//===--- CheckExprLifetime.cpp --------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "CheckExprLifetime.h" #include "clang/AST/Decl.h" #include "clang/AST/Expr.h" #include "clang/Basic/DiagnosticSema.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Sema.h" #include "llvm/ADT/PointerIntPair.h" namespace clang::sema { namespace { enum LifetimeKind { /// The lifetime of a temporary bound to this entity ends at the end of the /// full-expression, and that's (probably) fine. LK_FullExpression, /// The lifetime of a temporary bound to this entity is extended to the /// lifeitme of the entity itself. LK_Extended, /// The lifetime of a temporary bound to this entity probably ends too soon, /// because the entity is allocated in a new-expression. LK_New, /// The lifetime of a temporary bound to this entity ends too soon, because /// the entity is a return object. LK_Return, /// The lifetime of a temporary bound to this entity ends too soon, because /// the entity is the result of a statement expression. LK_StmtExprResult, /// This is a mem-initializer: if it would extend a temporary (other than via /// a default member initializer), the program is ill-formed. LK_MemInitializer, /// The lifetime of a temporary bound to this entity probably ends too soon, /// because the entity is a pointer and we assign the address of a temporary /// object to it. LK_Assignment, }; using LifetimeResult = llvm::PointerIntPair; } // namespace /// Determine the declaration which an initialized entity ultimately refers to, /// for the purpose of lifetime-extending a temporary bound to a reference in /// the initialization of \p Entity. static LifetimeResult getEntityLifetime(const InitializedEntity *Entity, const InitializedEntity *InitField = nullptr) { // C++11 [class.temporary]p5: switch (Entity->getKind()) { case InitializedEntity::EK_Variable: // The temporary [...] persists for the lifetime of the reference return {Entity, LK_Extended}; case InitializedEntity::EK_Member: // For subobjects, we look at the complete object. if (Entity->getParent()) return getEntityLifetime(Entity->getParent(), Entity); // except: // C++17 [class.base.init]p8: // A temporary expression bound to a reference member in a // mem-initializer is ill-formed. // C++17 [class.base.init]p11: // A temporary expression bound to a reference member from a // default member initializer is ill-formed. // // The context of p11 and its example suggest that it's only the use of a // default member initializer from a constructor that makes the program // ill-formed, not its mere existence, and that it can even be used by // aggregate initialization. return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended : LK_MemInitializer}; case InitializedEntity::EK_Binding: // Per [dcl.decomp]p3, the binding is treated as a variable of reference // type. return {Entity, LK_Extended}; case InitializedEntity::EK_Parameter: case InitializedEntity::EK_Parameter_CF_Audited: // -- A temporary bound to a reference parameter in a function call // persists until the completion of the full-expression containing // the call. return {nullptr, LK_FullExpression}; case InitializedEntity::EK_TemplateParameter: // FIXME: This will always be ill-formed; should we eagerly diagnose it // here? return {nullptr, LK_FullExpression}; case InitializedEntity::EK_Result: // -- The lifetime of a temporary bound to the returned value in a // function return statement is not extended; the temporary is // destroyed at the end of the full-expression in the return statement. return {nullptr, LK_Return}; case InitializedEntity::EK_StmtExprResult: // FIXME: Should we lifetime-extend through the result of a statement // expression? return {nullptr, LK_StmtExprResult}; case InitializedEntity::EK_New: // -- A temporary bound to a reference in a new-initializer persists // until the completion of the full-expression containing the // new-initializer. return {nullptr, LK_New}; case InitializedEntity::EK_Temporary: case InitializedEntity::EK_CompoundLiteralInit: case InitializedEntity::EK_RelatedResult: // We don't yet know the storage duration of the surrounding temporary. // Assume it's got full-expression duration for now, it will patch up our // storage duration if that's not correct. return {nullptr, LK_FullExpression}; case InitializedEntity::EK_ArrayElement: // For subobjects, we look at the complete object. return getEntityLifetime(Entity->getParent(), InitField); case InitializedEntity::EK_Base: // For subobjects, we look at the complete object. if (Entity->getParent()) return getEntityLifetime(Entity->getParent(), InitField); return {InitField, LK_MemInitializer}; case InitializedEntity::EK_Delegating: // We can reach this case for aggregate initialization in a constructor: // struct A { int &&r; }; // struct B : A { B() : A{0} {} }; // In this case, use the outermost field decl as the context. return {InitField, LK_MemInitializer}; case InitializedEntity::EK_BlockElement: case InitializedEntity::EK_LambdaToBlockConversionBlockElement: case InitializedEntity::EK_LambdaCapture: case InitializedEntity::EK_VectorElement: case InitializedEntity::EK_ComplexElement: return {nullptr, LK_FullExpression}; case InitializedEntity::EK_Exception: // FIXME: Can we diagnose lifetime problems with exceptions? return {nullptr, LK_FullExpression}; case InitializedEntity::EK_ParenAggInitMember: // -- A temporary object bound to a reference element of an aggregate of // class type initialized from a parenthesized expression-list // [dcl.init, 9.3] persists until the completion of the full-expression // containing the expression-list. return {nullptr, LK_FullExpression}; } llvm_unreachable("unknown entity kind"); } namespace { enum ReferenceKind { /// Lifetime would be extended by a reference binding to a temporary. RK_ReferenceBinding, /// Lifetime would be extended by a std::initializer_list object binding to /// its backing array. RK_StdInitializerList, }; /// A temporary or local variable. This will be one of: /// * A MaterializeTemporaryExpr. /// * A DeclRefExpr whose declaration is a local. /// * An AddrLabelExpr. /// * A BlockExpr for a block with captures. using Local = Expr *; /// Expressions we stepped over when looking for the local state. Any steps /// that would inhibit lifetime extension or take us out of subexpressions of /// the initializer are included. struct IndirectLocalPathEntry { enum EntryKind { DefaultInit, AddressOf, VarInit, LValToRVal, LifetimeBoundCall, TemporaryCopy, LambdaCaptureInit, GslReferenceInit, GslPointerInit, GslPointerAssignment, } Kind; Expr *E; union { const Decl *D = nullptr; const LambdaCapture *Capture; }; IndirectLocalPathEntry() {} IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) : Kind(K), E(E), D(D) {} IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture) : Kind(K), E(E), Capture(Capture) {} }; using IndirectLocalPath = llvm::SmallVectorImpl; struct RevertToOldSizeRAII { IndirectLocalPath &Path; unsigned OldSize = Path.size(); RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} ~RevertToOldSizeRAII() { Path.resize(OldSize); } }; using LocalVisitor = llvm::function_ref; } // namespace static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { for (auto E : Path) if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) return true; return false; } static bool pathContainsInit(IndirectLocalPath &Path) { return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { return E.Kind == IndirectLocalPathEntry::DefaultInit || E.Kind == IndirectLocalPathEntry::VarInit; }); } static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, Expr *Init, LocalVisitor Visit, bool RevisitSubinits, bool EnableLifetimeWarnings); static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, Expr *Init, ReferenceKind RK, LocalVisitor Visit, bool EnableLifetimeWarnings); template static bool isRecordWithAttr(QualType Type) { if (auto *RD = Type->getAsCXXRecordDecl()) return RD->hasAttr(); return false; } // Decl::isInStdNamespace will return false for iterators in some STL // implementations due to them being defined in a namespace outside of the std // namespace. static bool isInStlNamespace(const Decl *D) { const DeclContext *DC = D->getDeclContext(); if (!DC) return false; if (const auto *ND = dyn_cast(DC)) if (const IdentifierInfo *II = ND->getIdentifier()) { StringRef Name = II->getName(); if (Name.size() >= 2 && Name.front() == '_' && (Name[1] == '_' || isUppercase(Name[1]))) return true; } return DC->isStdNamespace(); } static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { if (auto *Conv = dyn_cast_or_null(Callee)) if (isRecordWithAttr(Conv->getConversionType())) return true; if (!isInStlNamespace(Callee->getParent())) return false; if (!isRecordWithAttr( Callee->getFunctionObjectParameterType()) && !isRecordWithAttr(Callee->getFunctionObjectParameterType())) return false; if (Callee->getReturnType()->isPointerType() || isRecordWithAttr(Callee->getReturnType())) { if (!Callee->getIdentifier()) return false; return llvm::StringSwitch(Callee->getName()) .Cases("begin", "rbegin", "cbegin", "crbegin", true) .Cases("end", "rend", "cend", "crend", true) .Cases("c_str", "data", "get", true) // Map and set types. .Cases("find", "equal_range", "lower_bound", "upper_bound", true) .Default(false); } else if (Callee->getReturnType()->isReferenceType()) { if (!Callee->getIdentifier()) { auto OO = Callee->getOverloadedOperator(); return OO == OverloadedOperatorKind::OO_Subscript || OO == OverloadedOperatorKind::OO_Star; } return llvm::StringSwitch(Callee->getName()) .Cases("front", "back", "at", "top", "value", true) .Default(false); } return false; } static bool shouldTrackFirstArgument(const FunctionDecl *FD) { if (!FD->getIdentifier() || FD->getNumParams() != 1) return false; const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) return false; if (!RD->hasAttr() && !RD->hasAttr()) return false; if (FD->getReturnType()->isPointerType() || isRecordWithAttr(FD->getReturnType())) { return llvm::StringSwitch(FD->getName()) .Cases("begin", "rbegin", "cbegin", "crbegin", true) .Cases("end", "rend", "cend", "crend", true) .Case("data", true) .Default(false); } else if (FD->getReturnType()->isReferenceType()) { return llvm::StringSwitch(FD->getName()) .Cases("get", "any_cast", true) .Default(false); } return false; } static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, LocalVisitor Visit) { auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { // We are not interested in the temporary base objects of gsl Pointers: // Temp().ptr; // Here ptr might not dangle. if (isa(Arg->IgnoreImpCasts())) return; // Once we initialized a value with a reference, it can no longer dangle. if (!Value) { for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) { if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit) continue; if (PE.Kind == IndirectLocalPathEntry::GslPointerInit || PE.Kind == IndirectLocalPathEntry::GslPointerAssignment) return; break; } } Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit : IndirectLocalPathEntry::GslReferenceInit, Arg, D}); if (Arg->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, Visit, /*EnableLifetimeWarnings=*/true); else visitLocalsRetainedByInitializer(Path, Arg, Visit, true, /*EnableLifetimeWarnings=*/true); Path.pop_back(); }; if (auto *MCE = dyn_cast(Call)) { const auto *MD = cast_or_null(MCE->getDirectCallee()); if (MD && shouldTrackImplicitObjectArg(MD)) VisitPointerArg(MD, MCE->getImplicitObjectArgument(), !MD->getReturnType()->isReferenceType()); return; } else if (auto *OCE = dyn_cast(Call)) { FunctionDecl *Callee = OCE->getDirectCallee(); if (Callee && Callee->isCXXInstanceMember() && shouldTrackImplicitObjectArg(cast(Callee))) VisitPointerArg(Callee, OCE->getArg(0), !Callee->getReturnType()->isReferenceType()); return; } else if (auto *CE = dyn_cast(Call)) { FunctionDecl *Callee = CE->getDirectCallee(); if (Callee && shouldTrackFirstArgument(Callee)) VisitPointerArg(Callee, CE->getArg(0), !Callee->getReturnType()->isReferenceType()); return; } if (auto *CCE = dyn_cast(Call)) { const auto *Ctor = CCE->getConstructor(); const CXXRecordDecl *RD = Ctor->getParent(); if (CCE->getNumArgs() > 0 && RD->hasAttr()) VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); } } static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); if (!TSI) return false; // Don't declare this variable in the second operand of the for-statement; // GCC miscompiles that by ending its lifetime before evaluating the // third operand. See gcc.gnu.org/PR86769. AttributedTypeLoc ATL; for (TypeLoc TL = TSI->getTypeLoc(); (ATL = TL.getAsAdjusted()); TL = ATL.getModifiedLoc()) { if (ATL.getAttrAs()) return true; } // Assume that all assignment operators with a "normal" return type return // *this, that is, an lvalue reference that is the same type as the implicit // object parameter (or the LHS for a non-member operator$=). OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator(); if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) { QualType RetT = FD->getReturnType(); if (RetT->isLValueReferenceType()) { ASTContext &Ctx = FD->getASTContext(); QualType LHST; auto *MD = dyn_cast(FD); if (MD && MD->isCXXInstanceMember()) LHST = Ctx.getLValueReferenceType(MD->getFunctionObjectParameterType()); else LHST = MD->getParamDecl(0)->getType(); if (Ctx.hasSameType(RetT, LHST)) return true; } } return false; } static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, LocalVisitor Visit) { const FunctionDecl *Callee; ArrayRef Args; if (auto *CE = dyn_cast(Call)) { Callee = CE->getDirectCallee(); Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs()); } else { auto *CCE = cast(Call); Callee = CCE->getConstructor(); Args = llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()); } if (!Callee) return; Expr *ObjectArg = nullptr; if (isa(Call) && Callee->isCXXInstanceMember()) { ObjectArg = Args[0]; Args = Args.slice(1); } else if (auto *MCE = dyn_cast(Call)) { ObjectArg = MCE->getImplicitObjectArgument(); } auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); if (Arg->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, Visit, /*EnableLifetimeWarnings=*/false); else visitLocalsRetainedByInitializer(Path, Arg, Visit, true, /*EnableLifetimeWarnings=*/false); Path.pop_back(); }; bool CheckCoroCall = false; if (const auto *RD = Callee->getReturnType()->getAsRecordDecl()) { CheckCoroCall = RD->hasAttr() && RD->hasAttr() && !Callee->hasAttr(); } if (ObjectArg) { bool CheckCoroObjArg = CheckCoroCall; // Coroutine lambda objects with empty capture list are not lifetimebound. if (auto *LE = dyn_cast(ObjectArg->IgnoreImplicit()); LE && LE->captures().empty()) CheckCoroObjArg = false; // Allow `get_return_object()` as the object param (__promise) is not // lifetimebound. if (Sema::CanBeGetReturnObject(Callee)) CheckCoroObjArg = false; if (implicitObjectParamIsLifetimeBound(Callee) || CheckCoroObjArg) VisitLifetimeBoundArg(Callee, ObjectArg); } for (unsigned I = 0, N = std::min(Callee->getNumParams(), Args.size()); I != N; ++I) { if (CheckCoroCall || Callee->getParamDecl(I)->hasAttr()) VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); } } /// Visit the locals that would be reachable through a reference bound to the /// glvalue expression \c Init. static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, Expr *Init, ReferenceKind RK, LocalVisitor Visit, bool EnableLifetimeWarnings) { RevertToOldSizeRAII RAII(Path); // Walk past any constructs which we can lifetime-extend across. Expr *Old; do { Old = Init; if (auto *FE = dyn_cast(Init)) Init = FE->getSubExpr(); if (InitListExpr *ILE = dyn_cast(Init)) { // If this is just redundant braces around an initializer, step over it. if (ILE->isTransparent()) Init = ILE->getInit(0); } // Step over any subobject adjustments; we may have a materialized // temporary inside them. Init = const_cast(Init->skipRValueSubobjectAdjustments()); // Per current approach for DR1376, look through casts to reference type // when performing lifetime extension. if (CastExpr *CE = dyn_cast(Init)) if (CE->getSubExpr()->isGLValue()) Init = CE->getSubExpr(); // Per the current approach for DR1299, look through array element access // on array glvalues when performing lifetime extension. if (auto *ASE = dyn_cast(Init)) { Init = ASE->getBase(); auto *ICE = dyn_cast(Init); if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) Init = ICE->getSubExpr(); else // We can't lifetime extend through this but we might still find some // retained temporaries. return visitLocalsRetainedByInitializer(Path, Init, Visit, true, EnableLifetimeWarnings); } // Step into CXXDefaultInitExprs so we can diagnose cases where a // constructor inherits one as an implicit mem-initializer. if (auto *DIE = dyn_cast(Init)) { Path.push_back( {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); Init = DIE->getExpr(); } } while (Init != Old); if (auto *MTE = dyn_cast(Init)) { if (Visit(Path, Local(MTE), RK)) visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, EnableLifetimeWarnings); } if (auto *M = dyn_cast(Init)) { // Lifetime of a non-reference type field is same as base object. if (auto *F = dyn_cast(M->getMemberDecl()); F && !F->getType()->isReferenceType()) visitLocalsRetainedByInitializer(Path, M->getBase(), Visit, true, EnableLifetimeWarnings); } if (isa(Init)) { if (EnableLifetimeWarnings) handleGslAnnotatedTypes(Path, Init, Visit); return visitLifetimeBoundArguments(Path, Init, Visit); } switch (Init->getStmtClass()) { case Stmt::DeclRefExprClass: { // If we find the name of a local non-reference parameter, we could have a // lifetime problem. auto *DRE = cast(Init); auto *VD = dyn_cast(DRE->getDecl()); if (VD && VD->hasLocalStorage() && !DRE->refersToEnclosingVariableOrCapture()) { if (!VD->getType()->isReferenceType()) { Visit(Path, Local(DRE), RK); } else if (isa(DRE->getDecl())) { // The lifetime of a reference parameter is unknown; assume it's OK // for now. break; } else if (VD->getInit() && !isVarOnPath(Path, VD)) { Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), RK_ReferenceBinding, Visit, EnableLifetimeWarnings); } } break; } case Stmt::UnaryOperatorClass: { // The only unary operator that make sense to handle here // is Deref. All others don't resolve to a "name." This includes // handling all sorts of rvalues passed to a unary operator. const UnaryOperator *U = cast(Init); if (U->getOpcode() == UO_Deref) visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, EnableLifetimeWarnings); break; } case Stmt::ArraySectionExprClass: { visitLocalsRetainedByInitializer(Path, cast(Init)->getBase(), Visit, true, EnableLifetimeWarnings); break; } case Stmt::ConditionalOperatorClass: case Stmt::BinaryConditionalOperatorClass: { auto *C = cast(Init); if (!C->getTrueExpr()->getType()->isVoidType()) visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, EnableLifetimeWarnings); if (!C->getFalseExpr()->getType()->isVoidType()) visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, EnableLifetimeWarnings); break; } case Stmt::CompoundLiteralExprClass: { if (auto *CLE = dyn_cast(Init)) { if (!CLE->isFileScope()) Visit(Path, Local(CLE), RK); } break; } // FIXME: Visit the left-hand side of an -> or ->*. default: break; } } /// Visit the locals that would be reachable through an object initialized by /// the prvalue expression \c Init. static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, Expr *Init, LocalVisitor Visit, bool RevisitSubinits, bool EnableLifetimeWarnings) { RevertToOldSizeRAII RAII(Path); Expr *Old; do { Old = Init; // Step into CXXDefaultInitExprs so we can diagnose cases where a // constructor inherits one as an implicit mem-initializer. if (auto *DIE = dyn_cast(Init)) { Path.push_back( {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); Init = DIE->getExpr(); } if (auto *FE = dyn_cast(Init)) Init = FE->getSubExpr(); // Dig out the expression which constructs the extended temporary. Init = const_cast(Init->skipRValueSubobjectAdjustments()); if (CXXBindTemporaryExpr *BTE = dyn_cast(Init)) Init = BTE->getSubExpr(); Init = Init->IgnoreParens(); // Step over value-preserving rvalue casts. if (auto *CE = dyn_cast(Init)) { switch (CE->getCastKind()) { case CK_LValueToRValue: // If we can match the lvalue to a const object, we can look at its // initializer. Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); return visitLocalsRetainedByReferenceBinding( Path, Init, RK_ReferenceBinding, [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { if (auto *DRE = dyn_cast(L)) { auto *VD = dyn_cast(DRE->getDecl()); if (VD && VD->getType().isConstQualified() && VD->getInit() && !isVarOnPath(Path, VD)) { Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); visitLocalsRetainedByInitializer( Path, VD->getInit(), Visit, true, EnableLifetimeWarnings); } } else if (auto *MTE = dyn_cast(L)) { if (MTE->getType().isConstQualified()) visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, EnableLifetimeWarnings); } return false; }, EnableLifetimeWarnings); // We assume that objects can be retained by pointers cast to integers, // but not if the integer is cast to floating-point type or to _Complex. // We assume that casts to 'bool' do not preserve enough information to // retain a local object. case CK_NoOp: case CK_BitCast: case CK_BaseToDerived: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_Dynamic: case CK_ToUnion: case CK_UserDefinedConversion: case CK_ConstructorConversion: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_VectorSplat: case CK_IntegralCast: case CK_CPointerToObjCPointerCast: case CK_BlockPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: case CK_AddressSpaceConversion: break; case CK_ArrayToPointerDecay: // Model array-to-pointer decay as taking the address of the array // lvalue. Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), RK_ReferenceBinding, Visit, EnableLifetimeWarnings); default: return; } Init = CE->getSubExpr(); } } while (Old != Init); // C++17 [dcl.init.list]p6: // initializing an initializer_list object from the array extends the // lifetime of the array exactly like binding a reference to a temporary. if (auto *ILE = dyn_cast(Init)) return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), RK_StdInitializerList, Visit, EnableLifetimeWarnings); if (InitListExpr *ILE = dyn_cast(Init)) { // We already visited the elements of this initializer list while // performing the initialization. Don't visit them again unless we've // changed the lifetime of the initialized entity. if (!RevisitSubinits) return; if (ILE->isTransparent()) return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, RevisitSubinits, EnableLifetimeWarnings); if (ILE->getType()->isArrayType()) { for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, RevisitSubinits, EnableLifetimeWarnings); return; } if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { assert(RD->isAggregate() && "aggregate init on non-aggregate"); // If we lifetime-extend a braced initializer which is initializing an // aggregate, and that aggregate contains reference members which are // bound to temporaries, those temporaries are also lifetime-extended. if (RD->isUnion() && ILE->getInitializedFieldInUnion() && ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), RK_ReferenceBinding, Visit, EnableLifetimeWarnings); else { unsigned Index = 0; for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, RevisitSubinits, EnableLifetimeWarnings); for (const auto *I : RD->fields()) { if (Index >= ILE->getNumInits()) break; if (I->isUnnamedBitField()) continue; Expr *SubInit = ILE->getInit(Index); if (I->getType()->isReferenceType()) visitLocalsRetainedByReferenceBinding(Path, SubInit, RK_ReferenceBinding, Visit, EnableLifetimeWarnings); else // This might be either aggregate-initialization of a member or // initialization of a std::initializer_list object. Regardless, // we should recursively lifetime-extend that initializer. visitLocalsRetainedByInitializer( Path, SubInit, Visit, RevisitSubinits, EnableLifetimeWarnings); ++Index; } } } return; } // The lifetime of an init-capture is that of the closure object constructed // by a lambda-expression. if (auto *LE = dyn_cast(Init)) { LambdaExpr::capture_iterator CapI = LE->capture_begin(); for (Expr *E : LE->capture_inits()) { assert(CapI != LE->capture_end()); const LambdaCapture &Cap = *CapI++; if (!E) continue; if (Cap.capturesVariable()) Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap}); if (E->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, Visit, EnableLifetimeWarnings); else visitLocalsRetainedByInitializer(Path, E, Visit, true, EnableLifetimeWarnings); if (Cap.capturesVariable()) Path.pop_back(); } } // Assume that a copy or move from a temporary references the same objects // that the temporary does. if (auto *CCE = dyn_cast(Init)) { if (CCE->getConstructor()->isCopyOrMoveConstructor()) { if (auto *MTE = dyn_cast(CCE->getArg(0))) { // assert(false && "hit temporary copy path"); Expr *Arg = MTE->getSubExpr(); Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg, CCE->getConstructor()}); visitLocalsRetainedByInitializer(Path, Arg, Visit, true, /*EnableLifetimeWarnings*/ false); Path.pop_back(); } } } if (isa(Init) || isa(Init)) { if (EnableLifetimeWarnings) handleGslAnnotatedTypes(Path, Init, Visit); return visitLifetimeBoundArguments(Path, Init, Visit); } switch (Init->getStmtClass()) { case Stmt::UnaryOperatorClass: { auto *UO = cast(Init); // If the initializer is the address of a local, we could have a lifetime // problem. if (UO->getOpcode() == UO_AddrOf) { // If this is &rvalue, then it's ill-formed and we have already diagnosed // it. Don't produce a redundant warning about the lifetime of the // temporary. if (isa(UO->getSubExpr())) return; Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), RK_ReferenceBinding, Visit, EnableLifetimeWarnings); } break; } case Stmt::BinaryOperatorClass: { // Handle pointer arithmetic. auto *BO = cast(Init); BinaryOperatorKind BOK = BO->getOpcode(); if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) break; if (BO->getLHS()->getType()->isPointerType()) visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, EnableLifetimeWarnings); else if (BO->getRHS()->getType()->isPointerType()) visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, EnableLifetimeWarnings); break; } case Stmt::ConditionalOperatorClass: case Stmt::BinaryConditionalOperatorClass: { auto *C = cast(Init); // In C++, we can have a throw-expression operand, which has 'void' type // and isn't interesting from a lifetime perspective. if (!C->getTrueExpr()->getType()->isVoidType()) visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, EnableLifetimeWarnings); if (!C->getFalseExpr()->getType()->isVoidType()) visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, EnableLifetimeWarnings); break; } case Stmt::BlockExprClass: if (cast(Init)->getBlockDecl()->hasCaptures()) { // This is a local block, whose lifetime is that of the function. Visit(Path, Local(cast(Init)), RK_ReferenceBinding); } break; case Stmt::AddrLabelExprClass: // We want to warn if the address of a label would escape the function. Visit(Path, Local(cast(Init)), RK_ReferenceBinding); break; default: break; } } /// Whether a path to an object supports lifetime extension. enum PathLifetimeKind { /// Lifetime-extend along this path. Extend, /// We should lifetime-extend, but we don't because (due to technical /// limitations) we can't. This happens for default member initializers, /// which we don't clone for every use, so we don't have a unique /// MaterializeTemporaryExpr to update. ShouldExtend, /// Do not lifetime extend along this path. NoExtend }; /// Determine whether this is an indirect path to a temporary that we are /// supposed to lifetime-extend along. static PathLifetimeKind shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { PathLifetimeKind Kind = PathLifetimeKind::Extend; for (auto Elem : Path) { if (Elem.Kind == IndirectLocalPathEntry::DefaultInit) Kind = PathLifetimeKind::ShouldExtend; else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit) return PathLifetimeKind::NoExtend; } return Kind; } /// Find the range for the first interesting entry in the path at or after I. static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, Expr *E) { for (unsigned N = Path.size(); I != N; ++I) { switch (Path[I].Kind) { case IndirectLocalPathEntry::AddressOf: case IndirectLocalPathEntry::LValToRVal: case IndirectLocalPathEntry::LifetimeBoundCall: case IndirectLocalPathEntry::TemporaryCopy: case IndirectLocalPathEntry::GslReferenceInit: case IndirectLocalPathEntry::GslPointerInit: case IndirectLocalPathEntry::GslPointerAssignment: // These exist primarily to mark the path as not permitting or // supporting lifetime extension. break; case IndirectLocalPathEntry::VarInit: if (cast(Path[I].D)->isImplicit()) return SourceRange(); [[fallthrough]]; case IndirectLocalPathEntry::DefaultInit: return Path[I].E->getSourceRange(); case IndirectLocalPathEntry::LambdaCaptureInit: if (!Path[I].Capture->capturesVariable()) continue; return Path[I].E->getSourceRange(); } } return E->getSourceRange(); } static bool pathOnlyHandlesGslPointer(IndirectLocalPath &Path) { for (const auto &It : llvm::reverse(Path)) { switch (It.Kind) { case IndirectLocalPathEntry::VarInit: case IndirectLocalPathEntry::AddressOf: case IndirectLocalPathEntry::LifetimeBoundCall: continue; case IndirectLocalPathEntry::GslPointerInit: case IndirectLocalPathEntry::GslReferenceInit: case IndirectLocalPathEntry::GslPointerAssignment: return true; default: return false; } } return false; } static void checkExprLifetimeImpl(Sema &SemaRef, const InitializedEntity *InitEntity, const InitializedEntity *ExtendingEntity, LifetimeKind LK, const AssignedEntity *AEntity, Expr *Init, bool EnableLifetimeWarnings) { assert((AEntity && LK == LK_Assignment) || (InitEntity && LK != LK_Assignment)); // If this entity doesn't have an interesting lifetime, don't bother looking // for temporaries within its initializer. if (LK == LK_FullExpression) return; // FIXME: consider moving the TemporaryVisitor and visitLocalsRetained* // functions to a dedicated class. auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { SourceRange DiagRange = nextPathEntryRange(Path, 0, L); SourceLocation DiagLoc = DiagRange.getBegin(); auto *MTE = dyn_cast(L); bool IsGslPtrValueFromGslTempOwner = false; bool IsLocalGslOwner = false; if (pathOnlyHandlesGslPointer(Path)) { if (isa(L)) { // We do not want to follow the references when returning a pointer // originating from a local owner to avoid the following false positive: // int &p = *localUniquePtr; // someContainer.add(std::move(localUniquePtr)); // return p; IsLocalGslOwner = isRecordWithAttr(L->getType()); if (pathContainsInit(Path) || !IsLocalGslOwner) return false; } else { IsGslPtrValueFromGslTempOwner = MTE && !MTE->getExtendingDecl() && isRecordWithAttr(MTE->getType()); // Skipping a chain of initializing gsl::Pointer annotated objects. // We are looking only for the final source to find out if it was // a local or temporary owner or the address of a local variable/param. if (!IsGslPtrValueFromGslTempOwner) return true; } } switch (LK) { case LK_FullExpression: llvm_unreachable("already handled this"); case LK_Extended: { if (!MTE) { // The initialized entity has lifetime beyond the full-expression, // and the local entity does too, so don't warn. // // FIXME: We should consider warning if a static / thread storage // duration variable retains an automatic storage duration local. return false; } if (IsGslPtrValueFromGslTempOwner && DiagLoc.isValid()) { SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; return false; } switch (shouldLifetimeExtendThroughPath(Path)) { case PathLifetimeKind::Extend: // Update the storage duration of the materialized temporary. // FIXME: Rebuild the expression instead of mutating it. MTE->setExtendingDecl(ExtendingEntity->getDecl(), ExtendingEntity->allocateManglingNumber()); // Also visit the temporaries lifetime-extended by this initializer. return true; case PathLifetimeKind::ShouldExtend: // We're supposed to lifetime-extend the temporary along this path (per // the resolution of DR1815), but we don't support that yet. // // FIXME: Properly handle this situation. Perhaps the easiest approach // would be to clone the initializer expression on each use that would // lifetime extend its temporaries. SemaRef.Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) << RK << DiagRange; break; case PathLifetimeKind::NoExtend: // If the path goes through the initialization of a variable or field, // it can't possibly reach a temporary created in this full-expression. // We will have already diagnosed any problems with the initializer. if (pathContainsInit(Path)) return false; SemaRef.Diag(DiagLoc, diag::warn_dangling_variable) << RK << !InitEntity->getParent() << ExtendingEntity->getDecl()->isImplicit() << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; break; } break; } case LK_Assignment: { if (!MTE || pathContainsInit(Path)) return false; assert(shouldLifetimeExtendThroughPath(Path) == PathLifetimeKind::NoExtend && "No lifetime extension for assignments"); SemaRef.Diag(DiagLoc, IsGslPtrValueFromGslTempOwner ? diag::warn_dangling_lifetime_pointer_assignment : diag::warn_dangling_pointer_assignment) << AEntity->LHS << DiagRange; return false; } case LK_MemInitializer: { if (MTE) { // Under C++ DR1696, if a mem-initializer (or a default member // initializer used by the absence of one) would lifetime-extend a // temporary, the program is ill-formed. if (auto *ExtendingDecl = ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { if (IsGslPtrValueFromGslTempOwner) { SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) << ExtendingDecl << DiagRange; SemaRef.Diag(ExtendingDecl->getLocation(), diag::note_ref_or_ptr_member_declared_here) << true; return false; } bool IsSubobjectMember = ExtendingEntity != InitEntity; SemaRef.Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) != PathLifetimeKind::NoExtend ? diag::err_dangling_member : diag::warn_dangling_member) << ExtendingDecl << IsSubobjectMember << RK << DiagRange; // Don't bother adding a note pointing to the field if we're inside // its default member initializer; our primary diagnostic points to // the same place in that case. if (Path.empty() || Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { SemaRef.Diag(ExtendingDecl->getLocation(), diag::note_lifetime_extending_member_declared_here) << RK << IsSubobjectMember; } } else { // We have a mem-initializer but no particular field within it; this // is either a base class or a delegating initializer directly // initializing the base-class from something that doesn't live long // enough. // // FIXME: Warn on this. return false; } } else { // Paths via a default initializer can only occur during error recovery // (there's no other way that a default initializer can refer to a // local). Don't produce a bogus warning on those cases. if (pathContainsInit(Path)) return false; // Suppress false positives for code like the one below: // Ctor(unique_ptr up) : member(*up), member2(move(up)) {} if (IsLocalGslOwner && pathOnlyHandlesGslPointer(Path)) return false; auto *DRE = dyn_cast(L); auto *VD = DRE ? dyn_cast(DRE->getDecl()) : nullptr; if (!VD) { // A member was initialized to a local block. // FIXME: Warn on this. return false; } if (auto *Member = ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { bool IsPointer = !Member->getType()->isReferenceType(); SemaRef.Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr : diag::warn_bind_ref_member_to_parameter) << Member << VD << isa(VD) << DiagRange; SemaRef.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here) << (unsigned)IsPointer; } } break; } case LK_New: if (isa(L)) { if (IsGslPtrValueFromGslTempOwner) SemaRef.Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; else SemaRef.Diag(DiagLoc, RK == RK_ReferenceBinding ? diag::warn_new_dangling_reference : diag::warn_new_dangling_initializer_list) << !InitEntity->getParent() << DiagRange; } else { // We can't determine if the allocation outlives the local declaration. return false; } break; case LK_Return: case LK_StmtExprResult: if (auto *DRE = dyn_cast(L)) { // We can't determine if the local variable outlives the statement // expression. if (LK == LK_StmtExprResult) return false; SemaRef.Diag(DiagLoc, diag::warn_ret_stack_addr_ref) << InitEntity->getType()->isReferenceType() << DRE->getDecl() << isa(DRE->getDecl()) << DiagRange; } else if (isa(L)) { SemaRef.Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; } else if (isa(L)) { // Don't warn when returning a label from a statement expression. // Leaving the scope doesn't end its lifetime. if (LK == LK_StmtExprResult) return false; SemaRef.Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; } else if (auto *CLE = dyn_cast(L)) { SemaRef.Diag(DiagLoc, diag::warn_ret_stack_addr_ref) << InitEntity->getType()->isReferenceType() << CLE->getInitializer() << 2 << DiagRange; } else { // P2748R5: Disallow Binding a Returned Glvalue to a Temporary. // [stmt.return]/p6: In a function whose return type is a reference, // other than an invented function for std::is_convertible ([meta.rel]), // a return statement that binds the returned reference to a temporary // expression ([class.temporary]) is ill-formed. if (SemaRef.getLangOpts().CPlusPlus26 && InitEntity->getType()->isReferenceType()) SemaRef.Diag(DiagLoc, diag::err_ret_local_temp_ref) << InitEntity->getType()->isReferenceType() << DiagRange; else SemaRef.Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) << InitEntity->getType()->isReferenceType() << DiagRange; } break; } for (unsigned I = 0; I != Path.size(); ++I) { auto Elem = Path[I]; switch (Elem.Kind) { case IndirectLocalPathEntry::AddressOf: case IndirectLocalPathEntry::LValToRVal: // These exist primarily to mark the path as not permitting or // supporting lifetime extension. break; case IndirectLocalPathEntry::LifetimeBoundCall: case IndirectLocalPathEntry::TemporaryCopy: case IndirectLocalPathEntry::GslPointerInit: case IndirectLocalPathEntry::GslReferenceInit: case IndirectLocalPathEntry::GslPointerAssignment: // FIXME: Consider adding a note for these. break; case IndirectLocalPathEntry::DefaultInit: { auto *FD = cast(Elem.D); SemaRef.Diag(FD->getLocation(), diag::note_init_with_default_member_initializer) << FD << nextPathEntryRange(Path, I + 1, L); break; } case IndirectLocalPathEntry::VarInit: { const VarDecl *VD = cast(Elem.D); SemaRef.Diag(VD->getLocation(), diag::note_local_var_initializer) << VD->getType()->isReferenceType() << VD->isImplicit() << VD->getDeclName() << nextPathEntryRange(Path, I + 1, L); break; } case IndirectLocalPathEntry::LambdaCaptureInit: if (!Elem.Capture->capturesVariable()) break; // FIXME: We can't easily tell apart an init-capture from a nested // capture of an init-capture. const ValueDecl *VD = Elem.Capture->getCapturedVar(); SemaRef.Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer) << VD << VD->isInitCapture() << Elem.Capture->isExplicit() << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD << nextPathEntryRange(Path, I + 1, L); break; } } // We didn't lifetime-extend, so don't go any further; we don't need more // warnings or errors on inner temporaries within this one's initializer. return false; }; llvm::SmallVector Path; if (EnableLifetimeWarnings && LK == LK_Assignment && isRecordWithAttr(AEntity->LHS->getType())) Path.push_back({IndirectLocalPathEntry::GslPointerAssignment, Init}); if (Init->isGLValue()) visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, TemporaryVisitor, EnableLifetimeWarnings); else visitLocalsRetainedByInitializer( Path, Init, TemporaryVisitor, // Don't revisit the sub inits for the intialization case. /*RevisitSubinits=*/!InitEntity, EnableLifetimeWarnings); } void checkExprLifetime(Sema &SemaRef, const InitializedEntity &Entity, Expr *Init) { auto LTResult = getEntityLifetime(&Entity); LifetimeKind LK = LTResult.getInt(); const InitializedEntity *ExtendingEntity = LTResult.getPointer(); bool EnableLifetimeWarnings = !SemaRef.getDiagnostics().isIgnored( diag::warn_dangling_lifetime_pointer, SourceLocation()); checkExprLifetimeImpl(SemaRef, &Entity, ExtendingEntity, LK, /*AEntity*/ nullptr, Init, EnableLifetimeWarnings); } void checkExprLifetime(Sema &SemaRef, const AssignedEntity &Entity, Expr *Init) { bool EnableLifetimeWarnings = !SemaRef.getDiagnostics().isIgnored( diag::warn_dangling_lifetime_pointer, SourceLocation()); bool RunAnalysis = Entity.LHS->getType()->isPointerType() || (EnableLifetimeWarnings && isRecordWithAttr(Entity.LHS->getType())); if (!RunAnalysis) return; checkExprLifetimeImpl(SemaRef, /*InitEntity=*/nullptr, /*ExtendingEntity=*/nullptr, LK_Assignment, &Entity, Init, EnableLifetimeWarnings); } } // namespace clang::sema