//===- ModuleMap.cpp - Describe the layout of modules ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the ModuleMap implementation, which describes the layout // of a module as it relates to headers. // //===----------------------------------------------------------------------===// #include "clang/Lex/ModuleMap.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/Module.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/HeaderSearchOptions.h" #include "clang/Lex/LexDiagnostic.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/LiteralSupport.h" #include "clang/Lex/Token.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include using namespace clang; void ModuleMapCallbacks::anchor() {} void ModuleMap::resolveLinkAsDependencies(Module *Mod) { auto PendingLinkAs = PendingLinkAsModule.find(Mod->Name); if (PendingLinkAs != PendingLinkAsModule.end()) { for (auto &Name : PendingLinkAs->second) { auto *M = findModule(Name.getKey()); if (M) M->UseExportAsModuleLinkName = true; } } } void ModuleMap::addLinkAsDependency(Module *Mod) { if (findModule(Mod->ExportAsModule)) Mod->UseExportAsModuleLinkName = true; else PendingLinkAsModule[Mod->ExportAsModule].insert(Mod->Name); } Module::HeaderKind ModuleMap::headerRoleToKind(ModuleHeaderRole Role) { switch ((int)Role) { case NormalHeader: return Module::HK_Normal; case PrivateHeader: return Module::HK_Private; case TextualHeader: return Module::HK_Textual; case PrivateHeader | TextualHeader: return Module::HK_PrivateTextual; case ExcludedHeader: return Module::HK_Excluded; } llvm_unreachable("unknown header role"); } ModuleMap::ModuleHeaderRole ModuleMap::headerKindToRole(Module::HeaderKind Kind) { switch ((int)Kind) { case Module::HK_Normal: return NormalHeader; case Module::HK_Private: return PrivateHeader; case Module::HK_Textual: return TextualHeader; case Module::HK_PrivateTextual: return ModuleHeaderRole(PrivateHeader | TextualHeader); case Module::HK_Excluded: return ExcludedHeader; } llvm_unreachable("unknown header kind"); } bool ModuleMap::isModular(ModuleHeaderRole Role) { return !(Role & (ModuleMap::TextualHeader | ModuleMap::ExcludedHeader)); } Module::ExportDecl ModuleMap::resolveExport(Module *Mod, const Module::UnresolvedExportDecl &Unresolved, bool Complain) const { // We may have just a wildcard. if (Unresolved.Id.empty()) { assert(Unresolved.Wildcard && "Invalid unresolved export"); return Module::ExportDecl(nullptr, true); } // Resolve the module-id. Module *Context = resolveModuleId(Unresolved.Id, Mod, Complain); if (!Context) return {}; return Module::ExportDecl(Context, Unresolved.Wildcard); } Module *ModuleMap::resolveModuleId(const ModuleId &Id, Module *Mod, bool Complain) const { // Find the starting module. Module *Context = lookupModuleUnqualified(Id[0].first, Mod); if (!Context) { if (Complain) Diags.Report(Id[0].second, diag::err_mmap_missing_module_unqualified) << Id[0].first << Mod->getFullModuleName(); return nullptr; } // Dig into the module path. for (unsigned I = 1, N = Id.size(); I != N; ++I) { Module *Sub = lookupModuleQualified(Id[I].first, Context); if (!Sub) { if (Complain) Diags.Report(Id[I].second, diag::err_mmap_missing_module_qualified) << Id[I].first << Context->getFullModuleName() << SourceRange(Id[0].second, Id[I-1].second); return nullptr; } Context = Sub; } return Context; } /// Append to \p Paths the set of paths needed to get to the /// subframework in which the given module lives. static void appendSubframeworkPaths(Module *Mod, SmallVectorImpl &Path) { // Collect the framework names from the given module to the top-level module. SmallVector Paths; for (; Mod; Mod = Mod->Parent) { if (Mod->IsFramework) Paths.push_back(Mod->Name); } if (Paths.empty()) return; // Add Frameworks/Name.framework for each subframework. for (StringRef Framework : llvm::drop_begin(llvm::reverse(Paths))) llvm::sys::path::append(Path, "Frameworks", Framework + ".framework"); } OptionalFileEntryRef ModuleMap::findHeader( Module *M, const Module::UnresolvedHeaderDirective &Header, SmallVectorImpl &RelativePathName, bool &NeedsFramework) { // Search for the header file within the module's home directory. auto Directory = M->Directory; SmallString<128> FullPathName(Directory->getName()); auto GetFile = [&](StringRef Filename) -> OptionalFileEntryRef { auto File = expectedToOptional(SourceMgr.getFileManager().getFileRef(Filename)); if (!File || (Header.Size && File->getSize() != *Header.Size) || (Header.ModTime && File->getModificationTime() != *Header.ModTime)) return std::nullopt; return *File; }; auto GetFrameworkFile = [&]() -> OptionalFileEntryRef { unsigned FullPathLength = FullPathName.size(); appendSubframeworkPaths(M, RelativePathName); unsigned RelativePathLength = RelativePathName.size(); // Check whether this file is in the public headers. llvm::sys::path::append(RelativePathName, "Headers", Header.FileName); llvm::sys::path::append(FullPathName, RelativePathName); if (auto File = GetFile(FullPathName)) return File; // Check whether this file is in the private headers. // Ideally, private modules in the form 'FrameworkName.Private' should // be defined as 'module FrameworkName.Private', and not as // 'framework module FrameworkName.Private', since a 'Private.Framework' // does not usually exist. However, since both are currently widely used // for private modules, make sure we find the right path in both cases. if (M->IsFramework && M->Name == "Private") RelativePathName.clear(); else RelativePathName.resize(RelativePathLength); FullPathName.resize(FullPathLength); llvm::sys::path::append(RelativePathName, "PrivateHeaders", Header.FileName); llvm::sys::path::append(FullPathName, RelativePathName); return GetFile(FullPathName); }; if (llvm::sys::path::is_absolute(Header.FileName)) { RelativePathName.clear(); RelativePathName.append(Header.FileName.begin(), Header.FileName.end()); return GetFile(Header.FileName); } if (M->isPartOfFramework()) return GetFrameworkFile(); // Lookup for normal headers. llvm::sys::path::append(RelativePathName, Header.FileName); llvm::sys::path::append(FullPathName, RelativePathName); auto NormalHdrFile = GetFile(FullPathName); if (!NormalHdrFile && Directory->getName().endswith(".framework")) { // The lack of 'framework' keyword in a module declaration it's a simple // mistake we can diagnose when the header exists within the proper // framework style path. FullPathName.assign(Directory->getName()); RelativePathName.clear(); if (GetFrameworkFile()) { Diags.Report(Header.FileNameLoc, diag::warn_mmap_incomplete_framework_module_declaration) << Header.FileName << M->getFullModuleName(); NeedsFramework = true; } return std::nullopt; } return NormalHdrFile; } void ModuleMap::resolveHeader(Module *Mod, const Module::UnresolvedHeaderDirective &Header, bool &NeedsFramework) { SmallString<128> RelativePathName; if (OptionalFileEntryRef File = findHeader(Mod, Header, RelativePathName, NeedsFramework)) { if (Header.IsUmbrella) { const DirectoryEntry *UmbrellaDir = &File->getDir().getDirEntry(); if (Module *UmbrellaMod = UmbrellaDirs[UmbrellaDir]) Diags.Report(Header.FileNameLoc, diag::err_mmap_umbrella_clash) << UmbrellaMod->getFullModuleName(); else // Record this umbrella header. setUmbrellaHeaderAsWritten(Mod, *File, Header.FileName, RelativePathName.str()); } else { Module::Header H = {Header.FileName, std::string(RelativePathName.str()), *File}; addHeader(Mod, H, headerKindToRole(Header.Kind)); } } else if (Header.HasBuiltinHeader && !Header.Size && !Header.ModTime) { // There's a builtin header but no corresponding on-disk header. Assume // this was supposed to modularize the builtin header alone. } else if (Header.Kind == Module::HK_Excluded) { // Ignore missing excluded header files. They're optional anyway. } else { // If we find a module that has a missing header, we mark this module as // unavailable and store the header directive for displaying diagnostics. Mod->MissingHeaders.push_back(Header); // A missing header with stat information doesn't make the module // unavailable; this keeps our behavior consistent as headers are lazily // resolved. (Such a module still can't be built though, except from // preprocessed source.) if (!Header.Size && !Header.ModTime) Mod->markUnavailable(/*Unimportable=*/false); } } bool ModuleMap::resolveAsBuiltinHeader( Module *Mod, const Module::UnresolvedHeaderDirective &Header) { if (Header.Kind == Module::HK_Excluded || llvm::sys::path::is_absolute(Header.FileName) || Mod->isPartOfFramework() || !Mod->IsSystem || Header.IsUmbrella || !BuiltinIncludeDir || BuiltinIncludeDir == Mod->Directory || !isBuiltinHeader(Header.FileName)) return false; // This is a system module with a top-level header. This header // may have a counterpart (or replacement) in the set of headers // supplied by Clang. Find that builtin header. SmallString<128> Path; llvm::sys::path::append(Path, BuiltinIncludeDir->getName(), Header.FileName); auto File = SourceMgr.getFileManager().getOptionalFileRef(Path); if (!File) return false; auto Role = headerKindToRole(Header.Kind); Module::Header H = {Header.FileName, std::string(Path.str()), *File}; addHeader(Mod, H, Role); return true; } ModuleMap::ModuleMap(SourceManager &SourceMgr, DiagnosticsEngine &Diags, const LangOptions &LangOpts, const TargetInfo *Target, HeaderSearch &HeaderInfo) : SourceMgr(SourceMgr), Diags(Diags), LangOpts(LangOpts), Target(Target), HeaderInfo(HeaderInfo) { MMapLangOpts.LineComment = true; } ModuleMap::~ModuleMap() { for (auto &M : Modules) delete M.getValue(); for (auto *M : ShadowModules) delete M; } void ModuleMap::setTarget(const TargetInfo &Target) { assert((!this->Target || this->Target == &Target) && "Improper target override"); this->Target = &Target; } /// "Sanitize" a filename so that it can be used as an identifier. static StringRef sanitizeFilenameAsIdentifier(StringRef Name, SmallVectorImpl &Buffer) { if (Name.empty()) return Name; if (!isValidAsciiIdentifier(Name)) { // If we don't already have something with the form of an identifier, // create a buffer with the sanitized name. Buffer.clear(); if (isDigit(Name[0])) Buffer.push_back('_'); Buffer.reserve(Buffer.size() + Name.size()); for (unsigned I = 0, N = Name.size(); I != N; ++I) { if (isAsciiIdentifierContinue(Name[I])) Buffer.push_back(Name[I]); else Buffer.push_back('_'); } Name = StringRef(Buffer.data(), Buffer.size()); } while (llvm::StringSwitch(Name) #define KEYWORD(Keyword,Conditions) .Case(#Keyword, true) #define ALIAS(Keyword, AliasOf, Conditions) .Case(Keyword, true) #include "clang/Basic/TokenKinds.def" .Default(false)) { if (Name.data() != Buffer.data()) Buffer.append(Name.begin(), Name.end()); Buffer.push_back('_'); Name = StringRef(Buffer.data(), Buffer.size()); } return Name; } /// Determine whether the given file name is the name of a builtin /// header, supplied by Clang to replace, override, or augment existing system /// headers. bool ModuleMap::isBuiltinHeader(StringRef FileName) { return llvm::StringSwitch(FileName) .Case("float.h", true) .Case("iso646.h", true) .Case("limits.h", true) .Case("stdalign.h", true) .Case("stdarg.h", true) .Case("stdatomic.h", true) .Case("stdbool.h", true) .Case("stddef.h", true) .Case("stdint.h", true) .Case("tgmath.h", true) .Case("unwind.h", true) .Default(false); } bool ModuleMap::isBuiltinHeader(const FileEntry *File) { return File->getDir() == BuiltinIncludeDir && ModuleMap::isBuiltinHeader(llvm::sys::path::filename(File->getName())); } ModuleMap::HeadersMap::iterator ModuleMap::findKnownHeader(const FileEntry *File) { resolveHeaderDirectives(File); HeadersMap::iterator Known = Headers.find(File); if (HeaderInfo.getHeaderSearchOpts().ImplicitModuleMaps && Known == Headers.end() && ModuleMap::isBuiltinHeader(File)) { HeaderInfo.loadTopLevelSystemModules(); return Headers.find(File); } return Known; } ModuleMap::KnownHeader ModuleMap::findHeaderInUmbrellaDirs( FileEntryRef File, SmallVectorImpl &IntermediateDirs) { if (UmbrellaDirs.empty()) return {}; OptionalDirectoryEntryRef Dir = File.getDir(); // Note: as an egregious but useful hack we use the real path here, because // frameworks moving from top-level frameworks to embedded frameworks tend // to be symlinked from the top-level location to the embedded location, // and we need to resolve lookups as if we had found the embedded location. StringRef DirName = SourceMgr.getFileManager().getCanonicalName(*Dir); // Keep walking up the directory hierarchy, looking for a directory with // an umbrella header. do { auto KnownDir = UmbrellaDirs.find(*Dir); if (KnownDir != UmbrellaDirs.end()) return KnownHeader(KnownDir->second, NormalHeader); IntermediateDirs.push_back(*Dir); // Retrieve our parent path. DirName = llvm::sys::path::parent_path(DirName); if (DirName.empty()) break; // Resolve the parent path to a directory entry. Dir = SourceMgr.getFileManager().getOptionalDirectoryRef(DirName); } while (Dir); return {}; } static bool violatesPrivateInclude(Module *RequestingModule, const FileEntry *IncFileEnt, ModuleMap::KnownHeader Header) { #ifndef NDEBUG if (Header.getRole() & ModuleMap::PrivateHeader) { // Check for consistency between the module header role // as obtained from the lookup and as obtained from the module. // This check is not cheap, so enable it only for debugging. bool IsPrivate = false; SmallVectorImpl *HeaderList[] = { &Header.getModule()->Headers[Module::HK_Private], &Header.getModule()->Headers[Module::HK_PrivateTextual]}; for (auto *Hs : HeaderList) IsPrivate |= llvm::any_of( *Hs, [&](const Module::Header &H) { return H.Entry == IncFileEnt; }); assert(IsPrivate && "inconsistent headers and roles"); } #endif return !Header.isAccessibleFrom(RequestingModule); } static Module *getTopLevelOrNull(Module *M) { return M ? M->getTopLevelModule() : nullptr; } void ModuleMap::diagnoseHeaderInclusion(Module *RequestingModule, bool RequestingModuleIsModuleInterface, SourceLocation FilenameLoc, StringRef Filename, FileEntryRef File) { // No errors for indirect modules. This may be a bit of a problem for modules // with no source files. if (getTopLevelOrNull(RequestingModule) != getTopLevelOrNull(SourceModule)) return; if (RequestingModule) { resolveUses(RequestingModule, /*Complain=*/false); resolveHeaderDirectives(RequestingModule, /*File=*/std::nullopt); } bool Excluded = false; Module *Private = nullptr; Module *NotUsed = nullptr; HeadersMap::iterator Known = findKnownHeader(File); if (Known != Headers.end()) { for (const KnownHeader &Header : Known->second) { // Excluded headers don't really belong to a module. if (Header.getRole() == ModuleMap::ExcludedHeader) { Excluded = true; continue; } // Remember private headers for later printing of a diagnostic. if (violatesPrivateInclude(RequestingModule, File, Header)) { Private = Header.getModule(); continue; } // If uses need to be specified explicitly, we are only allowed to return // modules that are explicitly used by the requesting module. if (RequestingModule && LangOpts.ModulesDeclUse && !RequestingModule->directlyUses(Header.getModule())) { NotUsed = Header.getModule(); continue; } // We have found a module that we can happily use. return; } Excluded = true; } // We have found a header, but it is private. if (Private) { Diags.Report(FilenameLoc, diag::warn_use_of_private_header_outside_module) << Filename; return; } // We have found a module, but we don't use it. if (NotUsed) { Diags.Report(FilenameLoc, diag::err_undeclared_use_of_module_indirect) << RequestingModule->getTopLevelModule()->Name << Filename << NotUsed->Name; return; } if (Excluded || isHeaderInUmbrellaDirs(File)) return; // At this point, only non-modular includes remain. if (RequestingModule && LangOpts.ModulesStrictDeclUse) { Diags.Report(FilenameLoc, diag::err_undeclared_use_of_module) << RequestingModule->getTopLevelModule()->Name << Filename; } else if (RequestingModule && RequestingModuleIsModuleInterface && LangOpts.isCompilingModule()) { // Do not diagnose when we are not compiling a module. diag::kind DiagID = RequestingModule->getTopLevelModule()->IsFramework ? diag::warn_non_modular_include_in_framework_module : diag::warn_non_modular_include_in_module; Diags.Report(FilenameLoc, DiagID) << RequestingModule->getFullModuleName() << File.getName(); } } static bool isBetterKnownHeader(const ModuleMap::KnownHeader &New, const ModuleMap::KnownHeader &Old) { // Prefer available modules. // FIXME: Considering whether the module is available rather than merely // importable is non-hermetic and can result in surprising behavior for // prebuilt modules. Consider only checking for importability here. if (New.getModule()->isAvailable() && !Old.getModule()->isAvailable()) return true; // Prefer a public header over a private header. if ((New.getRole() & ModuleMap::PrivateHeader) != (Old.getRole() & ModuleMap::PrivateHeader)) return !(New.getRole() & ModuleMap::PrivateHeader); // Prefer a non-textual header over a textual header. if ((New.getRole() & ModuleMap::TextualHeader) != (Old.getRole() & ModuleMap::TextualHeader)) return !(New.getRole() & ModuleMap::TextualHeader); // Prefer a non-excluded header over an excluded header. if ((New.getRole() == ModuleMap::ExcludedHeader) != (Old.getRole() == ModuleMap::ExcludedHeader)) return New.getRole() != ModuleMap::ExcludedHeader; // Don't have a reason to choose between these. Just keep the first one. return false; } ModuleMap::KnownHeader ModuleMap::findModuleForHeader(FileEntryRef File, bool AllowTextual, bool AllowExcluded) { auto MakeResult = [&](ModuleMap::KnownHeader R) -> ModuleMap::KnownHeader { if (!AllowTextual && R.getRole() & ModuleMap::TextualHeader) return {}; return R; }; HeadersMap::iterator Known = findKnownHeader(File); if (Known != Headers.end()) { ModuleMap::KnownHeader Result; // Iterate over all modules that 'File' is part of to find the best fit. for (KnownHeader &H : Known->second) { // Cannot use a module if the header is excluded in it. if (!AllowExcluded && H.getRole() == ModuleMap::ExcludedHeader) continue; // Prefer a header from the source module over all others. if (H.getModule()->getTopLevelModule() == SourceModule) return MakeResult(H); if (!Result || isBetterKnownHeader(H, Result)) Result = H; } return MakeResult(Result); } return MakeResult(findOrCreateModuleForHeaderInUmbrellaDir(File)); } ModuleMap::KnownHeader ModuleMap::findOrCreateModuleForHeaderInUmbrellaDir(FileEntryRef File) { assert(!Headers.count(File) && "already have a module for this header"); SmallVector SkippedDirs; KnownHeader H = findHeaderInUmbrellaDirs(File, SkippedDirs); if (H) { Module *Result = H.getModule(); // Search up the module stack until we find a module with an umbrella // directory. Module *UmbrellaModule = Result; while (!UmbrellaModule->getEffectiveUmbrellaDir() && UmbrellaModule->Parent) UmbrellaModule = UmbrellaModule->Parent; if (UmbrellaModule->InferSubmodules) { OptionalFileEntryRefDegradesToFileEntryPtr UmbrellaModuleMap = getModuleMapFileForUniquing(UmbrellaModule); // Infer submodules for each of the directories we found between // the directory of the umbrella header and the directory where // the actual header is located. bool Explicit = UmbrellaModule->InferExplicitSubmodules; for (DirectoryEntryRef SkippedDir : llvm::reverse(SkippedDirs)) { // Find or create the module that corresponds to this directory name. SmallString<32> NameBuf; StringRef Name = sanitizeFilenameAsIdentifier( llvm::sys::path::stem(SkippedDir.getName()), NameBuf); Result = findOrCreateModule(Name, Result, /*IsFramework=*/false, Explicit).first; InferredModuleAllowedBy[Result] = UmbrellaModuleMap; Result->IsInferred = true; // Associate the module and the directory. UmbrellaDirs[SkippedDir] = Result; // If inferred submodules export everything they import, add a // wildcard to the set of exports. if (UmbrellaModule->InferExportWildcard && Result->Exports.empty()) Result->Exports.push_back(Module::ExportDecl(nullptr, true)); } // Infer a submodule with the same name as this header file. SmallString<32> NameBuf; StringRef Name = sanitizeFilenameAsIdentifier( llvm::sys::path::stem(File.getName()), NameBuf); Result = findOrCreateModule(Name, Result, /*IsFramework=*/false, Explicit).first; InferredModuleAllowedBy[Result] = UmbrellaModuleMap; Result->IsInferred = true; Result->addTopHeader(File); // If inferred submodules export everything they import, add a // wildcard to the set of exports. if (UmbrellaModule->InferExportWildcard && Result->Exports.empty()) Result->Exports.push_back(Module::ExportDecl(nullptr, true)); } else { // Record each of the directories we stepped through as being part of // the module we found, since the umbrella header covers them all. for (unsigned I = 0, N = SkippedDirs.size(); I != N; ++I) UmbrellaDirs[SkippedDirs[I]] = Result; } KnownHeader Header(Result, NormalHeader); Headers[File].push_back(Header); return Header; } return {}; } ArrayRef ModuleMap::findAllModulesForHeader(FileEntryRef File) { HeadersMap::iterator Known = findKnownHeader(File); if (Known != Headers.end()) return Known->second; if (findOrCreateModuleForHeaderInUmbrellaDir(File)) return Headers.find(File)->second; return std::nullopt; } ArrayRef ModuleMap::findResolvedModulesForHeader(const FileEntry *File) const { // FIXME: Is this necessary? resolveHeaderDirectives(File); auto It = Headers.find(File); if (It == Headers.end()) return std::nullopt; return It->second; } bool ModuleMap::isHeaderInUnavailableModule(FileEntryRef Header) const { return isHeaderUnavailableInModule(Header, nullptr); } bool ModuleMap::isHeaderUnavailableInModule( FileEntryRef Header, const Module *RequestingModule) const { resolveHeaderDirectives(Header); HeadersMap::const_iterator Known = Headers.find(Header); if (Known != Headers.end()) { for (SmallVectorImpl::const_iterator I = Known->second.begin(), E = Known->second.end(); I != E; ++I) { if (I->getRole() == ModuleMap::ExcludedHeader) continue; if (I->isAvailable() && (!RequestingModule || I->getModule()->isSubModuleOf(RequestingModule))) { // When no requesting module is available, the caller is looking if a // header is part a module by only looking into the module map. This is // done by warn_uncovered_module_header checks; don't consider textual // headers part of it in this mode, otherwise we get misleading warnings // that a umbrella header is not including a textual header. if (!RequestingModule && I->getRole() == ModuleMap::TextualHeader) continue; return false; } } return true; } OptionalDirectoryEntryRef Dir = Header.getDir(); SmallVector SkippedDirs; StringRef DirName = Dir->getName(); auto IsUnavailable = [&](const Module *M) { return !M->isAvailable() && (!RequestingModule || M->isSubModuleOf(RequestingModule)); }; // Keep walking up the directory hierarchy, looking for a directory with // an umbrella header. do { auto KnownDir = UmbrellaDirs.find(*Dir); if (KnownDir != UmbrellaDirs.end()) { Module *Found = KnownDir->second; if (IsUnavailable(Found)) return true; // Search up the module stack until we find a module with an umbrella // directory. Module *UmbrellaModule = Found; while (!UmbrellaModule->getEffectiveUmbrellaDir() && UmbrellaModule->Parent) UmbrellaModule = UmbrellaModule->Parent; if (UmbrellaModule->InferSubmodules) { for (DirectoryEntryRef SkippedDir : llvm::reverse(SkippedDirs)) { // Find or create the module that corresponds to this directory name. SmallString<32> NameBuf; StringRef Name = sanitizeFilenameAsIdentifier( llvm::sys::path::stem(SkippedDir.getName()), NameBuf); Found = lookupModuleQualified(Name, Found); if (!Found) return false; if (IsUnavailable(Found)) return true; } // Infer a submodule with the same name as this header file. SmallString<32> NameBuf; StringRef Name = sanitizeFilenameAsIdentifier( llvm::sys::path::stem(Header.getName()), NameBuf); Found = lookupModuleQualified(Name, Found); if (!Found) return false; } return IsUnavailable(Found); } SkippedDirs.push_back(*Dir); // Retrieve our parent path. DirName = llvm::sys::path::parent_path(DirName); if (DirName.empty()) break; // Resolve the parent path to a directory entry. Dir = SourceMgr.getFileManager().getOptionalDirectoryRef(DirName); } while (Dir); return false; } Module *ModuleMap::findModule(StringRef Name) const { llvm::StringMap::const_iterator Known = Modules.find(Name); if (Known != Modules.end()) return Known->getValue(); return nullptr; } Module *ModuleMap::lookupModuleUnqualified(StringRef Name, Module *Context) const { for(; Context; Context = Context->Parent) { if (Module *Sub = lookupModuleQualified(Name, Context)) return Sub; } return findModule(Name); } Module *ModuleMap::lookupModuleQualified(StringRef Name, Module *Context) const{ if (!Context) return findModule(Name); return Context->findSubmodule(Name); } std::pair ModuleMap::findOrCreateModule(StringRef Name, Module *Parent, bool IsFramework, bool IsExplicit) { // Try to find an existing module with this name. if (Module *Sub = lookupModuleQualified(Name, Parent)) return std::make_pair(Sub, false); // Create a new module with this name. Module *Result = new Module(Name, SourceLocation(), Parent, IsFramework, IsExplicit, NumCreatedModules++); if (!Parent) { if (LangOpts.CurrentModule == Name) SourceModule = Result; Modules[Name] = Result; ModuleScopeIDs[Result] = CurrentModuleScopeID; } return std::make_pair(Result, true); } Module *ModuleMap::createGlobalModuleFragmentForModuleUnit(SourceLocation Loc, Module *Parent) { auto *Result = new Module("", Loc, Parent, /*IsFramework*/ false, /*IsExplicit*/ true, NumCreatedModules++); Result->Kind = Module::ExplicitGlobalModuleFragment; // If the created module isn't owned by a parent, send it to PendingSubmodules // to wait for its parent. if (!Result->Parent) PendingSubmodules.emplace_back(Result); return Result; } Module *ModuleMap::createImplicitGlobalModuleFragmentForModuleUnit( SourceLocation Loc, bool IsExported, Module *Parent) { assert(Parent && "We should only create an implicit global module fragment " "in a module purview"); // Note: Here the `IsExplicit` parameter refers to the semantics in clang // modules. All the non-explicit submodules in clang modules will be exported // too. Here we simplify the implementation by using the concept. auto *Result = new Module(IsExported ? "" : "", Loc, Parent, /*IsFramework*/ false, /*IsExplicit*/ !IsExported, NumCreatedModules++); Result->Kind = Module::ImplicitGlobalModuleFragment; return Result; } Module * ModuleMap::createPrivateModuleFragmentForInterfaceUnit(Module *Parent, SourceLocation Loc) { auto *Result = new Module("", Loc, Parent, /*IsFramework*/ false, /*IsExplicit*/ true, NumCreatedModules++); Result->Kind = Module::PrivateModuleFragment; return Result; } Module *ModuleMap::createModuleUnitWithKind(SourceLocation Loc, StringRef Name, Module::ModuleKind Kind) { auto *Result = new Module(Name, Loc, nullptr, /*IsFramework*/ false, /*IsExplicit*/ false, NumCreatedModules++); Result->Kind = Kind; // Reparent any current global module fragment as a submodule of this module. for (auto &Submodule : PendingSubmodules) { Submodule->setParent(Result); Submodule.release(); // now owned by parent } PendingSubmodules.clear(); return Result; } Module *ModuleMap::createModuleForInterfaceUnit(SourceLocation Loc, StringRef Name) { assert(LangOpts.CurrentModule == Name && "module name mismatch"); assert(!Modules[Name] && "redefining existing module"); auto *Result = createModuleUnitWithKind(Loc, Name, Module::ModuleInterfaceUnit); Modules[Name] = SourceModule = Result; // Mark the main source file as being within the newly-created module so that // declarations and macros are properly visibility-restricted to it. auto *MainFile = SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()); assert(MainFile && "no input file for module interface"); Headers[MainFile].push_back(KnownHeader(Result, PrivateHeader)); return Result; } Module *ModuleMap::createModuleForImplementationUnit(SourceLocation Loc, StringRef Name) { assert(LangOpts.CurrentModule == Name && "module name mismatch"); // The interface for this implementation must exist and be loaded. assert(Modules[Name] && Modules[Name]->Kind == Module::ModuleInterfaceUnit && "creating implementation module without an interface"); // Create an entry in the modules map to own the implementation unit module. // User module names must not start with a period (so that this cannot clash // with any legal user-defined module name). StringRef IName = ".ImplementationUnit"; assert(!Modules[IName] && "multiple implementation units?"); auto *Result = createModuleUnitWithKind(Loc, Name, Module::ModuleImplementationUnit); Modules[IName] = SourceModule = Result; // Check that the main file is present. assert(SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) && "no input file for module implementation"); return Result; } Module *ModuleMap::createHeaderUnit(SourceLocation Loc, StringRef Name, Module::Header H) { assert(LangOpts.CurrentModule == Name && "module name mismatch"); assert(!Modules[Name] && "redefining existing module"); auto *Result = new Module(Name, Loc, nullptr, /*IsFramework*/ false, /*IsExplicit*/ false, NumCreatedModules++); Result->Kind = Module::ModuleHeaderUnit; Modules[Name] = SourceModule = Result; addHeader(Result, H, NormalHeader); return Result; } /// For a framework module, infer the framework against which we /// should link. static void inferFrameworkLink(Module *Mod) { assert(Mod->IsFramework && "Can only infer linking for framework modules"); assert(!Mod->isSubFramework() && "Can only infer linking for top-level frameworks"); Mod->LinkLibraries.push_back(Module::LinkLibrary(Mod->Name, /*IsFramework=*/true)); } Module *ModuleMap::inferFrameworkModule(DirectoryEntryRef FrameworkDir, bool IsSystem, Module *Parent) { Attributes Attrs; Attrs.IsSystem = IsSystem; return inferFrameworkModule(FrameworkDir, Attrs, Parent); } Module *ModuleMap::inferFrameworkModule(DirectoryEntryRef FrameworkDir, Attributes Attrs, Module *Parent) { // Note: as an egregious but useful hack we use the real path here, because // we might be looking at an embedded framework that symlinks out to a // top-level framework, and we need to infer as if we were naming the // top-level framework. StringRef FrameworkDirName = SourceMgr.getFileManager().getCanonicalName(FrameworkDir); // In case this is a case-insensitive filesystem, use the canonical // directory name as the ModuleName, since modules are case-sensitive. // FIXME: we should be able to give a fix-it hint for the correct spelling. SmallString<32> ModuleNameStorage; StringRef ModuleName = sanitizeFilenameAsIdentifier( llvm::sys::path::stem(FrameworkDirName), ModuleNameStorage); // Check whether we've already found this module. if (Module *Mod = lookupModuleQualified(ModuleName, Parent)) return Mod; FileManager &FileMgr = SourceMgr.getFileManager(); // If the framework has a parent path from which we're allowed to infer // a framework module, do so. const FileEntry *ModuleMapFile = nullptr; if (!Parent) { // Determine whether we're allowed to infer a module map. bool canInfer = false; if (llvm::sys::path::has_parent_path(FrameworkDirName)) { // Figure out the parent path. StringRef Parent = llvm::sys::path::parent_path(FrameworkDirName); if (auto ParentDir = FileMgr.getOptionalDirectoryRef(Parent)) { // Check whether we have already looked into the parent directory // for a module map. llvm::DenseMap::const_iterator inferred = InferredDirectories.find(*ParentDir); if (inferred == InferredDirectories.end()) { // We haven't looked here before. Load a module map, if there is // one. bool IsFrameworkDir = Parent.endswith(".framework"); if (OptionalFileEntryRef ModMapFile = HeaderInfo.lookupModuleMapFile(*ParentDir, IsFrameworkDir)) { parseModuleMapFile(*ModMapFile, Attrs.IsSystem, *ParentDir); inferred = InferredDirectories.find(*ParentDir); } if (inferred == InferredDirectories.end()) inferred = InferredDirectories.insert( std::make_pair(*ParentDir, InferredDirectory())).first; } if (inferred->second.InferModules) { // We're allowed to infer for this directory, but make sure it's okay // to infer this particular module. StringRef Name = llvm::sys::path::stem(FrameworkDirName); canInfer = !llvm::is_contained(inferred->second.ExcludedModules, Name); Attrs.IsSystem |= inferred->second.Attrs.IsSystem; Attrs.IsExternC |= inferred->second.Attrs.IsExternC; Attrs.IsExhaustive |= inferred->second.Attrs.IsExhaustive; Attrs.NoUndeclaredIncludes |= inferred->second.Attrs.NoUndeclaredIncludes; ModuleMapFile = inferred->second.ModuleMapFile; } } } // If we're not allowed to infer a framework module, don't. if (!canInfer) return nullptr; } else { OptionalFileEntryRefDegradesToFileEntryPtr ModuleMapRef = getModuleMapFileForUniquing(Parent); ModuleMapFile = ModuleMapRef; } // Look for an umbrella header. SmallString<128> UmbrellaName = FrameworkDir.getName(); llvm::sys::path::append(UmbrellaName, "Headers", ModuleName + ".h"); auto UmbrellaHeader = FileMgr.getOptionalFileRef(UmbrellaName); // FIXME: If there's no umbrella header, we could probably scan the // framework to load *everything*. But, it's not clear that this is a good // idea. if (!UmbrellaHeader) return nullptr; Module *Result = new Module(ModuleName, SourceLocation(), Parent, /*IsFramework=*/true, /*IsExplicit=*/false, NumCreatedModules++); InferredModuleAllowedBy[Result] = ModuleMapFile; Result->IsInferred = true; if (!Parent) { if (LangOpts.CurrentModule == ModuleName) SourceModule = Result; Modules[ModuleName] = Result; ModuleScopeIDs[Result] = CurrentModuleScopeID; } Result->IsSystem |= Attrs.IsSystem; Result->IsExternC |= Attrs.IsExternC; Result->ConfigMacrosExhaustive |= Attrs.IsExhaustive; Result->NoUndeclaredIncludes |= Attrs.NoUndeclaredIncludes; Result->Directory = FrameworkDir; // Chop off the first framework bit, as that is implied. StringRef RelativePath = UmbrellaName.str().substr( Result->getTopLevelModule()->Directory->getName().size()); RelativePath = llvm::sys::path::relative_path(RelativePath); // umbrella header "umbrella-header-name" setUmbrellaHeaderAsWritten(Result, *UmbrellaHeader, ModuleName + ".h", RelativePath); // export * Result->Exports.push_back(Module::ExportDecl(nullptr, true)); // module * { export * } Result->InferSubmodules = true; Result->InferExportWildcard = true; // Look for subframeworks. std::error_code EC; SmallString<128> SubframeworksDirName = FrameworkDir.getName(); llvm::sys::path::append(SubframeworksDirName, "Frameworks"); llvm::sys::path::native(SubframeworksDirName); llvm::vfs::FileSystem &FS = FileMgr.getVirtualFileSystem(); for (llvm::vfs::directory_iterator Dir = FS.dir_begin(SubframeworksDirName, EC), DirEnd; Dir != DirEnd && !EC; Dir.increment(EC)) { if (!StringRef(Dir->path()).endswith(".framework")) continue; if (auto SubframeworkDir = FileMgr.getOptionalDirectoryRef(Dir->path())) { // Note: as an egregious but useful hack, we use the real path here and // check whether it is actually a subdirectory of the parent directory. // This will not be the case if the 'subframework' is actually a symlink // out to a top-level framework. StringRef SubframeworkDirName = FileMgr.getCanonicalName(*SubframeworkDir); bool FoundParent = false; do { // Get the parent directory name. SubframeworkDirName = llvm::sys::path::parent_path(SubframeworkDirName); if (SubframeworkDirName.empty()) break; if (auto SubDir = FileMgr.getDirectory(SubframeworkDirName)) { if (*SubDir == FrameworkDir) { FoundParent = true; break; } } } while (true); if (!FoundParent) continue; // FIXME: Do we want to warn about subframeworks without umbrella headers? inferFrameworkModule(*SubframeworkDir, Attrs, Result); } } // If the module is a top-level framework, automatically link against the // framework. if (!Result->isSubFramework()) inferFrameworkLink(Result); return Result; } Module *ModuleMap::createShadowedModule(StringRef Name, bool IsFramework, Module *ShadowingModule) { // Create a new module with this name. Module *Result = new Module(Name, SourceLocation(), /*Parent=*/nullptr, IsFramework, /*IsExplicit=*/false, NumCreatedModules++); Result->ShadowingModule = ShadowingModule; Result->markUnavailable(/*Unimportable*/true); ModuleScopeIDs[Result] = CurrentModuleScopeID; ShadowModules.push_back(Result); return Result; } void ModuleMap::setUmbrellaHeaderAsWritten( Module *Mod, FileEntryRef UmbrellaHeader, const Twine &NameAsWritten, const Twine &PathRelativeToRootModuleDirectory) { Headers[UmbrellaHeader].push_back(KnownHeader(Mod, NormalHeader)); Mod->Umbrella = UmbrellaHeader; Mod->UmbrellaAsWritten = NameAsWritten.str(); Mod->UmbrellaRelativeToRootModuleDirectory = PathRelativeToRootModuleDirectory.str(); UmbrellaDirs[UmbrellaHeader.getDir()] = Mod; // Notify callbacks that we just added a new header. for (const auto &Cb : Callbacks) Cb->moduleMapAddUmbrellaHeader(UmbrellaHeader); } void ModuleMap::setUmbrellaDirAsWritten( Module *Mod, DirectoryEntryRef UmbrellaDir, const Twine &NameAsWritten, const Twine &PathRelativeToRootModuleDirectory) { Mod->Umbrella = UmbrellaDir; Mod->UmbrellaAsWritten = NameAsWritten.str(); Mod->UmbrellaRelativeToRootModuleDirectory = PathRelativeToRootModuleDirectory.str(); UmbrellaDirs[UmbrellaDir] = Mod; } void ModuleMap::addUnresolvedHeader(Module *Mod, Module::UnresolvedHeaderDirective Header, bool &NeedsFramework) { // If there is a builtin counterpart to this file, add it now so it can // wrap the system header. if (resolveAsBuiltinHeader(Mod, Header)) { // If we have both a builtin and system version of the file, the // builtin version may want to inject macros into the system header, so // force the system header to be treated as a textual header in this // case. Header.Kind = headerRoleToKind(ModuleMap::ModuleHeaderRole( headerKindToRole(Header.Kind) | ModuleMap::TextualHeader)); Header.HasBuiltinHeader = true; } // If possible, don't stat the header until we need to. This requires the // user to have provided us with some stat information about the file. // FIXME: Add support for lazily stat'ing umbrella headers and excluded // headers. if ((Header.Size || Header.ModTime) && !Header.IsUmbrella && Header.Kind != Module::HK_Excluded) { // We expect more variation in mtime than size, so if we're given both, // use the mtime as the key. if (Header.ModTime) LazyHeadersByModTime[*Header.ModTime].push_back(Mod); else LazyHeadersBySize[*Header.Size].push_back(Mod); Mod->UnresolvedHeaders.push_back(Header); return; } // We don't have stat information or can't defer looking this file up. // Perform the lookup now. resolveHeader(Mod, Header, NeedsFramework); } void ModuleMap::resolveHeaderDirectives(const FileEntry *File) const { auto BySize = LazyHeadersBySize.find(File->getSize()); if (BySize != LazyHeadersBySize.end()) { for (auto *M : BySize->second) resolveHeaderDirectives(M, File); LazyHeadersBySize.erase(BySize); } auto ByModTime = LazyHeadersByModTime.find(File->getModificationTime()); if (ByModTime != LazyHeadersByModTime.end()) { for (auto *M : ByModTime->second) resolveHeaderDirectives(M, File); LazyHeadersByModTime.erase(ByModTime); } } void ModuleMap::resolveHeaderDirectives( Module *Mod, std::optional File) const { bool NeedsFramework = false; SmallVector NewHeaders; const auto Size = File ? (*File)->getSize() : 0; const auto ModTime = File ? (*File)->getModificationTime() : 0; for (auto &Header : Mod->UnresolvedHeaders) { if (File && ((Header.ModTime && Header.ModTime != ModTime) || (Header.Size && Header.Size != Size))) NewHeaders.push_back(Header); else // This operation is logically const; we're just changing how we represent // the header information for this file. const_cast(this)->resolveHeader(Mod, Header, NeedsFramework); } Mod->UnresolvedHeaders.swap(NewHeaders); } void ModuleMap::addHeader(Module *Mod, Module::Header Header, ModuleHeaderRole Role, bool Imported) { KnownHeader KH(Mod, Role); // Only add each header to the headers list once. // FIXME: Should we diagnose if a header is listed twice in the // same module definition? auto &HeaderList = Headers[Header.Entry]; if (llvm::is_contained(HeaderList, KH)) return; HeaderList.push_back(KH); Mod->Headers[headerRoleToKind(Role)].push_back(Header); bool isCompilingModuleHeader = LangOpts.isCompilingModule() && Mod->getTopLevelModule() == SourceModule; if (!Imported || isCompilingModuleHeader) { // When we import HeaderFileInfo, the external source is expected to // set the isModuleHeader flag itself. HeaderInfo.MarkFileModuleHeader(Header.Entry, Role, isCompilingModuleHeader); } // Notify callbacks that we just added a new header. for (const auto &Cb : Callbacks) Cb->moduleMapAddHeader(Header.Entry.getName()); } OptionalFileEntryRef ModuleMap::getContainingModuleMapFile(const Module *Module) const { if (Module->DefinitionLoc.isInvalid()) return std::nullopt; return SourceMgr.getFileEntryRefForID( SourceMgr.getFileID(Module->DefinitionLoc)); } OptionalFileEntryRef ModuleMap::getModuleMapFileForUniquing(const Module *M) const { if (M->IsInferred) { assert(InferredModuleAllowedBy.count(M) && "missing inferred module map"); // FIXME: Update InferredModuleAllowedBy to use FileEntryRef. return InferredModuleAllowedBy.find(M)->second->getLastRef(); } return getContainingModuleMapFile(M); } void ModuleMap::setInferredModuleAllowedBy(Module *M, const FileEntry *ModMap) { assert(M->IsInferred && "module not inferred"); InferredModuleAllowedBy[M] = ModMap; } std::error_code ModuleMap::canonicalizeModuleMapPath(SmallVectorImpl &Path) { StringRef Dir = llvm::sys::path::parent_path({Path.data(), Path.size()}); // Do not canonicalize within the framework; the module map parser expects // Modules/ not Versions/A/Modules. if (llvm::sys::path::filename(Dir) == "Modules") { StringRef Parent = llvm::sys::path::parent_path(Dir); if (Parent.endswith(".framework")) Dir = Parent; } FileManager &FM = SourceMgr.getFileManager(); auto DirEntry = FM.getDirectoryRef(Dir.empty() ? "." : Dir); if (!DirEntry) return llvm::errorToErrorCode(DirEntry.takeError()); // Canonicalize the directory. StringRef CanonicalDir = FM.getCanonicalName(*DirEntry); if (CanonicalDir != Dir) llvm::sys::path::replace_path_prefix(Path, Dir, CanonicalDir); // In theory, the filename component should also be canonicalized if it // on a case-insensitive filesystem. However, the extra canonicalization is // expensive and if clang looked up the filename it will always be lowercase. // Remove ., remove redundant separators, and switch to native separators. // This is needed for separators between CanonicalDir and the filename. llvm::sys::path::remove_dots(Path); return std::error_code(); } void ModuleMap::addAdditionalModuleMapFile(const Module *M, const FileEntry *ModuleMap) { AdditionalModMaps[M].insert(ModuleMap); } LLVM_DUMP_METHOD void ModuleMap::dump() { llvm::errs() << "Modules:"; for (llvm::StringMap::iterator M = Modules.begin(), MEnd = Modules.end(); M != MEnd; ++M) M->getValue()->print(llvm::errs(), 2); llvm::errs() << "Headers:"; for (HeadersMap::iterator H = Headers.begin(), HEnd = Headers.end(); H != HEnd; ++H) { llvm::errs() << " \"" << H->first->getName() << "\" -> "; for (SmallVectorImpl::const_iterator I = H->second.begin(), E = H->second.end(); I != E; ++I) { if (I != H->second.begin()) llvm::errs() << ","; llvm::errs() << I->getModule()->getFullModuleName(); } llvm::errs() << "\n"; } } bool ModuleMap::resolveExports(Module *Mod, bool Complain) { auto Unresolved = std::move(Mod->UnresolvedExports); Mod->UnresolvedExports.clear(); for (auto &UE : Unresolved) { Module::ExportDecl Export = resolveExport(Mod, UE, Complain); if (Export.getPointer() || Export.getInt()) Mod->Exports.push_back(Export); else Mod->UnresolvedExports.push_back(UE); } return !Mod->UnresolvedExports.empty(); } bool ModuleMap::resolveUses(Module *Mod, bool Complain) { auto Unresolved = std::move(Mod->UnresolvedDirectUses); Mod->UnresolvedDirectUses.clear(); for (auto &UDU : Unresolved) { Module *DirectUse = resolveModuleId(UDU, Mod, Complain); if (DirectUse) Mod->DirectUses.push_back(DirectUse); else Mod->UnresolvedDirectUses.push_back(UDU); } return !Mod->UnresolvedDirectUses.empty(); } bool ModuleMap::resolveConflicts(Module *Mod, bool Complain) { auto Unresolved = std::move(Mod->UnresolvedConflicts); Mod->UnresolvedConflicts.clear(); for (auto &UC : Unresolved) { if (Module *OtherMod = resolveModuleId(UC.Id, Mod, Complain)) { Module::Conflict Conflict; Conflict.Other = OtherMod; Conflict.Message = UC.Message; Mod->Conflicts.push_back(Conflict); } else Mod->UnresolvedConflicts.push_back(UC); } return !Mod->UnresolvedConflicts.empty(); } //----------------------------------------------------------------------------// // Module map file parser //----------------------------------------------------------------------------// namespace clang { /// A token in a module map file. struct MMToken { enum TokenKind { Comma, ConfigMacros, Conflict, EndOfFile, HeaderKeyword, Identifier, Exclaim, ExcludeKeyword, ExplicitKeyword, ExportKeyword, ExportAsKeyword, ExternKeyword, FrameworkKeyword, LinkKeyword, ModuleKeyword, Period, PrivateKeyword, UmbrellaKeyword, UseKeyword, RequiresKeyword, Star, StringLiteral, IntegerLiteral, TextualKeyword, LBrace, RBrace, LSquare, RSquare } Kind; SourceLocation::UIntTy Location; unsigned StringLength; union { // If Kind != IntegerLiteral. const char *StringData; // If Kind == IntegerLiteral. uint64_t IntegerValue; }; void clear() { Kind = EndOfFile; Location = 0; StringLength = 0; StringData = nullptr; } bool is(TokenKind K) const { return Kind == K; } SourceLocation getLocation() const { return SourceLocation::getFromRawEncoding(Location); } uint64_t getInteger() const { return Kind == IntegerLiteral ? IntegerValue : 0; } StringRef getString() const { return Kind == IntegerLiteral ? StringRef() : StringRef(StringData, StringLength); } }; class ModuleMapParser { Lexer &L; SourceManager &SourceMgr; /// Default target information, used only for string literal /// parsing. const TargetInfo *Target; DiagnosticsEngine &Diags; ModuleMap ⤅ /// The current module map file. const FileEntry *ModuleMapFile; /// Source location of most recent parsed module declaration SourceLocation CurrModuleDeclLoc; /// The directory that file names in this module map file should /// be resolved relative to. DirectoryEntryRef Directory; /// Whether this module map is in a system header directory. bool IsSystem; /// Whether an error occurred. bool HadError = false; /// Stores string data for the various string literals referenced /// during parsing. llvm::BumpPtrAllocator StringData; /// The current token. MMToken Tok; /// The active module. Module *ActiveModule = nullptr; /// Whether a module uses the 'requires excluded' hack to mark its /// contents as 'textual'. /// /// On older Darwin SDK versions, 'requires excluded' is used to mark the /// contents of the Darwin.C.excluded (assert.h) and Tcl.Private modules as /// non-modular headers. For backwards compatibility, we continue to /// support this idiom for just these modules, and map the headers to /// 'textual' to match the original intent. llvm::SmallPtrSet UsesRequiresExcludedHack; /// Consume the current token and return its location. SourceLocation consumeToken(); /// Skip tokens until we reach the a token with the given kind /// (or the end of the file). void skipUntil(MMToken::TokenKind K); using ModuleId = SmallVector, 2>; bool parseModuleId(ModuleId &Id); void parseModuleDecl(); void parseExternModuleDecl(); void parseRequiresDecl(); void parseHeaderDecl(MMToken::TokenKind, SourceLocation LeadingLoc); void parseUmbrellaDirDecl(SourceLocation UmbrellaLoc); void parseExportDecl(); void parseExportAsDecl(); void parseUseDecl(); void parseLinkDecl(); void parseConfigMacros(); void parseConflict(); void parseInferredModuleDecl(bool Framework, bool Explicit); /// Private modules are canonicalized as Foo_Private. Clang provides extra /// module map search logic to find the appropriate private module when PCH /// is used with implicit module maps. Warn when private modules are written /// in other ways (FooPrivate and Foo.Private), providing notes and fixits. void diagnosePrivateModules(SourceLocation ExplicitLoc, SourceLocation FrameworkLoc); using Attributes = ModuleMap::Attributes; bool parseOptionalAttributes(Attributes &Attrs); public: explicit ModuleMapParser(Lexer &L, SourceManager &SourceMgr, const TargetInfo *Target, DiagnosticsEngine &Diags, ModuleMap &Map, const FileEntry *ModuleMapFile, DirectoryEntryRef Directory, bool IsSystem) : L(L), SourceMgr(SourceMgr), Target(Target), Diags(Diags), Map(Map), ModuleMapFile(ModuleMapFile), Directory(Directory), IsSystem(IsSystem) { Tok.clear(); consumeToken(); } bool parseModuleMapFile(); bool terminatedByDirective() { return false; } SourceLocation getLocation() { return Tok.getLocation(); } }; } // namespace clang SourceLocation ModuleMapParser::consumeToken() { SourceLocation Result = Tok.getLocation(); retry: Tok.clear(); Token LToken; L.LexFromRawLexer(LToken); Tok.Location = LToken.getLocation().getRawEncoding(); switch (LToken.getKind()) { case tok::raw_identifier: { StringRef RI = LToken.getRawIdentifier(); Tok.StringData = RI.data(); Tok.StringLength = RI.size(); Tok.Kind = llvm::StringSwitch(RI) .Case("config_macros", MMToken::ConfigMacros) .Case("conflict", MMToken::Conflict) .Case("exclude", MMToken::ExcludeKeyword) .Case("explicit", MMToken::ExplicitKeyword) .Case("export", MMToken::ExportKeyword) .Case("export_as", MMToken::ExportAsKeyword) .Case("extern", MMToken::ExternKeyword) .Case("framework", MMToken::FrameworkKeyword) .Case("header", MMToken::HeaderKeyword) .Case("link", MMToken::LinkKeyword) .Case("module", MMToken::ModuleKeyword) .Case("private", MMToken::PrivateKeyword) .Case("requires", MMToken::RequiresKeyword) .Case("textual", MMToken::TextualKeyword) .Case("umbrella", MMToken::UmbrellaKeyword) .Case("use", MMToken::UseKeyword) .Default(MMToken::Identifier); break; } case tok::comma: Tok.Kind = MMToken::Comma; break; case tok::eof: Tok.Kind = MMToken::EndOfFile; break; case tok::l_brace: Tok.Kind = MMToken::LBrace; break; case tok::l_square: Tok.Kind = MMToken::LSquare; break; case tok::period: Tok.Kind = MMToken::Period; break; case tok::r_brace: Tok.Kind = MMToken::RBrace; break; case tok::r_square: Tok.Kind = MMToken::RSquare; break; case tok::star: Tok.Kind = MMToken::Star; break; case tok::exclaim: Tok.Kind = MMToken::Exclaim; break; case tok::string_literal: { if (LToken.hasUDSuffix()) { Diags.Report(LToken.getLocation(), diag::err_invalid_string_udl); HadError = true; goto retry; } // Parse the string literal. LangOptions LangOpts; StringLiteralParser StringLiteral(LToken, SourceMgr, LangOpts, *Target); if (StringLiteral.hadError) goto retry; // Copy the string literal into our string data allocator. unsigned Length = StringLiteral.GetStringLength(); char *Saved = StringData.Allocate(Length + 1); memcpy(Saved, StringLiteral.GetString().data(), Length); Saved[Length] = 0; // Form the token. Tok.Kind = MMToken::StringLiteral; Tok.StringData = Saved; Tok.StringLength = Length; break; } case tok::numeric_constant: { // We don't support any suffixes or other complications. SmallString<32> SpellingBuffer; SpellingBuffer.resize(LToken.getLength() + 1); const char *Start = SpellingBuffer.data(); unsigned Length = Lexer::getSpelling(LToken, Start, SourceMgr, Map.LangOpts); uint64_t Value; if (StringRef(Start, Length).getAsInteger(0, Value)) { Diags.Report(Tok.getLocation(), diag::err_mmap_unknown_token); HadError = true; goto retry; } Tok.Kind = MMToken::IntegerLiteral; Tok.IntegerValue = Value; break; } case tok::comment: goto retry; case tok::hash: // A module map can be terminated prematurely by // #pragma clang module contents // When building the module, we'll treat the rest of the file as the // contents of the module. { auto NextIsIdent = [&](StringRef Str) -> bool { L.LexFromRawLexer(LToken); return !LToken.isAtStartOfLine() && LToken.is(tok::raw_identifier) && LToken.getRawIdentifier() == Str; }; if (NextIsIdent("pragma") && NextIsIdent("clang") && NextIsIdent("module") && NextIsIdent("contents")) { Tok.Kind = MMToken::EndOfFile; break; } } [[fallthrough]]; default: Diags.Report(Tok.getLocation(), diag::err_mmap_unknown_token); HadError = true; goto retry; } return Result; } void ModuleMapParser::skipUntil(MMToken::TokenKind K) { unsigned braceDepth = 0; unsigned squareDepth = 0; do { switch (Tok.Kind) { case MMToken::EndOfFile: return; case MMToken::LBrace: if (Tok.is(K) && braceDepth == 0 && squareDepth == 0) return; ++braceDepth; break; case MMToken::LSquare: if (Tok.is(K) && braceDepth == 0 && squareDepth == 0) return; ++squareDepth; break; case MMToken::RBrace: if (braceDepth > 0) --braceDepth; else if (Tok.is(K)) return; break; case MMToken::RSquare: if (squareDepth > 0) --squareDepth; else if (Tok.is(K)) return; break; default: if (braceDepth == 0 && squareDepth == 0 && Tok.is(K)) return; break; } consumeToken(); } while (true); } /// Parse a module-id. /// /// module-id: /// identifier /// identifier '.' module-id /// /// \returns true if an error occurred, false otherwise. bool ModuleMapParser::parseModuleId(ModuleId &Id) { Id.clear(); do { if (Tok.is(MMToken::Identifier) || Tok.is(MMToken::StringLiteral)) { Id.push_back( std::make_pair(std::string(Tok.getString()), Tok.getLocation())); consumeToken(); } else { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module_name); return true; } if (!Tok.is(MMToken::Period)) break; consumeToken(); } while (true); return false; } namespace { /// Enumerates the known attributes. enum AttributeKind { /// An unknown attribute. AT_unknown, /// The 'system' attribute. AT_system, /// The 'extern_c' attribute. AT_extern_c, /// The 'exhaustive' attribute. AT_exhaustive, /// The 'no_undeclared_includes' attribute. AT_no_undeclared_includes }; } // namespace /// Private modules are canonicalized as Foo_Private. Clang provides extra /// module map search logic to find the appropriate private module when PCH /// is used with implicit module maps. Warn when private modules are written /// in other ways (FooPrivate and Foo.Private), providing notes and fixits. void ModuleMapParser::diagnosePrivateModules(SourceLocation ExplicitLoc, SourceLocation FrameworkLoc) { auto GenNoteAndFixIt = [&](StringRef BadName, StringRef Canonical, const Module *M, SourceRange ReplLoc) { auto D = Diags.Report(ActiveModule->DefinitionLoc, diag::note_mmap_rename_top_level_private_module); D << BadName << M->Name; D << FixItHint::CreateReplacement(ReplLoc, Canonical); }; for (auto E = Map.module_begin(); E != Map.module_end(); ++E) { auto const *M = E->getValue(); if (M->Directory != ActiveModule->Directory) continue; SmallString<128> FullName(ActiveModule->getFullModuleName()); if (!FullName.startswith(M->Name) && !FullName.endswith("Private")) continue; SmallString<128> FixedPrivModDecl; SmallString<128> Canonical(M->Name); Canonical.append("_Private"); // Foo.Private -> Foo_Private if (ActiveModule->Parent && ActiveModule->Name == "Private" && !M->Parent && M->Name == ActiveModule->Parent->Name) { Diags.Report(ActiveModule->DefinitionLoc, diag::warn_mmap_mismatched_private_submodule) << FullName; SourceLocation FixItInitBegin = CurrModuleDeclLoc; if (FrameworkLoc.isValid()) FixItInitBegin = FrameworkLoc; if (ExplicitLoc.isValid()) FixItInitBegin = ExplicitLoc; if (FrameworkLoc.isValid() || ActiveModule->Parent->IsFramework) FixedPrivModDecl.append("framework "); FixedPrivModDecl.append("module "); FixedPrivModDecl.append(Canonical); GenNoteAndFixIt(FullName, FixedPrivModDecl, M, SourceRange(FixItInitBegin, ActiveModule->DefinitionLoc)); continue; } // FooPrivate and whatnots -> Foo_Private if (!ActiveModule->Parent && !M->Parent && M->Name != ActiveModule->Name && ActiveModule->Name != Canonical) { Diags.Report(ActiveModule->DefinitionLoc, diag::warn_mmap_mismatched_private_module_name) << ActiveModule->Name; GenNoteAndFixIt(ActiveModule->Name, Canonical, M, SourceRange(ActiveModule->DefinitionLoc)); } } } /// Parse a module declaration. /// /// module-declaration: /// 'extern' 'module' module-id string-literal /// 'explicit'[opt] 'framework'[opt] 'module' module-id attributes[opt] /// { module-member* } /// /// module-member: /// requires-declaration /// header-declaration /// submodule-declaration /// export-declaration /// export-as-declaration /// link-declaration /// /// submodule-declaration: /// module-declaration /// inferred-submodule-declaration void ModuleMapParser::parseModuleDecl() { assert(Tok.is(MMToken::ExplicitKeyword) || Tok.is(MMToken::ModuleKeyword) || Tok.is(MMToken::FrameworkKeyword) || Tok.is(MMToken::ExternKeyword)); if (Tok.is(MMToken::ExternKeyword)) { parseExternModuleDecl(); return; } // Parse 'explicit' or 'framework' keyword, if present. SourceLocation ExplicitLoc; SourceLocation FrameworkLoc; bool Explicit = false; bool Framework = false; // Parse 'explicit' keyword, if present. if (Tok.is(MMToken::ExplicitKeyword)) { ExplicitLoc = consumeToken(); Explicit = true; } // Parse 'framework' keyword, if present. if (Tok.is(MMToken::FrameworkKeyword)) { FrameworkLoc = consumeToken(); Framework = true; } // Parse 'module' keyword. if (!Tok.is(MMToken::ModuleKeyword)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module); consumeToken(); HadError = true; return; } CurrModuleDeclLoc = consumeToken(); // 'module' keyword // If we have a wildcard for the module name, this is an inferred submodule. // Parse it. if (Tok.is(MMToken::Star)) return parseInferredModuleDecl(Framework, Explicit); // Parse the module name. ModuleId Id; if (parseModuleId(Id)) { HadError = true; return; } if (ActiveModule) { if (Id.size() > 1) { Diags.Report(Id.front().second, diag::err_mmap_nested_submodule_id) << SourceRange(Id.front().second, Id.back().second); HadError = true; return; } } else if (Id.size() == 1 && Explicit) { // Top-level modules can't be explicit. Diags.Report(ExplicitLoc, diag::err_mmap_explicit_top_level); Explicit = false; ExplicitLoc = SourceLocation(); HadError = true; } Module *PreviousActiveModule = ActiveModule; if (Id.size() > 1) { // This module map defines a submodule. Go find the module of which it // is a submodule. ActiveModule = nullptr; const Module *TopLevelModule = nullptr; for (unsigned I = 0, N = Id.size() - 1; I != N; ++I) { if (Module *Next = Map.lookupModuleQualified(Id[I].first, ActiveModule)) { if (I == 0) TopLevelModule = Next; ActiveModule = Next; continue; } Diags.Report(Id[I].second, diag::err_mmap_missing_parent_module) << Id[I].first << (ActiveModule != nullptr) << (ActiveModule ? ActiveModule->getTopLevelModule()->getFullModuleName() : ""); HadError = true; } if (TopLevelModule && ModuleMapFile != Map.getContainingModuleMapFile(TopLevelModule)) { assert(ModuleMapFile != Map.getModuleMapFileForUniquing(TopLevelModule) && "submodule defined in same file as 'module *' that allowed its " "top-level module"); Map.addAdditionalModuleMapFile(TopLevelModule, ModuleMapFile); } } StringRef ModuleName = Id.back().first; SourceLocation ModuleNameLoc = Id.back().second; // Parse the optional attribute list. Attributes Attrs; if (parseOptionalAttributes(Attrs)) return; // Parse the opening brace. if (!Tok.is(MMToken::LBrace)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_lbrace) << ModuleName; HadError = true; return; } SourceLocation LBraceLoc = consumeToken(); // Determine whether this (sub)module has already been defined. Module *ShadowingModule = nullptr; if (Module *Existing = Map.lookupModuleQualified(ModuleName, ActiveModule)) { // We might see a (re)definition of a module that we already have a // definition for in four cases: // - If we loaded one definition from an AST file and we've just found a // corresponding definition in a module map file, or bool LoadedFromASTFile = Existing->IsFromModuleFile; // - If we previously inferred this module from different module map file. bool Inferred = Existing->IsInferred; // - If we're building a framework that vends a module map, we might've // previously seen the one in intermediate products and now the system // one. // FIXME: If we're parsing module map file that looks like this: // framework module FW { ... } // module FW.Sub { ... } // We can't check the framework qualifier, since it's not attached to // the definition of Sub. Checking that qualifier on \c Existing is // not correct either, since we might've previously seen: // module FW { ... } // module FW.Sub { ... } // We should enforce consistency of redefinitions so that we can rely // that \c Existing is part of a framework iff the redefinition of FW // we have just skipped had it too. Once we do that, stop checking // the local framework qualifier and only rely on \c Existing. bool PartOfFramework = Framework || Existing->isPartOfFramework(); // - If we're building a (preprocessed) module and we've just loaded the // module map file from which it was created. bool ParsedAsMainInput = Map.LangOpts.getCompilingModule() == LangOptions::CMK_ModuleMap && Map.LangOpts.CurrentModule == ModuleName && SourceMgr.getDecomposedLoc(ModuleNameLoc).first != SourceMgr.getDecomposedLoc(Existing->DefinitionLoc).first; if (LoadedFromASTFile || Inferred || PartOfFramework || ParsedAsMainInput) { ActiveModule = PreviousActiveModule; // Skip the module definition. skipUntil(MMToken::RBrace); if (Tok.is(MMToken::RBrace)) consumeToken(); else { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace); Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match); HadError = true; } return; } if (!Existing->Parent && Map.mayShadowNewModule(Existing)) { ShadowingModule = Existing; } else { // This is not a shawdowed module decl, it is an illegal redefinition. Diags.Report(ModuleNameLoc, diag::err_mmap_module_redefinition) << ModuleName; Diags.Report(Existing->DefinitionLoc, diag::note_mmap_prev_definition); // Skip the module definition. skipUntil(MMToken::RBrace); if (Tok.is(MMToken::RBrace)) consumeToken(); HadError = true; return; } } // Start defining this module. if (ShadowingModule) { ActiveModule = Map.createShadowedModule(ModuleName, Framework, ShadowingModule); } else { ActiveModule = Map.findOrCreateModule(ModuleName, ActiveModule, Framework, Explicit) .first; } ActiveModule->DefinitionLoc = ModuleNameLoc; if (Attrs.IsSystem || IsSystem) ActiveModule->IsSystem = true; if (Attrs.IsExternC) ActiveModule->IsExternC = true; if (Attrs.NoUndeclaredIncludes) ActiveModule->NoUndeclaredIncludes = true; ActiveModule->Directory = Directory; StringRef MapFileName(ModuleMapFile->getName()); if (MapFileName.endswith("module.private.modulemap") || MapFileName.endswith("module_private.map")) { ActiveModule->ModuleMapIsPrivate = true; } // Private modules named as FooPrivate, Foo.Private or similar are likely a // user error; provide warnings, notes and fixits to direct users to use // Foo_Private instead. SourceLocation StartLoc = SourceMgr.getLocForStartOfFile(SourceMgr.getMainFileID()); if (Map.HeaderInfo.getHeaderSearchOpts().ImplicitModuleMaps && !Diags.isIgnored(diag::warn_mmap_mismatched_private_submodule, StartLoc) && !Diags.isIgnored(diag::warn_mmap_mismatched_private_module_name, StartLoc) && ActiveModule->ModuleMapIsPrivate) diagnosePrivateModules(ExplicitLoc, FrameworkLoc); bool Done = false; do { switch (Tok.Kind) { case MMToken::EndOfFile: case MMToken::RBrace: Done = true; break; case MMToken::ConfigMacros: parseConfigMacros(); break; case MMToken::Conflict: parseConflict(); break; case MMToken::ExplicitKeyword: case MMToken::ExternKeyword: case MMToken::FrameworkKeyword: case MMToken::ModuleKeyword: parseModuleDecl(); break; case MMToken::ExportKeyword: parseExportDecl(); break; case MMToken::ExportAsKeyword: parseExportAsDecl(); break; case MMToken::UseKeyword: parseUseDecl(); break; case MMToken::RequiresKeyword: parseRequiresDecl(); break; case MMToken::TextualKeyword: parseHeaderDecl(MMToken::TextualKeyword, consumeToken()); break; case MMToken::UmbrellaKeyword: { SourceLocation UmbrellaLoc = consumeToken(); if (Tok.is(MMToken::HeaderKeyword)) parseHeaderDecl(MMToken::UmbrellaKeyword, UmbrellaLoc); else parseUmbrellaDirDecl(UmbrellaLoc); break; } case MMToken::ExcludeKeyword: parseHeaderDecl(MMToken::ExcludeKeyword, consumeToken()); break; case MMToken::PrivateKeyword: parseHeaderDecl(MMToken::PrivateKeyword, consumeToken()); break; case MMToken::HeaderKeyword: parseHeaderDecl(MMToken::HeaderKeyword, consumeToken()); break; case MMToken::LinkKeyword: parseLinkDecl(); break; default: Diags.Report(Tok.getLocation(), diag::err_mmap_expected_member); consumeToken(); break; } } while (!Done); if (Tok.is(MMToken::RBrace)) consumeToken(); else { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace); Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match); HadError = true; } // If the active module is a top-level framework, and there are no link // libraries, automatically link against the framework. if (ActiveModule->IsFramework && !ActiveModule->isSubFramework() && ActiveModule->LinkLibraries.empty()) inferFrameworkLink(ActiveModule); // If the module meets all requirements but is still unavailable, mark the // whole tree as unavailable to prevent it from building. if (!ActiveModule->IsAvailable && !ActiveModule->IsUnimportable && ActiveModule->Parent) { ActiveModule->getTopLevelModule()->markUnavailable(/*Unimportable=*/false); ActiveModule->getTopLevelModule()->MissingHeaders.append( ActiveModule->MissingHeaders.begin(), ActiveModule->MissingHeaders.end()); } // We're done parsing this module. Pop back to the previous module. ActiveModule = PreviousActiveModule; } /// Parse an extern module declaration. /// /// extern module-declaration: /// 'extern' 'module' module-id string-literal void ModuleMapParser::parseExternModuleDecl() { assert(Tok.is(MMToken::ExternKeyword)); SourceLocation ExternLoc = consumeToken(); // 'extern' keyword // Parse 'module' keyword. if (!Tok.is(MMToken::ModuleKeyword)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module); consumeToken(); HadError = true; return; } consumeToken(); // 'module' keyword // Parse the module name. ModuleId Id; if (parseModuleId(Id)) { HadError = true; return; } // Parse the referenced module map file name. if (!Tok.is(MMToken::StringLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_mmap_file); HadError = true; return; } std::string FileName = std::string(Tok.getString()); consumeToken(); // filename StringRef FileNameRef = FileName; SmallString<128> ModuleMapFileName; if (llvm::sys::path::is_relative(FileNameRef)) { ModuleMapFileName += Directory.getName(); llvm::sys::path::append(ModuleMapFileName, FileName); FileNameRef = ModuleMapFileName; } if (auto File = SourceMgr.getFileManager().getOptionalFileRef(FileNameRef)) Map.parseModuleMapFile( *File, IsSystem, Map.HeaderInfo.getHeaderSearchOpts().ModuleMapFileHomeIsCwd ? Directory : File->getDir(), FileID(), nullptr, ExternLoc); } /// Whether to add the requirement \p Feature to the module \p M. /// /// This preserves backwards compatibility for two hacks in the Darwin system /// module map files: /// /// 1. The use of 'requires excluded' to make headers non-modular, which /// should really be mapped to 'textual' now that we have this feature. We /// drop the 'excluded' requirement, and set \p IsRequiresExcludedHack to /// true. Later, this bit will be used to map all the headers inside this /// module to 'textual'. /// /// This affects Darwin.C.excluded (for assert.h) and Tcl.Private. /// /// 2. Removes a bogus cplusplus requirement from IOKit.avc. This requirement /// was never correct and causes issues now that we check it, so drop it. static bool shouldAddRequirement(Module *M, StringRef Feature, bool &IsRequiresExcludedHack) { if (Feature == "excluded" && (M->fullModuleNameIs({"Darwin", "C", "excluded"}) || M->fullModuleNameIs({"Tcl", "Private"}))) { IsRequiresExcludedHack = true; return false; } else if (Feature == "cplusplus" && M->fullModuleNameIs({"IOKit", "avc"})) { return false; } return true; } /// Parse a requires declaration. /// /// requires-declaration: /// 'requires' feature-list /// /// feature-list: /// feature ',' feature-list /// feature /// /// feature: /// '!'[opt] identifier void ModuleMapParser::parseRequiresDecl() { assert(Tok.is(MMToken::RequiresKeyword)); // Parse 'requires' keyword. consumeToken(); // Parse the feature-list. do { bool RequiredState = true; if (Tok.is(MMToken::Exclaim)) { RequiredState = false; consumeToken(); } if (!Tok.is(MMToken::Identifier)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_feature); HadError = true; return; } // Consume the feature name. std::string Feature = std::string(Tok.getString()); consumeToken(); bool IsRequiresExcludedHack = false; bool ShouldAddRequirement = shouldAddRequirement(ActiveModule, Feature, IsRequiresExcludedHack); if (IsRequiresExcludedHack) UsesRequiresExcludedHack.insert(ActiveModule); if (ShouldAddRequirement) { // Add this feature. ActiveModule->addRequirement(Feature, RequiredState, Map.LangOpts, *Map.Target); } if (!Tok.is(MMToken::Comma)) break; // Consume the comma. consumeToken(); } while (true); } /// Parse a header declaration. /// /// header-declaration: /// 'textual'[opt] 'header' string-literal /// 'private' 'textual'[opt] 'header' string-literal /// 'exclude' 'header' string-literal /// 'umbrella' 'header' string-literal /// /// FIXME: Support 'private textual header'. void ModuleMapParser::parseHeaderDecl(MMToken::TokenKind LeadingToken, SourceLocation LeadingLoc) { // We've already consumed the first token. ModuleMap::ModuleHeaderRole Role = ModuleMap::NormalHeader; if (LeadingToken == MMToken::PrivateKeyword) { Role = ModuleMap::PrivateHeader; // 'private' may optionally be followed by 'textual'. if (Tok.is(MMToken::TextualKeyword)) { LeadingToken = Tok.Kind; consumeToken(); } } else if (LeadingToken == MMToken::ExcludeKeyword) { Role = ModuleMap::ExcludedHeader; } if (LeadingToken == MMToken::TextualKeyword) Role = ModuleMap::ModuleHeaderRole(Role | ModuleMap::TextualHeader); if (UsesRequiresExcludedHack.count(ActiveModule)) { // Mark this header 'textual' (see doc comment for // Module::UsesRequiresExcludedHack). Role = ModuleMap::ModuleHeaderRole(Role | ModuleMap::TextualHeader); } if (LeadingToken != MMToken::HeaderKeyword) { if (!Tok.is(MMToken::HeaderKeyword)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header) << (LeadingToken == MMToken::PrivateKeyword ? "private" : LeadingToken == MMToken::ExcludeKeyword ? "exclude" : LeadingToken == MMToken::TextualKeyword ? "textual" : "umbrella"); return; } consumeToken(); } // Parse the header name. if (!Tok.is(MMToken::StringLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header) << "header"; HadError = true; return; } Module::UnresolvedHeaderDirective Header; Header.FileName = std::string(Tok.getString()); Header.FileNameLoc = consumeToken(); Header.IsUmbrella = LeadingToken == MMToken::UmbrellaKeyword; Header.Kind = Map.headerRoleToKind(Role); // Check whether we already have an umbrella. if (Header.IsUmbrella && ActiveModule->Umbrella) { Diags.Report(Header.FileNameLoc, diag::err_mmap_umbrella_clash) << ActiveModule->getFullModuleName(); HadError = true; return; } // If we were given stat information, parse it so we can skip looking for // the file. if (Tok.is(MMToken::LBrace)) { SourceLocation LBraceLoc = consumeToken(); while (!Tok.is(MMToken::RBrace) && !Tok.is(MMToken::EndOfFile)) { enum Attribute { Size, ModTime, Unknown }; StringRef Str = Tok.getString(); SourceLocation Loc = consumeToken(); switch (llvm::StringSwitch(Str) .Case("size", Size) .Case("mtime", ModTime) .Default(Unknown)) { case Size: if (Header.Size) Diags.Report(Loc, diag::err_mmap_duplicate_header_attribute) << Str; if (!Tok.is(MMToken::IntegerLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_invalid_header_attribute_value) << Str; skipUntil(MMToken::RBrace); break; } Header.Size = Tok.getInteger(); consumeToken(); break; case ModTime: if (Header.ModTime) Diags.Report(Loc, diag::err_mmap_duplicate_header_attribute) << Str; if (!Tok.is(MMToken::IntegerLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_invalid_header_attribute_value) << Str; skipUntil(MMToken::RBrace); break; } Header.ModTime = Tok.getInteger(); consumeToken(); break; case Unknown: Diags.Report(Loc, diag::err_mmap_expected_header_attribute); skipUntil(MMToken::RBrace); break; } } if (Tok.is(MMToken::RBrace)) consumeToken(); else { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace); Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match); HadError = true; } } bool NeedsFramework = false; Map.addUnresolvedHeader(ActiveModule, std::move(Header), NeedsFramework); if (NeedsFramework) Diags.Report(CurrModuleDeclLoc, diag::note_mmap_add_framework_keyword) << ActiveModule->getFullModuleName() << FixItHint::CreateReplacement(CurrModuleDeclLoc, "framework module"); } static bool compareModuleHeaders(const Module::Header &A, const Module::Header &B) { return A.NameAsWritten < B.NameAsWritten; } /// Parse an umbrella directory declaration. /// /// umbrella-dir-declaration: /// umbrella string-literal void ModuleMapParser::parseUmbrellaDirDecl(SourceLocation UmbrellaLoc) { // Parse the directory name. if (!Tok.is(MMToken::StringLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_header) << "umbrella"; HadError = true; return; } std::string DirName = std::string(Tok.getString()); std::string DirNameAsWritten = DirName; SourceLocation DirNameLoc = consumeToken(); // Check whether we already have an umbrella. if (ActiveModule->Umbrella) { Diags.Report(DirNameLoc, diag::err_mmap_umbrella_clash) << ActiveModule->getFullModuleName(); HadError = true; return; } // Look for this file. OptionalDirectoryEntryRef Dir; if (llvm::sys::path::is_absolute(DirName)) { Dir = SourceMgr.getFileManager().getOptionalDirectoryRef(DirName); } else { SmallString<128> PathName; PathName = Directory.getName(); llvm::sys::path::append(PathName, DirName); Dir = SourceMgr.getFileManager().getOptionalDirectoryRef(PathName); } if (!Dir) { Diags.Report(DirNameLoc, diag::warn_mmap_umbrella_dir_not_found) << DirName; return; } if (UsesRequiresExcludedHack.count(ActiveModule)) { // Mark this header 'textual' (see doc comment for // ModuleMapParser::UsesRequiresExcludedHack). Although iterating over the // directory is relatively expensive, in practice this only applies to the // uncommonly used Tcl module on Darwin platforms. std::error_code EC; SmallVector Headers; llvm::vfs::FileSystem &FS = SourceMgr.getFileManager().getVirtualFileSystem(); for (llvm::vfs::recursive_directory_iterator I(FS, Dir->getName(), EC), E; I != E && !EC; I.increment(EC)) { if (auto FE = SourceMgr.getFileManager().getOptionalFileRef(I->path())) { Module::Header Header = {"", std::string(I->path()), *FE}; Headers.push_back(std::move(Header)); } } // Sort header paths so that the pcm doesn't depend on iteration order. std::stable_sort(Headers.begin(), Headers.end(), compareModuleHeaders); for (auto &Header : Headers) Map.addHeader(ActiveModule, std::move(Header), ModuleMap::TextualHeader); return; } if (Module *OwningModule = Map.UmbrellaDirs[*Dir]) { Diags.Report(UmbrellaLoc, diag::err_mmap_umbrella_clash) << OwningModule->getFullModuleName(); HadError = true; return; } // Record this umbrella directory. Map.setUmbrellaDirAsWritten(ActiveModule, *Dir, DirNameAsWritten, DirName); } /// Parse a module export declaration. /// /// export-declaration: /// 'export' wildcard-module-id /// /// wildcard-module-id: /// identifier /// '*' /// identifier '.' wildcard-module-id void ModuleMapParser::parseExportDecl() { assert(Tok.is(MMToken::ExportKeyword)); SourceLocation ExportLoc = consumeToken(); // Parse the module-id with an optional wildcard at the end. ModuleId ParsedModuleId; bool Wildcard = false; do { // FIXME: Support string-literal module names here. if (Tok.is(MMToken::Identifier)) { ParsedModuleId.push_back( std::make_pair(std::string(Tok.getString()), Tok.getLocation())); consumeToken(); if (Tok.is(MMToken::Period)) { consumeToken(); continue; } break; } if(Tok.is(MMToken::Star)) { Wildcard = true; consumeToken(); break; } Diags.Report(Tok.getLocation(), diag::err_mmap_module_id); HadError = true; return; } while (true); Module::UnresolvedExportDecl Unresolved = { ExportLoc, ParsedModuleId, Wildcard }; ActiveModule->UnresolvedExports.push_back(Unresolved); } /// Parse a module export_as declaration. /// /// export-as-declaration: /// 'export_as' identifier void ModuleMapParser::parseExportAsDecl() { assert(Tok.is(MMToken::ExportAsKeyword)); consumeToken(); if (!Tok.is(MMToken::Identifier)) { Diags.Report(Tok.getLocation(), diag::err_mmap_module_id); HadError = true; return; } if (ActiveModule->Parent) { Diags.Report(Tok.getLocation(), diag::err_mmap_submodule_export_as); consumeToken(); return; } if (!ActiveModule->ExportAsModule.empty()) { if (ActiveModule->ExportAsModule == Tok.getString()) { Diags.Report(Tok.getLocation(), diag::warn_mmap_redundant_export_as) << ActiveModule->Name << Tok.getString(); } else { Diags.Report(Tok.getLocation(), diag::err_mmap_conflicting_export_as) << ActiveModule->Name << ActiveModule->ExportAsModule << Tok.getString(); } } ActiveModule->ExportAsModule = std::string(Tok.getString()); Map.addLinkAsDependency(ActiveModule); consumeToken(); } /// Parse a module use declaration. /// /// use-declaration: /// 'use' wildcard-module-id void ModuleMapParser::parseUseDecl() { assert(Tok.is(MMToken::UseKeyword)); auto KWLoc = consumeToken(); // Parse the module-id. ModuleId ParsedModuleId; parseModuleId(ParsedModuleId); if (ActiveModule->Parent) Diags.Report(KWLoc, diag::err_mmap_use_decl_submodule); else ActiveModule->UnresolvedDirectUses.push_back(ParsedModuleId); } /// Parse a link declaration. /// /// module-declaration: /// 'link' 'framework'[opt] string-literal void ModuleMapParser::parseLinkDecl() { assert(Tok.is(MMToken::LinkKeyword)); SourceLocation LinkLoc = consumeToken(); // Parse the optional 'framework' keyword. bool IsFramework = false; if (Tok.is(MMToken::FrameworkKeyword)) { consumeToken(); IsFramework = true; } // Parse the library name if (!Tok.is(MMToken::StringLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_library_name) << IsFramework << SourceRange(LinkLoc); HadError = true; return; } std::string LibraryName = std::string(Tok.getString()); consumeToken(); ActiveModule->LinkLibraries.push_back(Module::LinkLibrary(LibraryName, IsFramework)); } /// Parse a configuration macro declaration. /// /// module-declaration: /// 'config_macros' attributes[opt] config-macro-list? /// /// config-macro-list: /// identifier (',' identifier)? void ModuleMapParser::parseConfigMacros() { assert(Tok.is(MMToken::ConfigMacros)); SourceLocation ConfigMacrosLoc = consumeToken(); // Only top-level modules can have configuration macros. if (ActiveModule->Parent) { Diags.Report(ConfigMacrosLoc, diag::err_mmap_config_macro_submodule); } // Parse the optional attributes. Attributes Attrs; if (parseOptionalAttributes(Attrs)) return; if (Attrs.IsExhaustive && !ActiveModule->Parent) { ActiveModule->ConfigMacrosExhaustive = true; } // If we don't have an identifier, we're done. // FIXME: Support macros with the same name as a keyword here. if (!Tok.is(MMToken::Identifier)) return; // Consume the first identifier. if (!ActiveModule->Parent) { ActiveModule->ConfigMacros.push_back(Tok.getString().str()); } consumeToken(); do { // If there's a comma, consume it. if (!Tok.is(MMToken::Comma)) break; consumeToken(); // We expect to see a macro name here. // FIXME: Support macros with the same name as a keyword here. if (!Tok.is(MMToken::Identifier)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_config_macro); break; } // Consume the macro name. if (!ActiveModule->Parent) { ActiveModule->ConfigMacros.push_back(Tok.getString().str()); } consumeToken(); } while (true); } /// Format a module-id into a string. static std::string formatModuleId(const ModuleId &Id) { std::string result; { llvm::raw_string_ostream OS(result); for (unsigned I = 0, N = Id.size(); I != N; ++I) { if (I) OS << "."; OS << Id[I].first; } } return result; } /// Parse a conflict declaration. /// /// module-declaration: /// 'conflict' module-id ',' string-literal void ModuleMapParser::parseConflict() { assert(Tok.is(MMToken::Conflict)); SourceLocation ConflictLoc = consumeToken(); Module::UnresolvedConflict Conflict; // Parse the module-id. if (parseModuleId(Conflict.Id)) return; // Parse the ','. if (!Tok.is(MMToken::Comma)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_conflicts_comma) << SourceRange(ConflictLoc); return; } consumeToken(); // Parse the message. if (!Tok.is(MMToken::StringLiteral)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_conflicts_message) << formatModuleId(Conflict.Id); return; } Conflict.Message = Tok.getString().str(); consumeToken(); // Add this unresolved conflict. ActiveModule->UnresolvedConflicts.push_back(Conflict); } /// Parse an inferred module declaration (wildcard modules). /// /// module-declaration: /// 'explicit'[opt] 'framework'[opt] 'module' * attributes[opt] /// { inferred-module-member* } /// /// inferred-module-member: /// 'export' '*' /// 'exclude' identifier void ModuleMapParser::parseInferredModuleDecl(bool Framework, bool Explicit) { assert(Tok.is(MMToken::Star)); SourceLocation StarLoc = consumeToken(); bool Failed = false; // Inferred modules must be submodules. if (!ActiveModule && !Framework) { Diags.Report(StarLoc, diag::err_mmap_top_level_inferred_submodule); Failed = true; } if (ActiveModule) { // Inferred modules must have umbrella directories. if (!Failed && ActiveModule->IsAvailable && !ActiveModule->getEffectiveUmbrellaDir()) { Diags.Report(StarLoc, diag::err_mmap_inferred_no_umbrella); Failed = true; } // Check for redefinition of an inferred module. if (!Failed && ActiveModule->InferSubmodules) { Diags.Report(StarLoc, diag::err_mmap_inferred_redef); if (ActiveModule->InferredSubmoduleLoc.isValid()) Diags.Report(ActiveModule->InferredSubmoduleLoc, diag::note_mmap_prev_definition); Failed = true; } // Check for the 'framework' keyword, which is not permitted here. if (Framework) { Diags.Report(StarLoc, diag::err_mmap_inferred_framework_submodule); Framework = false; } } else if (Explicit) { Diags.Report(StarLoc, diag::err_mmap_explicit_inferred_framework); Explicit = false; } // If there were any problems with this inferred submodule, skip its body. if (Failed) { if (Tok.is(MMToken::LBrace)) { consumeToken(); skipUntil(MMToken::RBrace); if (Tok.is(MMToken::RBrace)) consumeToken(); } HadError = true; return; } // Parse optional attributes. Attributes Attrs; if (parseOptionalAttributes(Attrs)) return; if (ActiveModule) { // Note that we have an inferred submodule. ActiveModule->InferSubmodules = true; ActiveModule->InferredSubmoduleLoc = StarLoc; ActiveModule->InferExplicitSubmodules = Explicit; } else { // We'll be inferring framework modules for this directory. Map.InferredDirectories[Directory].InferModules = true; Map.InferredDirectories[Directory].Attrs = Attrs; Map.InferredDirectories[Directory].ModuleMapFile = ModuleMapFile; // FIXME: Handle the 'framework' keyword. } // Parse the opening brace. if (!Tok.is(MMToken::LBrace)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_lbrace_wildcard); HadError = true; return; } SourceLocation LBraceLoc = consumeToken(); // Parse the body of the inferred submodule. bool Done = false; do { switch (Tok.Kind) { case MMToken::EndOfFile: case MMToken::RBrace: Done = true; break; case MMToken::ExcludeKeyword: if (ActiveModule) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member) << (ActiveModule != nullptr); consumeToken(); break; } consumeToken(); // FIXME: Support string-literal module names here. if (!Tok.is(MMToken::Identifier)) { Diags.Report(Tok.getLocation(), diag::err_mmap_missing_exclude_name); break; } Map.InferredDirectories[Directory].ExcludedModules.push_back( std::string(Tok.getString())); consumeToken(); break; case MMToken::ExportKeyword: if (!ActiveModule) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member) << (ActiveModule != nullptr); consumeToken(); break; } consumeToken(); if (Tok.is(MMToken::Star)) ActiveModule->InferExportWildcard = true; else Diags.Report(Tok.getLocation(), diag::err_mmap_expected_export_wildcard); consumeToken(); break; case MMToken::ExplicitKeyword: case MMToken::ModuleKeyword: case MMToken::HeaderKeyword: case MMToken::PrivateKeyword: case MMToken::UmbrellaKeyword: default: Diags.Report(Tok.getLocation(), diag::err_mmap_expected_inferred_member) << (ActiveModule != nullptr); consumeToken(); break; } } while (!Done); if (Tok.is(MMToken::RBrace)) consumeToken(); else { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rbrace); Diags.Report(LBraceLoc, diag::note_mmap_lbrace_match); HadError = true; } } /// Parse optional attributes. /// /// attributes: /// attribute attributes /// attribute /// /// attribute: /// [ identifier ] /// /// \param Attrs Will be filled in with the parsed attributes. /// /// \returns true if an error occurred, false otherwise. bool ModuleMapParser::parseOptionalAttributes(Attributes &Attrs) { bool HadError = false; while (Tok.is(MMToken::LSquare)) { // Consume the '['. SourceLocation LSquareLoc = consumeToken(); // Check whether we have an attribute name here. if (!Tok.is(MMToken::Identifier)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_attribute); skipUntil(MMToken::RSquare); if (Tok.is(MMToken::RSquare)) consumeToken(); HadError = true; } // Decode the attribute name. AttributeKind Attribute = llvm::StringSwitch(Tok.getString()) .Case("exhaustive", AT_exhaustive) .Case("extern_c", AT_extern_c) .Case("no_undeclared_includes", AT_no_undeclared_includes) .Case("system", AT_system) .Default(AT_unknown); switch (Attribute) { case AT_unknown: Diags.Report(Tok.getLocation(), diag::warn_mmap_unknown_attribute) << Tok.getString(); break; case AT_system: Attrs.IsSystem = true; break; case AT_extern_c: Attrs.IsExternC = true; break; case AT_exhaustive: Attrs.IsExhaustive = true; break; case AT_no_undeclared_includes: Attrs.NoUndeclaredIncludes = true; break; } consumeToken(); // Consume the ']'. if (!Tok.is(MMToken::RSquare)) { Diags.Report(Tok.getLocation(), diag::err_mmap_expected_rsquare); Diags.Report(LSquareLoc, diag::note_mmap_lsquare_match); skipUntil(MMToken::RSquare); HadError = true; } if (Tok.is(MMToken::RSquare)) consumeToken(); } return HadError; } /// Parse a module map file. /// /// module-map-file: /// module-declaration* bool ModuleMapParser::parseModuleMapFile() { do { switch (Tok.Kind) { case MMToken::EndOfFile: return HadError; case MMToken::ExplicitKeyword: case MMToken::ExternKeyword: case MMToken::ModuleKeyword: case MMToken::FrameworkKeyword: parseModuleDecl(); break; case MMToken::Comma: case MMToken::ConfigMacros: case MMToken::Conflict: case MMToken::Exclaim: case MMToken::ExcludeKeyword: case MMToken::ExportKeyword: case MMToken::ExportAsKeyword: case MMToken::HeaderKeyword: case MMToken::Identifier: case MMToken::LBrace: case MMToken::LinkKeyword: case MMToken::LSquare: case MMToken::Period: case MMToken::PrivateKeyword: case MMToken::RBrace: case MMToken::RSquare: case MMToken::RequiresKeyword: case MMToken::Star: case MMToken::StringLiteral: case MMToken::IntegerLiteral: case MMToken::TextualKeyword: case MMToken::UmbrellaKeyword: case MMToken::UseKeyword: Diags.Report(Tok.getLocation(), diag::err_mmap_expected_module); HadError = true; consumeToken(); break; } } while (true); } bool ModuleMap::parseModuleMapFile(const FileEntry *File, bool IsSystem, DirectoryEntryRef Dir, FileID ID, unsigned *Offset, SourceLocation ExternModuleLoc) { assert(Target && "Missing target information"); llvm::DenseMap::iterator Known = ParsedModuleMap.find(File); if (Known != ParsedModuleMap.end()) return Known->second; // If the module map file wasn't already entered, do so now. if (ID.isInvalid()) { auto FileCharacter = IsSystem ? SrcMgr::C_System_ModuleMap : SrcMgr::C_User_ModuleMap; ID = SourceMgr.createFileID(File, ExternModuleLoc, FileCharacter); } assert(Target && "Missing target information"); std::optional Buffer = SourceMgr.getBufferOrNone(ID); if (!Buffer) return ParsedModuleMap[File] = true; assert((!Offset || *Offset <= Buffer->getBufferSize()) && "invalid buffer offset"); // Parse this module map file. Lexer L(SourceMgr.getLocForStartOfFile(ID), MMapLangOpts, Buffer->getBufferStart(), Buffer->getBufferStart() + (Offset ? *Offset : 0), Buffer->getBufferEnd()); SourceLocation Start = L.getSourceLocation(); ModuleMapParser Parser(L, SourceMgr, Target, Diags, *this, File, Dir, IsSystem); bool Result = Parser.parseModuleMapFile(); ParsedModuleMap[File] = Result; if (Offset) { auto Loc = SourceMgr.getDecomposedLoc(Parser.getLocation()); assert(Loc.first == ID && "stopped in a different file?"); *Offset = Loc.second; } // Notify callbacks that we parsed it. for (const auto &Cb : Callbacks) Cb->moduleMapFileRead(Start, *File, IsSystem); return Result; }