//===--- ParseInit.cpp - Initializer Parsing ------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements initializer parsing as specified by C99 6.7.8. // //===----------------------------------------------------------------------===// #include "clang/Basic/TokenKinds.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Parse/Parser.h" #include "clang/Parse/RAIIObjectsForParser.h" #include "clang/Sema/Designator.h" #include "clang/Sema/EnterExpressionEvaluationContext.h" #include "clang/Sema/Ownership.h" #include "clang/Sema/Scope.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" using namespace clang; /// MayBeDesignationStart - Return true if the current token might be the start /// of a designator. If we can tell it is impossible that it is a designator, /// return false. bool Parser::MayBeDesignationStart() { switch (Tok.getKind()) { default: return false; case tok::period: // designator: '.' identifier return true; case tok::l_square: { // designator: array-designator if (!PP.getLangOpts().CPlusPlus11) return true; // C++11 lambda expressions and C99 designators can be ambiguous all the // way through the closing ']' and to the next character. Handle the easy // cases here, and fall back to tentative parsing if those fail. switch (PP.LookAhead(0).getKind()) { case tok::equal: case tok::ellipsis: case tok::r_square: // Definitely starts a lambda expression. return false; case tok::amp: case tok::kw_this: case tok::star: case tok::identifier: // We have to do additional analysis, because these could be the // start of a constant expression or a lambda capture list. break; default: // Anything not mentioned above cannot occur following a '[' in a // lambda expression. return true; } // Handle the complicated case below. break; } case tok::identifier: // designation: identifier ':' return PP.LookAhead(0).is(tok::colon); } // Parse up to (at most) the token after the closing ']' to determine // whether this is a C99 designator or a lambda. RevertingTentativeParsingAction Tentative(*this); LambdaIntroducer Intro; LambdaIntroducerTentativeParse ParseResult; if (ParseLambdaIntroducer(Intro, &ParseResult)) { // Hit and diagnosed an error in a lambda. // FIXME: Tell the caller this happened so they can recover. return true; } switch (ParseResult) { case LambdaIntroducerTentativeParse::Success: case LambdaIntroducerTentativeParse::Incomplete: // Might be a lambda-expression. Keep looking. // FIXME: If our tentative parse was not incomplete, parse the lambda from // here rather than throwing away then reparsing the LambdaIntroducer. break; case LambdaIntroducerTentativeParse::MessageSend: case LambdaIntroducerTentativeParse::Invalid: // Can't be a lambda-expression. Treat it as a designator. // FIXME: Should we disambiguate against a message-send? return true; } // Once we hit the closing square bracket, we look at the next // token. If it's an '=', this is a designator. Otherwise, it's a // lambda expression. This decision favors lambdas over the older // GNU designator syntax, which allows one to omit the '=', but is // consistent with GCC. return Tok.is(tok::equal); } static void CheckArrayDesignatorSyntax(Parser &P, SourceLocation Loc, Designation &Desig) { // If we have exactly one array designator, this used the GNU // 'designation: array-designator' extension, otherwise there should be no // designators at all! if (Desig.getNumDesignators() == 1 && (Desig.getDesignator(0).isArrayDesignator() || Desig.getDesignator(0).isArrayRangeDesignator())) P.Diag(Loc, diag::ext_gnu_missing_equal_designator); else if (Desig.getNumDesignators() > 0) P.Diag(Loc, diag::err_expected_equal_designator); } /// ParseInitializerWithPotentialDesignator - Parse the 'initializer' production /// checking to see if the token stream starts with a designator. /// /// C99: /// /// designation: /// designator-list '=' /// [GNU] array-designator /// [GNU] identifier ':' /// /// designator-list: /// designator /// designator-list designator /// /// designator: /// array-designator /// '.' identifier /// /// array-designator: /// '[' constant-expression ']' /// [GNU] '[' constant-expression '...' constant-expression ']' /// /// C++20: /// /// designated-initializer-list: /// designated-initializer-clause /// designated-initializer-list ',' designated-initializer-clause /// /// designated-initializer-clause: /// designator brace-or-equal-initializer /// /// designator: /// '.' identifier /// /// We allow the C99 syntax extensions in C++20, but do not allow the C++20 /// extension (a braced-init-list after the designator with no '=') in C99. /// /// NOTE: [OBC] allows '[ objc-receiver objc-message-args ]' as an /// initializer (because it is an expression). We need to consider this case /// when parsing array designators. /// /// \p CodeCompleteCB is called with Designation parsed so far. ExprResult Parser::ParseInitializerWithPotentialDesignator( DesignatorCompletionInfo DesignatorCompletion) { // If this is the old-style GNU extension: // designation ::= identifier ':' // Handle it as a field designator. Otherwise, this must be the start of a // normal expression. if (Tok.is(tok::identifier)) { const IdentifierInfo *FieldName = Tok.getIdentifierInfo(); SmallString<256> NewSyntax; llvm::raw_svector_ostream(NewSyntax) << '.' << FieldName->getName() << " = "; SourceLocation NameLoc = ConsumeToken(); // Eat the identifier. assert(Tok.is(tok::colon) && "MayBeDesignationStart not working properly!"); SourceLocation ColonLoc = ConsumeToken(); Diag(NameLoc, diag::ext_gnu_old_style_field_designator) << FixItHint::CreateReplacement(SourceRange(NameLoc, ColonLoc), NewSyntax); Designation D; D.AddDesignator(Designator::CreateFieldDesignator( FieldName, SourceLocation(), NameLoc)); PreferredType.enterDesignatedInitializer( Tok.getLocation(), DesignatorCompletion.PreferredBaseType, D); return Actions.ActOnDesignatedInitializer(D, ColonLoc, true, ParseInitializer()); } // Desig - This is initialized when we see our first designator. We may have // an objc message send with no designator, so we don't want to create this // eagerly. Designation Desig; // Parse each designator in the designator list until we find an initializer. while (Tok.is(tok::period) || Tok.is(tok::l_square)) { if (Tok.is(tok::period)) { // designator: '.' identifier SourceLocation DotLoc = ConsumeToken(); if (Tok.is(tok::code_completion)) { cutOffParsing(); Actions.CodeCompleteDesignator(DesignatorCompletion.PreferredBaseType, DesignatorCompletion.InitExprs, Desig); return ExprError(); } if (Tok.isNot(tok::identifier)) { Diag(Tok.getLocation(), diag::err_expected_field_designator); return ExprError(); } Desig.AddDesignator(Designator::CreateFieldDesignator( Tok.getIdentifierInfo(), DotLoc, Tok.getLocation())); ConsumeToken(); // Eat the identifier. continue; } // We must have either an array designator now or an objc message send. assert(Tok.is(tok::l_square) && "Unexpected token!"); // Handle the two forms of array designator: // array-designator: '[' constant-expression ']' // array-designator: '[' constant-expression '...' constant-expression ']' // // Also, we have to handle the case where the expression after the // designator an an objc message send: '[' objc-message-expr ']'. // Interesting cases are: // [foo bar] -> objc message send // [foo] -> array designator // [foo ... bar] -> array designator // [4][foo bar] -> obsolete GNU designation with objc message send. // // We do not need to check for an expression starting with [[ here. If it // contains an Objective-C message send, then it is not an ill-formed // attribute. If it is a lambda-expression within an array-designator, then // it will be rejected because a constant-expression cannot begin with a // lambda-expression. InMessageExpressionRAIIObject InMessage(*this, true); BalancedDelimiterTracker T(*this, tok::l_square); T.consumeOpen(); SourceLocation StartLoc = T.getOpenLocation(); ExprResult Idx; // If Objective-C is enabled and this is a typename (class message // send) or send to 'super', parse this as a message send // expression. We handle C++ and C separately, since C++ requires // much more complicated parsing. if (getLangOpts().ObjC && getLangOpts().CPlusPlus) { // Send to 'super'. if (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_super && NextToken().isNot(tok::period) && getCurScope()->isInObjcMethodScope()) { CheckArrayDesignatorSyntax(*this, StartLoc, Desig); return ParseAssignmentExprWithObjCMessageExprStart( StartLoc, ConsumeToken(), nullptr, nullptr); } // Parse the receiver, which is either a type or an expression. bool IsExpr; void *TypeOrExpr; if (ParseObjCXXMessageReceiver(IsExpr, TypeOrExpr)) { SkipUntil(tok::r_square, StopAtSemi); return ExprError(); } // If the receiver was a type, we have a class message; parse // the rest of it. if (!IsExpr) { CheckArrayDesignatorSyntax(*this, StartLoc, Desig); return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, SourceLocation(), ParsedType::getFromOpaquePtr(TypeOrExpr), nullptr); } // If the receiver was an expression, we still don't know // whether we have a message send or an array designator; just // adopt the expression for further analysis below. // FIXME: potentially-potentially evaluated expression above? Idx = ExprResult(static_cast(TypeOrExpr)); } else if (getLangOpts().ObjC && Tok.is(tok::identifier)) { IdentifierInfo *II = Tok.getIdentifierInfo(); SourceLocation IILoc = Tok.getLocation(); ParsedType ReceiverType; // Three cases. This is a message send to a type: [type foo] // This is a message send to super: [super foo] // This is a message sent to an expr: [super.bar foo] switch (Actions.getObjCMessageKind( getCurScope(), II, IILoc, II == Ident_super, NextToken().is(tok::period), ReceiverType)) { case Sema::ObjCSuperMessage: CheckArrayDesignatorSyntax(*this, StartLoc, Desig); return ParseAssignmentExprWithObjCMessageExprStart( StartLoc, ConsumeToken(), nullptr, nullptr); case Sema::ObjCClassMessage: CheckArrayDesignatorSyntax(*this, StartLoc, Desig); ConsumeToken(); // the identifier if (!ReceiverType) { SkipUntil(tok::r_square, StopAtSemi); return ExprError(); } // Parse type arguments and protocol qualifiers. if (Tok.is(tok::less)) { SourceLocation NewEndLoc; TypeResult NewReceiverType = parseObjCTypeArgsAndProtocolQualifiers(IILoc, ReceiverType, /*consumeLastToken=*/true, NewEndLoc); if (!NewReceiverType.isUsable()) { SkipUntil(tok::r_square, StopAtSemi); return ExprError(); } ReceiverType = NewReceiverType.get(); } return ParseAssignmentExprWithObjCMessageExprStart(StartLoc, SourceLocation(), ReceiverType, nullptr); case Sema::ObjCInstanceMessage: // Fall through; we'll just parse the expression and // (possibly) treat this like an Objective-C message send // later. break; } } // Parse the index expression, if we haven't already gotten one // above (which can only happen in Objective-C++). // Note that we parse this as an assignment expression, not a constant // expression (allowing *=, =, etc) to handle the objc case. Sema needs // to validate that the expression is a constant. // FIXME: We also need to tell Sema that we're in a // potentially-potentially evaluated context. if (!Idx.get()) { Idx = ParseAssignmentExpression(); if (Idx.isInvalid()) { SkipUntil(tok::r_square, StopAtSemi); return Idx; } } // Given an expression, we could either have a designator (if the next // tokens are '...' or ']' or an objc message send. If this is an objc // message send, handle it now. An objc-message send is the start of // an assignment-expression production. if (getLangOpts().ObjC && Tok.isNot(tok::ellipsis) && Tok.isNot(tok::r_square)) { CheckArrayDesignatorSyntax(*this, Tok.getLocation(), Desig); return ParseAssignmentExprWithObjCMessageExprStart( StartLoc, SourceLocation(), nullptr, Idx.get()); } // If this is a normal array designator, remember it. if (Tok.isNot(tok::ellipsis)) { Desig.AddDesignator(Designator::CreateArrayDesignator(Idx.get(), StartLoc)); } else { // Handle the gnu array range extension. Diag(Tok, diag::ext_gnu_array_range); SourceLocation EllipsisLoc = ConsumeToken(); ExprResult RHS(ParseConstantExpression()); if (RHS.isInvalid()) { SkipUntil(tok::r_square, StopAtSemi); return RHS; } Desig.AddDesignator(Designator::CreateArrayRangeDesignator( Idx.get(), RHS.get(), StartLoc, EllipsisLoc)); } T.consumeClose(); Desig.getDesignator(Desig.getNumDesignators() - 1).setRBracketLoc( T.getCloseLocation()); } // Okay, we're done with the designator sequence. We know that there must be // at least one designator, because the only case we can get into this method // without a designator is when we have an objc message send. That case is // handled and returned from above. assert(!Desig.empty() && "Designator is empty?"); // Handle a normal designator sequence end, which is an equal. if (Tok.is(tok::equal)) { SourceLocation EqualLoc = ConsumeToken(); PreferredType.enterDesignatedInitializer( Tok.getLocation(), DesignatorCompletion.PreferredBaseType, Desig); return Actions.ActOnDesignatedInitializer(Desig, EqualLoc, false, ParseInitializer()); } // Handle a C++20 braced designated initialization, which results in // direct-list-initialization of the aggregate element. We allow this as an // extension from C++11 onwards (when direct-list-initialization was added). if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) { PreferredType.enterDesignatedInitializer( Tok.getLocation(), DesignatorCompletion.PreferredBaseType, Desig); return Actions.ActOnDesignatedInitializer(Desig, SourceLocation(), false, ParseBraceInitializer()); } // We read some number of designators and found something that isn't an = or // an initializer. If we have exactly one array designator, this // is the GNU 'designation: array-designator' extension. Otherwise, it is a // parse error. if (Desig.getNumDesignators() == 1 && (Desig.getDesignator(0).isArrayDesignator() || Desig.getDesignator(0).isArrayRangeDesignator())) { Diag(Tok, diag::ext_gnu_missing_equal_designator) << FixItHint::CreateInsertion(Tok.getLocation(), "= "); return Actions.ActOnDesignatedInitializer(Desig, Tok.getLocation(), true, ParseInitializer()); } Diag(Tok, diag::err_expected_equal_designator); return ExprError(); } /// ParseBraceInitializer - Called when parsing an initializer that has a /// leading open brace. /// /// initializer: [C99 6.7.8] /// '{' initializer-list '}' /// '{' initializer-list ',' '}' /// [C2x] '{' '}' /// /// initializer-list: /// designation[opt] initializer ...[opt] /// initializer-list ',' designation[opt] initializer ...[opt] /// ExprResult Parser::ParseBraceInitializer() { InMessageExpressionRAIIObject InMessage(*this, false); BalancedDelimiterTracker T(*this, tok::l_brace); T.consumeOpen(); SourceLocation LBraceLoc = T.getOpenLocation(); /// InitExprs - This is the actual list of expressions contained in the /// initializer. ExprVector InitExprs; if (Tok.is(tok::r_brace)) { // Empty initializers are a C++ feature and a GNU extension to C before C2x. if (!getLangOpts().CPlusPlus) { Diag(LBraceLoc, getLangOpts().C2x ? diag::warn_c2x_compat_empty_initializer : diag::ext_c_empty_initializer); } // Match the '}'. return Actions.ActOnInitList(LBraceLoc, std::nullopt, ConsumeBrace()); } // Enter an appropriate expression evaluation context for an initializer list. EnterExpressionEvaluationContext EnterContext( Actions, EnterExpressionEvaluationContext::InitList); bool InitExprsOk = true; QualType LikelyType = PreferredType.get(T.getOpenLocation()); DesignatorCompletionInfo DesignatorCompletion{InitExprs, LikelyType}; bool CalledSignatureHelp = false; auto RunSignatureHelp = [&] { QualType PreferredType; if (!LikelyType.isNull()) PreferredType = Actions.ProduceConstructorSignatureHelp( LikelyType->getCanonicalTypeInternal(), T.getOpenLocation(), InitExprs, T.getOpenLocation(), /*Braced=*/true); CalledSignatureHelp = true; return PreferredType; }; while (true) { PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp); // Handle Microsoft __if_exists/if_not_exists if necessary. if (getLangOpts().MicrosoftExt && (Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists))) { if (ParseMicrosoftIfExistsBraceInitializer(InitExprs, InitExprsOk)) { if (Tok.isNot(tok::comma)) break; ConsumeToken(); } if (Tok.is(tok::r_brace)) break; continue; } // Parse: designation[opt] initializer // If we know that this cannot be a designation, just parse the nested // initializer directly. ExprResult SubElt; if (MayBeDesignationStart()) SubElt = ParseInitializerWithPotentialDesignator(DesignatorCompletion); else SubElt = ParseInitializer(); if (Tok.is(tok::ellipsis)) SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken()); SubElt = Actions.CorrectDelayedTyposInExpr(SubElt.get()); // If we couldn't parse the subelement, bail out. if (SubElt.isUsable()) { InitExprs.push_back(SubElt.get()); } else { InitExprsOk = false; // We have two ways to try to recover from this error: if the code looks // grammatically ok (i.e. we have a comma coming up) try to continue // parsing the rest of the initializer. This allows us to emit // diagnostics for later elements that we find. If we don't see a comma, // assume there is a parse error, and just skip to recover. // FIXME: This comment doesn't sound right. If there is a r_brace // immediately, it can't be an error, since there is no other way of // leaving this loop except through this if. if (Tok.isNot(tok::comma)) { SkipUntil(tok::r_brace, StopBeforeMatch); break; } } // If we don't have a comma continued list, we're done. if (Tok.isNot(tok::comma)) break; // TODO: save comma locations if some client cares. ConsumeToken(); // Handle trailing comma. if (Tok.is(tok::r_brace)) break; } bool closed = !T.consumeClose(); if (InitExprsOk && closed) return Actions.ActOnInitList(LBraceLoc, InitExprs, T.getCloseLocation()); return ExprError(); // an error occurred. } // Return true if a comma (or closing brace) is necessary after the // __if_exists/if_not_exists statement. bool Parser::ParseMicrosoftIfExistsBraceInitializer(ExprVector &InitExprs, bool &InitExprsOk) { bool trailingComma = false; IfExistsCondition Result; if (ParseMicrosoftIfExistsCondition(Result)) return false; BalancedDelimiterTracker Braces(*this, tok::l_brace); if (Braces.consumeOpen()) { Diag(Tok, diag::err_expected) << tok::l_brace; return false; } switch (Result.Behavior) { case IEB_Parse: // Parse the declarations below. break; case IEB_Dependent: Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists) << Result.IsIfExists; // Fall through to skip. [[fallthrough]]; case IEB_Skip: Braces.skipToEnd(); return false; } DesignatorCompletionInfo DesignatorCompletion{ InitExprs, PreferredType.get(Braces.getOpenLocation()), }; while (!isEofOrEom()) { trailingComma = false; // If we know that this cannot be a designation, just parse the nested // initializer directly. ExprResult SubElt; if (MayBeDesignationStart()) SubElt = ParseInitializerWithPotentialDesignator(DesignatorCompletion); else SubElt = ParseInitializer(); if (Tok.is(tok::ellipsis)) SubElt = Actions.ActOnPackExpansion(SubElt.get(), ConsumeToken()); // If we couldn't parse the subelement, bail out. if (!SubElt.isInvalid()) InitExprs.push_back(SubElt.get()); else InitExprsOk = false; if (Tok.is(tok::comma)) { ConsumeToken(); trailingComma = true; } if (Tok.is(tok::r_brace)) break; } Braces.consumeClose(); return !trailingComma; }