAs(); if (!FunTy) FunTy = ExprTy->getAs(); if (const FunctionProtoType *FPT = dyn_cast_or_null(FunTy)) { if (FPT->getNumParams() == 0) ZeroArgCallReturnTy = FunTy->getReturnType(); return true; } return false; } /// Give notes for a set of overloads. /// /// A companion to tryExprAsCall. In cases when the name that the programmer /// wrote was an overloaded function, we may be able to make some guesses about /// plausible overloads based on their return types; such guesses can be handed /// off to this method to be emitted as notes. /// /// \param Overloads - The overloads to note. /// \param FinalNoteLoc - If we've suppressed printing some overloads due to /// -fshow-overloads=best, this is the location to attach to the note about too /// many candidates. Typically this will be the location of the original /// ill-formed expression. static void noteOverloads(Sema &S, const UnresolvedSetImpl &Overloads, const SourceLocation FinalNoteLoc) { unsigned ShownOverloads = 0; unsigned SuppressedOverloads = 0; for (UnresolvedSetImpl::iterator It = Overloads.begin(), DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { if (ShownOverloads >= S.Diags.getNumOverloadCandidatesToShow()) { ++SuppressedOverloads; continue; } NamedDecl *Fn = (*It)->getUnderlyingDecl(); // Don't print overloads for non-default multiversioned functions. if (const auto *FD = Fn->getAsFunction()) { if (FD->isMultiVersion() && FD->hasAttr() && !FD->getAttr()->isDefaultVersion()) continue; if (FD->isMultiVersion() && FD->hasAttr() && !FD->getAttr()->isDefaultVersion()) continue; } S.Diag(Fn->getLocation(), diag::note_possible_target_of_call); ++ShownOverloads; } S.Diags.overloadCandidatesShown(ShownOverloads); if (SuppressedOverloads) S.Diag(FinalNoteLoc, diag::note_ovl_too_many_candidates) << SuppressedOverloads; } static void notePlausibleOverloads(Sema &S, SourceLocation Loc, const UnresolvedSetImpl &Overloads, bool (*IsPlausibleResult)(QualType)) { if (!IsPlausibleResult) return noteOverloads(S, Overloads, Loc); UnresolvedSet<2> PlausibleOverloads; for (OverloadExpr::decls_iterator It = Overloads.begin(), DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) { const FunctionDecl *OverloadDecl = cast(*It); QualType OverloadResultTy = OverloadDecl->getReturnType(); if (IsPlausibleResult(OverloadResultTy)) PlausibleOverloads.addDecl(It.getDecl()); } noteOverloads(S, PlausibleOverloads, Loc); } /// Determine whether the given expression can be called by just /// putting parentheses after it. Notably, expressions with unary /// operators can't be because the unary operator will start parsing /// outside the call. static bool IsCallableWithAppend(Expr *E) { E = E->IgnoreImplicit(); return (!isa(E) && !isa(E) && !isa(E) && !isa(E)); } static bool IsCPUDispatchCPUSpecificMultiVersion(const Expr *E) { if (const auto *UO = dyn_cast(E)) E = UO->getSubExpr(); if (const auto *ULE = dyn_cast(E)) { if (ULE->getNumDecls() == 0) return false; const NamedDecl *ND = *ULE->decls_begin(); if (const auto *FD = dyn_cast(ND)) return FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion(); } return false; } bool Sema::tryToRecoverWithCall(ExprResult &E, const PartialDiagnostic &PD, bool ForceComplain, bool (*IsPlausibleResult)(QualType)) { SourceLocation Loc = E.get()->getExprLoc(); SourceRange Range = E.get()->getSourceRange(); UnresolvedSet<4> Overloads; // If this is a SFINAE context, don't try anything that might trigger ADL // prematurely. if (!isSFINAEContext()) { QualType ZeroArgCallTy; if (tryExprAsCall(*E.get(), ZeroArgCallTy, Overloads) && !ZeroArgCallTy.isNull() && (!IsPlausibleResult || IsPlausibleResult(ZeroArgCallTy))) { // At this point, we know E is potentially callable with 0 // arguments and that it returns something of a reasonable type, // so we can emit a fixit and carry on pretending that E was // actually a CallExpr. SourceLocation ParenInsertionLoc = getLocForEndOfToken(Range.getEnd()); bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get()); Diag(Loc, PD) << /*zero-arg*/ 1 << IsMV << Range << (IsCallableWithAppend(E.get()) ? FixItHint::CreateInsertion(ParenInsertionLoc, "()") : FixItHint()); if (!IsMV) notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult); // FIXME: Try this before emitting the fixit, and suppress diagnostics // while doing so. E = BuildCallExpr(nullptr, E.get(), Range.getEnd(), std::nullopt, Range.getEnd().getLocWithOffset(1)); return true; } } if (!ForceComplain) return false; bool IsMV = IsCPUDispatchCPUSpecificMultiVersion(E.get()); Diag(Loc, PD) << /*not zero-arg*/ 0 << IsMV << Range; if (!IsMV) notePlausibleOverloads(*this, Loc, Overloads, IsPlausibleResult); E = ExprError(); return true; } IdentifierInfo *Sema::getSuperIdentifier() const { if (!Ident_super) Ident_super = &Context.Idents.get("super"); return Ident_super; } IdentifierInfo *Sema::getFloat128Identifier() const { if (!Ident___float128) Ident___float128 = &Context.Idents.get("__float128"); return Ident___float128; } void Sema::PushCapturedRegionScope(Scope *S, CapturedDecl *CD, RecordDecl *RD, CapturedRegionKind K, unsigned OpenMPCaptureLevel) { auto *CSI = new CapturedRegionScopeInfo( getDiagnostics(), S, CD, RD, CD->getContextParam(), K, (getLangOpts().OpenMP && K == CR_OpenMP) ? getOpenMPNestingLevel() : 0, OpenMPCaptureLevel); CSI->ReturnType = Context.VoidTy; FunctionScopes.push_back(CSI); } CapturedRegionScopeInfo *Sema::getCurCapturedRegion() { if (FunctionScopes.empty()) return nullptr; return dyn_cast(FunctionScopes.back()); } const llvm::MapVector & Sema::getMismatchingDeleteExpressions() const { return DeleteExprs; } Sema::FPFeaturesStateRAII::FPFeaturesStateRAII(Sema &S) : S(S), OldFPFeaturesState(S.CurFPFeatures), OldOverrides(S.FpPragmaStack.CurrentValue), OldEvalMethod(S.PP.getCurrentFPEvalMethod()), OldFPPragmaLocation(S.PP.getLastFPEvalPragmaLocation()) {} Sema::FPFeaturesStateRAII::~FPFeaturesStateRAII() { S.CurFPFeatures = OldFPFeaturesState; S.FpPragmaStack.CurrentValue = OldOverrides; S.PP.setCurrentFPEvalMethod(OldFPPragmaLocation, OldEvalMethod); } bool Sema::isDeclaratorFunctionLike(Declarator &D) { assert(D.getCXXScopeSpec().isSet() && "can only be called for qualified names"); auto LR = LookupResult(*this, D.getIdentifier(), D.getBeginLoc(), LookupOrdinaryName, forRedeclarationInCurContext()); DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), !D.getDeclSpec().isFriendSpecified()); if (!DC) return false; LookupQualifiedName(LR, DC); bool Result = std::all_of(LR.begin(), LR.end(), [](Decl *Dcl) { if (NamedDecl *ND = dyn_cast(Dcl)) { ND = ND->getUnderlyingDecl(); return isa(ND) || isa(ND) || isa(ND); } return false; }); return Result; }