//===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Preprocessor interface. // //===----------------------------------------------------------------------===// // // Options to support: // -H - Print the name of each header file used. // -d[DNI] - Dump various things. // -fworking-directory - #line's with preprocessor's working dir. // -fpreprocessed // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD // -W* // -w // // Messages to emit: // "Multiple include guards may be useful for:\n" // //===----------------------------------------------------------------------===// #include "clang/Lex/Preprocessor.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/FileSystemStatCache.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/Module.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/CodeCompletionHandler.h" #include "clang/Lex/ExternalPreprocessorSource.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/LexDiagnostic.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Lex/MacroArgs.h" #include "clang/Lex/MacroInfo.h" #include "clang/Lex/ModuleLoader.h" #include "clang/Lex/Pragma.h" #include "clang/Lex/PreprocessingRecord.h" #include "clang/Lex/PreprocessorLexer.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Lex/ScratchBuffer.h" #include "clang/Lex/Token.h" #include "clang/Lex/TokenLexer.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Capacity.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace clang; LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry) ExternalPreprocessorSource::~ExternalPreprocessorSource() = default; Preprocessor::Preprocessor(std::shared_ptr PPOpts, DiagnosticsEngine &diags, LangOptions &opts, SourceManager &SM, HeaderSearch &Headers, ModuleLoader &TheModuleLoader, IdentifierInfoLookup *IILookup, bool OwnsHeaders, TranslationUnitKind TUKind) : PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts), FileMgr(Headers.getFileMgr()), SourceMgr(SM), ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers), TheModuleLoader(TheModuleLoader), ExternalSource(nullptr), // As the language options may have not been loaded yet (when // deserializing an ASTUnit), adding keywords to the identifier table is // deferred to Preprocessor::Initialize(). Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())), TUKind(TUKind), SkipMainFilePreamble(0, true), CurSubmoduleState(&NullSubmoduleState) { OwnsHeaderSearch = OwnsHeaders; // Default to discarding comments. KeepComments = false; KeepMacroComments = false; SuppressIncludeNotFoundError = false; // Macro expansion is enabled. DisableMacroExpansion = false; MacroExpansionInDirectivesOverride = false; InMacroArgs = false; ArgMacro = nullptr; InMacroArgPreExpansion = false; NumCachedTokenLexers = 0; PragmasEnabled = true; ParsingIfOrElifDirective = false; PreprocessedOutput = false; // We haven't read anything from the external source. ReadMacrosFromExternalSource = false; BuiltinInfo = std::make_unique(); // "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of // a macro. They get unpoisoned where it is allowed. (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use); (Ident__VA_OPT__ = getIdentifierInfo("__VA_OPT__"))->setIsPoisoned(); SetPoisonReason(Ident__VA_OPT__,diag::ext_pp_bad_vaopt_use); // Initialize the pragma handlers. RegisterBuiltinPragmas(); // Initialize builtin macros like __LINE__ and friends. RegisterBuiltinMacros(); if(LangOpts.Borland) { Ident__exception_info = getIdentifierInfo("_exception_info"); Ident___exception_info = getIdentifierInfo("__exception_info"); Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation"); Ident__exception_code = getIdentifierInfo("_exception_code"); Ident___exception_code = getIdentifierInfo("__exception_code"); Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode"); Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination"); Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination"); Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination"); } else { Ident__exception_info = Ident__exception_code = nullptr; Ident__abnormal_termination = Ident___exception_info = nullptr; Ident___exception_code = Ident___abnormal_termination = nullptr; Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr; Ident_AbnormalTermination = nullptr; } // If using a PCH where a #pragma hdrstop is expected, start skipping tokens. if (usingPCHWithPragmaHdrStop()) SkippingUntilPragmaHdrStop = true; // If using a PCH with a through header, start skipping tokens. if (!this->PPOpts->PCHThroughHeader.empty() && !this->PPOpts->ImplicitPCHInclude.empty()) SkippingUntilPCHThroughHeader = true; if (this->PPOpts->GeneratePreamble) PreambleConditionalStack.startRecording(); ExcludedConditionalDirectiveSkipMappings = this->PPOpts->ExcludedConditionalDirectiveSkipMappings; if (ExcludedConditionalDirectiveSkipMappings) ExcludedConditionalDirectiveSkipMappings->clear(); MaxTokens = LangOpts.MaxTokens; } Preprocessor::~Preprocessor() { assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!"); IncludeMacroStack.clear(); // Destroy any macro definitions. while (MacroInfoChain *I = MIChainHead) { MIChainHead = I->Next; I->~MacroInfoChain(); } // Free any cached macro expanders. // This populates MacroArgCache, so all TokenLexers need to be destroyed // before the code below that frees up the MacroArgCache list. std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr); CurTokenLexer.reset(); // Free any cached MacroArgs. for (MacroArgs *ArgList = MacroArgCache; ArgList;) ArgList = ArgList->deallocate(); // Delete the header search info, if we own it. if (OwnsHeaderSearch) delete &HeaderInfo; } void Preprocessor::Initialize(const TargetInfo &Target, const TargetInfo *AuxTarget) { assert((!this->Target || this->Target == &Target) && "Invalid override of target information"); this->Target = &Target; assert((!this->AuxTarget || this->AuxTarget == AuxTarget) && "Invalid override of aux target information."); this->AuxTarget = AuxTarget; // Initialize information about built-ins. BuiltinInfo->InitializeTarget(Target, AuxTarget); HeaderInfo.setTarget(Target); // Populate the identifier table with info about keywords for the current language. Identifiers.AddKeywords(LangOpts); } void Preprocessor::InitializeForModelFile() { NumEnteredSourceFiles = 0; // Reset pragmas PragmaHandlersBackup = std::move(PragmaHandlers); PragmaHandlers = std::make_unique(StringRef()); RegisterBuiltinPragmas(); // Reset PredefinesFileID PredefinesFileID = FileID(); } void Preprocessor::FinalizeForModelFile() { NumEnteredSourceFiles = 1; PragmaHandlers = std::move(PragmaHandlersBackup); } void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { llvm::errs() << tok::getTokenName(Tok.getKind()) << " '" << getSpelling(Tok) << "'"; if (!DumpFlags) return; llvm::errs() << "\t"; if (Tok.isAtStartOfLine()) llvm::errs() << " [StartOfLine]"; if (Tok.hasLeadingSpace()) llvm::errs() << " [LeadingSpace]"; if (Tok.isExpandDisabled()) llvm::errs() << " [ExpandDisabled]"; if (Tok.needsCleaning()) { const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength()) << "']"; } llvm::errs() << "\tLoc=<"; DumpLocation(Tok.getLocation()); llvm::errs() << ">"; } void Preprocessor::DumpLocation(SourceLocation Loc) const { Loc.print(llvm::errs(), SourceMgr); } void Preprocessor::DumpMacro(const MacroInfo &MI) const { llvm::errs() << "MACRO: "; for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { DumpToken(MI.getReplacementToken(i)); llvm::errs() << " "; } llvm::errs() << "\n"; } void Preprocessor::PrintStats() { llvm::errs() << "\n*** Preprocessor Stats:\n"; llvm::errs() << NumDirectives << " directives found:\n"; llvm::errs() << " " << NumDefined << " #define.\n"; llvm::errs() << " " << NumUndefined << " #undef.\n"; llvm::errs() << " #include/#include_next/#import:\n"; llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n"; llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n"; llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n"; llvm::errs() << " " << NumElse << " #else/#elif/#elifdef/#elifndef.\n"; llvm::errs() << " " << NumEndif << " #endif.\n"; llvm::errs() << " " << NumPragma << " #pragma.\n"; llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " << NumFastMacroExpanded << " on the fast path.\n"; llvm::errs() << (NumFastTokenPaste+NumTokenPaste) << " token paste (##) operations performed, " << NumFastTokenPaste << " on the fast path.\n"; llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total"; llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory(); llvm::errs() << "\n Macro Expanded Tokens: " << llvm::capacity_in_bytes(MacroExpandedTokens); llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity(); // FIXME: List information for all submodules. llvm::errs() << "\n Macros: " << llvm::capacity_in_bytes(CurSubmoduleState->Macros); llvm::errs() << "\n #pragma push_macro Info: " << llvm::capacity_in_bytes(PragmaPushMacroInfo); llvm::errs() << "\n Poison Reasons: " << llvm::capacity_in_bytes(PoisonReasons); llvm::errs() << "\n Comment Handlers: " << llvm::capacity_in_bytes(CommentHandlers) << "\n"; } Preprocessor::macro_iterator Preprocessor::macro_begin(bool IncludeExternalMacros) const { if (IncludeExternalMacros && ExternalSource && !ReadMacrosFromExternalSource) { ReadMacrosFromExternalSource = true; ExternalSource->ReadDefinedMacros(); } // Make sure we cover all macros in visible modules. for (const ModuleMacro &Macro : ModuleMacros) CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState())); return CurSubmoduleState->Macros.begin(); } size_t Preprocessor::getTotalMemory() const { return BP.getTotalMemory() + llvm::capacity_in_bytes(MacroExpandedTokens) + Predefines.capacity() /* Predefines buffer. */ // FIXME: Include sizes from all submodules, and include MacroInfo sizes, // and ModuleMacros. + llvm::capacity_in_bytes(CurSubmoduleState->Macros) + llvm::capacity_in_bytes(PragmaPushMacroInfo) + llvm::capacity_in_bytes(PoisonReasons) + llvm::capacity_in_bytes(CommentHandlers); } Preprocessor::macro_iterator Preprocessor::macro_end(bool IncludeExternalMacros) const { if (IncludeExternalMacros && ExternalSource && !ReadMacrosFromExternalSource) { ReadMacrosFromExternalSource = true; ExternalSource->ReadDefinedMacros(); } return CurSubmoduleState->Macros.end(); } /// Compares macro tokens with a specified token value sequence. static bool MacroDefinitionEquals(const MacroInfo *MI, ArrayRef Tokens) { return Tokens.size() == MI->getNumTokens() && std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin()); } StringRef Preprocessor::getLastMacroWithSpelling( SourceLocation Loc, ArrayRef Tokens) const { SourceLocation BestLocation; StringRef BestSpelling; for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end(); I != E; ++I) { const MacroDirective::DefInfo Def = I->second.findDirectiveAtLoc(Loc, SourceMgr); if (!Def || !Def.getMacroInfo()) continue; if (!Def.getMacroInfo()->isObjectLike()) continue; if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens)) continue; SourceLocation Location = Def.getLocation(); // Choose the macro defined latest. if (BestLocation.isInvalid() || (Location.isValid() && SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) { BestLocation = Location; BestSpelling = I->first->getName(); } } return BestSpelling; } void Preprocessor::recomputeCurLexerKind() { if (CurLexer) CurLexerKind = CLK_Lexer; else if (CurTokenLexer) CurLexerKind = CLK_TokenLexer; else CurLexerKind = CLK_CachingLexer; } bool Preprocessor::SetCodeCompletionPoint(const FileEntry *File, unsigned CompleteLine, unsigned CompleteColumn) { assert(File); assert(CompleteLine && CompleteColumn && "Starts from 1:1"); assert(!CodeCompletionFile && "Already set"); // Load the actual file's contents. Optional Buffer = SourceMgr.getMemoryBufferForFileOrNone(File); if (!Buffer) return true; // Find the byte position of the truncation point. const char *Position = Buffer->getBufferStart(); for (unsigned Line = 1; Line < CompleteLine; ++Line) { for (; *Position; ++Position) { if (*Position != '\r' && *Position != '\n') continue; // Eat \r\n or \n\r as a single line. if ((Position[1] == '\r' || Position[1] == '\n') && Position[0] != Position[1]) ++Position; ++Position; break; } } Position += CompleteColumn - 1; // If pointing inside the preamble, adjust the position at the beginning of // the file after the preamble. if (SkipMainFilePreamble.first && SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) { if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first) Position = Buffer->getBufferStart() + SkipMainFilePreamble.first; } if (Position > Buffer->getBufferEnd()) Position = Buffer->getBufferEnd(); CodeCompletionFile = File; CodeCompletionOffset = Position - Buffer->getBufferStart(); auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer( Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier()); char *NewBuf = NewBuffer->getBufferStart(); char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf); *NewPos = '\0'; std::copy(Position, Buffer->getBufferEnd(), NewPos+1); SourceMgr.overrideFileContents(File, std::move(NewBuffer)); return false; } void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled) { setCodeCompletionReached(); if (CodeComplete) CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled); } void Preprocessor::CodeCompleteNaturalLanguage() { setCodeCompletionReached(); if (CodeComplete) CodeComplete->CodeCompleteNaturalLanguage(); } /// getSpelling - This method is used to get the spelling of a token into a /// SmallVector. Note that the returned StringRef may not point to the /// supplied buffer if a copy can be avoided. StringRef Preprocessor::getSpelling(const Token &Tok, SmallVectorImpl &Buffer, bool *Invalid) const { // NOTE: this has to be checked *before* testing for an IdentifierInfo. if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) { // Try the fast path. if (const IdentifierInfo *II = Tok.getIdentifierInfo()) return II->getName(); } // Resize the buffer if we need to copy into it. if (Tok.needsCleaning()) Buffer.resize(Tok.getLength()); const char *Ptr = Buffer.data(); unsigned Len = getSpelling(Tok, Ptr, Invalid); return StringRef(Ptr, Len); } /// CreateString - Plop the specified string into a scratch buffer and return a /// location for it. If specified, the source location provides a source /// location for the token. void Preprocessor::CreateString(StringRef Str, Token &Tok, SourceLocation ExpansionLocStart, SourceLocation ExpansionLocEnd) { Tok.setLength(Str.size()); const char *DestPtr; SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr); if (ExpansionLocStart.isValid()) Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart, ExpansionLocEnd, Str.size()); Tok.setLocation(Loc); // If this is a raw identifier or a literal token, set the pointer data. if (Tok.is(tok::raw_identifier)) Tok.setRawIdentifierData(DestPtr); else if (Tok.isLiteral()) Tok.setLiteralData(DestPtr); } SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) { auto &SM = getSourceManager(); SourceLocation SpellingLoc = SM.getSpellingLoc(Loc); std::pair LocInfo = SM.getDecomposedLoc(SpellingLoc); bool Invalid = false; StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); if (Invalid) return SourceLocation(); // FIXME: We could consider re-using spelling for tokens we see repeatedly. const char *DestPtr; SourceLocation Spelling = ScratchBuf->getToken(Buffer.data() + LocInfo.second, Length, DestPtr); return SM.createTokenSplitLoc(Spelling, Loc, Loc.getLocWithOffset(Length)); } Module *Preprocessor::getCurrentModule() { if (!getLangOpts().isCompilingModule()) return nullptr; return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule); } //===----------------------------------------------------------------------===// // Preprocessor Initialization Methods //===----------------------------------------------------------------------===// /// EnterMainSourceFile - Enter the specified FileID as the main source file, /// which implicitly adds the builtin defines etc. void Preprocessor::EnterMainSourceFile() { // We do not allow the preprocessor to reenter the main file. Doing so will // cause FileID's to accumulate information from both runs (e.g. #line // information) and predefined macros aren't guaranteed to be set properly. assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!"); FileID MainFileID = SourceMgr.getMainFileID(); // If MainFileID is loaded it means we loaded an AST file, no need to enter // a main file. if (!SourceMgr.isLoadedFileID(MainFileID)) { // Enter the main file source buffer. EnterSourceFile(MainFileID, nullptr, SourceLocation()); // If we've been asked to skip bytes in the main file (e.g., as part of a // precompiled preamble), do so now. if (SkipMainFilePreamble.first > 0) CurLexer->SetByteOffset(SkipMainFilePreamble.first, SkipMainFilePreamble.second); // Tell the header info that the main file was entered. If the file is later // #imported, it won't be re-entered. if (const FileEntry *FE = SourceMgr.getFileEntryForID(MainFileID)) HeaderInfo.IncrementIncludeCount(FE); } // Preprocess Predefines to populate the initial preprocessor state. std::unique_ptr SB = llvm::MemoryBuffer::getMemBufferCopy(Predefines, ""); assert(SB && "Cannot create predefined source buffer"); FileID FID = SourceMgr.createFileID(std::move(SB)); assert(FID.isValid() && "Could not create FileID for predefines?"); setPredefinesFileID(FID); // Start parsing the predefines. EnterSourceFile(FID, nullptr, SourceLocation()); if (!PPOpts->PCHThroughHeader.empty()) { // Lookup and save the FileID for the through header. If it isn't found // in the search path, it's a fatal error. const DirectoryLookup *CurDir; Optional File = LookupFile( SourceLocation(), PPOpts->PCHThroughHeader, /*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr, CurDir, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr, /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, /*IsFrameworkFound=*/nullptr); if (!File) { Diag(SourceLocation(), diag::err_pp_through_header_not_found) << PPOpts->PCHThroughHeader; return; } setPCHThroughHeaderFileID( SourceMgr.createFileID(*File, SourceLocation(), SrcMgr::C_User)); } // Skip tokens from the Predefines and if needed the main file. if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) || (usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop)) SkipTokensWhileUsingPCH(); } void Preprocessor::setPCHThroughHeaderFileID(FileID FID) { assert(PCHThroughHeaderFileID.isInvalid() && "PCHThroughHeaderFileID already set!"); PCHThroughHeaderFileID = FID; } bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) { assert(PCHThroughHeaderFileID.isValid() && "Invalid PCH through header FileID"); return FE == SourceMgr.getFileEntryForID(PCHThroughHeaderFileID); } bool Preprocessor::creatingPCHWithThroughHeader() { return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() && PCHThroughHeaderFileID.isValid(); } bool Preprocessor::usingPCHWithThroughHeader() { return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() && PCHThroughHeaderFileID.isValid(); } bool Preprocessor::creatingPCHWithPragmaHdrStop() { return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop; } bool Preprocessor::usingPCHWithPragmaHdrStop() { return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop; } /// Skip tokens until after the #include of the through header or /// until after a #pragma hdrstop is seen. Tokens in the predefines file /// and the main file may be skipped. If the end of the predefines file /// is reached, skipping continues into the main file. If the end of the /// main file is reached, it's a fatal error. void Preprocessor::SkipTokensWhileUsingPCH() { bool ReachedMainFileEOF = false; bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader; bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop; Token Tok; while (true) { bool InPredefines = (CurLexer && CurLexer->getFileID() == getPredefinesFileID()); switch (CurLexerKind) { case CLK_Lexer: CurLexer->Lex(Tok); break; case CLK_TokenLexer: CurTokenLexer->Lex(Tok); break; case CLK_CachingLexer: CachingLex(Tok); break; case CLK_LexAfterModuleImport: LexAfterModuleImport(Tok); break; } if (Tok.is(tok::eof) && !InPredefines) { ReachedMainFileEOF = true; break; } if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader) break; if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop) break; } if (ReachedMainFileEOF) { if (UsingPCHThroughHeader) Diag(SourceLocation(), diag::err_pp_through_header_not_seen) << PPOpts->PCHThroughHeader << 1; else if (!PPOpts->PCHWithHdrStopCreate) Diag(SourceLocation(), diag::err_pp_pragma_hdrstop_not_seen); } } void Preprocessor::replayPreambleConditionalStack() { // Restore the conditional stack from the preamble, if there is one. if (PreambleConditionalStack.isReplaying()) { assert(CurPPLexer && "CurPPLexer is null when calling replayPreambleConditionalStack."); CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack()); PreambleConditionalStack.doneReplaying(); if (PreambleConditionalStack.reachedEOFWhileSkipping()) SkipExcludedConditionalBlock( PreambleConditionalStack.SkipInfo->HashTokenLoc, PreambleConditionalStack.SkipInfo->IfTokenLoc, PreambleConditionalStack.SkipInfo->FoundNonSkipPortion, PreambleConditionalStack.SkipInfo->FoundElse, PreambleConditionalStack.SkipInfo->ElseLoc); } } void Preprocessor::EndSourceFile() { // Notify the client that we reached the end of the source file. if (Callbacks) Callbacks->EndOfMainFile(); } //===----------------------------------------------------------------------===// // Lexer Event Handling. //===----------------------------------------------------------------------===// /// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the /// identifier information for the token and install it into the token, /// updating the token kind accordingly. IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const { assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!"); // Look up this token, see if it is a macro, or if it is a language keyword. IdentifierInfo *II; if (!Identifier.needsCleaning() && !Identifier.hasUCN()) { // No cleaning needed, just use the characters from the lexed buffer. II = getIdentifierInfo(Identifier.getRawIdentifier()); } else { // Cleaning needed, alloca a buffer, clean into it, then use the buffer. SmallString<64> IdentifierBuffer; StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer); if (Identifier.hasUCN()) { SmallString<64> UCNIdentifierBuffer; expandUCNs(UCNIdentifierBuffer, CleanedStr); II = getIdentifierInfo(UCNIdentifierBuffer); } else { II = getIdentifierInfo(CleanedStr); } } // Update the token info (identifier info and appropriate token kind). Identifier.setIdentifierInfo(II); if (getLangOpts().MSVCCompat && II->isCPlusPlusOperatorKeyword() && getSourceManager().isInSystemHeader(Identifier.getLocation())) Identifier.setKind(tok::identifier); else Identifier.setKind(II->getTokenID()); return II; } void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) { PoisonReasons[II] = DiagID; } void Preprocessor::PoisonSEHIdentifiers(bool Poison) { assert(Ident__exception_code && Ident__exception_info); assert(Ident___exception_code && Ident___exception_info); Ident__exception_code->setIsPoisoned(Poison); Ident___exception_code->setIsPoisoned(Poison); Ident_GetExceptionCode->setIsPoisoned(Poison); Ident__exception_info->setIsPoisoned(Poison); Ident___exception_info->setIsPoisoned(Poison); Ident_GetExceptionInfo->setIsPoisoned(Poison); Ident__abnormal_termination->setIsPoisoned(Poison); Ident___abnormal_termination->setIsPoisoned(Poison); Ident_AbnormalTermination->setIsPoisoned(Poison); } void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) { assert(Identifier.getIdentifierInfo() && "Can't handle identifiers without identifier info!"); llvm::DenseMap::const_iterator it = PoisonReasons.find(Identifier.getIdentifierInfo()); if(it == PoisonReasons.end()) Diag(Identifier, diag::err_pp_used_poisoned_id); else Diag(Identifier,it->second) << Identifier.getIdentifierInfo(); } /// Returns a diagnostic message kind for reporting a future keyword as /// appropriate for the identifier and specified language. static diag::kind getFutureCompatDiagKind(const IdentifierInfo &II, const LangOptions &LangOpts) { assert(II.isFutureCompatKeyword() && "diagnostic should not be needed"); if (LangOpts.CPlusPlus) return llvm::StringSwitch(II.getName()) #define CXX11_KEYWORD(NAME, FLAGS) \ .Case(#NAME, diag::warn_cxx11_keyword) #define CXX20_KEYWORD(NAME, FLAGS) \ .Case(#NAME, diag::warn_cxx20_keyword) #include "clang/Basic/TokenKinds.def" // char8_t is not modeled as a CXX20_KEYWORD because it's not // unconditionally enabled in C++20 mode. (It can be disabled // by -fno-char8_t.) .Case("char8_t", diag::warn_cxx20_keyword) ; llvm_unreachable( "Keyword not known to come from a newer Standard or proposed Standard"); } void Preprocessor::updateOutOfDateIdentifier(IdentifierInfo &II) const { assert(II.isOutOfDate() && "not out of date"); getExternalSource()->updateOutOfDateIdentifier(II); } /// HandleIdentifier - This callback is invoked when the lexer reads an /// identifier. This callback looks up the identifier in the map and/or /// potentially macro expands it or turns it into a named token (like 'for'). /// /// Note that callers of this method are guarded by checking the /// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the /// IdentifierInfo methods that compute these properties will need to change to /// match. bool Preprocessor::HandleIdentifier(Token &Identifier) { assert(Identifier.getIdentifierInfo() && "Can't handle identifiers without identifier info!"); IdentifierInfo &II = *Identifier.getIdentifierInfo(); // If the information about this identifier is out of date, update it from // the external source. // We have to treat __VA_ARGS__ in a special way, since it gets // serialized with isPoisoned = true, but our preprocessor may have // unpoisoned it if we're defining a C99 macro. if (II.isOutOfDate()) { bool CurrentIsPoisoned = false; const bool IsSpecialVariadicMacro = &II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__; if (IsSpecialVariadicMacro) CurrentIsPoisoned = II.isPoisoned(); updateOutOfDateIdentifier(II); Identifier.setKind(II.getTokenID()); if (IsSpecialVariadicMacro) II.setIsPoisoned(CurrentIsPoisoned); } // If this identifier was poisoned, and if it was not produced from a macro // expansion, emit an error. if (II.isPoisoned() && CurPPLexer) { HandlePoisonedIdentifier(Identifier); } // If this is a macro to be expanded, do it. if (MacroDefinition MD = getMacroDefinition(&II)) { auto *MI = MD.getMacroInfo(); assert(MI && "macro definition with no macro info?"); if (!DisableMacroExpansion) { if (!Identifier.isExpandDisabled() && MI->isEnabled()) { // C99 6.10.3p10: If the preprocessing token immediately after the // macro name isn't a '(', this macro should not be expanded. if (!MI->isFunctionLike() || isNextPPTokenLParen()) return HandleMacroExpandedIdentifier(Identifier, MD); } else { // C99 6.10.3.4p2 says that a disabled macro may never again be // expanded, even if it's in a context where it could be expanded in the // future. Identifier.setFlag(Token::DisableExpand); if (MI->isObjectLike() || isNextPPTokenLParen()) Diag(Identifier, diag::pp_disabled_macro_expansion); } } } // If this identifier is a keyword in a newer Standard or proposed Standard, // produce a warning. Don't warn if we're not considering macro expansion, // since this identifier might be the name of a macro. // FIXME: This warning is disabled in cases where it shouldn't be, like // "#define constexpr constexpr", "int constexpr;" if (II.isFutureCompatKeyword() && !DisableMacroExpansion) { Diag(Identifier, getFutureCompatDiagKind(II, getLangOpts())) << II.getName(); // Don't diagnose this keyword again in this translation unit. II.setIsFutureCompatKeyword(false); } // If this is an extension token, diagnose its use. // We avoid diagnosing tokens that originate from macro definitions. // FIXME: This warning is disabled in cases where it shouldn't be, // like "#define TY typeof", "TY(1) x". if (II.isExtensionToken() && !DisableMacroExpansion) Diag(Identifier, diag::ext_token_used); // If this is the 'import' contextual keyword following an '@', note // that the next token indicates a module name. // // Note that we do not treat 'import' as a contextual // keyword when we're in a caching lexer, because caching lexers only get // used in contexts where import declarations are disallowed. // // Likewise if this is the C++ Modules TS import keyword. if (((LastTokenWasAt && II.isModulesImport()) || Identifier.is(tok::kw_import)) && !InMacroArgs && !DisableMacroExpansion && (getLangOpts().Modules || getLangOpts().DebuggerSupport) && CurLexerKind != CLK_CachingLexer) { ModuleImportLoc = Identifier.getLocation(); ModuleImportPath.clear(); ModuleImportExpectsIdentifier = true; CurLexerKind = CLK_LexAfterModuleImport; } return true; } void Preprocessor::Lex(Token &Result) { ++LexLevel; // We loop here until a lex function returns a token; this avoids recursion. bool ReturnedToken; do { switch (CurLexerKind) { case CLK_Lexer: ReturnedToken = CurLexer->Lex(Result); break; case CLK_TokenLexer: ReturnedToken = CurTokenLexer->Lex(Result); break; case CLK_CachingLexer: CachingLex(Result); ReturnedToken = true; break; case CLK_LexAfterModuleImport: ReturnedToken = LexAfterModuleImport(Result); break; } } while (!ReturnedToken); if (Result.is(tok::unknown) && TheModuleLoader.HadFatalFailure) return; if (Result.is(tok::code_completion) && Result.getIdentifierInfo()) { // Remember the identifier before code completion token. setCodeCompletionIdentifierInfo(Result.getIdentifierInfo()); setCodeCompletionTokenRange(Result.getLocation(), Result.getEndLoc()); // Set IdenfitierInfo to null to avoid confusing code that handles both // identifiers and completion tokens. Result.setIdentifierInfo(nullptr); } // Update ImportSeqState to track our position within a C++20 import-seq // if this token is being produced as a result of phase 4 of translation. if (getLangOpts().CPlusPlusModules && LexLevel == 1 && !Result.getFlag(Token::IsReinjected)) { switch (Result.getKind()) { case tok::l_paren: case tok::l_square: case tok::l_brace: ImportSeqState.handleOpenBracket(); break; case tok::r_paren: case tok::r_square: ImportSeqState.handleCloseBracket(); break; case tok::r_brace: ImportSeqState.handleCloseBrace(); break; case tok::semi: ImportSeqState.handleSemi(); break; case tok::header_name: case tok::annot_header_unit: ImportSeqState.handleHeaderName(); break; case tok::kw_export: ImportSeqState.handleExport(); break; case tok::identifier: if (Result.getIdentifierInfo()->isModulesImport()) { ImportSeqState.handleImport(); if (ImportSeqState.afterImportSeq()) { ModuleImportLoc = Result.getLocation(); ModuleImportPath.clear(); ModuleImportExpectsIdentifier = true; CurLexerKind = CLK_LexAfterModuleImport; } break; } LLVM_FALLTHROUGH; default: ImportSeqState.handleMisc(); break; } } LastTokenWasAt = Result.is(tok::at); --LexLevel; if ((LexLevel == 0 || PreprocessToken) && !Result.getFlag(Token::IsReinjected)) { if (LexLevel == 0) ++TokenCount; if (OnToken) OnToken(Result); } } /// Lex a header-name token (including one formed from header-name-tokens if /// \p AllowConcatenation is \c true). /// /// \param FilenameTok Filled in with the next token. On success, this will /// be either a header_name token. On failure, it will be whatever other /// token was found instead. /// \param AllowMacroExpansion If \c true, allow the header name to be formed /// by macro expansion (concatenating tokens as necessary if the first /// token is a '<'). /// \return \c true if we reached EOD or EOF while looking for a > token in /// a concatenated header name and diagnosed it. \c false otherwise. bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) { // Lex using header-name tokenization rules if tokens are being lexed from // a file. Just grab a token normally if we're in a macro expansion. if (CurPPLexer) CurPPLexer->LexIncludeFilename(FilenameTok); else Lex(FilenameTok); // This could be a file coming from a macro expansion. In this // case, glue the tokens together into an angle_string_literal token. SmallString<128> FilenameBuffer; if (FilenameTok.is(tok::less) && AllowMacroExpansion) { bool StartOfLine = FilenameTok.isAtStartOfLine(); bool LeadingSpace = FilenameTok.hasLeadingSpace(); bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro(); SourceLocation Start = FilenameTok.getLocation(); SourceLocation End; FilenameBuffer.push_back('<'); // Consume tokens until we find a '>'. // FIXME: A header-name could be formed starting or ending with an // alternative token. It's not clear whether that's ill-formed in all // cases. while (FilenameTok.isNot(tok::greater)) { Lex(FilenameTok); if (FilenameTok.isOneOf(tok::eod, tok::eof)) { Diag(FilenameTok.getLocation(), diag::err_expected) << tok::greater; Diag(Start, diag::note_matching) << tok::less; return true; } End = FilenameTok.getLocation(); // FIXME: Provide code completion for #includes. if (FilenameTok.is(tok::code_completion)) { setCodeCompletionReached(); Lex(FilenameTok); continue; } // Append the spelling of this token to the buffer. If there was a space // before it, add it now. if (FilenameTok.hasLeadingSpace()) FilenameBuffer.push_back(' '); // Get the spelling of the token, directly into FilenameBuffer if // possible. size_t PreAppendSize = FilenameBuffer.size(); FilenameBuffer.resize(PreAppendSize + FilenameTok.getLength()); const char *BufPtr = &FilenameBuffer[PreAppendSize]; unsigned ActualLen = getSpelling(FilenameTok, BufPtr); // If the token was spelled somewhere else, copy it into FilenameBuffer. if (BufPtr != &FilenameBuffer[PreAppendSize]) memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen); // Resize FilenameBuffer to the correct size. if (FilenameTok.getLength() != ActualLen) FilenameBuffer.resize(PreAppendSize + ActualLen); } FilenameTok.startToken(); FilenameTok.setKind(tok::header_name); FilenameTok.setFlagValue(Token::StartOfLine, StartOfLine); FilenameTok.setFlagValue(Token::LeadingSpace, LeadingSpace); FilenameTok.setFlagValue(Token::LeadingEmptyMacro, LeadingEmptyMacro); CreateString(FilenameBuffer, FilenameTok, Start, End); } else if (FilenameTok.is(tok::string_literal) && AllowMacroExpansion) { // Convert a string-literal token of the form " h-char-sequence " // (produced by macro expansion) into a header-name token. // // The rules for header-names don't quite match the rules for // string-literals, but all the places where they differ result in // undefined behavior, so we can and do treat them the same. // // A string-literal with a prefix or suffix is not translated into a // header-name. This could theoretically be observable via the C++20 // context-sensitive header-name formation rules. StringRef Str = getSpelling(FilenameTok, FilenameBuffer); if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"') FilenameTok.setKind(tok::header_name); } return false; } /// Collect the tokens of a C++20 pp-import-suffix. void Preprocessor::CollectPpImportSuffix(SmallVectorImpl &Toks) { // FIXME: For error recovery, consider recognizing attribute syntax here // and terminating / diagnosing a missing semicolon if we find anything // else? (Can we leave that to the parser?) unsigned BracketDepth = 0; while (true) { Toks.emplace_back(); Lex(Toks.back()); switch (Toks.back().getKind()) { case tok::l_paren: case tok::l_square: case tok::l_brace: ++BracketDepth; break; case tok::r_paren: case tok::r_square: case tok::r_brace: if (BracketDepth == 0) return; --BracketDepth; break; case tok::semi: if (BracketDepth == 0) return; break; case tok::eof: return; default: break; } } } /// Lex a token following the 'import' contextual keyword. /// /// pp-import: [C++20] /// import header-name pp-import-suffix[opt] ; /// import header-name-tokens pp-import-suffix[opt] ; /// [ObjC] @ import module-name ; /// [Clang] import module-name ; /// /// header-name-tokens: /// string-literal /// < [any sequence of preprocessing-tokens other than >] > /// /// module-name: /// module-name-qualifier[opt] identifier /// /// module-name-qualifier /// module-name-qualifier[opt] identifier . /// /// We respond to a pp-import by importing macros from the named module. bool Preprocessor::LexAfterModuleImport(Token &Result) { // Figure out what kind of lexer we actually have. recomputeCurLexerKind(); // Lex the next token. The header-name lexing rules are used at the start of // a pp-import. // // For now, we only support header-name imports in C++20 mode. // FIXME: Should we allow this in all language modes that support an import // declaration as an extension? if (ModuleImportPath.empty() && getLangOpts().CPlusPlusModules) { if (LexHeaderName(Result)) return true; } else { Lex(Result); } // Allocate a holding buffer for a sequence of tokens and introduce it into // the token stream. auto EnterTokens = [this](ArrayRef Toks) { auto ToksCopy = std::make_unique(Toks.size()); std::copy(Toks.begin(), Toks.end(), ToksCopy.get()); EnterTokenStream(std::move(ToksCopy), Toks.size(), /*DisableMacroExpansion*/ true, /*IsReinject*/ false); }; // Check for a header-name. SmallVector Suffix; if (Result.is(tok::header_name)) { // Enter the header-name token into the token stream; a Lex action cannot // both return a token and cache tokens (doing so would corrupt the token // cache if the call to Lex comes from CachingLex / PeekAhead). Suffix.push_back(Result); // Consume the pp-import-suffix and expand any macros in it now. We'll add // it back into the token stream later. CollectPpImportSuffix(Suffix); if (Suffix.back().isNot(tok::semi)) { // This is not a pp-import after all. EnterTokens(Suffix); return false; } // C++2a [cpp.module]p1: // The ';' preprocessing-token terminating a pp-import shall not have // been produced by macro replacement. SourceLocation SemiLoc = Suffix.back().getLocation(); if (SemiLoc.isMacroID()) Diag(SemiLoc, diag::err_header_import_semi_in_macro); // Reconstitute the import token. Token ImportTok; ImportTok.startToken(); ImportTok.setKind(tok::kw_import); ImportTok.setLocation(ModuleImportLoc); ImportTok.setIdentifierInfo(getIdentifierInfo("import")); ImportTok.setLength(6); auto Action = HandleHeaderIncludeOrImport( /*HashLoc*/ SourceLocation(), ImportTok, Suffix.front(), SemiLoc); switch (Action.Kind) { case ImportAction::None: break; case ImportAction::ModuleBegin: // Let the parser know we're textually entering the module. Suffix.emplace_back(); Suffix.back().startToken(); Suffix.back().setKind(tok::annot_module_begin); Suffix.back().setLocation(SemiLoc); Suffix.back().setAnnotationEndLoc(SemiLoc); Suffix.back().setAnnotationValue(Action.ModuleForHeader); LLVM_FALLTHROUGH; case ImportAction::ModuleImport: case ImportAction::SkippedModuleImport: // We chose to import (or textually enter) the file. Convert the // header-name token into a header unit annotation token. Suffix[0].setKind(tok::annot_header_unit); Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation()); Suffix[0].setAnnotationValue(Action.ModuleForHeader); // FIXME: Call the moduleImport callback? break; case ImportAction::Failure: assert(TheModuleLoader.HadFatalFailure && "This should be an early exit only to a fatal error"); Result.setKind(tok::eof); CurLexer->cutOffLexing(); EnterTokens(Suffix); return true; } EnterTokens(Suffix); return false; } // The token sequence // // import identifier (. identifier)* // // indicates a module import directive. We already saw the 'import' // contextual keyword, so now we're looking for the identifiers. if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) { // We expected to see an identifier here, and we did; continue handling // identifiers. ModuleImportPath.push_back(std::make_pair(Result.getIdentifierInfo(), Result.getLocation())); ModuleImportExpectsIdentifier = false; CurLexerKind = CLK_LexAfterModuleImport; return true; } // If we're expecting a '.' or a ';', and we got a '.', then wait until we // see the next identifier. (We can also see a '[[' that begins an // attribute-specifier-seq here under the C++ Modules TS.) if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) { ModuleImportExpectsIdentifier = true; CurLexerKind = CLK_LexAfterModuleImport; return true; } // If we didn't recognize a module name at all, this is not a (valid) import. if (ModuleImportPath.empty() || Result.is(tok::eof)) return true; // Consume the pp-import-suffix and expand any macros in it now, if we're not // at the semicolon already. SourceLocation SemiLoc = Result.getLocation(); if (Result.isNot(tok::semi)) { Suffix.push_back(Result); CollectPpImportSuffix(Suffix); if (Suffix.back().isNot(tok::semi)) { // This is not an import after all. EnterTokens(Suffix); return false; } SemiLoc = Suffix.back().getLocation(); } // Under the Modules TS, the dot is just part of the module name, and not // a real hierarchy separator. Flatten such module names now. // // FIXME: Is this the right level to be performing this transformation? std::string FlatModuleName; if (getLangOpts().ModulesTS || getLangOpts().CPlusPlusModules) { for (auto &Piece : ModuleImportPath) { if (!FlatModuleName.empty()) FlatModuleName += "."; FlatModuleName += Piece.first->getName(); } SourceLocation FirstPathLoc = ModuleImportPath[0].second; ModuleImportPath.clear(); ModuleImportPath.push_back( std::make_pair(getIdentifierInfo(FlatModuleName), FirstPathLoc)); } Module *Imported = nullptr; if (getLangOpts().Modules) { Imported = TheModuleLoader.loadModule(ModuleImportLoc, ModuleImportPath, Module::Hidden, /*IsInclusionDirective=*/false); if (Imported) makeModuleVisible(Imported, SemiLoc); } if (Callbacks) Callbacks->moduleImport(ModuleImportLoc, ModuleImportPath, Imported); if (!Suffix.empty()) { EnterTokens(Suffix); return false; } return true; } void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) { CurSubmoduleState->VisibleModules.setVisible( M, Loc, [](Module *) {}, [&](ArrayRef Path, Module *Conflict, StringRef Message) { // FIXME: Include the path in the diagnostic. // FIXME: Include the import location for the conflicting module. Diag(ModuleImportLoc, diag::warn_module_conflict) << Path[0]->getFullModuleName() << Conflict->getFullModuleName() << Message; }); // Add this module to the imports list of the currently-built submodule. if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M) BuildingSubmoduleStack.back().M->Imports.insert(M); } bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String, const char *DiagnosticTag, bool AllowMacroExpansion) { // We need at least one string literal. if (Result.isNot(tok::string_literal)) { Diag(Result, diag::err_expected_string_literal) << /*Source='in...'*/0 << DiagnosticTag; return false; } // Lex string literal tokens, optionally with macro expansion. SmallVector StrToks; do { StrToks.push_back(Result); if (Result.hasUDSuffix()) Diag(Result, diag::err_invalid_string_udl); if (AllowMacroExpansion) Lex(Result); else LexUnexpandedToken(Result); } while (Result.is(tok::string_literal)); // Concatenate and parse the strings. StringLiteralParser Literal(StrToks, *this); assert(Literal.isAscii() && "Didn't allow wide strings in"); if (Literal.hadError) return false; if (Literal.Pascal) { Diag(StrToks[0].getLocation(), diag::err_expected_string_literal) << /*Source='in...'*/0 << DiagnosticTag; return false; } String = std::string(Literal.GetString()); return true; } bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) { assert(Tok.is(tok::numeric_constant)); SmallString<8> IntegerBuffer; bool NumberInvalid = false; StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid); if (NumberInvalid) return false; NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(), getLangOpts(), getTargetInfo(), getDiagnostics()); if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix()) return false; llvm::APInt APVal(64, 0); if (Literal.GetIntegerValue(APVal)) return false; Lex(Tok); Value = APVal.getLimitedValue(); return true; } void Preprocessor::addCommentHandler(CommentHandler *Handler) { assert(Handler && "NULL comment handler"); assert(llvm::find(CommentHandlers, Handler) == CommentHandlers.end() && "Comment handler already registered"); CommentHandlers.push_back(Handler); } void Preprocessor::removeCommentHandler(CommentHandler *Handler) { std::vector::iterator Pos = llvm::find(CommentHandlers, Handler); assert(Pos != CommentHandlers.end() && "Comment handler not registered"); CommentHandlers.erase(Pos); } bool Preprocessor::HandleComment(Token &result, SourceRange Comment) { bool AnyPendingTokens = false; for (std::vector::iterator H = CommentHandlers.begin(), HEnd = CommentHandlers.end(); H != HEnd; ++H) { if ((*H)->HandleComment(*this, Comment)) AnyPendingTokens = true; } if (!AnyPendingTokens || getCommentRetentionState()) return false; Lex(result); return true; } ModuleLoader::~ModuleLoader() = default; CommentHandler::~CommentHandler() = default; EmptylineHandler::~EmptylineHandler() = default; CodeCompletionHandler::~CodeCompletionHandler() = default; void Preprocessor::createPreprocessingRecord() { if (Record) return; Record = new PreprocessingRecord(getSourceManager()); addPPCallbacks(std::unique_ptr(Record)); }