/*===---- avxintrin.h - AVX intrinsics -------------------------------------=== * * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. * See https://llvm.org/LICENSE.txt for license information. * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception * *===-----------------------------------------------------------------------=== */ #ifndef __IMMINTRIN_H #error "Never use directly; include instead." #endif #ifndef __AVXINTRIN_H #define __AVXINTRIN_H typedef double __v4df __attribute__ ((__vector_size__ (32))); typedef float __v8sf __attribute__ ((__vector_size__ (32))); typedef long long __v4di __attribute__ ((__vector_size__ (32))); typedef int __v8si __attribute__ ((__vector_size__ (32))); typedef short __v16hi __attribute__ ((__vector_size__ (32))); typedef char __v32qi __attribute__ ((__vector_size__ (32))); /* Unsigned types */ typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32))); typedef unsigned int __v8su __attribute__ ((__vector_size__ (32))); typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32))); typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32))); /* We need an explicitly signed variant for char. Note that this shouldn't * appear in the interface though. */ typedef signed char __v32qs __attribute__((__vector_size__(32))); typedef float __m256 __attribute__ ((__vector_size__ (32), __aligned__(32))); typedef double __m256d __attribute__((__vector_size__(32), __aligned__(32))); typedef long long __m256i __attribute__((__vector_size__(32), __aligned__(32))); typedef float __m256_u __attribute__ ((__vector_size__ (32), __aligned__(1))); typedef double __m256d_u __attribute__((__vector_size__(32), __aligned__(1))); typedef long long __m256i_u __attribute__((__vector_size__(32), __aligned__(1))); #ifdef __SSE2__ /* Both _Float16 and __bf16 require SSE2 being enabled. */ typedef _Float16 __v16hf __attribute__((__vector_size__(32), __aligned__(32))); typedef _Float16 __m256h __attribute__((__vector_size__(32), __aligned__(32))); typedef _Float16 __m256h_u __attribute__((__vector_size__(32), __aligned__(1))); typedef __bf16 __v16bf __attribute__((__vector_size__(32), __aligned__(32))); typedef __bf16 __m256bh __attribute__((__vector_size__(32), __aligned__(32))); #endif /* Define the default attributes for the functions in this file. */ #define __DEFAULT_FN_ATTRS \ __attribute__((__always_inline__, __nodebug__, __target__("avx,no-evex512"), \ __min_vector_width__(256))) #define __DEFAULT_FN_ATTRS128 \ __attribute__((__always_inline__, __nodebug__, __target__("avx,no-evex512"), \ __min_vector_width__(128))) /* Arithmetic */ /// Adds two 256-bit vectors of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VADDPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// \returns A 256-bit vector of [4 x double] containing the sums of both /// operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_add_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4df)__a+(__v4df)__b); } /// Adds two 256-bit vectors of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VADDPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// \returns A 256-bit vector of [8 x float] containing the sums of both /// operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_add_ps(__m256 __a, __m256 __b) { return (__m256)((__v8sf)__a+(__v8sf)__b); } /// Subtracts two 256-bit vectors of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VSUBPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing the minuend. /// \param __b /// A 256-bit vector of [4 x double] containing the subtrahend. /// \returns A 256-bit vector of [4 x double] containing the differences between /// both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_sub_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4df)__a-(__v4df)__b); } /// Subtracts two 256-bit vectors of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VSUBPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing the minuend. /// \param __b /// A 256-bit vector of [8 x float] containing the subtrahend. /// \returns A 256-bit vector of [8 x float] containing the differences between /// both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_sub_ps(__m256 __a, __m256 __b) { return (__m256)((__v8sf)__a-(__v8sf)__b); } /// Adds the even-indexed values and subtracts the odd-indexed values of /// two 256-bit vectors of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VADDSUBPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing the left source operand. /// \param __b /// A 256-bit vector of [4 x double] containing the right source operand. /// \returns A 256-bit vector of [4 x double] containing the alternating sums /// and differences between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_addsub_pd(__m256d __a, __m256d __b) { return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b); } /// Adds the even-indexed values and subtracts the odd-indexed values of /// two 256-bit vectors of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VADDSUBPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing the left source operand. /// \param __b /// A 256-bit vector of [8 x float] containing the right source operand. /// \returns A 256-bit vector of [8 x float] containing the alternating sums and /// differences between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_addsub_ps(__m256 __a, __m256 __b) { return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b); } /// Divides two 256-bit vectors of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VDIVPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing the dividend. /// \param __b /// A 256-bit vector of [4 x double] containing the divisor. /// \returns A 256-bit vector of [4 x double] containing the quotients of both /// operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_div_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4df)__a/(__v4df)__b); } /// Divides two 256-bit vectors of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VDIVPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing the dividend. /// \param __b /// A 256-bit vector of [8 x float] containing the divisor. /// \returns A 256-bit vector of [8 x float] containing the quotients of both /// operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_div_ps(__m256 __a, __m256 __b) { return (__m256)((__v8sf)__a/(__v8sf)__b); } /// Compares two 256-bit vectors of [4 x double] and returns the greater /// of each pair of values. /// /// If either value in a comparison is NaN, returns the value from \a __b. /// /// \headerfile /// /// This intrinsic corresponds to the VMAXPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the operands. /// \returns A 256-bit vector of [4 x double] containing the maximum values /// between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_max_pd(__m256d __a, __m256d __b) { return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b); } /// Compares two 256-bit vectors of [8 x float] and returns the greater /// of each pair of values. /// /// If either value in a comparison is NaN, returns the value from \a __b. /// /// \headerfile /// /// This intrinsic corresponds to the VMAXPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the operands. /// \returns A 256-bit vector of [8 x float] containing the maximum values /// between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_max_ps(__m256 __a, __m256 __b) { return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b); } /// Compares two 256-bit vectors of [4 x double] and returns the lesser /// of each pair of values. /// /// If either value in a comparison is NaN, returns the value from \a __b. /// /// \headerfile /// /// This intrinsic corresponds to the VMINPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the operands. /// \returns A 256-bit vector of [4 x double] containing the minimum values /// between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_min_pd(__m256d __a, __m256d __b) { return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b); } /// Compares two 256-bit vectors of [8 x float] and returns the lesser /// of each pair of values. /// /// If either value in a comparison is NaN, returns the value from \a __b. /// /// \headerfile /// /// This intrinsic corresponds to the VMINPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the operands. /// \returns A 256-bit vector of [8 x float] containing the minimum values /// between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_min_ps(__m256 __a, __m256 __b) { return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b); } /// Multiplies two 256-bit vectors of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VMULPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the operands. /// \returns A 256-bit vector of [4 x double] containing the products of both /// operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_mul_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4df)__a * (__v4df)__b); } /// Multiplies two 256-bit vectors of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VMULPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the operands. /// \returns A 256-bit vector of [8 x float] containing the products of both /// operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_mul_ps(__m256 __a, __m256 __b) { return (__m256)((__v8sf)__a * (__v8sf)__b); } /// Calculates the square roots of the values in a 256-bit vector of /// [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VSQRTPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \returns A 256-bit vector of [4 x double] containing the square roots of the /// values in the operand. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_sqrt_pd(__m256d __a) { return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a); } /// Calculates the square roots of the values in a 256-bit vector of /// [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VSQRTPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the square roots of the /// values in the operand. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_sqrt_ps(__m256 __a) { return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a); } /// Calculates the reciprocal square roots of the values in a 256-bit /// vector of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VRSQRTPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the reciprocal square /// roots of the values in the operand. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_rsqrt_ps(__m256 __a) { return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a); } /// Calculates the reciprocals of the values in a 256-bit vector of /// [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VRCPPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the /// values in the operand. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_rcp_ps(__m256 __a) { return (__m256)__builtin_ia32_rcpps256((__v8sf)__a); } /// Rounds the values in a 256-bit vector of [4 x double] as specified /// by the byte operand. The source values are rounded to integer values and /// returned as 64-bit double-precision floating-point values. /// /// \headerfile /// /// \code /// __m256d _mm256_round_pd(__m256d V, const int M); /// \endcode /// /// This intrinsic corresponds to the VROUNDPD instruction. /// /// \param V /// A 256-bit vector of [4 x double]. /// \param M /// An integer value that specifies the rounding operation. \n /// Bits [7:4] are reserved. \n /// Bit [3] is a precision exception value: \n /// 0: A normal PE exception is used. \n /// 1: The PE field is not updated. \n /// Bit [2] is the rounding control source: \n /// 0: Use bits [1:0] of \a M. \n /// 1: Use the current MXCSR setting. \n /// Bits [1:0] contain the rounding control definition: \n /// 00: Nearest. \n /// 01: Downward (toward negative infinity). \n /// 10: Upward (toward positive infinity). \n /// 11: Truncated. /// \returns A 256-bit vector of [4 x double] containing the rounded values. #define _mm256_round_pd(V, M) \ ((__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M))) /// Rounds the values stored in a 256-bit vector of [8 x float] as /// specified by the byte operand. The source values are rounded to integer /// values and returned as floating-point values. /// /// \headerfile /// /// \code /// __m256 _mm256_round_ps(__m256 V, const int M); /// \endcode /// /// This intrinsic corresponds to the VROUNDPS instruction. /// /// \param V /// A 256-bit vector of [8 x float]. /// \param M /// An integer value that specifies the rounding operation. \n /// Bits [7:4] are reserved. \n /// Bit [3] is a precision exception value: \n /// 0: A normal PE exception is used. \n /// 1: The PE field is not updated. \n /// Bit [2] is the rounding control source: \n /// 0: Use bits [1:0] of \a M. \n /// 1: Use the current MXCSR setting. \n /// Bits [1:0] contain the rounding control definition: \n /// 00: Nearest. \n /// 01: Downward (toward negative infinity). \n /// 10: Upward (toward positive infinity). \n /// 11: Truncated. /// \returns A 256-bit vector of [8 x float] containing the rounded values. #define _mm256_round_ps(V, M) \ ((__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M))) /// Rounds up the values stored in a 256-bit vector of [4 x double]. The /// source values are rounded up to integer values and returned as 64-bit /// double-precision floating-point values. /// /// \headerfile /// /// \code /// __m256d _mm256_ceil_pd(__m256d V); /// \endcode /// /// This intrinsic corresponds to the VROUNDPD instruction. /// /// \param V /// A 256-bit vector of [4 x double]. /// \returns A 256-bit vector of [4 x double] containing the rounded up values. #define _mm256_ceil_pd(V) _mm256_round_pd((V), _MM_FROUND_CEIL) /// Rounds down the values stored in a 256-bit vector of [4 x double]. /// The source values are rounded down to integer values and returned as /// 64-bit double-precision floating-point values. /// /// \headerfile /// /// \code /// __m256d _mm256_floor_pd(__m256d V); /// \endcode /// /// This intrinsic corresponds to the VROUNDPD instruction. /// /// \param V /// A 256-bit vector of [4 x double]. /// \returns A 256-bit vector of [4 x double] containing the rounded down /// values. #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR) /// Rounds up the values stored in a 256-bit vector of [8 x float]. The /// source values are rounded up to integer values and returned as /// floating-point values. /// /// \headerfile /// /// \code /// __m256 _mm256_ceil_ps(__m256 V); /// \endcode /// /// This intrinsic corresponds to the VROUNDPS instruction. /// /// \param V /// A 256-bit vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the rounded up values. #define _mm256_ceil_ps(V) _mm256_round_ps((V), _MM_FROUND_CEIL) /// Rounds down the values stored in a 256-bit vector of [8 x float]. The /// source values are rounded down to integer values and returned as /// floating-point values. /// /// \headerfile /// /// \code /// __m256 _mm256_floor_ps(__m256 V); /// \endcode /// /// This intrinsic corresponds to the VROUNDPS instruction. /// /// \param V /// A 256-bit vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the rounded down values. #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR) /* Logical */ /// Performs a bitwise AND of two 256-bit vectors of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VANDPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the /// values between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_and_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4du)__a & (__v4du)__b); } /// Performs a bitwise AND of two 256-bit vectors of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VANDPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the /// values between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_and_ps(__m256 __a, __m256 __b) { return (__m256)((__v8su)__a & (__v8su)__b); } /// Performs a bitwise AND of two 256-bit vectors of [4 x double], using /// the one's complement of the values contained in the first source operand. /// /// \headerfile /// /// This intrinsic corresponds to the VANDNPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing the left source operand. The /// one's complement of this value is used in the bitwise AND. /// \param __b /// A 256-bit vector of [4 x double] containing the right source operand. /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the /// values of the second operand and the one's complement of the first /// operand. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_andnot_pd(__m256d __a, __m256d __b) { return (__m256d)(~(__v4du)__a & (__v4du)__b); } /// Performs a bitwise AND of two 256-bit vectors of [8 x float], using /// the one's complement of the values contained in the first source operand. /// /// \headerfile /// /// This intrinsic corresponds to the VANDNPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing the left source operand. The /// one's complement of this value is used in the bitwise AND. /// \param __b /// A 256-bit vector of [8 x float] containing the right source operand. /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the /// values of the second operand and the one's complement of the first /// operand. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_andnot_ps(__m256 __a, __m256 __b) { return (__m256)(~(__v8su)__a & (__v8su)__b); } /// Performs a bitwise OR of two 256-bit vectors of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VORPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the /// values between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_or_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4du)__a | (__v4du)__b); } /// Performs a bitwise OR of two 256-bit vectors of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VORPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the /// values between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_or_ps(__m256 __a, __m256 __b) { return (__m256)((__v8su)__a | (__v8su)__b); } /// Performs a bitwise XOR of two 256-bit vectors of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VXORPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the /// values between both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_xor_pd(__m256d __a, __m256d __b) { return (__m256d)((__v4du)__a ^ (__v4du)__b); } /// Performs a bitwise XOR of two 256-bit vectors of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VXORPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the /// values between both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_xor_ps(__m256 __a, __m256 __b) { return (__m256)((__v8su)__a ^ (__v8su)__b); } /* Horizontal arithmetic */ /// Horizontally adds the adjacent pairs of values contained in two /// 256-bit vectors of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VHADDPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// The horizontal sums of the values are returned in the even-indexed /// elements of a vector of [4 x double]. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// The horizontal sums of the values are returned in the odd-indexed /// elements of a vector of [4 x double]. /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of /// both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_hadd_pd(__m256d __a, __m256d __b) { return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b); } /// Horizontally adds the adjacent pairs of values contained in two /// 256-bit vectors of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VHADDPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// The horizontal sums of the values are returned in the elements with /// index 0, 1, 4, 5 of a vector of [8 x float]. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// The horizontal sums of the values are returned in the elements with /// index 2, 3, 6, 7 of a vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of /// both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_hadd_ps(__m256 __a, __m256 __b) { return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b); } /// Horizontally subtracts the adjacent pairs of values contained in two /// 256-bit vectors of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VHSUBPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing one of the source operands. /// The horizontal differences between the values are returned in the /// even-indexed elements of a vector of [4 x double]. /// \param __b /// A 256-bit vector of [4 x double] containing one of the source operands. /// The horizontal differences between the values are returned in the /// odd-indexed elements of a vector of [4 x double]. /// \returns A 256-bit vector of [4 x double] containing the horizontal /// differences of both operands. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_hsub_pd(__m256d __a, __m256d __b) { return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b); } /// Horizontally subtracts the adjacent pairs of values contained in two /// 256-bit vectors of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VHSUBPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing one of the source operands. /// The horizontal differences between the values are returned in the /// elements with index 0, 1, 4, 5 of a vector of [8 x float]. /// \param __b /// A 256-bit vector of [8 x float] containing one of the source operands. /// The horizontal differences between the values are returned in the /// elements with index 2, 3, 6, 7 of a vector of [8 x float]. /// \returns A 256-bit vector of [8 x float] containing the horizontal /// differences of both operands. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_hsub_ps(__m256 __a, __m256 __b) { return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b); } /* Vector permutations */ /// Copies the values in a 128-bit vector of [2 x double] as specified /// by the 128-bit integer vector operand. /// /// \headerfile /// /// This intrinsic corresponds to the VPERMILPD instruction. /// /// \param __a /// A 128-bit vector of [2 x double]. /// \param __c /// A 128-bit integer vector operand specifying how the values are to be /// copied. \n /// Bit [1]: \n /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned /// vector. \n /// 1: Bits [127:64] of the source are copied to bits [63:0] of the /// returned vector. \n /// Bit [65]: \n /// 0: Bits [63:0] of the source are copied to bits [127:64] of the /// returned vector. \n /// 1: Bits [127:64] of the source are copied to bits [127:64] of the /// returned vector. /// \returns A 128-bit vector of [2 x double] containing the copied values. static __inline __m128d __DEFAULT_FN_ATTRS128 _mm_permutevar_pd(__m128d __a, __m128i __c) { return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c); } /// Copies the values in a 256-bit vector of [4 x double] as specified /// by the 256-bit integer vector operand. /// /// \headerfile /// /// This intrinsic corresponds to the VPERMILPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \param __c /// A 256-bit integer vector operand specifying how the values are to be /// copied. \n /// Bit [1]: \n /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned /// vector. \n /// 1: Bits [127:64] of the source are copied to bits [63:0] of the /// returned vector. \n /// Bit [65]: \n /// 0: Bits [63:0] of the source are copied to bits [127:64] of the /// returned vector. \n /// 1: Bits [127:64] of the source are copied to bits [127:64] of the /// returned vector. \n /// Bit [129]: \n /// 0: Bits [191:128] of the source are copied to bits [191:128] of the /// returned vector. \n /// 1: Bits [255:192] of the source are copied to bits [191:128] of the /// returned vector. \n /// Bit [193]: \n /// 0: Bits [191:128] of the source are copied to bits [255:192] of the /// returned vector. \n /// 1: Bits [255:192] of the source are copied to bits [255:192] of the /// returned vector. /// \returns A 256-bit vector of [4 x double] containing the copied values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_permutevar_pd(__m256d __a, __m256i __c) { return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c); } /// Copies the values stored in a 128-bit vector of [4 x float] as /// specified by the 128-bit integer vector operand. /// /// \headerfile /// /// This intrinsic corresponds to the VPERMILPS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __c /// A 128-bit integer vector operand specifying how the values are to be /// copied. \n /// Bits [1:0]: \n /// 00: Bits [31:0] of the source are copied to bits [31:0] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [31:0] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [31:0] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [31:0] of the /// returned vector. \n /// Bits [33:32]: \n /// 00: Bits [31:0] of the source are copied to bits [63:32] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [63:32] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [63:32] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [63:32] of the /// returned vector. \n /// Bits [65:64]: \n /// 00: Bits [31:0] of the source are copied to bits [95:64] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [95:64] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [95:64] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [95:64] of the /// returned vector. \n /// Bits [97:96]: \n /// 00: Bits [31:0] of the source are copied to bits [127:96] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [127:96] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [127:96] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [127:96] of the /// returned vector. /// \returns A 128-bit vector of [4 x float] containing the copied values. static __inline __m128 __DEFAULT_FN_ATTRS128 _mm_permutevar_ps(__m128 __a, __m128i __c) { return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c); } /// Copies the values stored in a 256-bit vector of [8 x float] as /// specified by the 256-bit integer vector operand. /// /// \headerfile /// /// This intrinsic corresponds to the VPERMILPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \param __c /// A 256-bit integer vector operand specifying how the values are to be /// copied. \n /// Bits [1:0]: \n /// 00: Bits [31:0] of the source are copied to bits [31:0] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [31:0] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [31:0] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [31:0] of the /// returned vector. \n /// Bits [33:32]: \n /// 00: Bits [31:0] of the source are copied to bits [63:32] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [63:32] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [63:32] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [63:32] of the /// returned vector. \n /// Bits [65:64]: \n /// 00: Bits [31:0] of the source are copied to bits [95:64] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [95:64] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [95:64] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [95:64] of the /// returned vector. \n /// Bits [97:96]: \n /// 00: Bits [31:0] of the source are copied to bits [127:96] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [127:96] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [127:96] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [127:96] of the /// returned vector. \n /// Bits [129:128]: \n /// 00: Bits [159:128] of the source are copied to bits [159:128] of the /// returned vector. \n /// 01: Bits [191:160] of the source are copied to bits [159:128] of the /// returned vector. \n /// 10: Bits [223:192] of the source are copied to bits [159:128] of the /// returned vector. \n /// 11: Bits [255:224] of the source are copied to bits [159:128] of the /// returned vector. \n /// Bits [161:160]: \n /// 00: Bits [159:128] of the source are copied to bits [191:160] of the /// returned vector. \n /// 01: Bits [191:160] of the source are copied to bits [191:160] of the /// returned vector. \n /// 10: Bits [223:192] of the source are copied to bits [191:160] of the /// returned vector. \n /// 11: Bits [255:224] of the source are copied to bits [191:160] of the /// returned vector. \n /// Bits [193:192]: \n /// 00: Bits [159:128] of the source are copied to bits [223:192] of the /// returned vector. \n /// 01: Bits [191:160] of the source are copied to bits [223:192] of the /// returned vector. \n /// 10: Bits [223:192] of the source are copied to bits [223:192] of the /// returned vector. \n /// 11: Bits [255:224] of the source are copied to bits [223:192] of the /// returned vector. \n /// Bits [225:224]: \n /// 00: Bits [159:128] of the source are copied to bits [255:224] of the /// returned vector. \n /// 01: Bits [191:160] of the source are copied to bits [255:224] of the /// returned vector. \n /// 10: Bits [223:192] of the source are copied to bits [255:224] of the /// returned vector. \n /// 11: Bits [255:224] of the source are copied to bits [255:224] of the /// returned vector. /// \returns A 256-bit vector of [8 x float] containing the copied values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_permutevar_ps(__m256 __a, __m256i __c) { return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c); } /// Copies the values in a 128-bit vector of [2 x double] as specified /// by the immediate integer operand. /// /// \headerfile /// /// \code /// __m128d _mm_permute_pd(__m128d A, const int C); /// \endcode /// /// This intrinsic corresponds to the VPERMILPD instruction. /// /// \param A /// A 128-bit vector of [2 x double]. /// \param C /// An immediate integer operand specifying how the values are to be /// copied. \n /// Bit [0]: \n /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned /// vector. \n /// 1: Bits [127:64] of the source are copied to bits [63:0] of the /// returned vector. \n /// Bit [1]: \n /// 0: Bits [63:0] of the source are copied to bits [127:64] of the /// returned vector. \n /// 1: Bits [127:64] of the source are copied to bits [127:64] of the /// returned vector. /// \returns A 128-bit vector of [2 x double] containing the copied values. #define _mm_permute_pd(A, C) \ ((__m128d)__builtin_ia32_vpermilpd((__v2df)(__m128d)(A), (int)(C))) /// Copies the values in a 256-bit vector of [4 x double] as specified by /// the immediate integer operand. /// /// \headerfile /// /// \code /// __m256d _mm256_permute_pd(__m256d A, const int C); /// \endcode /// /// This intrinsic corresponds to the VPERMILPD instruction. /// /// \param A /// A 256-bit vector of [4 x double]. /// \param C /// An immediate integer operand specifying how the values are to be /// copied. \n /// Bit [0]: \n /// 0: Bits [63:0] of the source are copied to bits [63:0] of the returned /// vector. \n /// 1: Bits [127:64] of the source are copied to bits [63:0] of the /// returned vector. \n /// Bit [1]: \n /// 0: Bits [63:0] of the source are copied to bits [127:64] of the /// returned vector. \n /// 1: Bits [127:64] of the source are copied to bits [127:64] of the /// returned vector. \n /// Bit [2]: \n /// 0: Bits [191:128] of the source are copied to bits [191:128] of the /// returned vector. \n /// 1: Bits [255:192] of the source are copied to bits [191:128] of the /// returned vector. \n /// Bit [3]: \n /// 0: Bits [191:128] of the source are copied to bits [255:192] of the /// returned vector. \n /// 1: Bits [255:192] of the source are copied to bits [255:192] of the /// returned vector. /// \returns A 256-bit vector of [4 x double] containing the copied values. #define _mm256_permute_pd(A, C) \ ((__m256d)__builtin_ia32_vpermilpd256((__v4df)(__m256d)(A), (int)(C))) /// Copies the values in a 128-bit vector of [4 x float] as specified by /// the immediate integer operand. /// /// \headerfile /// /// \code /// __m128 _mm_permute_ps(__m128 A, const int C); /// \endcode /// /// This intrinsic corresponds to the VPERMILPS instruction. /// /// \param A /// A 128-bit vector of [4 x float]. /// \param C /// An immediate integer operand specifying how the values are to be /// copied. \n /// Bits [1:0]: \n /// 00: Bits [31:0] of the source are copied to bits [31:0] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [31:0] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [31:0] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [31:0] of the /// returned vector. \n /// Bits [3:2]: \n /// 00: Bits [31:0] of the source are copied to bits [63:32] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [63:32] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [63:32] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [63:32] of the /// returned vector. \n /// Bits [5:4]: \n /// 00: Bits [31:0] of the source are copied to bits [95:64] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [95:64] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [95:64] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [95:64] of the /// returned vector. \n /// Bits [7:6]: \n /// 00: Bits [31:0] of the source are copied to bits [127:96] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [127:96] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [127:96] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [127:96] of the /// returned vector. /// \returns A 128-bit vector of [4 x float] containing the copied values. #define _mm_permute_ps(A, C) \ ((__m128)__builtin_ia32_vpermilps((__v4sf)(__m128)(A), (int)(C))) /// Copies the values in a 256-bit vector of [8 x float] as specified by /// the immediate integer operand. /// /// \headerfile /// /// \code /// __m256 _mm256_permute_ps(__m256 A, const int C); /// \endcode /// /// This intrinsic corresponds to the VPERMILPS instruction. /// /// \param A /// A 256-bit vector of [8 x float]. /// \param C /// An immediate integer operand specifying how the values are to be /// copied. \n /// Bits [1:0]: \n /// 00: Bits [31:0] of the source are copied to bits [31:0] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [31:0] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [31:0] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [31:0] of the /// returned vector. \n /// Bits [3:2]: \n /// 00: Bits [31:0] of the source are copied to bits [63:32] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [63:32] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [63:32] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [63:32] of the /// returned vector. \n /// Bits [5:4]: \n /// 00: Bits [31:0] of the source are copied to bits [95:64] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [95:64] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [95:64] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [95:64] of the /// returned vector. \n /// Bits [7:6]: \n /// 00: Bits [31:0] of the source are copied to bits [127:96] of the /// returned vector. \n /// 01: Bits [63:32] of the source are copied to bits [127:96] of the /// returned vector. \n /// 10: Bits [95:64] of the source are copied to bits [127:96] of the /// returned vector. \n /// 11: Bits [127:96] of the source are copied to bits [127:96] of the /// returned vector. \n /// Bits [1:0]: \n /// 00: Bits [159:128] of the source are copied to bits [159:128] of the /// returned vector. \n /// 01: Bits [191:160] of the source are copied to bits [159:128] of the /// returned vector. \n /// 10: Bits [223:192] of the source are copied to bits [159:128] of the /// returned vector. \n /// 11: Bits [255:224] of the source are copied to bits [159:128] of the /// returned vector. \n /// Bits [3:2]: \n /// 00: Bits [159:128] of the source are copied to bits [191:160] of the /// returned vector. \n /// 01: Bits [191:160] of the source are copied to bits [191:160] of the /// returned vector. \n /// 10: Bits [223:192] of the source are copied to bits [191:160] of the /// returned vector. \n /// 11: Bits [255:224] of the source are copied to bits [191:160] of the /// returned vector. \n /// Bits [5:4]: \n /// 00: Bits [159:128] of the source are copied to bits [223:192] of the /// returned vector. \n /// 01: Bits [191:160] of the source are copied to bits [223:192] of the /// returned vector. \n /// 10: Bits [223:192] of the source are copied to bits [223:192] of the /// returned vector. \n /// 11: Bits [255:224] of the source are copied to bits [223:192] of the /// returned vector. \n /// Bits [7:6]: \n /// 00: Bits [159:128] of the source are copied to bits [255:224] of the /// returned vector. \n /// 01: Bits [191:160] of the source are copied to bits [255:224] of the /// returned vector. \n /// 10: Bits [223:192] of the source are copied to bits [255:224] of the /// returned vector. \n /// 11: Bits [255:224] of the source are copied to bits [255:224] of the /// returned vector. /// \returns A 256-bit vector of [8 x float] containing the copied values. #define _mm256_permute_ps(A, C) \ ((__m256)__builtin_ia32_vpermilps256((__v8sf)(__m256)(A), (int)(C))) /// Permutes 128-bit data values stored in two 256-bit vectors of /// [4 x double], as specified by the immediate integer operand. /// /// \headerfile /// /// \code /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M); /// \endcode /// /// This intrinsic corresponds to the VPERM2F128 instruction. /// /// \param V1 /// A 256-bit vector of [4 x double]. /// \param V2 /// A 256-bit vector of [4 x double. /// \param M /// An immediate integer operand specifying how the values are to be /// permuted. \n /// Bits [1:0]: \n /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the /// destination. \n /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the /// destination. \n /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the /// destination. \n /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the /// destination. \n /// Bits [5:4]: \n /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the /// destination. \n /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the /// destination. \n /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the /// destination. \n /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the /// destination. /// \returns A 256-bit vector of [4 x double] containing the copied values. #define _mm256_permute2f128_pd(V1, V2, M) \ ((__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \ (__v4df)(__m256d)(V2), (int)(M))) /// Permutes 128-bit data values stored in two 256-bit vectors of /// [8 x float], as specified by the immediate integer operand. /// /// \headerfile /// /// \code /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M); /// \endcode /// /// This intrinsic corresponds to the VPERM2F128 instruction. /// /// \param V1 /// A 256-bit vector of [8 x float]. /// \param V2 /// A 256-bit vector of [8 x float]. /// \param M /// An immediate integer operand specifying how the values are to be /// permuted. \n /// Bits [1:0]: \n /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the /// destination. \n /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the /// destination. \n /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the /// destination. \n /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the /// destination. \n /// Bits [5:4]: \n /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the /// destination. \n /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the /// destination. \n /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the /// destination. \n /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the /// destination. /// \returns A 256-bit vector of [8 x float] containing the copied values. #define _mm256_permute2f128_ps(V1, V2, M) \ ((__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \ (__v8sf)(__m256)(V2), (int)(M))) /// Permutes 128-bit data values stored in two 256-bit integer vectors, /// as specified by the immediate integer operand. /// /// \headerfile /// /// \code /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M); /// \endcode /// /// This intrinsic corresponds to the VPERM2F128 instruction. /// /// \param V1 /// A 256-bit integer vector. /// \param V2 /// A 256-bit integer vector. /// \param M /// An immediate integer operand specifying how the values are to be copied. /// Bits [1:0]: \n /// 00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the /// destination. \n /// 01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the /// destination. \n /// 10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the /// destination. \n /// 11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the /// destination. \n /// Bits [5:4]: \n /// 00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the /// destination. \n /// 01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the /// destination. \n /// 10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the /// destination. \n /// 11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the /// destination. /// \returns A 256-bit integer vector containing the copied values. #define _mm256_permute2f128_si256(V1, V2, M) \ ((__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \ (__v8si)(__m256i)(V2), (int)(M))) /* Vector Blend */ /// Merges 64-bit double-precision data values stored in either of the /// two 256-bit vectors of [4 x double], as specified by the immediate /// integer operand. /// /// \headerfile /// /// \code /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M); /// \endcode /// /// This intrinsic corresponds to the VBLENDPD instruction. /// /// \param V1 /// A 256-bit vector of [4 x double]. /// \param V2 /// A 256-bit vector of [4 x double]. /// \param M /// An immediate integer operand, with mask bits [3:0] specifying how the /// values are to be copied. The position of the mask bit corresponds to the /// index of a copied value. When a mask bit is 0, the corresponding 64-bit /// element in operand \a V1 is copied to the same position in the /// destination. When a mask bit is 1, the corresponding 64-bit element in /// operand \a V2 is copied to the same position in the destination. /// \returns A 256-bit vector of [4 x double] containing the copied values. #define _mm256_blend_pd(V1, V2, M) \ ((__m256d)__builtin_ia32_blendpd256((__v4df)(__m256d)(V1), \ (__v4df)(__m256d)(V2), (int)(M))) /// Merges 32-bit single-precision data values stored in either of the /// two 256-bit vectors of [8 x float], as specified by the immediate /// integer operand. /// /// \headerfile /// /// \code /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M); /// \endcode /// /// This intrinsic corresponds to the VBLENDPS instruction. /// /// \param V1 /// A 256-bit vector of [8 x float]. /// \param V2 /// A 256-bit vector of [8 x float]. /// \param M /// An immediate integer operand, with mask bits [7:0] specifying how the /// values are to be copied. The position of the mask bit corresponds to the /// index of a copied value. When a mask bit is 0, the corresponding 32-bit /// element in operand \a V1 is copied to the same position in the /// destination. When a mask bit is 1, the corresponding 32-bit element in /// operand \a V2 is copied to the same position in the destination. /// \returns A 256-bit vector of [8 x float] containing the copied values. #define _mm256_blend_ps(V1, V2, M) \ ((__m256)__builtin_ia32_blendps256((__v8sf)(__m256)(V1), \ (__v8sf)(__m256)(V2), (int)(M))) /// Merges 64-bit double-precision data values stored in either of the /// two 256-bit vectors of [4 x double], as specified by the 256-bit vector /// operand. /// /// \headerfile /// /// This intrinsic corresponds to the VBLENDVPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \param __b /// A 256-bit vector of [4 x double]. /// \param __c /// A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying /// how the values are to be copied. The position of the mask bit corresponds /// to the most significant bit of a copied value. When a mask bit is 0, the /// corresponding 64-bit element in operand \a __a is copied to the same /// position in the destination. When a mask bit is 1, the corresponding /// 64-bit element in operand \a __b is copied to the same position in the /// destination. /// \returns A 256-bit vector of [4 x double] containing the copied values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c) { return (__m256d)__builtin_ia32_blendvpd256( (__v4df)__a, (__v4df)__b, (__v4df)__c); } /// Merges 32-bit single-precision data values stored in either of the /// two 256-bit vectors of [8 x float], as specified by the 256-bit vector /// operand. /// /// \headerfile /// /// This intrinsic corresponds to the VBLENDVPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \param __b /// A 256-bit vector of [8 x float]. /// \param __c /// A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63, /// and 31 specifying how the values are to be copied. The position of the /// mask bit corresponds to the most significant bit of a copied value. When /// a mask bit is 0, the corresponding 32-bit element in operand \a __a is /// copied to the same position in the destination. When a mask bit is 1, the /// corresponding 32-bit element in operand \a __b is copied to the same /// position in the destination. /// \returns A 256-bit vector of [8 x float] containing the copied values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c) { return (__m256)__builtin_ia32_blendvps256( (__v8sf)__a, (__v8sf)__b, (__v8sf)__c); } /* Vector Dot Product */ /// Computes two dot products in parallel, using the lower and upper /// halves of two [8 x float] vectors as input to the two computations, and /// returning the two dot products in the lower and upper halves of the /// [8 x float] result. /// /// The immediate integer operand controls which input elements will /// contribute to the dot product, and where the final results are returned. /// In general, for each dot product, the four corresponding elements of the /// input vectors are multiplied; the first two and second two products are /// summed, then the two sums are added to form the final result. /// /// \headerfile /// /// \code /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M); /// \endcode /// /// This intrinsic corresponds to the VDPPS instruction. /// /// \param V1 /// A vector of [8 x float] values, treated as two [4 x float] vectors. /// \param V2 /// A vector of [8 x float] values, treated as two [4 x float] vectors. /// \param M /// An immediate integer argument. Bits [7:4] determine which elements of /// the input vectors are used, with bit [4] corresponding to the lowest /// element and bit [7] corresponding to the highest element of each [4 x /// float] subvector. If a bit is set, the corresponding elements from the /// two input vectors are used as an input for dot product; otherwise that /// input is treated as zero. Bits [3:0] determine which elements of the /// result will receive a copy of the final dot product, with bit [0] /// corresponding to the lowest element and bit [3] corresponding to the /// highest element of each [4 x float] subvector. If a bit is set, the dot /// product is returned in the corresponding element; otherwise that element /// is set to zero. The bitmask is applied in the same way to each of the /// two parallel dot product computations. /// \returns A 256-bit vector of [8 x float] containing the two dot products. #define _mm256_dp_ps(V1, V2, M) \ ((__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \ (__v8sf)(__m256)(V2), (M))) /* Vector shuffle */ /// Selects 8 float values from the 256-bit operands of [8 x float], as /// specified by the immediate value operand. /// /// The four selected elements in each operand are copied to the destination /// according to the bits specified in the immediate operand. The selected /// elements from the first 256-bit operand are copied to bits [63:0] and /// bits [191:128] of the destination, and the selected elements from the /// second 256-bit operand are copied to bits [127:64] and bits [255:192] of /// the destination. For example, if bits [7:0] of the immediate operand /// contain a value of 0xFF, the 256-bit destination vector would contain the /// following values: b[7], b[7], a[7], a[7], b[3], b[3], a[3], a[3]. /// /// \headerfile /// /// \code /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask); /// \endcode /// /// This intrinsic corresponds to the VSHUFPS instruction. /// /// \param a /// A 256-bit vector of [8 x float]. The four selected elements in this /// operand are copied to bits [63:0] and bits [191:128] in the destination, /// according to the bits specified in the immediate operand. /// \param b /// A 256-bit vector of [8 x float]. The four selected elements in this /// operand are copied to bits [127:64] and bits [255:192] in the /// destination, according to the bits specified in the immediate operand. /// \param mask /// An immediate value containing an 8-bit value specifying which elements to /// copy from \a a and \a b \n. /// Bits [3:0] specify the values copied from operand \a a. \n /// Bits [7:4] specify the values copied from operand \a b. \n /// The destinations within the 256-bit destination are assigned values as /// follows, according to the bit value assignments described below: \n /// Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the /// destination. \n /// Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the /// destination. \n /// Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the /// destination. \n /// Bits [7:6] are used to assign values to bits [127:96] and [255:224] in /// the destination. \n /// Bit value assignments: \n /// 00: Bits [31:0] and [159:128] are copied from the selected operand. \n /// 01: Bits [63:32] and [191:160] are copied from the selected operand. \n /// 10: Bits [95:64] and [223:192] are copied from the selected operand. \n /// 11: Bits [127:96] and [255:224] are copied from the selected operand. \n /// Note: To generate a mask, you can use the \c _MM_SHUFFLE macro. /// _MM_SHUFFLE(b6, b4, b2, b0) can create an 8-bit mask of the form /// [b6, b4, b2, b0]. /// \returns A 256-bit vector of [8 x float] containing the shuffled values. #define _mm256_shuffle_ps(a, b, mask) \ ((__m256)__builtin_ia32_shufps256((__v8sf)(__m256)(a), \ (__v8sf)(__m256)(b), (int)(mask))) /// Selects four double-precision values from the 256-bit operands of /// [4 x double], as specified by the immediate value operand. /// /// The selected elements from the first 256-bit operand are copied to bits /// [63:0] and bits [191:128] in the destination, and the selected elements /// from the second 256-bit operand are copied to bits [127:64] and bits /// [255:192] in the destination. For example, if bits [3:0] of the immediate /// operand contain a value of 0xF, the 256-bit destination vector would /// contain the following values: b[3], a[3], b[1], a[1]. /// /// \headerfile /// /// \code /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask); /// \endcode /// /// This intrinsic corresponds to the VSHUFPD instruction. /// /// \param a /// A 256-bit vector of [4 x double]. /// \param b /// A 256-bit vector of [4 x double]. /// \param mask /// An immediate value containing 8-bit values specifying which elements to /// copy from \a a and \a b: \n /// Bit [0]=0: Bits [63:0] are copied from \a a to bits [63:0] of the /// destination. \n /// Bit [0]=1: Bits [127:64] are copied from \a a to bits [63:0] of the /// destination. \n /// Bit [1]=0: Bits [63:0] are copied from \a b to bits [127:64] of the /// destination. \n /// Bit [1]=1: Bits [127:64] are copied from \a b to bits [127:64] of the /// destination. \n /// Bit [2]=0: Bits [191:128] are copied from \a a to bits [191:128] of the /// destination. \n /// Bit [2]=1: Bits [255:192] are copied from \a a to bits [191:128] of the /// destination. \n /// Bit [3]=0: Bits [191:128] are copied from \a b to bits [255:192] of the /// destination. \n /// Bit [3]=1: Bits [255:192] are copied from \a b to bits [255:192] of the /// destination. /// \returns A 256-bit vector of [4 x double] containing the shuffled values. #define _mm256_shuffle_pd(a, b, mask) \ ((__m256d)__builtin_ia32_shufpd256((__v4df)(__m256d)(a), \ (__v4df)(__m256d)(b), (int)(mask))) /* Compare */ #define _CMP_EQ_UQ 0x08 /* Equal (unordered, non-signaling) */ #define _CMP_NGE_US 0x09 /* Not-greater-than-or-equal (unordered, signaling) */ #define _CMP_NGT_US 0x0a /* Not-greater-than (unordered, signaling) */ #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling) */ #define _CMP_NEQ_OQ 0x0c /* Not-equal (ordered, non-signaling) */ #define _CMP_GE_OS 0x0d /* Greater-than-or-equal (ordered, signaling) */ #define _CMP_GT_OS 0x0e /* Greater-than (ordered, signaling) */ #define _CMP_TRUE_UQ 0x0f /* True (unordered, non-signaling) */ #define _CMP_EQ_OS 0x10 /* Equal (ordered, signaling) */ #define _CMP_LT_OQ 0x11 /* Less-than (ordered, non-signaling) */ #define _CMP_LE_OQ 0x12 /* Less-than-or-equal (ordered, non-signaling) */ #define _CMP_UNORD_S 0x13 /* Unordered (signaling) */ #define _CMP_NEQ_US 0x14 /* Not-equal (unordered, signaling) */ #define _CMP_NLT_UQ 0x15 /* Not-less-than (unordered, non-signaling) */ #define _CMP_NLE_UQ 0x16 /* Not-less-than-or-equal (unordered, non-signaling) */ #define _CMP_ORD_S 0x17 /* Ordered (signaling) */ #define _CMP_EQ_US 0x18 /* Equal (unordered, signaling) */ #define _CMP_NGE_UQ 0x19 /* Not-greater-than-or-equal (unordered, non-signaling) */ #define _CMP_NGT_UQ 0x1a /* Not-greater-than (unordered, non-signaling) */ #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling) */ #define _CMP_NEQ_OS 0x1c /* Not-equal (ordered, signaling) */ #define _CMP_GE_OQ 0x1d /* Greater-than-or-equal (ordered, non-signaling) */ #define _CMP_GT_OQ 0x1e /* Greater-than (ordered, non-signaling) */ #define _CMP_TRUE_US 0x1f /* True (unordered, signaling) */ /* Below intrinsic defined in emmintrin.h can be used for AVX */ /// Compares each of the corresponding double-precision values of two /// 128-bit vectors of [2 x double], using the operation specified by the /// immediate integer operand. /// /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true. /// If either value in a comparison is NaN, comparisons that are ordered /// return false, and comparisons that are unordered return true. /// /// \headerfile /// /// \code /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c); /// \endcode /// /// This intrinsic corresponds to the VCMPPD instruction. /// /// \param a /// A 128-bit vector of [2 x double]. /// \param b /// A 128-bit vector of [2 x double]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: \n /// 0x00: Equal (ordered, non-signaling) \n /// 0x01: Less-than (ordered, signaling) \n /// 0x02: Less-than-or-equal (ordered, signaling) \n /// 0x03: Unordered (non-signaling) \n /// 0x04: Not-equal (unordered, non-signaling) \n /// 0x05: Not-less-than (unordered, signaling) \n /// 0x06: Not-less-than-or-equal (unordered, signaling) \n /// 0x07: Ordered (non-signaling) \n /// 0x08: Equal (unordered, non-signaling) \n /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n /// 0x0A: Not-greater-than (unordered, signaling) \n /// 0x0B: False (ordered, non-signaling) \n /// 0x0C: Not-equal (ordered, non-signaling) \n /// 0x0D: Greater-than-or-equal (ordered, signaling) \n /// 0x0E: Greater-than (ordered, signaling) \n /// 0x0F: True (unordered, non-signaling) \n /// 0x10: Equal (ordered, signaling) \n /// 0x11: Less-than (ordered, non-signaling) \n /// 0x12: Less-than-or-equal (ordered, non-signaling) \n /// 0x13: Unordered (signaling) \n /// 0x14: Not-equal (unordered, signaling) \n /// 0x15: Not-less-than (unordered, non-signaling) \n /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n /// 0x17: Ordered (signaling) \n /// 0x18: Equal (unordered, signaling) \n /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n /// 0x1A: Not-greater-than (unordered, non-signaling) \n /// 0x1B: False (ordered, signaling) \n /// 0x1C: Not-equal (ordered, signaling) \n /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n /// 0x1E: Greater-than (ordered, non-signaling) \n /// 0x1F: True (unordered, signaling) /// \returns A 128-bit vector of [2 x double] containing the comparison results. /// \fn __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c) /* Below intrinsic defined in xmmintrin.h can be used for AVX */ /// Compares each of the corresponding values of two 128-bit vectors of /// [4 x float], using the operation specified by the immediate integer /// operand. /// /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. /// If either value in a comparison is NaN, comparisons that are ordered /// return false, and comparisons that are unordered return true. /// /// \headerfile /// /// \code /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c); /// \endcode /// /// This intrinsic corresponds to the VCMPPS instruction. /// /// \param a /// A 128-bit vector of [4 x float]. /// \param b /// A 128-bit vector of [4 x float]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: \n /// 0x00: Equal (ordered, non-signaling) \n /// 0x01: Less-than (ordered, signaling) \n /// 0x02: Less-than-or-equal (ordered, signaling) \n /// 0x03: Unordered (non-signaling) \n /// 0x04: Not-equal (unordered, non-signaling) \n /// 0x05: Not-less-than (unordered, signaling) \n /// 0x06: Not-less-than-or-equal (unordered, signaling) \n /// 0x07: Ordered (non-signaling) \n /// 0x08: Equal (unordered, non-signaling) \n /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n /// 0x0A: Not-greater-than (unordered, signaling) \n /// 0x0B: False (ordered, non-signaling) \n /// 0x0C: Not-equal (ordered, non-signaling) \n /// 0x0D: Greater-than-or-equal (ordered, signaling) \n /// 0x0E: Greater-than (ordered, signaling) \n /// 0x0F: True (unordered, non-signaling) \n /// 0x10: Equal (ordered, signaling) \n /// 0x11: Less-than (ordered, non-signaling) \n /// 0x12: Less-than-or-equal (ordered, non-signaling) \n /// 0x13: Unordered (signaling) \n /// 0x14: Not-equal (unordered, signaling) \n /// 0x15: Not-less-than (unordered, non-signaling) \n /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n /// 0x17: Ordered (signaling) \n /// 0x18: Equal (unordered, signaling) \n /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n /// 0x1A: Not-greater-than (unordered, non-signaling) \n /// 0x1B: False (ordered, signaling) \n /// 0x1C: Not-equal (ordered, signaling) \n /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n /// 0x1E: Greater-than (ordered, non-signaling) \n /// 0x1F: True (unordered, signaling) /// \returns A 128-bit vector of [4 x float] containing the comparison results. /// \fn __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c) /// Compares each of the corresponding double-precision values of two /// 256-bit vectors of [4 x double], using the operation specified by the /// immediate integer operand. /// /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true. /// If either value in a comparison is NaN, comparisons that are ordered /// return false, and comparisons that are unordered return true. /// /// \headerfile /// /// \code /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c); /// \endcode /// /// This intrinsic corresponds to the VCMPPD instruction. /// /// \param a /// A 256-bit vector of [4 x double]. /// \param b /// A 256-bit vector of [4 x double]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: \n /// 0x00: Equal (ordered, non-signaling) \n /// 0x01: Less-than (ordered, signaling) \n /// 0x02: Less-than-or-equal (ordered, signaling) \n /// 0x03: Unordered (non-signaling) \n /// 0x04: Not-equal (unordered, non-signaling) \n /// 0x05: Not-less-than (unordered, signaling) \n /// 0x06: Not-less-than-or-equal (unordered, signaling) \n /// 0x07: Ordered (non-signaling) \n /// 0x08: Equal (unordered, non-signaling) \n /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n /// 0x0A: Not-greater-than (unordered, signaling) \n /// 0x0B: False (ordered, non-signaling) \n /// 0x0C: Not-equal (ordered, non-signaling) \n /// 0x0D: Greater-than-or-equal (ordered, signaling) \n /// 0x0E: Greater-than (ordered, signaling) \n /// 0x0F: True (unordered, non-signaling) \n /// 0x10: Equal (ordered, signaling) \n /// 0x11: Less-than (ordered, non-signaling) \n /// 0x12: Less-than-or-equal (ordered, non-signaling) \n /// 0x13: Unordered (signaling) \n /// 0x14: Not-equal (unordered, signaling) \n /// 0x15: Not-less-than (unordered, non-signaling) \n /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n /// 0x17: Ordered (signaling) \n /// 0x18: Equal (unordered, signaling) \n /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n /// 0x1A: Not-greater-than (unordered, non-signaling) \n /// 0x1B: False (ordered, signaling) \n /// 0x1C: Not-equal (ordered, signaling) \n /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n /// 0x1E: Greater-than (ordered, non-signaling) \n /// 0x1F: True (unordered, signaling) /// \returns A 256-bit vector of [4 x double] containing the comparison results. #define _mm256_cmp_pd(a, b, c) \ ((__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \ (__v4df)(__m256d)(b), (c))) /// Compares each of the corresponding values of two 256-bit vectors of /// [8 x float], using the operation specified by the immediate integer /// operand. /// /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. /// If either value in a comparison is NaN, comparisons that are ordered /// return false, and comparisons that are unordered return true. /// /// \headerfile /// /// \code /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c); /// \endcode /// /// This intrinsic corresponds to the VCMPPS instruction. /// /// \param a /// A 256-bit vector of [8 x float]. /// \param b /// A 256-bit vector of [8 x float]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: \n /// 0x00: Equal (ordered, non-signaling) \n /// 0x01: Less-than (ordered, signaling) \n /// 0x02: Less-than-or-equal (ordered, signaling) \n /// 0x03: Unordered (non-signaling) \n /// 0x04: Not-equal (unordered, non-signaling) \n /// 0x05: Not-less-than (unordered, signaling) \n /// 0x06: Not-less-than-or-equal (unordered, signaling) \n /// 0x07: Ordered (non-signaling) \n /// 0x08: Equal (unordered, non-signaling) \n /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n /// 0x0A: Not-greater-than (unordered, signaling) \n /// 0x0B: False (ordered, non-signaling) \n /// 0x0C: Not-equal (ordered, non-signaling) \n /// 0x0D: Greater-than-or-equal (ordered, signaling) \n /// 0x0E: Greater-than (ordered, signaling) \n /// 0x0F: True (unordered, non-signaling) \n /// 0x10: Equal (ordered, signaling) \n /// 0x11: Less-than (ordered, non-signaling) \n /// 0x12: Less-than-or-equal (ordered, non-signaling) \n /// 0x13: Unordered (signaling) \n /// 0x14: Not-equal (unordered, signaling) \n /// 0x15: Not-less-than (unordered, non-signaling) \n /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n /// 0x17: Ordered (signaling) \n /// 0x18: Equal (unordered, signaling) \n /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n /// 0x1A: Not-greater-than (unordered, non-signaling) \n /// 0x1B: False (ordered, signaling) \n /// 0x1C: Not-equal (ordered, signaling) \n /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n /// 0x1E: Greater-than (ordered, non-signaling) \n /// 0x1F: True (unordered, signaling) /// \returns A 256-bit vector of [8 x float] containing the comparison results. #define _mm256_cmp_ps(a, b, c) \ ((__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \ (__v8sf)(__m256)(b), (c))) /* Below intrinsic defined in emmintrin.h can be used for AVX */ /// Compares each of the corresponding scalar double-precision values of /// two 128-bit vectors of [2 x double], using the operation specified by the /// immediate integer operand. /// /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true. /// If either value in a comparison is NaN, comparisons that are ordered /// return false, and comparisons that are unordered return true. /// /// \headerfile /// /// \code /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c); /// \endcode /// /// This intrinsic corresponds to the VCMPSD instruction. /// /// \param a /// A 128-bit vector of [2 x double]. /// \param b /// A 128-bit vector of [2 x double]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: \n /// 0x00: Equal (ordered, non-signaling) \n /// 0x01: Less-than (ordered, signaling) \n /// 0x02: Less-than-or-equal (ordered, signaling) \n /// 0x03: Unordered (non-signaling) \n /// 0x04: Not-equal (unordered, non-signaling) \n /// 0x05: Not-less-than (unordered, signaling) \n /// 0x06: Not-less-than-or-equal (unordered, signaling) \n /// 0x07: Ordered (non-signaling) \n /// 0x08: Equal (unordered, non-signaling) \n /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n /// 0x0A: Not-greater-than (unordered, signaling) \n /// 0x0B: False (ordered, non-signaling) \n /// 0x0C: Not-equal (ordered, non-signaling) \n /// 0x0D: Greater-than-or-equal (ordered, signaling) \n /// 0x0E: Greater-than (ordered, signaling) \n /// 0x0F: True (unordered, non-signaling) \n /// 0x10: Equal (ordered, signaling) \n /// 0x11: Less-than (ordered, non-signaling) \n /// 0x12: Less-than-or-equal (ordered, non-signaling) \n /// 0x13: Unordered (signaling) \n /// 0x14: Not-equal (unordered, signaling) \n /// 0x15: Not-less-than (unordered, non-signaling) \n /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n /// 0x17: Ordered (signaling) \n /// 0x18: Equal (unordered, signaling) \n /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n /// 0x1A: Not-greater-than (unordered, non-signaling) \n /// 0x1B: False (ordered, signaling) \n /// 0x1C: Not-equal (ordered, signaling) \n /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n /// 0x1E: Greater-than (ordered, non-signaling) \n /// 0x1F: True (unordered, signaling) /// \returns A 128-bit vector of [2 x double] containing the comparison results. /// \fn __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c) /* Below intrinsic defined in xmmintrin.h can be used for AVX */ /// Compares each of the corresponding scalar values of two 128-bit /// vectors of [4 x float], using the operation specified by the immediate /// integer operand. /// /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. /// If either value in a comparison is NaN, comparisons that are ordered /// return false, and comparisons that are unordered return true. /// /// \headerfile /// /// \code /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c); /// \endcode /// /// This intrinsic corresponds to the VCMPSS instruction. /// /// \param a /// A 128-bit vector of [4 x float]. /// \param b /// A 128-bit vector of [4 x float]. /// \param c /// An immediate integer operand, with bits [4:0] specifying which comparison /// operation to use: \n /// 0x00: Equal (ordered, non-signaling) \n /// 0x01: Less-than (ordered, signaling) \n /// 0x02: Less-than-or-equal (ordered, signaling) \n /// 0x03: Unordered (non-signaling) \n /// 0x04: Not-equal (unordered, non-signaling) \n /// 0x05: Not-less-than (unordered, signaling) \n /// 0x06: Not-less-than-or-equal (unordered, signaling) \n /// 0x07: Ordered (non-signaling) \n /// 0x08: Equal (unordered, non-signaling) \n /// 0x09: Not-greater-than-or-equal (unordered, signaling) \n /// 0x0A: Not-greater-than (unordered, signaling) \n /// 0x0B: False (ordered, non-signaling) \n /// 0x0C: Not-equal (ordered, non-signaling) \n /// 0x0D: Greater-than-or-equal (ordered, signaling) \n /// 0x0E: Greater-than (ordered, signaling) \n /// 0x0F: True (unordered, non-signaling) \n /// 0x10: Equal (ordered, signaling) \n /// 0x11: Less-than (ordered, non-signaling) \n /// 0x12: Less-than-or-equal (ordered, non-signaling) \n /// 0x13: Unordered (signaling) \n /// 0x14: Not-equal (unordered, signaling) \n /// 0x15: Not-less-than (unordered, non-signaling) \n /// 0x16: Not-less-than-or-equal (unordered, non-signaling) \n /// 0x17: Ordered (signaling) \n /// 0x18: Equal (unordered, signaling) \n /// 0x19: Not-greater-than-or-equal (unordered, non-signaling) \n /// 0x1A: Not-greater-than (unordered, non-signaling) \n /// 0x1B: False (ordered, signaling) \n /// 0x1C: Not-equal (ordered, signaling) \n /// 0x1D: Greater-than-or-equal (ordered, non-signaling) \n /// 0x1E: Greater-than (ordered, non-signaling) \n /// 0x1F: True (unordered, signaling) /// \returns A 128-bit vector of [4 x float] containing the comparison results. /// \fn __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c) /// Takes a [8 x i32] vector and returns the vector element value /// indexed by the immediate constant operand. /// /// \headerfile /// /// \code /// int _mm256_extract_epi32(__m256i X, const int N); /// \endcode /// /// This intrinsic corresponds to the VEXTRACTF128+COMPOSITE /// instruction. /// /// \param X /// A 256-bit vector of [8 x i32]. /// \param N /// An immediate integer operand with bits [2:0] determining which vector /// element is extracted and returned. /// \returns A 32-bit integer containing the extracted 32 bits of extended /// packed data. #define _mm256_extract_epi32(X, N) \ ((int)__builtin_ia32_vec_ext_v8si((__v8si)(__m256i)(X), (int)(N))) /// Takes a [16 x i16] vector and returns the vector element value /// indexed by the immediate constant operand. /// /// \headerfile /// /// \code /// int _mm256_extract_epi16(__m256i X, const int N); /// \endcode /// /// This intrinsic corresponds to the VEXTRACTF128+COMPOSITE /// instruction. /// /// \param X /// A 256-bit integer vector of [16 x i16]. /// \param N /// An immediate integer operand with bits [3:0] determining which vector /// element is extracted and returned. /// \returns A 32-bit integer containing the extracted 16 bits of zero extended /// packed data. #define _mm256_extract_epi16(X, N) \ ((int)(unsigned short)__builtin_ia32_vec_ext_v16hi((__v16hi)(__m256i)(X), \ (int)(N))) /// Takes a [32 x i8] vector and returns the vector element value /// indexed by the immediate constant operand. /// /// \headerfile /// /// \code /// int _mm256_extract_epi8(__m256i X, const int N); /// \endcode /// /// This intrinsic corresponds to the VEXTRACTF128+COMPOSITE /// instruction. /// /// \param X /// A 256-bit integer vector of [32 x i8]. /// \param N /// An immediate integer operand with bits [4:0] determining which vector /// element is extracted and returned. /// \returns A 32-bit integer containing the extracted 8 bits of zero extended /// packed data. #define _mm256_extract_epi8(X, N) \ ((int)(unsigned char)__builtin_ia32_vec_ext_v32qi((__v32qi)(__m256i)(X), \ (int)(N))) #ifdef __x86_64__ /// Takes a [4 x i64] vector and returns the vector element value /// indexed by the immediate constant operand. /// /// \headerfile /// /// \code /// long long _mm256_extract_epi64(__m256i X, const int N); /// \endcode /// /// This intrinsic corresponds to the VEXTRACTF128+COMPOSITE /// instruction. /// /// \param X /// A 256-bit integer vector of [4 x i64]. /// \param N /// An immediate integer operand with bits [1:0] determining which vector /// element is extracted and returned. /// \returns A 64-bit integer containing the extracted 64 bits of extended /// packed data. #define _mm256_extract_epi64(X, N) \ ((long long)__builtin_ia32_vec_ext_v4di((__v4di)(__m256i)(X), (int)(N))) #endif /// Takes a [8 x i32] vector and replaces the vector element value /// indexed by the immediate constant operand by a new value. Returns the /// modified vector. /// /// \headerfile /// /// \code /// __m256i _mm256_insert_epi32(__m256i X, int I, const int N); /// \endcode /// /// This intrinsic corresponds to the VINSERTF128+COMPOSITE /// instruction. /// /// \param X /// A vector of [8 x i32] to be used by the insert operation. /// \param I /// An integer value. The replacement value for the insert operation. /// \param N /// An immediate integer specifying the index of the vector element to be /// replaced. /// \returns A copy of vector \a X, after replacing its element indexed by /// \a N with \a I. #define _mm256_insert_epi32(X, I, N) \ ((__m256i)__builtin_ia32_vec_set_v8si((__v8si)(__m256i)(X), \ (int)(I), (int)(N))) /// Takes a [16 x i16] vector and replaces the vector element value /// indexed by the immediate constant operand with a new value. Returns the /// modified vector. /// /// \headerfile /// /// \code /// __m256i _mm256_insert_epi16(__m256i X, int I, const int N); /// \endcode /// /// This intrinsic corresponds to the VINSERTF128+COMPOSITE /// instruction. /// /// \param X /// A vector of [16 x i16] to be used by the insert operation. /// \param I /// An i16 integer value. The replacement value for the insert operation. /// \param N /// An immediate integer specifying the index of the vector element to be /// replaced. /// \returns A copy of vector \a X, after replacing its element indexed by /// \a N with \a I. #define _mm256_insert_epi16(X, I, N) \ ((__m256i)__builtin_ia32_vec_set_v16hi((__v16hi)(__m256i)(X), \ (int)(I), (int)(N))) /// Takes a [32 x i8] vector and replaces the vector element value /// indexed by the immediate constant operand with a new value. Returns the /// modified vector. /// /// \headerfile /// /// \code /// __m256i _mm256_insert_epi8(__m256i X, int I, const int N); /// \endcode /// /// This intrinsic corresponds to the VINSERTF128+COMPOSITE /// instruction. /// /// \param X /// A vector of [32 x i8] to be used by the insert operation. /// \param I /// An i8 integer value. The replacement value for the insert operation. /// \param N /// An immediate integer specifying the index of the vector element to be /// replaced. /// \returns A copy of vector \a X, after replacing its element indexed by /// \a N with \a I. #define _mm256_insert_epi8(X, I, N) \ ((__m256i)__builtin_ia32_vec_set_v32qi((__v32qi)(__m256i)(X), \ (int)(I), (int)(N))) #ifdef __x86_64__ /// Takes a [4 x i64] vector and replaces the vector element value /// indexed by the immediate constant operand with a new value. Returns the /// modified vector. /// /// \headerfile /// /// \code /// __m256i _mm256_insert_epi64(__m256i X, int I, const int N); /// \endcode /// /// This intrinsic corresponds to the VINSERTF128+COMPOSITE /// instruction. /// /// \param X /// A vector of [4 x i64] to be used by the insert operation. /// \param I /// A 64-bit integer value. The replacement value for the insert operation. /// \param N /// An immediate integer specifying the index of the vector element to be /// replaced. /// \returns A copy of vector \a X, after replacing its element indexed by /// \a N with \a I. #define _mm256_insert_epi64(X, I, N) \ ((__m256i)__builtin_ia32_vec_set_v4di((__v4di)(__m256i)(X), \ (long long)(I), (int)(N))) #endif /* Conversion */ /// Converts a vector of [4 x i32] into a vector of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTDQ2PD instruction. /// /// \param __a /// A 128-bit integer vector of [4 x i32]. /// \returns A 256-bit vector of [4 x double] containing the converted values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_cvtepi32_pd(__m128i __a) { return (__m256d)__builtin_convertvector((__v4si)__a, __v4df); } /// Converts a vector of [8 x i32] into a vector of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTDQ2PS instruction. /// /// \param __a /// A 256-bit integer vector. /// \returns A 256-bit vector of [8 x float] containing the converted values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_cvtepi32_ps(__m256i __a) { return (__m256)__builtin_convertvector((__v8si)__a, __v8sf); } /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of /// [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTPD2PS instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \returns A 128-bit vector of [4 x float] containing the converted values. static __inline __m128 __DEFAULT_FN_ATTRS _mm256_cvtpd_ps(__m256d __a) { return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a); } /// Converts a vector of [8 x float] into a vector of [8 x i32]. /// /// If a converted value does not fit in a 32-bit integer, raises a /// floating-point invalid exception. If the exception is masked, returns /// the most negative integer. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTPS2DQ instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \returns A 256-bit integer vector containing the converted values. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_cvtps_epi32(__m256 __a) { return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a); } /// Converts a 128-bit vector of [4 x float] into a 256-bit vector of [4 /// x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTPS2PD instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 256-bit vector of [4 x double] containing the converted values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_cvtps_pd(__m128 __a) { return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df); } /// Converts a 256-bit vector of [4 x double] into four signed truncated /// (rounded toward zero) 32-bit integers returned in a 128-bit vector of /// [4 x i32]. /// /// If a converted value does not fit in a 32-bit integer, raises a /// floating-point invalid exception. If the exception is masked, returns /// the most negative integer. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTTPD2DQ instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \returns A 128-bit integer vector containing the converted values. static __inline __m128i __DEFAULT_FN_ATTRS _mm256_cvttpd_epi32(__m256d __a) { return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a); } /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of /// [4 x i32]. /// /// If a converted value does not fit in a 32-bit integer, raises a /// floating-point invalid exception. If the exception is masked, returns /// the most negative integer. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTPD2DQ instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \returns A 128-bit integer vector containing the converted values. static __inline __m128i __DEFAULT_FN_ATTRS _mm256_cvtpd_epi32(__m256d __a) { return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a); } /// Converts a vector of [8 x float] into eight signed truncated (rounded /// toward zero) 32-bit integers returned in a vector of [8 x i32]. /// /// If a converted value does not fit in a 32-bit integer, raises a /// floating-point invalid exception. If the exception is masked, returns /// the most negative integer. /// /// \headerfile /// /// This intrinsic corresponds to the VCVTTPS2DQ instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \returns A 256-bit integer vector containing the converted values. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_cvttps_epi32(__m256 __a) { return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a); } /// Returns the first element of the input vector of [4 x double]. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \returns A 64 bit double containing the first element of the input vector. static __inline double __DEFAULT_FN_ATTRS _mm256_cvtsd_f64(__m256d __a) { return __a[0]; } /// Returns the first element of the input vector of [8 x i32]. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __a /// A 256-bit vector of [8 x i32]. /// \returns A 32 bit integer containing the first element of the input vector. static __inline int __DEFAULT_FN_ATTRS _mm256_cvtsi256_si32(__m256i __a) { __v8si __b = (__v8si)__a; return __b[0]; } /// Returns the first element of the input vector of [8 x float]. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \returns A 32 bit float containing the first element of the input vector. static __inline float __DEFAULT_FN_ATTRS _mm256_cvtss_f32(__m256 __a) { return __a[0]; } /* Vector replicate */ /// Moves and duplicates odd-indexed values from a 256-bit vector of /// [8 x float] to float values in a 256-bit vector of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVSHDUP instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. \n /// Bits [255:224] of \a __a are written to bits [255:224] and [223:192] of /// the return value. \n /// Bits [191:160] of \a __a are written to bits [191:160] and [159:128] of /// the return value. \n /// Bits [127:96] of \a __a are written to bits [127:96] and [95:64] of the /// return value. \n /// Bits [63:32] of \a __a are written to bits [63:32] and [31:0] of the /// return value. /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated /// values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_movehdup_ps(__m256 __a) { return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7); } /// Moves and duplicates even-indexed values from a 256-bit vector of /// [8 x float] to float values in a 256-bit vector of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVSLDUP instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. \n /// Bits [223:192] of \a __a are written to bits [255:224] and [223:192] of /// the return value. \n /// Bits [159:128] of \a __a are written to bits [191:160] and [159:128] of /// the return value. \n /// Bits [95:64] of \a __a are written to bits [127:96] and [95:64] of the /// return value. \n /// Bits [31:0] of \a __a are written to bits [63:32] and [31:0] of the /// return value. /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated /// values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_moveldup_ps(__m256 __a) { return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6); } /// Moves and duplicates double-precision floating point values from a /// 256-bit vector of [4 x double] to double-precision values in a 256-bit /// vector of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVDDUP instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. \n /// Bits [63:0] of \a __a are written to bits [127:64] and [63:0] of the /// return value. \n /// Bits [191:128] of \a __a are written to bits [255:192] and [191:128] of /// the return value. /// \returns A 256-bit vector of [4 x double] containing the moved and /// duplicated values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_movedup_pd(__m256d __a) { return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2); } /* Unpack and Interleave */ /// Unpacks the odd-indexed vector elements from two 256-bit vectors of /// [4 x double] and interleaves them into a 256-bit vector of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VUNPCKHPD instruction. /// /// \param __a /// A 256-bit floating-point vector of [4 x double]. \n /// Bits [127:64] are written to bits [63:0] of the return value. \n /// Bits [255:192] are written to bits [191:128] of the return value. \n /// \param __b /// A 256-bit floating-point vector of [4 x double]. \n /// Bits [127:64] are written to bits [127:64] of the return value. \n /// Bits [255:192] are written to bits [255:192] of the return value. \n /// \returns A 256-bit vector of [4 x double] containing the interleaved values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_unpackhi_pd(__m256d __a, __m256d __b) { return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2); } /// Unpacks the even-indexed vector elements from two 256-bit vectors of /// [4 x double] and interleaves them into a 256-bit vector of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VUNPCKLPD instruction. /// /// \param __a /// A 256-bit floating-point vector of [4 x double]. \n /// Bits [63:0] are written to bits [63:0] of the return value. \n /// Bits [191:128] are written to bits [191:128] of the return value. /// \param __b /// A 256-bit floating-point vector of [4 x double]. \n /// Bits [63:0] are written to bits [127:64] of the return value. \n /// Bits [191:128] are written to bits [255:192] of the return value. \n /// \returns A 256-bit vector of [4 x double] containing the interleaved values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_unpacklo_pd(__m256d __a, __m256d __b) { return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2); } /// Unpacks the 32-bit vector elements 2, 3, 6 and 7 from each of the /// two 256-bit vectors of [8 x float] and interleaves them into a 256-bit /// vector of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VUNPCKHPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. \n /// Bits [95:64] are written to bits [31:0] of the return value. \n /// Bits [127:96] are written to bits [95:64] of the return value. \n /// Bits [223:192] are written to bits [159:128] of the return value. \n /// Bits [255:224] are written to bits [223:192] of the return value. /// \param __b /// A 256-bit vector of [8 x float]. \n /// Bits [95:64] are written to bits [63:32] of the return value. \n /// Bits [127:96] are written to bits [127:96] of the return value. \n /// Bits [223:192] are written to bits [191:160] of the return value. \n /// Bits [255:224] are written to bits [255:224] of the return value. /// \returns A 256-bit vector of [8 x float] containing the interleaved values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_unpackhi_ps(__m256 __a, __m256 __b) { return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1); } /// Unpacks the 32-bit vector elements 0, 1, 4 and 5 from each of the /// two 256-bit vectors of [8 x float] and interleaves them into a 256-bit /// vector of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VUNPCKLPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. \n /// Bits [31:0] are written to bits [31:0] of the return value. \n /// Bits [63:32] are written to bits [95:64] of the return value. \n /// Bits [159:128] are written to bits [159:128] of the return value. \n /// Bits [191:160] are written to bits [223:192] of the return value. /// \param __b /// A 256-bit vector of [8 x float]. \n /// Bits [31:0] are written to bits [63:32] of the return value. \n /// Bits [63:32] are written to bits [127:96] of the return value. \n /// Bits [159:128] are written to bits [191:160] of the return value. \n /// Bits [191:160] are written to bits [255:224] of the return value. /// \returns A 256-bit vector of [8 x float] containing the interleaved values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_unpacklo_ps(__m256 __a, __m256 __b) { return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1); } /* Bit Test */ /// Given two 128-bit floating-point vectors of [2 x double], perform an /// element-by-element comparison of the double-precision element in the /// first source vector and the corresponding element in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of double-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of double-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns the value of the ZF flag. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPD instruction. /// /// \param __a /// A 128-bit vector of [2 x double]. /// \param __b /// A 128-bit vector of [2 x double]. /// \returns the ZF flag in the EFLAGS register. static __inline int __DEFAULT_FN_ATTRS128 _mm_testz_pd(__m128d __a, __m128d __b) { return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b); } /// Given two 128-bit floating-point vectors of [2 x double], perform an /// element-by-element comparison of the double-precision element in the /// first source vector and the corresponding element in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of double-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of double-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns the value of the CF flag. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPD instruction. /// /// \param __a /// A 128-bit vector of [2 x double]. /// \param __b /// A 128-bit vector of [2 x double]. /// \returns the CF flag in the EFLAGS register. static __inline int __DEFAULT_FN_ATTRS128 _mm_testc_pd(__m128d __a, __m128d __b) { return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b); } /// Given two 128-bit floating-point vectors of [2 x double], perform an /// element-by-element comparison of the double-precision element in the /// first source vector and the corresponding element in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of double-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of double-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns 1 if both the ZF and CF flags are set to 0, /// otherwise it returns 0. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPD instruction. /// /// \param __a /// A 128-bit vector of [2 x double]. /// \param __b /// A 128-bit vector of [2 x double]. /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0. static __inline int __DEFAULT_FN_ATTRS128 _mm_testnzc_pd(__m128d __a, __m128d __b) { return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b); } /// Given two 128-bit floating-point vectors of [4 x float], perform an /// element-by-element comparison of the single-precision element in the /// first source vector and the corresponding element in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of single-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of single-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns the value of the ZF flag. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns the ZF flag. static __inline int __DEFAULT_FN_ATTRS128 _mm_testz_ps(__m128 __a, __m128 __b) { return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b); } /// Given two 128-bit floating-point vectors of [4 x float], perform an /// element-by-element comparison of the single-precision element in the /// first source vector and the corresponding element in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of single-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of single-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns the value of the CF flag. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns the CF flag. static __inline int __DEFAULT_FN_ATTRS128 _mm_testc_ps(__m128 __a, __m128 __b) { return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b); } /// Given two 128-bit floating-point vectors of [4 x float], perform an /// element-by-element comparison of the single-precision element in the /// first source vector and the corresponding element in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of single-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of single-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns 1 if both the ZF and CF flags are set to 0, /// otherwise it returns 0. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPS instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \param __b /// A 128-bit vector of [4 x float]. /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0. static __inline int __DEFAULT_FN_ATTRS128 _mm_testnzc_ps(__m128 __a, __m128 __b) { return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b); } /// Given two 256-bit floating-point vectors of [4 x double], perform an /// element-by-element comparison of the double-precision elements in the /// first source vector and the corresponding elements in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of double-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of double-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns the value of the ZF flag. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \param __b /// A 256-bit vector of [4 x double]. /// \returns the ZF flag. static __inline int __DEFAULT_FN_ATTRS _mm256_testz_pd(__m256d __a, __m256d __b) { return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b); } /// Given two 256-bit floating-point vectors of [4 x double], perform an /// element-by-element comparison of the double-precision elements in the /// first source vector and the corresponding elements in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of double-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of double-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns the value of the CF flag. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \param __b /// A 256-bit vector of [4 x double]. /// \returns the CF flag. static __inline int __DEFAULT_FN_ATTRS _mm256_testc_pd(__m256d __a, __m256d __b) { return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b); } /// Given two 256-bit floating-point vectors of [4 x double], perform an /// element-by-element comparison of the double-precision elements in the /// first source vector and the corresponding elements in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of double-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of double-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns 1 if both the ZF and CF flags are set to 0, /// otherwise it returns 0. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double]. /// \param __b /// A 256-bit vector of [4 x double]. /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0. static __inline int __DEFAULT_FN_ATTRS _mm256_testnzc_pd(__m256d __a, __m256d __b) { return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b); } /// Given two 256-bit floating-point vectors of [8 x float], perform an /// element-by-element comparison of the single-precision element in the /// first source vector and the corresponding element in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of single-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of single-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns the value of the ZF flag. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \param __b /// A 256-bit vector of [8 x float]. /// \returns the ZF flag. static __inline int __DEFAULT_FN_ATTRS _mm256_testz_ps(__m256 __a, __m256 __b) { return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b); } /// Given two 256-bit floating-point vectors of [8 x float], perform an /// element-by-element comparison of the single-precision element in the /// first source vector and the corresponding element in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of single-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of single-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns the value of the CF flag. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \param __b /// A 256-bit vector of [8 x float]. /// \returns the CF flag. static __inline int __DEFAULT_FN_ATTRS _mm256_testc_ps(__m256 __a, __m256 __b) { return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b); } /// Given two 256-bit floating-point vectors of [8 x float], perform an /// element-by-element comparison of the single-precision elements in the /// first source vector and the corresponding elements in the second source /// vector. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of single-precision elements where the /// sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the /// ZF flag is set to 1. \n /// If there is at least one pair of single-precision elements where the /// sign-bit of the first element is 0 and the sign-bit of the second element /// is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns 1 if both the ZF and CF flags are set to 0, /// otherwise it returns 0. /// /// \headerfile /// /// This intrinsic corresponds to the VTESTPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float]. /// \param __b /// A 256-bit vector of [8 x float]. /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0. static __inline int __DEFAULT_FN_ATTRS _mm256_testnzc_ps(__m256 __a, __m256 __b) { return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b); } /// Given two 256-bit integer vectors, perform a bit-by-bit comparison /// of the two source vectors. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of bits where both bits are 1, the ZF flag /// is set to 0. Otherwise the ZF flag is set to 1. \n /// If there is at least one pair of bits where the bit from the first source /// vector is 0 and the bit from the second source vector is 1, the CF flag /// is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns the value of the ZF flag. /// /// \headerfile /// /// This intrinsic corresponds to the VPTEST instruction. /// /// \param __a /// A 256-bit integer vector. /// \param __b /// A 256-bit integer vector. /// \returns the ZF flag. static __inline int __DEFAULT_FN_ATTRS _mm256_testz_si256(__m256i __a, __m256i __b) { return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b); } /// Given two 256-bit integer vectors, perform a bit-by-bit comparison /// of the two source vectors. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of bits where both bits are 1, the ZF flag /// is set to 0. Otherwise the ZF flag is set to 1. \n /// If there is at least one pair of bits where the bit from the first source /// vector is 0 and the bit from the second source vector is 1, the CF flag /// is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns the value of the CF flag. /// /// \headerfile /// /// This intrinsic corresponds to the VPTEST instruction. /// /// \param __a /// A 256-bit integer vector. /// \param __b /// A 256-bit integer vector. /// \returns the CF flag. static __inline int __DEFAULT_FN_ATTRS _mm256_testc_si256(__m256i __a, __m256i __b) { return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b); } /// Given two 256-bit integer vectors, perform a bit-by-bit comparison /// of the two source vectors. /// /// The EFLAGS register is updated as follows: \n /// If there is at least one pair of bits where both bits are 1, the ZF flag /// is set to 0. Otherwise the ZF flag is set to 1. \n /// If there is at least one pair of bits where the bit from the first source /// vector is 0 and the bit from the second source vector is 1, the CF flag /// is set to 0. Otherwise the CF flag is set to 1. \n /// This intrinsic returns 1 if both the ZF and CF flags are set to 0, /// otherwise it returns 0. /// /// \headerfile /// /// This intrinsic corresponds to the VPTEST instruction. /// /// \param __a /// A 256-bit integer vector. /// \param __b /// A 256-bit integer vector. /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0. static __inline int __DEFAULT_FN_ATTRS _mm256_testnzc_si256(__m256i __a, __m256i __b) { return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b); } /* Vector extract sign mask */ /// Extracts the sign bits of double-precision floating point elements /// in a 256-bit vector of [4 x double] and writes them to the lower order /// bits of the return value. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVMSKPD instruction. /// /// \param __a /// A 256-bit vector of [4 x double] containing the double-precision /// floating point values with sign bits to be extracted. /// \returns The sign bits from the operand, written to bits [3:0]. static __inline int __DEFAULT_FN_ATTRS _mm256_movemask_pd(__m256d __a) { return __builtin_ia32_movmskpd256((__v4df)__a); } /// Extracts the sign bits of single-precision floating point elements /// in a 256-bit vector of [8 x float] and writes them to the lower order /// bits of the return value. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVMSKPS instruction. /// /// \param __a /// A 256-bit vector of [8 x float] containing the single-precision floating /// point values with sign bits to be extracted. /// \returns The sign bits from the operand, written to bits [7:0]. static __inline int __DEFAULT_FN_ATTRS _mm256_movemask_ps(__m256 __a) { return __builtin_ia32_movmskps256((__v8sf)__a); } /* Vector __zero */ /// Zeroes the contents of all XMM or YMM registers. /// /// \headerfile /// /// This intrinsic corresponds to the VZEROALL instruction. static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx"))) _mm256_zeroall(void) { __builtin_ia32_vzeroall(); } /// Zeroes the upper 128 bits (bits 255:128) of all YMM registers. /// /// \headerfile /// /// This intrinsic corresponds to the VZEROUPPER instruction. static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx"))) _mm256_zeroupper(void) { __builtin_ia32_vzeroupper(); } /* Vector load with broadcast */ /// Loads a scalar single-precision floating point value from the /// specified address pointed to by \a __a and broadcasts it to the elements /// of a [4 x float] vector. /// /// \headerfile /// /// This intrinsic corresponds to the VBROADCASTSS instruction. /// /// \param __a /// The single-precision floating point value to be broadcast. /// \returns A 128-bit vector of [4 x float] whose 32-bit elements are set /// equal to the broadcast value. static __inline __m128 __DEFAULT_FN_ATTRS128 _mm_broadcast_ss(float const *__a) { struct __mm_broadcast_ss_struct { float __f; } __attribute__((__packed__, __may_alias__)); float __f = ((const struct __mm_broadcast_ss_struct*)__a)->__f; return __extension__ (__m128){ __f, __f, __f, __f }; } /// Loads a scalar double-precision floating point value from the /// specified address pointed to by \a __a and broadcasts it to the elements /// of a [4 x double] vector. /// /// \headerfile /// /// This intrinsic corresponds to the VBROADCASTSD instruction. /// /// \param __a /// The double-precision floating point value to be broadcast. /// \returns A 256-bit vector of [4 x double] whose 64-bit elements are set /// equal to the broadcast value. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_broadcast_sd(double const *__a) { struct __mm256_broadcast_sd_struct { double __d; } __attribute__((__packed__, __may_alias__)); double __d = ((const struct __mm256_broadcast_sd_struct*)__a)->__d; return __extension__ (__m256d)(__v4df){ __d, __d, __d, __d }; } /// Loads a scalar single-precision floating point value from the /// specified address pointed to by \a __a and broadcasts it to the elements /// of a [8 x float] vector. /// /// \headerfile /// /// This intrinsic corresponds to the VBROADCASTSS instruction. /// /// \param __a /// The single-precision floating point value to be broadcast. /// \returns A 256-bit vector of [8 x float] whose 32-bit elements are set /// equal to the broadcast value. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_broadcast_ss(float const *__a) { struct __mm256_broadcast_ss_struct { float __f; } __attribute__((__packed__, __may_alias__)); float __f = ((const struct __mm256_broadcast_ss_struct*)__a)->__f; return __extension__ (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f }; } /// Loads the data from a 128-bit vector of [2 x double] from the /// specified address pointed to by \a __a and broadcasts it to 128-bit /// elements in a 256-bit vector of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VBROADCASTF128 instruction. /// /// \param __a /// The 128-bit vector of [2 x double] to be broadcast. /// \returns A 256-bit vector of [4 x double] whose 128-bit elements are set /// equal to the broadcast value. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_broadcast_pd(__m128d const *__a) { __m128d __b = _mm_loadu_pd((const double *)__a); return (__m256d)__builtin_shufflevector((__v2df)__b, (__v2df)__b, 0, 1, 0, 1); } /// Loads the data from a 128-bit vector of [4 x float] from the /// specified address pointed to by \a __a and broadcasts it to 128-bit /// elements in a 256-bit vector of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VBROADCASTF128 instruction. /// /// \param __a /// The 128-bit vector of [4 x float] to be broadcast. /// \returns A 256-bit vector of [8 x float] whose 128-bit elements are set /// equal to the broadcast value. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_broadcast_ps(__m128 const *__a) { __m128 __b = _mm_loadu_ps((const float *)__a); return (__m256)__builtin_shufflevector((__v4sf)__b, (__v4sf)__b, 0, 1, 2, 3, 0, 1, 2, 3); } /* SIMD load ops */ /// Loads 4 double-precision floating point values from a 32-byte aligned /// memory location pointed to by \a __p into a vector of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVAPD instruction. /// /// \param __p /// A 32-byte aligned pointer to a memory location containing /// double-precision floating point values. /// \returns A 256-bit vector of [4 x double] containing the moved values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_load_pd(double const *__p) { return *(const __m256d *)__p; } /// Loads 8 single-precision floating point values from a 32-byte aligned /// memory location pointed to by \a __p into a vector of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVAPS instruction. /// /// \param __p /// A 32-byte aligned pointer to a memory location containing float values. /// \returns A 256-bit vector of [8 x float] containing the moved values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_load_ps(float const *__p) { return *(const __m256 *)__p; } /// Loads 4 double-precision floating point values from an unaligned /// memory location pointed to by \a __p into a vector of [4 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVUPD instruction. /// /// \param __p /// A pointer to a memory location containing double-precision floating /// point values. /// \returns A 256-bit vector of [4 x double] containing the moved values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_loadu_pd(double const *__p) { struct __loadu_pd { __m256d_u __v; } __attribute__((__packed__, __may_alias__)); return ((const struct __loadu_pd*)__p)->__v; } /// Loads 8 single-precision floating point values from an unaligned /// memory location pointed to by \a __p into a vector of [8 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVUPS instruction. /// /// \param __p /// A pointer to a memory location containing single-precision floating /// point values. /// \returns A 256-bit vector of [8 x float] containing the moved values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_loadu_ps(float const *__p) { struct __loadu_ps { __m256_u __v; } __attribute__((__packed__, __may_alias__)); return ((const struct __loadu_ps*)__p)->__v; } /// Loads 256 bits of integer data from a 32-byte aligned memory /// location pointed to by \a __p into elements of a 256-bit integer vector. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVDQA instruction. /// /// \param __p /// A 32-byte aligned pointer to a 256-bit integer vector containing integer /// values. /// \returns A 256-bit integer vector containing the moved values. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_load_si256(__m256i const *__p) { return *__p; } /// Loads 256 bits of integer data from an unaligned memory location /// pointed to by \a __p into a 256-bit integer vector. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVDQU instruction. /// /// \param __p /// A pointer to a 256-bit integer vector containing integer values. /// \returns A 256-bit integer vector containing the moved values. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_loadu_si256(__m256i_u const *__p) { struct __loadu_si256 { __m256i_u __v; } __attribute__((__packed__, __may_alias__)); return ((const struct __loadu_si256*)__p)->__v; } /// Loads 256 bits of integer data from an unaligned memory location /// pointed to by \a __p into a 256-bit integer vector. This intrinsic may /// perform better than \c _mm256_loadu_si256 when the data crosses a cache /// line boundary. /// /// \headerfile /// /// This intrinsic corresponds to the VLDDQU instruction. /// /// \param __p /// A pointer to a 256-bit integer vector containing integer values. /// \returns A 256-bit integer vector containing the moved values. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_lddqu_si256(__m256i_u const *__p) { return (__m256i)__builtin_ia32_lddqu256((char const *)__p); } /* SIMD store ops */ /// Stores double-precision floating point values from a 256-bit vector /// of [4 x double] to a 32-byte aligned memory location pointed to by /// \a __p. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVAPD instruction. /// /// \param __p /// A 32-byte aligned pointer to a memory location that will receive the /// double-precision floaing point values. /// \param __a /// A 256-bit vector of [4 x double] containing the values to be moved. static __inline void __DEFAULT_FN_ATTRS _mm256_store_pd(double *__p, __m256d __a) { *(__m256d *)__p = __a; } /// Stores single-precision floating point values from a 256-bit vector /// of [8 x float] to a 32-byte aligned memory location pointed to by \a __p. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVAPS instruction. /// /// \param __p /// A 32-byte aligned pointer to a memory location that will receive the /// float values. /// \param __a /// A 256-bit vector of [8 x float] containing the values to be moved. static __inline void __DEFAULT_FN_ATTRS _mm256_store_ps(float *__p, __m256 __a) { *(__m256 *)__p = __a; } /// Stores double-precision floating point values from a 256-bit vector /// of [4 x double] to an unaligned memory location pointed to by \a __p. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVUPD instruction. /// /// \param __p /// A pointer to a memory location that will receive the double-precision /// floating point values. /// \param __a /// A 256-bit vector of [4 x double] containing the values to be moved. static __inline void __DEFAULT_FN_ATTRS _mm256_storeu_pd(double *__p, __m256d __a) { struct __storeu_pd { __m256d_u __v; } __attribute__((__packed__, __may_alias__)); ((struct __storeu_pd*)__p)->__v = __a; } /// Stores single-precision floating point values from a 256-bit vector /// of [8 x float] to an unaligned memory location pointed to by \a __p. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVUPS instruction. /// /// \param __p /// A pointer to a memory location that will receive the float values. /// \param __a /// A 256-bit vector of [8 x float] containing the values to be moved. static __inline void __DEFAULT_FN_ATTRS _mm256_storeu_ps(float *__p, __m256 __a) { struct __storeu_ps { __m256_u __v; } __attribute__((__packed__, __may_alias__)); ((struct __storeu_ps*)__p)->__v = __a; } /// Stores integer values from a 256-bit integer vector to a 32-byte /// aligned memory location pointed to by \a __p. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVDQA instruction. /// /// \param __p /// A 32-byte aligned pointer to a memory location that will receive the /// integer values. /// \param __a /// A 256-bit integer vector containing the values to be moved. static __inline void __DEFAULT_FN_ATTRS _mm256_store_si256(__m256i *__p, __m256i __a) { *__p = __a; } /// Stores integer values from a 256-bit integer vector to an unaligned /// memory location pointed to by \a __p. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVDQU instruction. /// /// \param __p /// A pointer to a memory location that will receive the integer values. /// \param __a /// A 256-bit integer vector containing the values to be moved. static __inline void __DEFAULT_FN_ATTRS _mm256_storeu_si256(__m256i_u *__p, __m256i __a) { struct __storeu_si256 { __m256i_u __v; } __attribute__((__packed__, __may_alias__)); ((struct __storeu_si256*)__p)->__v = __a; } /* Conditional load ops */ /// Conditionally loads double-precision floating point elements from a /// memory location pointed to by \a __p into a 128-bit vector of /// [2 x double], depending on the mask bits associated with each data /// element. /// /// \headerfile /// /// This intrinsic corresponds to the VMASKMOVPD instruction. /// /// \param __p /// A pointer to a memory location that contains the double-precision /// floating point values. /// \param __m /// A 128-bit integer vector containing the mask. The most significant bit of /// each data element represents the mask bits. If a mask bit is zero, the /// corresponding value in the memory location is not loaded and the /// corresponding field in the return value is set to zero. /// \returns A 128-bit vector of [2 x double] containing the loaded values. static __inline __m128d __DEFAULT_FN_ATTRS128 _mm_maskload_pd(double const *__p, __m128i __m) { return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m); } /// Conditionally loads double-precision floating point elements from a /// memory location pointed to by \a __p into a 256-bit vector of /// [4 x double], depending on the mask bits associated with each data /// element. /// /// \headerfile /// /// This intrinsic corresponds to the VMASKMOVPD instruction. /// /// \param __p /// A pointer to a memory location that contains the double-precision /// floating point values. /// \param __m /// A 256-bit integer vector of [4 x quadword] containing the mask. The most /// significant bit of each quadword element represents the mask bits. If a /// mask bit is zero, the corresponding value in the memory location is not /// loaded and the corresponding field in the return value is set to zero. /// \returns A 256-bit vector of [4 x double] containing the loaded values. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_maskload_pd(double const *__p, __m256i __m) { return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p, (__v4di)__m); } /// Conditionally loads single-precision floating point elements from a /// memory location pointed to by \a __p into a 128-bit vector of /// [4 x float], depending on the mask bits associated with each data /// element. /// /// \headerfile /// /// This intrinsic corresponds to the VMASKMOVPS instruction. /// /// \param __p /// A pointer to a memory location that contains the single-precision /// floating point values. /// \param __m /// A 128-bit integer vector containing the mask. The most significant bit of /// each data element represents the mask bits. If a mask bit is zero, the /// corresponding value in the memory location is not loaded and the /// corresponding field in the return value is set to zero. /// \returns A 128-bit vector of [4 x float] containing the loaded values. static __inline __m128 __DEFAULT_FN_ATTRS128 _mm_maskload_ps(float const *__p, __m128i __m) { return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m); } /// Conditionally loads single-precision floating point elements from a /// memory location pointed to by \a __p into a 256-bit vector of /// [8 x float], depending on the mask bits associated with each data /// element. /// /// \headerfile /// /// This intrinsic corresponds to the VMASKMOVPS instruction. /// /// \param __p /// A pointer to a memory location that contains the single-precision /// floating point values. /// \param __m /// A 256-bit integer vector of [8 x dword] containing the mask. The most /// significant bit of each dword element represents the mask bits. If a mask /// bit is zero, the corresponding value in the memory location is not loaded /// and the corresponding field in the return value is set to zero. /// \returns A 256-bit vector of [8 x float] containing the loaded values. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_maskload_ps(float const *__p, __m256i __m) { return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m); } /* Conditional store ops */ /// Moves single-precision floating point values from a 256-bit vector /// of [8 x float] to a memory location pointed to by \a __p, according to /// the specified mask. /// /// \headerfile /// /// This intrinsic corresponds to the VMASKMOVPS instruction. /// /// \param __p /// A pointer to a memory location that will receive the float values. /// \param __m /// A 256-bit integer vector of [8 x dword] containing the mask. The most /// significant bit of each dword element in the mask vector represents the /// mask bits. If a mask bit is zero, the corresponding value from vector /// \a __a is not stored and the corresponding field in the memory location /// pointed to by \a __p is not changed. /// \param __a /// A 256-bit vector of [8 x float] containing the values to be stored. static __inline void __DEFAULT_FN_ATTRS _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a) { __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a); } /// Moves double-precision values from a 128-bit vector of [2 x double] /// to a memory location pointed to by \a __p, according to the specified /// mask. /// /// \headerfile /// /// This intrinsic corresponds to the VMASKMOVPD instruction. /// /// \param __p /// A pointer to a memory location that will receive the float values. /// \param __m /// A 128-bit integer vector containing the mask. The most significant bit of /// each field in the mask vector represents the mask bits. If a mask bit is /// zero, the corresponding value from vector \a __a is not stored and the /// corresponding field in the memory location pointed to by \a __p is not /// changed. /// \param __a /// A 128-bit vector of [2 x double] containing the values to be stored. static __inline void __DEFAULT_FN_ATTRS128 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a) { __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a); } /// Moves double-precision values from a 256-bit vector of [4 x double] /// to a memory location pointed to by \a __p, according to the specified /// mask. /// /// \headerfile /// /// This intrinsic corresponds to the VMASKMOVPD instruction. /// /// \param __p /// A pointer to a memory location that will receive the float values. /// \param __m /// A 256-bit integer vector of [4 x quadword] containing the mask. The most /// significant bit of each quadword element in the mask vector represents /// the mask bits. If a mask bit is zero, the corresponding value from vector /// __a is not stored and the corresponding field in the memory location /// pointed to by \a __p is not changed. /// \param __a /// A 256-bit vector of [4 x double] containing the values to be stored. static __inline void __DEFAULT_FN_ATTRS _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a) { __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a); } /// Moves single-precision floating point values from a 128-bit vector /// of [4 x float] to a memory location pointed to by \a __p, according to /// the specified mask. /// /// \headerfile /// /// This intrinsic corresponds to the VMASKMOVPS instruction. /// /// \param __p /// A pointer to a memory location that will receive the float values. /// \param __m /// A 128-bit integer vector containing the mask. The most significant bit of /// each field in the mask vector represents the mask bits. If a mask bit is /// zero, the corresponding value from vector __a is not stored and the /// corresponding field in the memory location pointed to by \a __p is not /// changed. /// \param __a /// A 128-bit vector of [4 x float] containing the values to be stored. static __inline void __DEFAULT_FN_ATTRS128 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a) { __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a); } /* Cacheability support ops */ /// Moves integer data from a 256-bit integer vector to a 32-byte /// aligned memory location. To minimize caching, the data is flagged as /// non-temporal (unlikely to be used again soon). /// /// \headerfile /// /// This intrinsic corresponds to the VMOVNTDQ instruction. /// /// \param __a /// A pointer to a 32-byte aligned memory location that will receive the /// integer values. /// \param __b /// A 256-bit integer vector containing the values to be moved. static __inline void __DEFAULT_FN_ATTRS _mm256_stream_si256(void *__a, __m256i __b) { typedef __v4di __v4di_aligned __attribute__((aligned(32))); __builtin_nontemporal_store((__v4di_aligned)__b, (__v4di_aligned*)__a); } /// Moves double-precision values from a 256-bit vector of [4 x double] /// to a 32-byte aligned memory location. To minimize caching, the data is /// flagged as non-temporal (unlikely to be used again soon). /// /// \headerfile /// /// This intrinsic corresponds to the VMOVNTPD instruction. /// /// \param __a /// A pointer to a 32-byte aligned memory location that will receive the /// double-precision floating-point values. /// \param __b /// A 256-bit vector of [4 x double] containing the values to be moved. static __inline void __DEFAULT_FN_ATTRS _mm256_stream_pd(void *__a, __m256d __b) { typedef __v4df __v4df_aligned __attribute__((aligned(32))); __builtin_nontemporal_store((__v4df_aligned)__b, (__v4df_aligned*)__a); } /// Moves single-precision floating point values from a 256-bit vector /// of [8 x float] to a 32-byte aligned memory location. To minimize /// caching, the data is flagged as non-temporal (unlikely to be used again /// soon). /// /// \headerfile /// /// This intrinsic corresponds to the VMOVNTPS instruction. /// /// \param __p /// A pointer to a 32-byte aligned memory location that will receive the /// single-precision floating point values. /// \param __a /// A 256-bit vector of [8 x float] containing the values to be moved. static __inline void __DEFAULT_FN_ATTRS _mm256_stream_ps(void *__p, __m256 __a) { typedef __v8sf __v8sf_aligned __attribute__((aligned(32))); __builtin_nontemporal_store((__v8sf_aligned)__a, (__v8sf_aligned*)__p); } /* Create vectors */ /// Create a 256-bit vector of [4 x double] with undefined values. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \returns A 256-bit vector of [4 x double] containing undefined values. static __inline__ __m256d __DEFAULT_FN_ATTRS _mm256_undefined_pd(void) { return (__m256d)__builtin_ia32_undef256(); } /// Create a 256-bit vector of [8 x float] with undefined values. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \returns A 256-bit vector of [8 x float] containing undefined values. static __inline__ __m256 __DEFAULT_FN_ATTRS _mm256_undefined_ps(void) { return (__m256)__builtin_ia32_undef256(); } /// Create a 256-bit integer vector with undefined values. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \returns A 256-bit integer vector containing undefined values. static __inline__ __m256i __DEFAULT_FN_ATTRS _mm256_undefined_si256(void) { return (__m256i)__builtin_ia32_undef256(); } /// Constructs a 256-bit floating-point vector of [4 x double] /// initialized with the specified double-precision floating-point values. /// /// \headerfile /// /// This intrinsic corresponds to the VUNPCKLPD+VINSERTF128 /// instruction. /// /// \param __a /// A double-precision floating-point value used to initialize bits [255:192] /// of the result. /// \param __b /// A double-precision floating-point value used to initialize bits [191:128] /// of the result. /// \param __c /// A double-precision floating-point value used to initialize bits [127:64] /// of the result. /// \param __d /// A double-precision floating-point value used to initialize bits [63:0] /// of the result. /// \returns An initialized 256-bit floating-point vector of [4 x double]. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_set_pd(double __a, double __b, double __c, double __d) { return __extension__ (__m256d){ __d, __c, __b, __a }; } /// Constructs a 256-bit floating-point vector of [8 x float] initialized /// with the specified single-precision floating-point values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __a /// A single-precision floating-point value used to initialize bits [255:224] /// of the result. /// \param __b /// A single-precision floating-point value used to initialize bits [223:192] /// of the result. /// \param __c /// A single-precision floating-point value used to initialize bits [191:160] /// of the result. /// \param __d /// A single-precision floating-point value used to initialize bits [159:128] /// of the result. /// \param __e /// A single-precision floating-point value used to initialize bits [127:96] /// of the result. /// \param __f /// A single-precision floating-point value used to initialize bits [95:64] /// of the result. /// \param __g /// A single-precision floating-point value used to initialize bits [63:32] /// of the result. /// \param __h /// A single-precision floating-point value used to initialize bits [31:0] /// of the result. /// \returns An initialized 256-bit floating-point vector of [8 x float]. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_set_ps(float __a, float __b, float __c, float __d, float __e, float __f, float __g, float __h) { return __extension__ (__m256){ __h, __g, __f, __e, __d, __c, __b, __a }; } /// Constructs a 256-bit integer vector initialized with the specified /// 32-bit integral values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __i0 /// A 32-bit integral value used to initialize bits [255:224] of the result. /// \param __i1 /// A 32-bit integral value used to initialize bits [223:192] of the result. /// \param __i2 /// A 32-bit integral value used to initialize bits [191:160] of the result. /// \param __i3 /// A 32-bit integral value used to initialize bits [159:128] of the result. /// \param __i4 /// A 32-bit integral value used to initialize bits [127:96] of the result. /// \param __i5 /// A 32-bit integral value used to initialize bits [95:64] of the result. /// \param __i6 /// A 32-bit integral value used to initialize bits [63:32] of the result. /// \param __i7 /// A 32-bit integral value used to initialize bits [31:0] of the result. /// \returns An initialized 256-bit integer vector. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3, int __i4, int __i5, int __i6, int __i7) { return __extension__ (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 }; } /// Constructs a 256-bit integer vector initialized with the specified /// 16-bit integral values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __w15 /// A 16-bit integral value used to initialize bits [255:240] of the result. /// \param __w14 /// A 16-bit integral value used to initialize bits [239:224] of the result. /// \param __w13 /// A 16-bit integral value used to initialize bits [223:208] of the result. /// \param __w12 /// A 16-bit integral value used to initialize bits [207:192] of the result. /// \param __w11 /// A 16-bit integral value used to initialize bits [191:176] of the result. /// \param __w10 /// A 16-bit integral value used to initialize bits [175:160] of the result. /// \param __w09 /// A 16-bit integral value used to initialize bits [159:144] of the result. /// \param __w08 /// A 16-bit integral value used to initialize bits [143:128] of the result. /// \param __w07 /// A 16-bit integral value used to initialize bits [127:112] of the result. /// \param __w06 /// A 16-bit integral value used to initialize bits [111:96] of the result. /// \param __w05 /// A 16-bit integral value used to initialize bits [95:80] of the result. /// \param __w04 /// A 16-bit integral value used to initialize bits [79:64] of the result. /// \param __w03 /// A 16-bit integral value used to initialize bits [63:48] of the result. /// \param __w02 /// A 16-bit integral value used to initialize bits [47:32] of the result. /// \param __w01 /// A 16-bit integral value used to initialize bits [31:16] of the result. /// \param __w00 /// A 16-bit integral value used to initialize bits [15:0] of the result. /// \returns An initialized 256-bit integer vector. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12, short __w11, short __w10, short __w09, short __w08, short __w07, short __w06, short __w05, short __w04, short __w03, short __w02, short __w01, short __w00) { return __extension__ (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06, __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 }; } /// Constructs a 256-bit integer vector initialized with the specified /// 8-bit integral values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __b31 /// An 8-bit integral value used to initialize bits [255:248] of the result. /// \param __b30 /// An 8-bit integral value used to initialize bits [247:240] of the result. /// \param __b29 /// An 8-bit integral value used to initialize bits [239:232] of the result. /// \param __b28 /// An 8-bit integral value used to initialize bits [231:224] of the result. /// \param __b27 /// An 8-bit integral value used to initialize bits [223:216] of the result. /// \param __b26 /// An 8-bit integral value used to initialize bits [215:208] of the result. /// \param __b25 /// An 8-bit integral value used to initialize bits [207:200] of the result. /// \param __b24 /// An 8-bit integral value used to initialize bits [199:192] of the result. /// \param __b23 /// An 8-bit integral value used to initialize bits [191:184] of the result. /// \param __b22 /// An 8-bit integral value used to initialize bits [183:176] of the result. /// \param __b21 /// An 8-bit integral value used to initialize bits [175:168] of the result. /// \param __b20 /// An 8-bit integral value used to initialize bits [167:160] of the result. /// \param __b19 /// An 8-bit integral value used to initialize bits [159:152] of the result. /// \param __b18 /// An 8-bit integral value used to initialize bits [151:144] of the result. /// \param __b17 /// An 8-bit integral value used to initialize bits [143:136] of the result. /// \param __b16 /// An 8-bit integral value used to initialize bits [135:128] of the result. /// \param __b15 /// An 8-bit integral value used to initialize bits [127:120] of the result. /// \param __b14 /// An 8-bit integral value used to initialize bits [119:112] of the result. /// \param __b13 /// An 8-bit integral value used to initialize bits [111:104] of the result. /// \param __b12 /// An 8-bit integral value used to initialize bits [103:96] of the result. /// \param __b11 /// An 8-bit integral value used to initialize bits [95:88] of the result. /// \param __b10 /// An 8-bit integral value used to initialize bits [87:80] of the result. /// \param __b09 /// An 8-bit integral value used to initialize bits [79:72] of the result. /// \param __b08 /// An 8-bit integral value used to initialize bits [71:64] of the result. /// \param __b07 /// An 8-bit integral value used to initialize bits [63:56] of the result. /// \param __b06 /// An 8-bit integral value used to initialize bits [55:48] of the result. /// \param __b05 /// An 8-bit integral value used to initialize bits [47:40] of the result. /// \param __b04 /// An 8-bit integral value used to initialize bits [39:32] of the result. /// \param __b03 /// An 8-bit integral value used to initialize bits [31:24] of the result. /// \param __b02 /// An 8-bit integral value used to initialize bits [23:16] of the result. /// \param __b01 /// An 8-bit integral value used to initialize bits [15:8] of the result. /// \param __b00 /// An 8-bit integral value used to initialize bits [7:0] of the result. /// \returns An initialized 256-bit integer vector. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28, char __b27, char __b26, char __b25, char __b24, char __b23, char __b22, char __b21, char __b20, char __b19, char __b18, char __b17, char __b16, char __b15, char __b14, char __b13, char __b12, char __b11, char __b10, char __b09, char __b08, char __b07, char __b06, char __b05, char __b04, char __b03, char __b02, char __b01, char __b00) { return __extension__ (__m256i)(__v32qi){ __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07, __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15, __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23, __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31 }; } /// Constructs a 256-bit integer vector initialized with the specified /// 64-bit integral values. /// /// \headerfile /// /// This intrinsic corresponds to the VPUNPCKLQDQ+VINSERTF128 /// instruction. /// /// \param __a /// A 64-bit integral value used to initialize bits [255:192] of the result. /// \param __b /// A 64-bit integral value used to initialize bits [191:128] of the result. /// \param __c /// A 64-bit integral value used to initialize bits [127:64] of the result. /// \param __d /// A 64-bit integral value used to initialize bits [63:0] of the result. /// \returns An initialized 256-bit integer vector. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d) { return __extension__ (__m256i)(__v4di){ __d, __c, __b, __a }; } /* Create vectors with elements in reverse order */ /// Constructs a 256-bit floating-point vector of [4 x double], /// initialized in reverse order with the specified double-precision /// floating-point values. /// /// \headerfile /// /// This intrinsic corresponds to the VUNPCKLPD+VINSERTF128 /// instruction. /// /// \param __a /// A double-precision floating-point value used to initialize bits [63:0] /// of the result. /// \param __b /// A double-precision floating-point value used to initialize bits [127:64] /// of the result. /// \param __c /// A double-precision floating-point value used to initialize bits [191:128] /// of the result. /// \param __d /// A double-precision floating-point value used to initialize bits [255:192] /// of the result. /// \returns An initialized 256-bit floating-point vector of [4 x double]. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_setr_pd(double __a, double __b, double __c, double __d) { return _mm256_set_pd(__d, __c, __b, __a); } /// Constructs a 256-bit floating-point vector of [8 x float], /// initialized in reverse order with the specified single-precision /// float-point values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __a /// A single-precision floating-point value used to initialize bits [31:0] /// of the result. /// \param __b /// A single-precision floating-point value used to initialize bits [63:32] /// of the result. /// \param __c /// A single-precision floating-point value used to initialize bits [95:64] /// of the result. /// \param __d /// A single-precision floating-point value used to initialize bits [127:96] /// of the result. /// \param __e /// A single-precision floating-point value used to initialize bits [159:128] /// of the result. /// \param __f /// A single-precision floating-point value used to initialize bits [191:160] /// of the result. /// \param __g /// A single-precision floating-point value used to initialize bits [223:192] /// of the result. /// \param __h /// A single-precision floating-point value used to initialize bits [255:224] /// of the result. /// \returns An initialized 256-bit floating-point vector of [8 x float]. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_setr_ps(float __a, float __b, float __c, float __d, float __e, float __f, float __g, float __h) { return _mm256_set_ps(__h, __g, __f, __e, __d, __c, __b, __a); } /// Constructs a 256-bit integer vector, initialized in reverse order /// with the specified 32-bit integral values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __i0 /// A 32-bit integral value used to initialize bits [31:0] of the result. /// \param __i1 /// A 32-bit integral value used to initialize bits [63:32] of the result. /// \param __i2 /// A 32-bit integral value used to initialize bits [95:64] of the result. /// \param __i3 /// A 32-bit integral value used to initialize bits [127:96] of the result. /// \param __i4 /// A 32-bit integral value used to initialize bits [159:128] of the result. /// \param __i5 /// A 32-bit integral value used to initialize bits [191:160] of the result. /// \param __i6 /// A 32-bit integral value used to initialize bits [223:192] of the result. /// \param __i7 /// A 32-bit integral value used to initialize bits [255:224] of the result. /// \returns An initialized 256-bit integer vector. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3, int __i4, int __i5, int __i6, int __i7) { return _mm256_set_epi32(__i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0); } /// Constructs a 256-bit integer vector, initialized in reverse order /// with the specified 16-bit integral values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __w15 /// A 16-bit integral value used to initialize bits [15:0] of the result. /// \param __w14 /// A 16-bit integral value used to initialize bits [31:16] of the result. /// \param __w13 /// A 16-bit integral value used to initialize bits [47:32] of the result. /// \param __w12 /// A 16-bit integral value used to initialize bits [63:48] of the result. /// \param __w11 /// A 16-bit integral value used to initialize bits [79:64] of the result. /// \param __w10 /// A 16-bit integral value used to initialize bits [95:80] of the result. /// \param __w09 /// A 16-bit integral value used to initialize bits [111:96] of the result. /// \param __w08 /// A 16-bit integral value used to initialize bits [127:112] of the result. /// \param __w07 /// A 16-bit integral value used to initialize bits [143:128] of the result. /// \param __w06 /// A 16-bit integral value used to initialize bits [159:144] of the result. /// \param __w05 /// A 16-bit integral value used to initialize bits [175:160] of the result. /// \param __w04 /// A 16-bit integral value used to initialize bits [191:176] of the result. /// \param __w03 /// A 16-bit integral value used to initialize bits [207:192] of the result. /// \param __w02 /// A 16-bit integral value used to initialize bits [223:208] of the result. /// \param __w01 /// A 16-bit integral value used to initialize bits [239:224] of the result. /// \param __w00 /// A 16-bit integral value used to initialize bits [255:240] of the result. /// \returns An initialized 256-bit integer vector. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12, short __w11, short __w10, short __w09, short __w08, short __w07, short __w06, short __w05, short __w04, short __w03, short __w02, short __w01, short __w00) { return _mm256_set_epi16(__w00, __w01, __w02, __w03, __w04, __w05, __w06, __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15); } /// Constructs a 256-bit integer vector, initialized in reverse order /// with the specified 8-bit integral values. /// /// \headerfile /// /// This intrinsic is a utility function and does not correspond to a specific /// instruction. /// /// \param __b31 /// An 8-bit integral value used to initialize bits [7:0] of the result. /// \param __b30 /// An 8-bit integral value used to initialize bits [15:8] of the result. /// \param __b29 /// An 8-bit integral value used to initialize bits [23:16] of the result. /// \param __b28 /// An 8-bit integral value used to initialize bits [31:24] of the result. /// \param __b27 /// An 8-bit integral value used to initialize bits [39:32] of the result. /// \param __b26 /// An 8-bit integral value used to initialize bits [47:40] of the result. /// \param __b25 /// An 8-bit integral value used to initialize bits [55:48] of the result. /// \param __b24 /// An 8-bit integral value used to initialize bits [63:56] of the result. /// \param __b23 /// An 8-bit integral value used to initialize bits [71:64] of the result. /// \param __b22 /// An 8-bit integral value used to initialize bits [79:72] of the result. /// \param __b21 /// An 8-bit integral value used to initialize bits [87:80] of the result. /// \param __b20 /// An 8-bit integral value used to initialize bits [95:88] of the result. /// \param __b19 /// An 8-bit integral value used to initialize bits [103:96] of the result. /// \param __b18 /// An 8-bit integral value used to initialize bits [111:104] of the result. /// \param __b17 /// An 8-bit integral value used to initialize bits [119:112] of the result. /// \param __b16 /// An 8-bit integral value used to initialize bits [127:120] of the result. /// \param __b15 /// An 8-bit integral value used to initialize bits [135:128] of the result. /// \param __b14 /// An 8-bit integral value used to initialize bits [143:136] of the result. /// \param __b13 /// An 8-bit integral value used to initialize bits [151:144] of the result. /// \param __b12 /// An 8-bit integral value used to initialize bits [159:152] of the result. /// \param __b11 /// An 8-bit integral value used to initialize bits [167:160] of the result. /// \param __b10 /// An 8-bit integral value used to initialize bits [175:168] of the result. /// \param __b09 /// An 8-bit integral value used to initialize bits [183:176] of the result. /// \param __b08 /// An 8-bit integral value used to initialize bits [191:184] of the result. /// \param __b07 /// An 8-bit integral value used to initialize bits [199:192] of the result. /// \param __b06 /// An 8-bit integral value used to initialize bits [207:200] of the result. /// \param __b05 /// An 8-bit integral value used to initialize bits [215:208] of the result. /// \param __b04 /// An 8-bit integral value used to initialize bits [223:216] of the result. /// \param __b03 /// An 8-bit integral value used to initialize bits [231:224] of the result. /// \param __b02 /// An 8-bit integral value used to initialize bits [239:232] of the result. /// \param __b01 /// An 8-bit integral value used to initialize bits [247:240] of the result. /// \param __b00 /// An 8-bit integral value used to initialize bits [255:248] of the result. /// \returns An initialized 256-bit integer vector. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28, char __b27, char __b26, char __b25, char __b24, char __b23, char __b22, char __b21, char __b20, char __b19, char __b18, char __b17, char __b16, char __b15, char __b14, char __b13, char __b12, char __b11, char __b10, char __b09, char __b08, char __b07, char __b06, char __b05, char __b04, char __b03, char __b02, char __b01, char __b00) { return _mm256_set_epi8(__b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07, __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15, __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23, __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31); } /// Constructs a 256-bit integer vector, initialized in reverse order /// with the specified 64-bit integral values. /// /// \headerfile /// /// This intrinsic corresponds to the VPUNPCKLQDQ+VINSERTF128 /// instruction. /// /// \param __a /// A 64-bit integral value used to initialize bits [63:0] of the result. /// \param __b /// A 64-bit integral value used to initialize bits [127:64] of the result. /// \param __c /// A 64-bit integral value used to initialize bits [191:128] of the result. /// \param __d /// A 64-bit integral value used to initialize bits [255:192] of the result. /// \returns An initialized 256-bit integer vector. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d) { return _mm256_set_epi64x(__d, __c, __b, __a); } /* Create vectors with repeated elements */ /// Constructs a 256-bit floating-point vector of [4 x double], with each /// of the four double-precision floating-point vector elements set to the /// specified double-precision floating-point value. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVDDUP+VINSERTF128 instruction. /// /// \param __w /// A double-precision floating-point value used to initialize each vector /// element of the result. /// \returns An initialized 256-bit floating-point vector of [4 x double]. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_set1_pd(double __w) { return _mm256_set_pd(__w, __w, __w, __w); } /// Constructs a 256-bit floating-point vector of [8 x float], with each /// of the eight single-precision floating-point vector elements set to the /// specified single-precision floating-point value. /// /// \headerfile /// /// This intrinsic corresponds to the VPERMILPS+VINSERTF128 /// instruction. /// /// \param __w /// A single-precision floating-point value used to initialize each vector /// element of the result. /// \returns An initialized 256-bit floating-point vector of [8 x float]. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_set1_ps(float __w) { return _mm256_set_ps(__w, __w, __w, __w, __w, __w, __w, __w); } /// Constructs a 256-bit integer vector of [8 x i32], with each of the /// 32-bit integral vector elements set to the specified 32-bit integral /// value. /// /// \headerfile /// /// This intrinsic corresponds to the VPERMILPS+VINSERTF128 /// instruction. /// /// \param __i /// A 32-bit integral value used to initialize each vector element of the /// result. /// \returns An initialized 256-bit integer vector of [8 x i32]. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set1_epi32(int __i) { return _mm256_set_epi32(__i, __i, __i, __i, __i, __i, __i, __i); } /// Constructs a 256-bit integer vector of [16 x i16], with each of the /// 16-bit integral vector elements set to the specified 16-bit integral /// value. /// /// \headerfile /// /// This intrinsic corresponds to the VPSHUFB+VINSERTF128 instruction. /// /// \param __w /// A 16-bit integral value used to initialize each vector element of the /// result. /// \returns An initialized 256-bit integer vector of [16 x i16]. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set1_epi16(short __w) { return _mm256_set_epi16(__w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w, __w); } /// Constructs a 256-bit integer vector of [32 x i8], with each of the /// 8-bit integral vector elements set to the specified 8-bit integral value. /// /// \headerfile /// /// This intrinsic corresponds to the VPSHUFB+VINSERTF128 instruction. /// /// \param __b /// An 8-bit integral value used to initialize each vector element of the /// result. /// \returns An initialized 256-bit integer vector of [32 x i8]. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set1_epi8(char __b) { return _mm256_set_epi8(__b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b, __b); } /// Constructs a 256-bit integer vector of [4 x i64], with each of the /// 64-bit integral vector elements set to the specified 64-bit integral /// value. /// /// \headerfile /// /// This intrinsic corresponds to the VMOVDDUP+VINSERTF128 instruction. /// /// \param __q /// A 64-bit integral value used to initialize each vector element of the /// result. /// \returns An initialized 256-bit integer vector of [4 x i64]. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set1_epi64x(long long __q) { return _mm256_set_epi64x(__q, __q, __q, __q); } /* Create __zeroed vectors */ /// Constructs a 256-bit floating-point vector of [4 x double] with all /// vector elements initialized to zero. /// /// \headerfile /// /// This intrinsic corresponds to the VXORPS instruction. /// /// \returns A 256-bit vector of [4 x double] with all elements set to zero. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_setzero_pd(void) { return __extension__ (__m256d){ 0.0, 0.0, 0.0, 0.0 }; } /// Constructs a 256-bit floating-point vector of [8 x float] with all /// vector elements initialized to zero. /// /// \headerfile /// /// This intrinsic corresponds to the VXORPS instruction. /// /// \returns A 256-bit vector of [8 x float] with all elements set to zero. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_setzero_ps(void) { return __extension__ (__m256){ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f }; } /// Constructs a 256-bit integer vector initialized to zero. /// /// \headerfile /// /// This intrinsic corresponds to the VXORPS instruction. /// /// \returns A 256-bit integer vector initialized to zero. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setzero_si256(void) { return __extension__ (__m256i)(__v4di){ 0, 0, 0, 0 }; } /* Cast between vector types */ /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit /// floating-point vector of [8 x float]. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 256-bit floating-point vector of [4 x double]. /// \returns A 256-bit floating-point vector of [8 x float] containing the same /// bitwise pattern as the parameter. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_castpd_ps(__m256d __a) { return (__m256)__a; } /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit /// integer vector. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 256-bit floating-point vector of [4 x double]. /// \returns A 256-bit integer vector containing the same bitwise pattern as the /// parameter. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_castpd_si256(__m256d __a) { return (__m256i)__a; } /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit /// floating-point vector of [4 x double]. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 256-bit floating-point vector of [8 x float]. /// \returns A 256-bit floating-point vector of [4 x double] containing the same /// bitwise pattern as the parameter. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_castps_pd(__m256 __a) { return (__m256d)__a; } /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit /// integer vector. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 256-bit floating-point vector of [8 x float]. /// \returns A 256-bit integer vector containing the same bitwise pattern as the /// parameter. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_castps_si256(__m256 __a) { return (__m256i)__a; } /// Casts a 256-bit integer vector into a 256-bit floating-point vector /// of [8 x float]. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 256-bit integer vector. /// \returns A 256-bit floating-point vector of [8 x float] containing the same /// bitwise pattern as the parameter. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_castsi256_ps(__m256i __a) { return (__m256)__a; } /// Casts a 256-bit integer vector into a 256-bit floating-point vector /// of [4 x double]. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 256-bit integer vector. /// \returns A 256-bit floating-point vector of [4 x double] containing the same /// bitwise pattern as the parameter. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_castsi256_pd(__m256i __a) { return (__m256d)__a; } /// Returns the lower 128 bits of a 256-bit floating-point vector of /// [4 x double] as a 128-bit floating-point vector of [2 x double]. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 256-bit floating-point vector of [4 x double]. /// \returns A 128-bit floating-point vector of [2 x double] containing the /// lower 128 bits of the parameter. static __inline __m128d __DEFAULT_FN_ATTRS _mm256_castpd256_pd128(__m256d __a) { return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1); } /// Returns the lower 128 bits of a 256-bit floating-point vector of /// [8 x float] as a 128-bit floating-point vector of [4 x float]. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 256-bit floating-point vector of [8 x float]. /// \returns A 128-bit floating-point vector of [4 x float] containing the /// lower 128 bits of the parameter. static __inline __m128 __DEFAULT_FN_ATTRS _mm256_castps256_ps128(__m256 __a) { return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3); } /// Truncates a 256-bit integer vector into a 128-bit integer vector. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 256-bit integer vector. /// \returns A 128-bit integer vector containing the lower 128 bits of the /// parameter. static __inline __m128i __DEFAULT_FN_ATTRS _mm256_castsi256_si128(__m256i __a) { return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1); } /// Constructs a 256-bit floating-point vector of [4 x double] from a /// 128-bit floating-point vector of [2 x double]. /// /// The lower 128 bits contain the value of the source vector. The contents /// of the upper 128 bits are undefined. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 128-bit vector of [2 x double]. /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits /// contain the value of the parameter. The contents of the upper 128 bits /// are undefined. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_castpd128_pd256(__m128d __a) { return __builtin_shufflevector( (__v2df)__a, (__v2df)__builtin_nondeterministic_value(__a), 0, 1, 2, 3); } /// Constructs a 256-bit floating-point vector of [8 x float] from a /// 128-bit floating-point vector of [4 x float]. /// /// The lower 128 bits contain the value of the source vector. The contents /// of the upper 128 bits are undefined. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits /// contain the value of the parameter. The contents of the upper 128 bits /// are undefined. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_castps128_ps256(__m128 __a) { return __builtin_shufflevector((__v4sf)__a, (__v4sf)__builtin_nondeterministic_value(__a), 0, 1, 2, 3, 4, 5, 6, 7); } /// Constructs a 256-bit integer vector from a 128-bit integer vector. /// /// The lower 128 bits contain the value of the source vector. The contents /// of the upper 128 bits are undefined. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 128-bit integer vector. /// \returns A 256-bit integer vector. The lower 128 bits contain the value of /// the parameter. The contents of the upper 128 bits are undefined. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_castsi128_si256(__m128i __a) { return __builtin_shufflevector( (__v2di)__a, (__v2di)__builtin_nondeterministic_value(__a), 0, 1, 2, 3); } /// Constructs a 256-bit floating-point vector of [4 x double] from a /// 128-bit floating-point vector of [2 x double]. The lower 128 bits /// contain the value of the source vector. The upper 128 bits are set /// to zero. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 128-bit vector of [2 x double]. /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits /// contain the value of the parameter. The upper 128 bits are set to zero. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_zextpd128_pd256(__m128d __a) { return __builtin_shufflevector((__v2df)__a, (__v2df)_mm_setzero_pd(), 0, 1, 2, 3); } /// Constructs a 256-bit floating-point vector of [8 x float] from a /// 128-bit floating-point vector of [4 x float]. The lower 128 bits contain /// the value of the source vector. The upper 128 bits are set to zero. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 128-bit vector of [4 x float]. /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits /// contain the value of the parameter. The upper 128 bits are set to zero. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_zextps128_ps256(__m128 __a) { return __builtin_shufflevector((__v4sf)__a, (__v4sf)_mm_setzero_ps(), 0, 1, 2, 3, 4, 5, 6, 7); } /// Constructs a 256-bit integer vector from a 128-bit integer vector. /// The lower 128 bits contain the value of the source vector. The upper /// 128 bits are set to zero. /// /// \headerfile /// /// This intrinsic has no corresponding instruction. /// /// \param __a /// A 128-bit integer vector. /// \returns A 256-bit integer vector. The lower 128 bits contain the value of /// the parameter. The upper 128 bits are set to zero. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_zextsi128_si256(__m128i __a) { return __builtin_shufflevector((__v2di)__a, (__v2di)_mm_setzero_si128(), 0, 1, 2, 3); } /* Vector insert. We use macros rather than inlines because we only want to accept invocations where the immediate M is a constant expression. */ /// Constructs a new 256-bit vector of [8 x float] by first duplicating /// a 256-bit vector of [8 x float] given in the first parameter, and then /// replacing either the upper or the lower 128 bits with the contents of a /// 128-bit vector of [4 x float] in the second parameter. /// /// The immediate integer parameter determines between the upper or the lower /// 128 bits. /// /// \headerfile /// /// \code /// __m256 _mm256_insertf128_ps(__m256 V1, __m128 V2, const int M); /// \endcode /// /// This intrinsic corresponds to the VINSERTF128 instruction. /// /// \param V1 /// A 256-bit vector of [8 x float]. This vector is copied to the result /// first, and then either the upper or the lower 128 bits of the result will /// be replaced by the contents of \a V2. /// \param V2 /// A 128-bit vector of [4 x float]. The contents of this parameter are /// written to either the upper or the lower 128 bits of the result depending /// on the value of parameter \a M. /// \param M /// An immediate integer. The least significant bit determines how the values /// from the two parameters are interleaved: \n /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result, /// and bits [255:128] of \a V1 are copied to bits [255:128] of the /// result. \n /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the /// result. /// \returns A 256-bit vector of [8 x float] containing the interleaved values. #define _mm256_insertf128_ps(V1, V2, M) \ ((__m256)__builtin_ia32_vinsertf128_ps256((__v8sf)(__m256)(V1), \ (__v4sf)(__m128)(V2), (int)(M))) /// Constructs a new 256-bit vector of [4 x double] by first duplicating /// a 256-bit vector of [4 x double] given in the first parameter, and then /// replacing either the upper or the lower 128 bits with the contents of a /// 128-bit vector of [2 x double] in the second parameter. /// /// The immediate integer parameter determines between the upper or the lower /// 128 bits. /// /// \headerfile /// /// \code /// __m256d _mm256_insertf128_pd(__m256d V1, __m128d V2, const int M); /// \endcode /// /// This intrinsic corresponds to the VINSERTF128 instruction. /// /// \param V1 /// A 256-bit vector of [4 x double]. This vector is copied to the result /// first, and then either the upper or the lower 128 bits of the result will /// be replaced by the contents of \a V2. /// \param V2 /// A 128-bit vector of [2 x double]. The contents of this parameter are /// written to either the upper or the lower 128 bits of the result depending /// on the value of parameter \a M. /// \param M /// An immediate integer. The least significant bit determines how the values /// from the two parameters are interleaved: \n /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result, /// and bits [255:128] of \a V1 are copied to bits [255:128] of the /// result. \n /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the /// result. /// \returns A 256-bit vector of [4 x double] containing the interleaved values. #define _mm256_insertf128_pd(V1, V2, M) \ ((__m256d)__builtin_ia32_vinsertf128_pd256((__v4df)(__m256d)(V1), \ (__v2df)(__m128d)(V2), (int)(M))) /// Constructs a new 256-bit integer vector by first duplicating a /// 256-bit integer vector given in the first parameter, and then replacing /// either the upper or the lower 128 bits with the contents of a 128-bit /// integer vector in the second parameter. /// /// The immediate integer parameter determines between the upper or the lower /// 128 bits. /// /// \headerfile /// /// \code /// __m256i _mm256_insertf128_si256(__m256i V1, __m128i V2, const int M); /// \endcode /// /// This intrinsic corresponds to the VINSERTF128 instruction. /// /// \param V1 /// A 256-bit integer vector. This vector is copied to the result first, and /// then either the upper or the lower 128 bits of the result will be /// replaced by the contents of \a V2. /// \param V2 /// A 128-bit integer vector. The contents of this parameter are written to /// either the upper or the lower 128 bits of the result depending on the /// value of parameter \a M. /// \param M /// An immediate integer. The least significant bit determines how the values /// from the two parameters are interleaved: \n /// If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result, /// and bits [255:128] of \a V1 are copied to bits [255:128] of the /// result. \n /// If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the /// result, and bits [127:0] of \a V1 are copied to bits [127:0] of the /// result. /// \returns A 256-bit integer vector containing the interleaved values. #define _mm256_insertf128_si256(V1, V2, M) \ ((__m256i)__builtin_ia32_vinsertf128_si256((__v8si)(__m256i)(V1), \ (__v4si)(__m128i)(V2), (int)(M))) /* Vector extract. We use macros rather than inlines because we only want to accept invocations where the immediate M is a constant expression. */ /// Extracts either the upper or the lower 128 bits from a 256-bit vector /// of [8 x float], as determined by the immediate integer parameter, and /// returns the extracted bits as a 128-bit vector of [4 x float]. /// /// \headerfile /// /// \code /// __m128 _mm256_extractf128_ps(__m256 V, const int M); /// \endcode /// /// This intrinsic corresponds to the VEXTRACTF128 instruction. /// /// \param V /// A 256-bit vector of [8 x float]. /// \param M /// An immediate integer. The least significant bit determines which bits are /// extracted from the first parameter: \n /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the /// result. \n /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result. /// \returns A 128-bit vector of [4 x float] containing the extracted bits. #define _mm256_extractf128_ps(V, M) \ ((__m128)__builtin_ia32_vextractf128_ps256((__v8sf)(__m256)(V), (int)(M))) /// Extracts either the upper or the lower 128 bits from a 256-bit vector /// of [4 x double], as determined by the immediate integer parameter, and /// returns the extracted bits as a 128-bit vector of [2 x double]. /// /// \headerfile /// /// \code /// __m128d _mm256_extractf128_pd(__m256d V, const int M); /// \endcode /// /// This intrinsic corresponds to the VEXTRACTF128 instruction. /// /// \param V /// A 256-bit vector of [4 x double]. /// \param M /// An immediate integer. The least significant bit determines which bits are /// extracted from the first parameter: \n /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the /// result. \n /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result. /// \returns A 128-bit vector of [2 x double] containing the extracted bits. #define _mm256_extractf128_pd(V, M) \ ((__m128d)__builtin_ia32_vextractf128_pd256((__v4df)(__m256d)(V), (int)(M))) /// Extracts either the upper or the lower 128 bits from a 256-bit /// integer vector, as determined by the immediate integer parameter, and /// returns the extracted bits as a 128-bit integer vector. /// /// \headerfile /// /// \code /// __m128i _mm256_extractf128_si256(__m256i V, const int M); /// \endcode /// /// This intrinsic corresponds to the VEXTRACTF128 instruction. /// /// \param V /// A 256-bit integer vector. /// \param M /// An immediate integer. The least significant bit determines which bits are /// extracted from the first parameter: \n /// If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the /// result. \n /// If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result. /// \returns A 128-bit integer vector containing the extracted bits. #define _mm256_extractf128_si256(V, M) \ ((__m128i)__builtin_ia32_vextractf128_si256((__v8si)(__m256i)(V), (int)(M))) /// Constructs a 256-bit floating-point vector of [8 x float] by /// concatenating two 128-bit floating-point vectors of [4 x float]. /// /// \headerfile /// /// This intrinsic corresponds to the VINSERTF128 instruction. /// /// \param __hi /// A 128-bit floating-point vector of [4 x float] to be copied to the upper /// 128 bits of the result. /// \param __lo /// A 128-bit floating-point vector of [4 x float] to be copied to the lower /// 128 bits of the result. /// \returns A 256-bit floating-point vector of [8 x float] containing the /// concatenated result. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_set_m128 (__m128 __hi, __m128 __lo) { return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7); } /// Constructs a 256-bit floating-point vector of [4 x double] by /// concatenating two 128-bit floating-point vectors of [2 x double]. /// /// \headerfile /// /// This intrinsic corresponds to the VINSERTF128 instruction. /// /// \param __hi /// A 128-bit floating-point vector of [2 x double] to be copied to the upper /// 128 bits of the result. /// \param __lo /// A 128-bit floating-point vector of [2 x double] to be copied to the lower /// 128 bits of the result. /// \returns A 256-bit floating-point vector of [4 x double] containing the /// concatenated result. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_set_m128d (__m128d __hi, __m128d __lo) { return (__m256d) __builtin_shufflevector((__v2df)__lo, (__v2df)__hi, 0, 1, 2, 3); } /// Constructs a 256-bit integer vector by concatenating two 128-bit /// integer vectors. /// /// \headerfile /// /// This intrinsic corresponds to the VINSERTF128 instruction. /// /// \param __hi /// A 128-bit integer vector to be copied to the upper 128 bits of the /// result. /// \param __lo /// A 128-bit integer vector to be copied to the lower 128 bits of the /// result. /// \returns A 256-bit integer vector containing the concatenated result. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_set_m128i (__m128i __hi, __m128i __lo) { return (__m256i) __builtin_shufflevector((__v2di)__lo, (__v2di)__hi, 0, 1, 2, 3); } /// Constructs a 256-bit floating-point vector of [8 x float] by /// concatenating two 128-bit floating-point vectors of [4 x float]. This is /// similar to _mm256_set_m128, but the order of the input parameters is /// swapped. /// /// \headerfile /// /// This intrinsic corresponds to the VINSERTF128 instruction. /// /// \param __lo /// A 128-bit floating-point vector of [4 x float] to be copied to the lower /// 128 bits of the result. /// \param __hi /// A 128-bit floating-point vector of [4 x float] to be copied to the upper /// 128 bits of the result. /// \returns A 256-bit floating-point vector of [8 x float] containing the /// concatenated result. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_setr_m128 (__m128 __lo, __m128 __hi) { return _mm256_set_m128(__hi, __lo); } /// Constructs a 256-bit floating-point vector of [4 x double] by /// concatenating two 128-bit floating-point vectors of [2 x double]. This is /// similar to _mm256_set_m128d, but the order of the input parameters is /// swapped. /// /// \headerfile /// /// This intrinsic corresponds to the VINSERTF128 instruction. /// /// \param __lo /// A 128-bit floating-point vector of [2 x double] to be copied to the lower /// 128 bits of the result. /// \param __hi /// A 128-bit floating-point vector of [2 x double] to be copied to the upper /// 128 bits of the result. /// \returns A 256-bit floating-point vector of [4 x double] containing the /// concatenated result. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_setr_m128d (__m128d __lo, __m128d __hi) { return (__m256d)_mm256_set_m128d(__hi, __lo); } /// Constructs a 256-bit integer vector by concatenating two 128-bit /// integer vectors. This is similar to _mm256_set_m128i, but the order of /// the input parameters is swapped. /// /// \headerfile /// /// This intrinsic corresponds to the VINSERTF128 instruction. /// /// \param __lo /// A 128-bit integer vector to be copied to the lower 128 bits of the /// result. /// \param __hi /// A 128-bit integer vector to be copied to the upper 128 bits of the /// result. /// \returns A 256-bit integer vector containing the concatenated result. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_setr_m128i (__m128i __lo, __m128i __hi) { return (__m256i)_mm256_set_m128i(__hi, __lo); } /* SIMD load ops (unaligned) */ /// Loads two 128-bit floating-point vectors of [4 x float] from /// unaligned memory locations and constructs a 256-bit floating-point vector /// of [8 x float] by concatenating the two 128-bit vectors. /// /// \headerfile /// /// This intrinsic corresponds to load instructions followed by the /// VINSERTF128 instruction. /// /// \param __addr_hi /// A pointer to a 128-bit memory location containing 4 consecutive /// single-precision floating-point values. These values are to be copied to /// bits[255:128] of the result. The address of the memory location does not /// have to be aligned. /// \param __addr_lo /// A pointer to a 128-bit memory location containing 4 consecutive /// single-precision floating-point values. These values are to be copied to /// bits[127:0] of the result. The address of the memory location does not /// have to be aligned. /// \returns A 256-bit floating-point vector of [8 x float] containing the /// concatenated result. static __inline __m256 __DEFAULT_FN_ATTRS _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo) { return _mm256_set_m128(_mm_loadu_ps(__addr_hi), _mm_loadu_ps(__addr_lo)); } /// Loads two 128-bit floating-point vectors of [2 x double] from /// unaligned memory locations and constructs a 256-bit floating-point vector /// of [4 x double] by concatenating the two 128-bit vectors. /// /// \headerfile /// /// This intrinsic corresponds to load instructions followed by the /// VINSERTF128 instruction. /// /// \param __addr_hi /// A pointer to a 128-bit memory location containing two consecutive /// double-precision floating-point values. These values are to be copied to /// bits[255:128] of the result. The address of the memory location does not /// have to be aligned. /// \param __addr_lo /// A pointer to a 128-bit memory location containing two consecutive /// double-precision floating-point values. These values are to be copied to /// bits[127:0] of the result. The address of the memory location does not /// have to be aligned. /// \returns A 256-bit floating-point vector of [4 x double] containing the /// concatenated result. static __inline __m256d __DEFAULT_FN_ATTRS _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo) { return _mm256_set_m128d(_mm_loadu_pd(__addr_hi), _mm_loadu_pd(__addr_lo)); } /// Loads two 128-bit integer vectors from unaligned memory locations and /// constructs a 256-bit integer vector by concatenating the two 128-bit /// vectors. /// /// \headerfile /// /// This intrinsic corresponds to load instructions followed by the /// VINSERTF128 instruction. /// /// \param __addr_hi /// A pointer to a 128-bit memory location containing a 128-bit integer /// vector. This vector is to be copied to bits[255:128] of the result. The /// address of the memory location does not have to be aligned. /// \param __addr_lo /// A pointer to a 128-bit memory location containing a 128-bit integer /// vector. This vector is to be copied to bits[127:0] of the result. The /// address of the memory location does not have to be aligned. /// \returns A 256-bit integer vector containing the concatenated result. static __inline __m256i __DEFAULT_FN_ATTRS _mm256_loadu2_m128i(__m128i_u const *__addr_hi, __m128i_u const *__addr_lo) { return _mm256_set_m128i(_mm_loadu_si128(__addr_hi), _mm_loadu_si128(__addr_lo)); } /* SIMD store ops (unaligned) */ /// Stores the upper and lower 128 bits of a 256-bit floating-point /// vector of [8 x float] into two different unaligned memory locations. /// /// \headerfile /// /// This intrinsic corresponds to the VEXTRACTF128 instruction and the /// store instructions. /// /// \param __addr_hi /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be /// copied to this memory location. The address of this memory location does /// not have to be aligned. /// \param __addr_lo /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be /// copied to this memory location. The address of this memory location does /// not have to be aligned. /// \param __a /// A 256-bit floating-point vector of [8 x float]. static __inline void __DEFAULT_FN_ATTRS _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a) { __m128 __v128; __v128 = _mm256_castps256_ps128(__a); _mm_storeu_ps(__addr_lo, __v128); __v128 = _mm256_extractf128_ps(__a, 1); _mm_storeu_ps(__addr_hi, __v128); } /// Stores the upper and lower 128 bits of a 256-bit floating-point /// vector of [4 x double] into two different unaligned memory locations. /// /// \headerfile /// /// This intrinsic corresponds to the VEXTRACTF128 instruction and the /// store instructions. /// /// \param __addr_hi /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be /// copied to this memory location. The address of this memory location does /// not have to be aligned. /// \param __addr_lo /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be /// copied to this memory location. The address of this memory location does /// not have to be aligned. /// \param __a /// A 256-bit floating-point vector of [4 x double]. static __inline void __DEFAULT_FN_ATTRS _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a) { __m128d __v128; __v128 = _mm256_castpd256_pd128(__a); _mm_storeu_pd(__addr_lo, __v128); __v128 = _mm256_extractf128_pd(__a, 1); _mm_storeu_pd(__addr_hi, __v128); } /// Stores the upper and lower 128 bits of a 256-bit integer vector into /// two different unaligned memory locations. /// /// \headerfile /// /// This intrinsic corresponds to the VEXTRACTF128 instruction and the /// store instructions. /// /// \param __addr_hi /// A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be /// copied to this memory location. The address of this memory location does /// not have to be aligned. /// \param __addr_lo /// A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be /// copied to this memory location. The address of this memory location does /// not have to be aligned. /// \param __a /// A 256-bit integer vector. static __inline void __DEFAULT_FN_ATTRS _mm256_storeu2_m128i(__m128i_u *__addr_hi, __m128i_u *__addr_lo, __m256i __a) { __m128i __v128; __v128 = _mm256_castsi256_si128(__a); _mm_storeu_si128(__addr_lo, __v128); __v128 = _mm256_extractf128_si256(__a, 1); _mm_storeu_si128(__addr_hi, __v128); } #undef __DEFAULT_FN_ATTRS #undef __DEFAULT_FN_ATTRS128 #endif /* __AVXINTRIN_H */