//===--- CompilerInstance.cpp ---------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "clang/Frontend/CompilerInstance.h" #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/DiagnosticOptions.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/LangStandard.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Stack.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Version.h" #include "clang/Config/config.h" #include "clang/Frontend/ChainedDiagnosticConsumer.h" #include "clang/Frontend/FrontendAction.h" #include "clang/Frontend/FrontendActions.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "clang/Frontend/FrontendPluginRegistry.h" #include "clang/Frontend/LogDiagnosticPrinter.h" #include "clang/Frontend/SARIFDiagnosticPrinter.h" #include "clang/Frontend/SerializedDiagnosticPrinter.h" #include "clang/Frontend/TextDiagnosticPrinter.h" #include "clang/Frontend/Utils.h" #include "clang/Frontend/VerifyDiagnosticConsumer.h" #include "clang/Lex/HeaderSearch.h" #include "clang/Lex/Preprocessor.h" #include "clang/Lex/PreprocessorOptions.h" #include "clang/Sema/CodeCompleteConsumer.h" #include "clang/Sema/Sema.h" #include "clang/Serialization/ASTReader.h" #include "clang/Serialization/GlobalModuleIndex.h" #include "clang/Serialization/InMemoryModuleCache.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/Statistic.h" #include "llvm/Config/llvm-config.h" #include "llvm/Support/BuryPointer.h" #include "llvm/Support/CrashRecoveryContext.h" #include "llvm/Support/Errc.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/LockFileManager.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/Program.h" #include "llvm/Support/Signals.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/Timer.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Host.h" #include #include #include using namespace clang; CompilerInstance::CompilerInstance( std::shared_ptr PCHContainerOps, InMemoryModuleCache *SharedModuleCache) : ModuleLoader(/* BuildingModule = */ SharedModuleCache), Invocation(new CompilerInvocation()), ModuleCache(SharedModuleCache ? SharedModuleCache : new InMemoryModuleCache), ThePCHContainerOperations(std::move(PCHContainerOps)) {} CompilerInstance::~CompilerInstance() { assert(OutputFiles.empty() && "Still output files in flight?"); } void CompilerInstance::setInvocation( std::shared_ptr Value) { Invocation = std::move(Value); } bool CompilerInstance::shouldBuildGlobalModuleIndex() const { return (BuildGlobalModuleIndex || (TheASTReader && TheASTReader->isGlobalIndexUnavailable() && getFrontendOpts().GenerateGlobalModuleIndex)) && !DisableGeneratingGlobalModuleIndex; } void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { Diagnostics = Value; } void CompilerInstance::setVerboseOutputStream(raw_ostream &Value) { OwnedVerboseOutputStream.reset(); VerboseOutputStream = &Value; } void CompilerInstance::setVerboseOutputStream(std::unique_ptr Value) { OwnedVerboseOutputStream.swap(Value); VerboseOutputStream = OwnedVerboseOutputStream.get(); } void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } bool CompilerInstance::createTarget() { // Create the target instance. setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), getInvocation().TargetOpts)); if (!hasTarget()) return false; // Check whether AuxTarget exists, if not, then create TargetInfo for the // other side of CUDA/OpenMP/SYCL compilation. if (!getAuxTarget() && (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice || getLangOpts().SYCLIsDevice) && !getFrontendOpts().AuxTriple.empty()) { auto TO = std::make_shared(); TO->Triple = llvm::Triple::normalize(getFrontendOpts().AuxTriple); if (getFrontendOpts().AuxTargetCPU) TO->CPU = *getFrontendOpts().AuxTargetCPU; if (getFrontendOpts().AuxTargetFeatures) TO->FeaturesAsWritten = *getFrontendOpts().AuxTargetFeatures; TO->HostTriple = getTarget().getTriple().str(); setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); } if (!getTarget().hasStrictFP() && !getLangOpts().ExpStrictFP) { if (getLangOpts().RoundingMath) { getDiagnostics().Report(diag::warn_fe_backend_unsupported_fp_rounding); getLangOpts().RoundingMath = false; } auto FPExc = getLangOpts().getFPExceptionMode(); if (FPExc != LangOptions::FPE_Default && FPExc != LangOptions::FPE_Ignore) { getDiagnostics().Report(diag::warn_fe_backend_unsupported_fp_exceptions); getLangOpts().setFPExceptionMode(LangOptions::FPE_Ignore); } // FIXME: can we disable FEnvAccess? } // We should do it here because target knows nothing about // language options when it's being created. if (getLangOpts().OpenCL && !getTarget().validateOpenCLTarget(getLangOpts(), getDiagnostics())) return false; // Inform the target of the language options. // FIXME: We shouldn't need to do this, the target should be immutable once // created. This complexity should be lifted elsewhere. getTarget().adjust(getDiagnostics(), getLangOpts()); // Adjust target options based on codegen options. getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); if (auto *Aux = getAuxTarget()) getTarget().setAuxTarget(Aux); return true; } llvm::vfs::FileSystem &CompilerInstance::getVirtualFileSystem() const { return getFileManager().getVirtualFileSystem(); } void CompilerInstance::setFileManager(FileManager *Value) { FileMgr = Value; } void CompilerInstance::setSourceManager(SourceManager *Value) { SourceMgr = Value; } void CompilerInstance::setPreprocessor(std::shared_ptr Value) { PP = std::move(Value); } void CompilerInstance::setASTContext(ASTContext *Value) { Context = Value; if (Context && Consumer) getASTConsumer().Initialize(getASTContext()); } void CompilerInstance::setSema(Sema *S) { TheSema.reset(S); } void CompilerInstance::setASTConsumer(std::unique_ptr Value) { Consumer = std::move(Value); if (Context && Consumer) getASTConsumer().Initialize(getASTContext()); } void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { CompletionConsumer.reset(Value); } std::unique_ptr CompilerInstance::takeSema() { return std::move(TheSema); } IntrusiveRefCntPtr CompilerInstance::getASTReader() const { return TheASTReader; } void CompilerInstance::setASTReader(IntrusiveRefCntPtr Reader) { assert(ModuleCache.get() == &Reader->getModuleManager().getModuleCache() && "Expected ASTReader to use the same PCM cache"); TheASTReader = std::move(Reader); } std::shared_ptr CompilerInstance::getModuleDepCollector() const { return ModuleDepCollector; } void CompilerInstance::setModuleDepCollector( std::shared_ptr Collector) { ModuleDepCollector = std::move(Collector); } static void collectHeaderMaps(const HeaderSearch &HS, std::shared_ptr MDC) { SmallVector HeaderMapFileNames; HS.getHeaderMapFileNames(HeaderMapFileNames); for (auto &Name : HeaderMapFileNames) MDC->addFile(Name); } static void collectIncludePCH(CompilerInstance &CI, std::shared_ptr MDC) { const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); if (PPOpts.ImplicitPCHInclude.empty()) return; StringRef PCHInclude = PPOpts.ImplicitPCHInclude; FileManager &FileMgr = CI.getFileManager(); auto PCHDir = FileMgr.getOptionalDirectoryRef(PCHInclude); if (!PCHDir) { MDC->addFile(PCHInclude); return; } std::error_code EC; SmallString<128> DirNative; llvm::sys::path::native(PCHDir->getName(), DirNative); llvm::vfs::FileSystem &FS = FileMgr.getVirtualFileSystem(); SimpleASTReaderListener Validator(CI.getPreprocessor()); for (llvm::vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; Dir != DirEnd && !EC; Dir.increment(EC)) { // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not // used here since we're not interested in validating the PCH at this time, // but only to check whether this is a file containing an AST. if (!ASTReader::readASTFileControlBlock( Dir->path(), FileMgr, CI.getModuleCache(), CI.getPCHContainerReader(), /*FindModuleFileExtensions=*/false, Validator, /*ValidateDiagnosticOptions=*/false)) MDC->addFile(Dir->path()); } } static void collectVFSEntries(CompilerInstance &CI, std::shared_ptr MDC) { if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) return; // Collect all VFS found. SmallVector VFSEntries; for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { llvm::ErrorOr> Buffer = llvm::MemoryBuffer::getFile(VFSFile); if (!Buffer) return; llvm::vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, VFSFile, VFSEntries); } for (auto &E : VFSEntries) MDC->addFile(E.VPath, E.RPath); } // Diagnostics static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, const CodeGenOptions *CodeGenOpts, DiagnosticsEngine &Diags) { std::error_code EC; std::unique_ptr StreamOwner; raw_ostream *OS = &llvm::errs(); if (DiagOpts->DiagnosticLogFile != "-") { // Create the output stream. auto FileOS = std::make_unique( DiagOpts->DiagnosticLogFile, EC, llvm::sys::fs::OF_Append | llvm::sys::fs::OF_TextWithCRLF); if (EC) { Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) << DiagOpts->DiagnosticLogFile << EC.message(); } else { FileOS->SetUnbuffered(); OS = FileOS.get(); StreamOwner = std::move(FileOS); } } // Chain in the diagnostic client which will log the diagnostics. auto Logger = std::make_unique(*OS, DiagOpts, std::move(StreamOwner)); if (CodeGenOpts) Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); if (Diags.ownsClient()) { Diags.setClient( new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); } else { Diags.setClient( new ChainedDiagnosticConsumer(Diags.getClient(), std::move(Logger))); } } static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, DiagnosticsEngine &Diags, StringRef OutputFile) { auto SerializedConsumer = clang::serialized_diags::create(OutputFile, DiagOpts); if (Diags.ownsClient()) { Diags.setClient(new ChainedDiagnosticConsumer( Diags.takeClient(), std::move(SerializedConsumer))); } else { Diags.setClient(new ChainedDiagnosticConsumer( Diags.getClient(), std::move(SerializedConsumer))); } } void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, bool ShouldOwnClient) { Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, ShouldOwnClient, &getCodeGenOpts()); } IntrusiveRefCntPtr CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, DiagnosticConsumer *Client, bool ShouldOwnClient, const CodeGenOptions *CodeGenOpts) { IntrusiveRefCntPtr DiagID(new DiagnosticIDs()); IntrusiveRefCntPtr Diags(new DiagnosticsEngine(DiagID, Opts)); // Create the diagnostic client for reporting errors or for // implementing -verify. if (Client) { Diags->setClient(Client, ShouldOwnClient); } else if (Opts->getFormat() == DiagnosticOptions::SARIF) { Diags->setClient(new SARIFDiagnosticPrinter(llvm::errs(), Opts)); } else Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); // Chain in -verify checker, if requested. if (Opts->VerifyDiagnostics) Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); // Chain in -diagnostic-log-file dumper, if requested. if (!Opts->DiagnosticLogFile.empty()) SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); if (!Opts->DiagnosticSerializationFile.empty()) SetupSerializedDiagnostics(Opts, *Diags, Opts->DiagnosticSerializationFile); // Configure our handling of diagnostics. ProcessWarningOptions(*Diags, *Opts); return Diags; } // File Manager FileManager *CompilerInstance::createFileManager( IntrusiveRefCntPtr VFS) { if (!VFS) VFS = FileMgr ? &FileMgr->getVirtualFileSystem() : createVFSFromCompilerInvocation(getInvocation(), getDiagnostics()); assert(VFS && "FileManager has no VFS?"); FileMgr = new FileManager(getFileSystemOpts(), std::move(VFS)); return FileMgr.get(); } // Source Manager void CompilerInstance::createSourceManager(FileManager &FileMgr) { SourceMgr = new SourceManager(getDiagnostics(), FileMgr); } // Initialize the remapping of files to alternative contents, e.g., // those specified through other files. static void InitializeFileRemapping(DiagnosticsEngine &Diags, SourceManager &SourceMgr, FileManager &FileMgr, const PreprocessorOptions &InitOpts) { // Remap files in the source manager (with buffers). for (const auto &RB : InitOpts.RemappedFileBuffers) { // Create the file entry for the file that we're mapping from. const FileEntry *FromFile = FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); if (!FromFile) { Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; if (!InitOpts.RetainRemappedFileBuffers) delete RB.second; continue; } // Override the contents of the "from" file with the contents of the // "to" file. If the caller owns the buffers, then pass a MemoryBufferRef; // otherwise, pass as a std::unique_ptr to transfer ownership // to the SourceManager. if (InitOpts.RetainRemappedFileBuffers) SourceMgr.overrideFileContents(FromFile, RB.second->getMemBufferRef()); else SourceMgr.overrideFileContents( FromFile, std::unique_ptr( const_cast(RB.second))); } // Remap files in the source manager (with other files). for (const auto &RF : InitOpts.RemappedFiles) { // Find the file that we're mapping to. OptionalFileEntryRef ToFile = FileMgr.getOptionalFileRef(RF.second); if (!ToFile) { Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; continue; } // Create the file entry for the file that we're mapping from. const FileEntry *FromFile = FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); if (!FromFile) { Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; continue; } // Override the contents of the "from" file with the contents of // the "to" file. SourceMgr.overrideFileContents(FromFile, *ToFile); } SourceMgr.setOverridenFilesKeepOriginalName( InitOpts.RemappedFilesKeepOriginalName); } // Preprocessor void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { const PreprocessorOptions &PPOpts = getPreprocessorOpts(); // The AST reader holds a reference to the old preprocessor (if any). TheASTReader.reset(); // Create the Preprocessor. HeaderSearch *HeaderInfo = new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), getDiagnostics(), getLangOpts(), &getTarget()); PP = std::make_shared(Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(), getSourceManager(), *HeaderInfo, *this, /*IdentifierInfoLookup=*/nullptr, /*OwnsHeaderSearch=*/true, TUKind); getTarget().adjust(getDiagnostics(), getLangOpts()); PP->Initialize(getTarget(), getAuxTarget()); if (PPOpts.DetailedRecord) PP->createPreprocessingRecord(); // Apply remappings to the source manager. InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), PP->getFileManager(), PPOpts); // Predefine macros and configure the preprocessor. InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), getFrontendOpts()); // Initialize the header search object. In CUDA compilations, we use the aux // triple (the host triple) to initialize our header search, since we need to // find the host headers in order to compile the CUDA code. const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && PP->getAuxTargetInfo()) HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), PP->getLangOpts(), *HeaderSearchTriple); PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) { std::string ModuleHash = getInvocation().getModuleHash(); PP->getHeaderSearchInfo().setModuleHash(ModuleHash); PP->getHeaderSearchInfo().setModuleCachePath( getSpecificModuleCachePath(ModuleHash)); } // Handle generating dependencies, if requested. const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); if (!DepOpts.OutputFile.empty()) addDependencyCollector(std::make_shared(DepOpts)); if (!DepOpts.DOTOutputFile.empty()) AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, getHeaderSearchOpts().Sysroot); // If we don't have a collector, but we are collecting module dependencies, // then we're the top level compiler instance and need to create one. if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { ModuleDepCollector = std::make_shared( DepOpts.ModuleDependencyOutputDir); } // If there is a module dep collector, register with other dep collectors // and also (a) collect header maps and (b) TODO: input vfs overlay files. if (ModuleDepCollector) { addDependencyCollector(ModuleDepCollector); collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); collectIncludePCH(*this, ModuleDepCollector); collectVFSEntries(*this, ModuleDepCollector); } for (auto &Listener : DependencyCollectors) Listener->attachToPreprocessor(*PP); // Handle generating header include information, if requested. if (DepOpts.ShowHeaderIncludes) AttachHeaderIncludeGen(*PP, DepOpts); if (!DepOpts.HeaderIncludeOutputFile.empty()) { StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; if (OutputPath == "-") OutputPath = ""; AttachHeaderIncludeGen(*PP, DepOpts, /*ShowAllHeaders=*/true, OutputPath, /*ShowDepth=*/false); } if (DepOpts.ShowIncludesDest != ShowIncludesDestination::None) { AttachHeaderIncludeGen(*PP, DepOpts, /*ShowAllHeaders=*/true, /*OutputPath=*/"", /*ShowDepth=*/true, /*MSStyle=*/true); } } std::string CompilerInstance::getSpecificModuleCachePath(StringRef ModuleHash) { // Set up the module path, including the hash for the module-creation options. SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) llvm::sys::path::append(SpecificModuleCache, ModuleHash); return std::string(SpecificModuleCache.str()); } // ASTContext void CompilerInstance::createASTContext() { Preprocessor &PP = getPreprocessor(); auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), PP.getIdentifierTable(), PP.getSelectorTable(), PP.getBuiltinInfo(), PP.TUKind); Context->InitBuiltinTypes(getTarget(), getAuxTarget()); setASTContext(Context); } // ExternalASTSource namespace { // Helper to recursively read the module names for all modules we're adding. // We mark these as known and redirect any attempt to load that module to // the files we were handed. struct ReadModuleNames : ASTReaderListener { Preprocessor &PP; llvm::SmallVector LoadedModules; ReadModuleNames(Preprocessor &PP) : PP(PP) {} void ReadModuleName(StringRef ModuleName) override { // Keep the module name as a string for now. It's not safe to create a new // IdentifierInfo from an ASTReader callback. LoadedModules.push_back(ModuleName.str()); } void registerAll() { ModuleMap &MM = PP.getHeaderSearchInfo().getModuleMap(); for (const std::string &LoadedModule : LoadedModules) MM.cacheModuleLoad(*PP.getIdentifierInfo(LoadedModule), MM.findModule(LoadedModule)); LoadedModules.clear(); } void markAllUnavailable() { for (const std::string &LoadedModule : LoadedModules) { if (Module *M = PP.getHeaderSearchInfo().getModuleMap().findModule( LoadedModule)) { M->HasIncompatibleModuleFile = true; // Mark module as available if the only reason it was unavailable // was missing headers. SmallVector Stack; Stack.push_back(M); while (!Stack.empty()) { Module *Current = Stack.pop_back_val(); if (Current->IsUnimportable) continue; Current->IsAvailable = true; auto SubmodulesRange = Current->submodules(); Stack.insert(Stack.end(), SubmodulesRange.begin(), SubmodulesRange.end()); } } } LoadedModules.clear(); } }; } // namespace void CompilerInstance::createPCHExternalASTSource( StringRef Path, DisableValidationForModuleKind DisableValidation, bool AllowPCHWithCompilerErrors, void *DeserializationListener, bool OwnDeserializationListener) { bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; TheASTReader = createPCHExternalASTSource( Path, getHeaderSearchOpts().Sysroot, DisableValidation, AllowPCHWithCompilerErrors, getPreprocessor(), getModuleCache(), getASTContext(), getPCHContainerReader(), getFrontendOpts().ModuleFileExtensions, DependencyCollectors, DeserializationListener, OwnDeserializationListener, Preamble, getFrontendOpts().UseGlobalModuleIndex); } IntrusiveRefCntPtr CompilerInstance::createPCHExternalASTSource( StringRef Path, StringRef Sysroot, DisableValidationForModuleKind DisableValidation, bool AllowPCHWithCompilerErrors, Preprocessor &PP, InMemoryModuleCache &ModuleCache, ASTContext &Context, const PCHContainerReader &PCHContainerRdr, ArrayRef> Extensions, ArrayRef> DependencyCollectors, void *DeserializationListener, bool OwnDeserializationListener, bool Preamble, bool UseGlobalModuleIndex) { HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); IntrusiveRefCntPtr Reader(new ASTReader( PP, ModuleCache, &Context, PCHContainerRdr, Extensions, Sysroot.empty() ? "" : Sysroot.data(), DisableValidation, AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, HSOpts.ModulesValidateSystemHeaders, HSOpts.ValidateASTInputFilesContent, UseGlobalModuleIndex)); // We need the external source to be set up before we read the AST, because // eagerly-deserialized declarations may use it. Context.setExternalSource(Reader.get()); Reader->setDeserializationListener( static_cast(DeserializationListener), /*TakeOwnership=*/OwnDeserializationListener); for (auto &Listener : DependencyCollectors) Listener->attachToASTReader(*Reader); auto Listener = std::make_unique(PP); auto &ListenerRef = *Listener; ASTReader::ListenerScope ReadModuleNamesListener(*Reader, std::move(Listener)); switch (Reader->ReadAST(Path, Preamble ? serialization::MK_Preamble : serialization::MK_PCH, SourceLocation(), ASTReader::ARR_None)) { case ASTReader::Success: // Set the predefines buffer as suggested by the PCH reader. Typically, the // predefines buffer will be empty. PP.setPredefines(Reader->getSuggestedPredefines()); ListenerRef.registerAll(); return Reader; case ASTReader::Failure: // Unrecoverable failure: don't even try to process the input file. break; case ASTReader::Missing: case ASTReader::OutOfDate: case ASTReader::VersionMismatch: case ASTReader::ConfigurationMismatch: case ASTReader::HadErrors: // No suitable PCH file could be found. Return an error. break; } ListenerRef.markAllUnavailable(); Context.setExternalSource(nullptr); return nullptr; } // Code Completion static bool EnableCodeCompletion(Preprocessor &PP, StringRef Filename, unsigned Line, unsigned Column) { // Tell the source manager to chop off the given file at a specific // line and column. auto Entry = PP.getFileManager().getFile(Filename); if (!Entry) { PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) << Filename; return true; } // Truncate the named file at the given line/column. PP.SetCodeCompletionPoint(*Entry, Line, Column); return false; } void CompilerInstance::createCodeCompletionConsumer() { const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; if (!CompletionConsumer) { setCodeCompletionConsumer(createCodeCompletionConsumer( getPreprocessor(), Loc.FileName, Loc.Line, Loc.Column, getFrontendOpts().CodeCompleteOpts, llvm::outs())); return; } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, Loc.Line, Loc.Column)) { setCodeCompletionConsumer(nullptr); return; } } void CompilerInstance::createFrontendTimer() { FrontendTimerGroup.reset( new llvm::TimerGroup("frontend", "Clang front-end time report")); FrontendTimer.reset( new llvm::Timer("frontend", "Clang front-end timer", *FrontendTimerGroup)); } CodeCompleteConsumer * CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, StringRef Filename, unsigned Line, unsigned Column, const CodeCompleteOptions &Opts, raw_ostream &OS) { if (EnableCodeCompletion(PP, Filename, Line, Column)) return nullptr; // Set up the creation routine for code-completion. return new PrintingCodeCompleteConsumer(Opts, OS); } void CompilerInstance::createSema(TranslationUnitKind TUKind, CodeCompleteConsumer *CompletionConsumer) { TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), TUKind, CompletionConsumer)); // Attach the external sema source if there is any. if (ExternalSemaSrc) { TheSema->addExternalSource(ExternalSemaSrc.get()); ExternalSemaSrc->InitializeSema(*TheSema); } } // Output Files void CompilerInstance::clearOutputFiles(bool EraseFiles) { // The ASTConsumer can own streams that write to the output files. assert(!hasASTConsumer() && "ASTConsumer should be reset"); // Ignore errors that occur when trying to discard the temp file. for (OutputFile &OF : OutputFiles) { if (EraseFiles) { if (OF.File) consumeError(OF.File->discard()); if (!OF.Filename.empty()) llvm::sys::fs::remove(OF.Filename); continue; } if (!OF.File) continue; if (OF.File->TmpName.empty()) { consumeError(OF.File->discard()); continue; } llvm::Error E = OF.File->keep(OF.Filename); if (!E) continue; getDiagnostics().Report(diag::err_unable_to_rename_temp) << OF.File->TmpName << OF.Filename << std::move(E); llvm::sys::fs::remove(OF.File->TmpName); } OutputFiles.clear(); if (DeleteBuiltModules) { for (auto &Module : BuiltModules) llvm::sys::fs::remove(Module.second); BuiltModules.clear(); } } std::unique_ptr CompilerInstance::createDefaultOutputFile( bool Binary, StringRef InFile, StringRef Extension, bool RemoveFileOnSignal, bool CreateMissingDirectories, bool ForceUseTemporary) { StringRef OutputPath = getFrontendOpts().OutputFile; std::optional> PathStorage; if (OutputPath.empty()) { if (InFile == "-" || Extension.empty()) { OutputPath = "-"; } else { PathStorage.emplace(InFile); llvm::sys::path::replace_extension(*PathStorage, Extension); OutputPath = *PathStorage; } } return createOutputFile(OutputPath, Binary, RemoveFileOnSignal, getFrontendOpts().UseTemporary || ForceUseTemporary, CreateMissingDirectories); } std::unique_ptr CompilerInstance::createNullOutputFile() { return std::make_unique(); } std::unique_ptr CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, bool RemoveFileOnSignal, bool UseTemporary, bool CreateMissingDirectories) { Expected> OS = createOutputFileImpl(OutputPath, Binary, RemoveFileOnSignal, UseTemporary, CreateMissingDirectories); if (OS) return std::move(*OS); getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath << errorToErrorCode(OS.takeError()).message(); return nullptr; } Expected> CompilerInstance::createOutputFileImpl(StringRef OutputPath, bool Binary, bool RemoveFileOnSignal, bool UseTemporary, bool CreateMissingDirectories) { assert((!CreateMissingDirectories || UseTemporary) && "CreateMissingDirectories is only allowed when using temporary files"); // If '-working-directory' was passed, the output filename should be // relative to that. std::optional> AbsPath; if (OutputPath != "-" && !llvm::sys::path::is_absolute(OutputPath)) { assert(hasFileManager() && "File Manager is required to fix up relative path.\n"); AbsPath.emplace(OutputPath); FileMgr->FixupRelativePath(*AbsPath); OutputPath = *AbsPath; } std::unique_ptr OS; std::optional OSFile; if (UseTemporary) { if (OutputPath == "-") UseTemporary = false; else { llvm::sys::fs::file_status Status; llvm::sys::fs::status(OutputPath, Status); if (llvm::sys::fs::exists(Status)) { // Fail early if we can't write to the final destination. if (!llvm::sys::fs::can_write(OutputPath)) return llvm::errorCodeToError( make_error_code(llvm::errc::operation_not_permitted)); // Don't use a temporary if the output is a special file. This handles // things like '-o /dev/null' if (!llvm::sys::fs::is_regular_file(Status)) UseTemporary = false; } } } std::optional Temp; if (UseTemporary) { // Create a temporary file. // Insert -%%%%%%%% before the extension (if any), and because some tools // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build // artifacts, also append .tmp. StringRef OutputExtension = llvm::sys::path::extension(OutputPath); SmallString<128> TempPath = StringRef(OutputPath).drop_back(OutputExtension.size()); TempPath += "-%%%%%%%%"; TempPath += OutputExtension; TempPath += ".tmp"; llvm::sys::fs::OpenFlags BinaryFlags = Binary ? llvm::sys::fs::OF_None : llvm::sys::fs::OF_Text; Expected ExpectedFile = llvm::sys::fs::TempFile::create( TempPath, llvm::sys::fs::all_read | llvm::sys::fs::all_write, BinaryFlags); llvm::Error E = handleErrors( ExpectedFile.takeError(), [&](const llvm::ECError &E) -> llvm::Error { std::error_code EC = E.convertToErrorCode(); if (CreateMissingDirectories && EC == llvm::errc::no_such_file_or_directory) { StringRef Parent = llvm::sys::path::parent_path(OutputPath); EC = llvm::sys::fs::create_directories(Parent); if (!EC) { ExpectedFile = llvm::sys::fs::TempFile::create( TempPath, llvm::sys::fs::all_read | llvm::sys::fs::all_write, BinaryFlags); if (!ExpectedFile) return llvm::errorCodeToError( llvm::errc::no_such_file_or_directory); } } return llvm::errorCodeToError(EC); }); if (E) { consumeError(std::move(E)); } else { Temp = std::move(ExpectedFile.get()); OS.reset(new llvm::raw_fd_ostream(Temp->FD, /*shouldClose=*/false)); OSFile = Temp->TmpName; } // If we failed to create the temporary, fallback to writing to the file // directly. This handles the corner case where we cannot write to the // directory, but can write to the file. } if (!OS) { OSFile = OutputPath; std::error_code EC; OS.reset(new llvm::raw_fd_ostream( *OSFile, EC, (Binary ? llvm::sys::fs::OF_None : llvm::sys::fs::OF_TextWithCRLF))); if (EC) return llvm::errorCodeToError(EC); } // Add the output file -- but don't try to remove "-", since this means we are // using stdin. OutputFiles.emplace_back(((OutputPath != "-") ? OutputPath : "").str(), std::move(Temp)); if (!Binary || OS->supportsSeeking()) return std::move(OS); return std::make_unique(std::move(OS)); } // Initialization Utilities bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ return InitializeSourceManager(Input, getDiagnostics(), getFileManager(), getSourceManager()); } // static bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input, DiagnosticsEngine &Diags, FileManager &FileMgr, SourceManager &SourceMgr) { SrcMgr::CharacteristicKind Kind = Input.getKind().getFormat() == InputKind::ModuleMap ? Input.isSystem() ? SrcMgr::C_System_ModuleMap : SrcMgr::C_User_ModuleMap : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; if (Input.isBuffer()) { SourceMgr.setMainFileID(SourceMgr.createFileID(Input.getBuffer(), Kind)); assert(SourceMgr.getMainFileID().isValid() && "Couldn't establish MainFileID!"); return true; } StringRef InputFile = Input.getFile(); // Figure out where to get and map in the main file. auto FileOrErr = InputFile == "-" ? FileMgr.getSTDIN() : FileMgr.getFileRef(InputFile, /*OpenFile=*/true); if (!FileOrErr) { auto EC = llvm::errorToErrorCode(FileOrErr.takeError()); if (InputFile != "-") Diags.Report(diag::err_fe_error_reading) << InputFile << EC.message(); else Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); return false; } SourceMgr.setMainFileID( SourceMgr.createFileID(*FileOrErr, SourceLocation(), Kind)); assert(SourceMgr.getMainFileID().isValid() && "Couldn't establish MainFileID!"); return true; } // High-Level Operations bool CompilerInstance::ExecuteAction(FrontendAction &Act) { assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); // Mark this point as the bottom of the stack if we don't have somewhere // better. We generally expect frontend actions to be invoked with (nearly) // DesiredStackSpace available. noteBottomOfStack(); auto FinishDiagnosticClient = llvm::make_scope_exit([&]() { // Notify the diagnostic client that all files were processed. getDiagnosticClient().finish(); }); raw_ostream &OS = getVerboseOutputStream(); if (!Act.PrepareToExecute(*this)) return false; if (!createTarget()) return false; // rewriter project will change target built-in bool type from its default. if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) getTarget().noSignedCharForObjCBool(); // Validate/process some options. if (getHeaderSearchOpts().Verbose) OS << "clang -cc1 version " CLANG_VERSION_STRING << " based upon LLVM " << LLVM_VERSION_STRING << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; if (getCodeGenOpts().TimePasses) createFrontendTimer(); if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) llvm::EnableStatistics(false); for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { // Reset the ID tables if we are reusing the SourceManager and parsing // regular files. if (hasSourceManager() && !Act.isModelParsingAction()) getSourceManager().clearIDTables(); if (Act.BeginSourceFile(*this, FIF)) { if (llvm::Error Err = Act.Execute()) { consumeError(std::move(Err)); // FIXME this drops errors on the floor. } Act.EndSourceFile(); } } if (getDiagnosticOpts().ShowCarets) { // We can have multiple diagnostics sharing one diagnostic client. // Get the total number of warnings/errors from the client. unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); if (NumWarnings) OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); if (NumWarnings && NumErrors) OS << " and "; if (NumErrors) OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); if (NumWarnings || NumErrors) { OS << " generated"; if (getLangOpts().CUDA) { if (!getLangOpts().CUDAIsDevice) { OS << " when compiling for host"; } else { OS << " when compiling for " << getTargetOpts().CPU; } } OS << ".\n"; } } if (getFrontendOpts().ShowStats) { if (hasFileManager()) { getFileManager().PrintStats(); OS << '\n'; } llvm::PrintStatistics(OS); } StringRef StatsFile = getFrontendOpts().StatsFile; if (!StatsFile.empty()) { llvm::sys::fs::OpenFlags FileFlags = llvm::sys::fs::OF_TextWithCRLF; if (getFrontendOpts().AppendStats) FileFlags |= llvm::sys::fs::OF_Append; std::error_code EC; auto StatS = std::make_unique(StatsFile, EC, FileFlags); if (EC) { getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) << StatsFile << EC.message(); } else { llvm::PrintStatisticsJSON(*StatS); } } return !getDiagnostics().getClient()->getNumErrors(); } void CompilerInstance::LoadRequestedPlugins() { // Load any requested plugins. for (const std::string &Path : getFrontendOpts().Plugins) { std::string Error; if (llvm::sys::DynamicLibrary::LoadLibraryPermanently(Path.c_str(), &Error)) getDiagnostics().Report(diag::err_fe_unable_to_load_plugin) << Path << Error; } // Check if any of the loaded plugins replaces the main AST action for (const FrontendPluginRegistry::entry &Plugin : FrontendPluginRegistry::entries()) { std::unique_ptr P(Plugin.instantiate()); if (P->getActionType() == PluginASTAction::ReplaceAction) { getFrontendOpts().ProgramAction = clang::frontend::PluginAction; getFrontendOpts().ActionName = Plugin.getName().str(); break; } } } /// Determine the appropriate source input kind based on language /// options. static Language getLanguageFromOptions(const LangOptions &LangOpts) { if (LangOpts.OpenCL) return Language::OpenCL; if (LangOpts.CUDA) return Language::CUDA; if (LangOpts.ObjC) return LangOpts.CPlusPlus ? Language::ObjCXX : Language::ObjC; return LangOpts.CPlusPlus ? Language::CXX : Language::C; } /// Compile a module file for the given module, using the options /// provided by the importing compiler instance. Returns true if the module /// was built without errors. static bool compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, StringRef ModuleName, FrontendInputFile Input, StringRef OriginalModuleMapFile, StringRef ModuleFileName, llvm::function_ref PreBuildStep = [](CompilerInstance &) {}, llvm::function_ref PostBuildStep = [](CompilerInstance &) {}) { llvm::TimeTraceScope TimeScope("Module Compile", ModuleName); // Never compile a module that's already finalized - this would cause the // existing module to be freed, causing crashes if it is later referenced if (ImportingInstance.getModuleCache().isPCMFinal(ModuleFileName)) { ImportingInstance.getDiagnostics().Report( ImportLoc, diag::err_module_rebuild_finalized) << ModuleName; return false; } // Construct a compiler invocation for creating this module. auto Invocation = std::make_shared(ImportingInstance.getInvocation()); PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); // For any options that aren't intended to affect how a module is built, // reset them to their default values. Invocation->resetNonModularOptions(); // Remove any macro definitions that are explicitly ignored by the module. // They aren't supposed to affect how the module is built anyway. HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); llvm::erase_if(PPOpts.Macros, [&HSOpts](const std::pair &def) { StringRef MacroDef = def.first; return HSOpts.ModulesIgnoreMacros.contains( llvm::CachedHashString(MacroDef.split('=').first)); }); // If the original compiler invocation had -fmodule-name, pass it through. Invocation->getLangOpts()->ModuleName = ImportingInstance.getInvocation().getLangOpts()->ModuleName; // Note the name of the module we're building. Invocation->getLangOpts()->CurrentModule = std::string(ModuleName); // Make sure that the failed-module structure has been allocated in // the importing instance, and propagate the pointer to the newly-created // instance. PreprocessorOptions &ImportingPPOpts = ImportingInstance.getInvocation().getPreprocessorOpts(); if (!ImportingPPOpts.FailedModules) ImportingPPOpts.FailedModules = std::make_shared(); PPOpts.FailedModules = ImportingPPOpts.FailedModules; // If there is a module map file, build the module using the module map. // Set up the inputs/outputs so that we build the module from its umbrella // header. FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); FrontendOpts.OutputFile = ModuleFileName.str(); FrontendOpts.DisableFree = false; FrontendOpts.GenerateGlobalModuleIndex = false; FrontendOpts.BuildingImplicitModule = true; FrontendOpts.OriginalModuleMap = std::string(OriginalModuleMapFile); // Force implicitly-built modules to hash the content of the module file. HSOpts.ModulesHashContent = true; FrontendOpts.Inputs = {Input}; // Don't free the remapped file buffers; they are owned by our caller. PPOpts.RetainRemappedFileBuffers = true; Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; assert(ImportingInstance.getInvocation().getModuleHash() == Invocation->getModuleHash() && "Module hash mismatch!"); // Construct a compiler instance that will be used to actually create the // module. Since we're sharing an in-memory module cache, // CompilerInstance::CompilerInstance is responsible for finalizing the // buffers to prevent use-after-frees. CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), &ImportingInstance.getModuleCache()); auto &Inv = *Invocation; Instance.setInvocation(std::move(Invocation)); Instance.createDiagnostics(new ForwardingDiagnosticConsumer( ImportingInstance.getDiagnosticClient()), /*ShouldOwnClient=*/true); if (FrontendOpts.ModulesShareFileManager) { Instance.setFileManager(&ImportingInstance.getFileManager()); } else { Instance.createFileManager(&ImportingInstance.getVirtualFileSystem()); } Instance.createSourceManager(Instance.getFileManager()); SourceManager &SourceMgr = Instance.getSourceManager(); // Note that this module is part of the module build stack, so that we // can detect cycles in the module graph. SourceMgr.setModuleBuildStack( ImportingInstance.getSourceManager().getModuleBuildStack()); SourceMgr.pushModuleBuildStack(ModuleName, FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); // If we're collecting module dependencies, we need to share a collector // between all of the module CompilerInstances. Other than that, we don't // want to produce any dependency output from the module build. Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); Inv.getDependencyOutputOpts() = DependencyOutputOptions(); ImportingInstance.getDiagnostics().Report(ImportLoc, diag::remark_module_build) << ModuleName << ModuleFileName; PreBuildStep(Instance); // Execute the action to actually build the module in-place. Use a separate // thread so that we get a stack large enough. bool Crashed = !llvm::CrashRecoveryContext().RunSafelyOnThread( [&]() { GenerateModuleFromModuleMapAction Action; Instance.ExecuteAction(Action); }, DesiredStackSize); PostBuildStep(Instance); ImportingInstance.getDiagnostics().Report(ImportLoc, diag::remark_module_build_done) << ModuleName; if (Crashed) { // Clear the ASTConsumer if it hasn't been already, in case it owns streams // that must be closed before clearing output files. Instance.setSema(nullptr); Instance.setASTConsumer(nullptr); // Delete any remaining temporary files related to Instance. Instance.clearOutputFiles(/*EraseFiles=*/true); } // If \p AllowPCMWithCompilerErrors is set return 'success' even if errors // occurred. return !Instance.getDiagnostics().hasErrorOccurred() || Instance.getFrontendOpts().AllowPCMWithCompilerErrors; } static OptionalFileEntryRef getPublicModuleMap(FileEntryRef File, FileManager &FileMgr) { StringRef Filename = llvm::sys::path::filename(File.getName()); SmallString<128> PublicFilename(File.getDir().getName()); if (Filename == "module_private.map") llvm::sys::path::append(PublicFilename, "module.map"); else if (Filename == "module.private.modulemap") llvm::sys::path::append(PublicFilename, "module.modulemap"); else return std::nullopt; return FileMgr.getOptionalFileRef(PublicFilename); } /// Compile a module file for the given module in a separate compiler instance, /// using the options provided by the importing compiler instance. Returns true /// if the module was built without errors. static bool compileModule(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, Module *Module, StringRef ModuleFileName) { InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), InputKind::ModuleMap); // Get or create the module map that we'll use to build this module. ModuleMap &ModMap = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); bool Result; if (OptionalFileEntryRef ModuleMapFile = ModMap.getContainingModuleMapFile(Module)) { // Canonicalize compilation to start with the public module map. This is // vital for submodules declarations in the private module maps to be // correctly parsed when depending on a top level module in the public one. if (OptionalFileEntryRef PublicMMFile = getPublicModuleMap( *ModuleMapFile, ImportingInstance.getFileManager())) ModuleMapFile = PublicMMFile; StringRef ModuleMapFilePath = ModuleMapFile->getNameAsRequested(); // Use the module map where this module resides. Result = compileModuleImpl( ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), FrontendInputFile(ModuleMapFilePath, IK, +Module->IsSystem), ModMap.getModuleMapFileForUniquing(Module)->getName(), ModuleFileName); } else { // FIXME: We only need to fake up an input file here as a way of // transporting the module's directory to the module map parser. We should // be able to do that more directly, and parse from a memory buffer without // inventing this file. SmallString<128> FakeModuleMapFile(Module->Directory->getName()); llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); std::string InferredModuleMapContent; llvm::raw_string_ostream OS(InferredModuleMapContent); Module->print(OS); OS.flush(); Result = compileModuleImpl( ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), ModMap.getModuleMapFileForUniquing(Module)->getName(), ModuleFileName, [&](CompilerInstance &Instance) { std::unique_ptr ModuleMapBuffer = llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); const FileEntry *ModuleMapFile = Instance.getFileManager().getVirtualFile( FakeModuleMapFile, InferredModuleMapContent.size(), 0); Instance.getSourceManager().overrideFileContents( ModuleMapFile, std::move(ModuleMapBuffer)); }); } // We've rebuilt a module. If we're allowed to generate or update the global // module index, record that fact in the importing compiler instance. if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { ImportingInstance.setBuildGlobalModuleIndex(true); } return Result; } /// Read the AST right after compiling the module. static bool readASTAfterCompileModule(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, SourceLocation ModuleNameLoc, Module *Module, StringRef ModuleFileName, bool *OutOfDate) { DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; if (OutOfDate) ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; // Try to read the module file, now that we've compiled it. ASTReader::ASTReadResult ReadResult = ImportingInstance.getASTReader()->ReadAST( ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, ModuleLoadCapabilities); if (ReadResult == ASTReader::Success) return true; // The caller wants to handle out-of-date failures. if (OutOfDate && ReadResult == ASTReader::OutOfDate) { *OutOfDate = true; return false; } // The ASTReader didn't diagnose the error, so conservatively report it. if (ReadResult == ASTReader::Missing || !Diags.hasErrorOccurred()) Diags.Report(ModuleNameLoc, diag::err_module_not_built) << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); return false; } /// Compile a module in a separate compiler instance and read the AST, /// returning true if the module compiles without errors. static bool compileModuleAndReadASTImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, SourceLocation ModuleNameLoc, Module *Module, StringRef ModuleFileName) { if (!compileModule(ImportingInstance, ModuleNameLoc, Module, ModuleFileName)) { ImportingInstance.getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); return false; } return readASTAfterCompileModule(ImportingInstance, ImportLoc, ModuleNameLoc, Module, ModuleFileName, /*OutOfDate=*/nullptr); } /// Compile a module in a separate compiler instance and read the AST, /// returning true if the module compiles without errors, using a lock manager /// to avoid building the same module in multiple compiler instances. /// /// Uses a lock file manager and exponential backoff to reduce the chances that /// multiple instances will compete to create the same module. On timeout, /// deletes the lock file in order to avoid deadlock from crashing processes or /// bugs in the lock file manager. static bool compileModuleAndReadASTBehindLock( CompilerInstance &ImportingInstance, SourceLocation ImportLoc, SourceLocation ModuleNameLoc, Module *Module, StringRef ModuleFileName) { DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); Diags.Report(ModuleNameLoc, diag::remark_module_lock) << ModuleFileName << Module->Name; // FIXME: have LockFileManager return an error_code so that we can // avoid the mkdir when the directory already exists. StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); llvm::sys::fs::create_directories(Dir); while (true) { llvm::LockFileManager Locked(ModuleFileName); switch (Locked) { case llvm::LockFileManager::LFS_Error: // ModuleCache takes care of correctness and locks are only necessary for // performance. Fallback to building the module in case of any lock // related errors. Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) << Module->Name << Locked.getErrorMessage(); // Clear out any potential leftover. Locked.unsafeRemoveLockFile(); [[fallthrough]]; case llvm::LockFileManager::LFS_Owned: // We're responsible for building the module ourselves. return compileModuleAndReadASTImpl(ImportingInstance, ImportLoc, ModuleNameLoc, Module, ModuleFileName); case llvm::LockFileManager::LFS_Shared: break; // The interesting case. } // Someone else is responsible for building the module. Wait for them to // finish. switch (Locked.waitForUnlock()) { case llvm::LockFileManager::Res_Success: break; // The interesting case. case llvm::LockFileManager::Res_OwnerDied: continue; // try again to get the lock. case llvm::LockFileManager::Res_Timeout: // Since ModuleCache takes care of correctness, we try waiting for // another process to complete the build so clang does not do it done // twice. If case of timeout, build it ourselves. Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) << Module->Name; // Clear the lock file so that future invocations can make progress. Locked.unsafeRemoveLockFile(); continue; } // Read the module that was just written by someone else. bool OutOfDate = false; if (readASTAfterCompileModule(ImportingInstance, ImportLoc, ModuleNameLoc, Module, ModuleFileName, &OutOfDate)) return true; if (!OutOfDate) return false; // The module may be out of date in the presence of file system races, // or if one of its imports depends on header search paths that are not // consistent with this ImportingInstance. Try again... } } /// Compile a module in a separate compiler instance and read the AST, /// returning true if the module compiles without errors, potentially using a /// lock manager to avoid building the same module in multiple compiler /// instances. static bool compileModuleAndReadAST(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, SourceLocation ModuleNameLoc, Module *Module, StringRef ModuleFileName) { return ImportingInstance.getInvocation() .getFrontendOpts() .BuildingImplicitModuleUsesLock ? compileModuleAndReadASTBehindLock(ImportingInstance, ImportLoc, ModuleNameLoc, Module, ModuleFileName) : compileModuleAndReadASTImpl(ImportingInstance, ImportLoc, ModuleNameLoc, Module, ModuleFileName); } /// Diagnose differences between the current definition of the given /// configuration macro and the definition provided on the command line. static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, Module *Mod, SourceLocation ImportLoc) { IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); SourceManager &SourceMgr = PP.getSourceManager(); // If this identifier has never had a macro definition, then it could // not have changed. if (!Id->hadMacroDefinition()) return; auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); // Find the macro definition from the command line. MacroInfo *CmdLineDefinition = nullptr; for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { // We only care about the predefines buffer. FileID FID = SourceMgr.getFileID(MD->getLocation()); if (FID.isInvalid() || FID != PP.getPredefinesFileID()) continue; if (auto *DMD = dyn_cast(MD)) CmdLineDefinition = DMD->getMacroInfo(); break; } auto *CurrentDefinition = PP.getMacroInfo(Id); if (CurrentDefinition == CmdLineDefinition) { // Macro matches. Nothing to do. } else if (!CurrentDefinition) { // This macro was defined on the command line, then #undef'd later. // Complain. PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) << true << ConfigMacro << Mod->getFullModuleName(); auto LatestDef = LatestLocalMD->getDefinition(); assert(LatestDef.isUndefined() && "predefined macro went away with no #undef?"); PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) << true; return; } else if (!CmdLineDefinition) { // There was no definition for this macro in the predefines buffer, // but there was a local definition. Complain. PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) << false << ConfigMacro << Mod->getFullModuleName(); PP.Diag(CurrentDefinition->getDefinitionLoc(), diag::note_module_def_undef_here) << false; } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, /*Syntactically=*/true)) { // The macro definitions differ. PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) << false << ConfigMacro << Mod->getFullModuleName(); PP.Diag(CurrentDefinition->getDefinitionLoc(), diag::note_module_def_undef_here) << false; } } /// Write a new timestamp file with the given path. static void writeTimestampFile(StringRef TimestampFile) { std::error_code EC; llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::OF_None); } /// Prune the module cache of modules that haven't been accessed in /// a long time. static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { llvm::sys::fs::file_status StatBuf; llvm::SmallString<128> TimestampFile; TimestampFile = HSOpts.ModuleCachePath; assert(!TimestampFile.empty()); llvm::sys::path::append(TimestampFile, "modules.timestamp"); // Try to stat() the timestamp file. if (std::error_code EC = llvm::sys::fs::status(TimestampFile, StatBuf)) { // If the timestamp file wasn't there, create one now. if (EC == std::errc::no_such_file_or_directory) { writeTimestampFile(TimestampFile); } return; } // Check whether the time stamp is older than our pruning interval. // If not, do nothing. time_t TimeStampModTime = llvm::sys::toTimeT(StatBuf.getLastModificationTime()); time_t CurrentTime = time(nullptr); if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) return; // Write a new timestamp file so that nobody else attempts to prune. // There is a benign race condition here, if two Clang instances happen to // notice at the same time that the timestamp is out-of-date. writeTimestampFile(TimestampFile); // Walk the entire module cache, looking for unused module files and module // indices. std::error_code EC; SmallString<128> ModuleCachePathNative; llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; Dir != DirEnd && !EC; Dir.increment(EC)) { // If we don't have a directory, there's nothing to look into. if (!llvm::sys::fs::is_directory(Dir->path())) continue; // Walk all of the files within this directory. for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; File != FileEnd && !EC; File.increment(EC)) { // We only care about module and global module index files. StringRef Extension = llvm::sys::path::extension(File->path()); if (Extension != ".pcm" && Extension != ".timestamp" && llvm::sys::path::filename(File->path()) != "modules.idx") continue; // Look at this file. If we can't stat it, there's nothing interesting // there. if (llvm::sys::fs::status(File->path(), StatBuf)) continue; // If the file has been used recently enough, leave it there. time_t FileAccessTime = llvm::sys::toTimeT(StatBuf.getLastAccessedTime()); if (CurrentTime - FileAccessTime <= time_t(HSOpts.ModuleCachePruneAfter)) { continue; } // Remove the file. llvm::sys::fs::remove(File->path()); // Remove the timestamp file. std::string TimpestampFilename = File->path() + ".timestamp"; llvm::sys::fs::remove(TimpestampFilename); } // If we removed all of the files in the directory, remove the directory // itself. if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == llvm::sys::fs::directory_iterator() && !EC) llvm::sys::fs::remove(Dir->path()); } } void CompilerInstance::createASTReader() { if (TheASTReader) return; if (!hasASTContext()) createASTContext(); // If we're implicitly building modules but not currently recursively // building a module, check whether we need to prune the module cache. if (getSourceManager().getModuleBuildStack().empty() && !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && getHeaderSearchOpts().ModuleCachePruneInterval > 0 && getHeaderSearchOpts().ModuleCachePruneAfter > 0) { pruneModuleCache(getHeaderSearchOpts()); } HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); std::string Sysroot = HSOpts.Sysroot; const PreprocessorOptions &PPOpts = getPreprocessorOpts(); const FrontendOptions &FEOpts = getFrontendOpts(); std::unique_ptr ReadTimer; if (FrontendTimerGroup) ReadTimer = std::make_unique("reading_modules", "Reading modules", *FrontendTimerGroup); TheASTReader = new ASTReader( getPreprocessor(), getModuleCache(), &getASTContext(), getPCHContainerReader(), getFrontendOpts().ModuleFileExtensions, Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHOrModuleValidation, /*AllowASTWithCompilerErrors=*/FEOpts.AllowPCMWithCompilerErrors, /*AllowConfigurationMismatch=*/false, HSOpts.ModulesValidateSystemHeaders, HSOpts.ValidateASTInputFilesContent, getFrontendOpts().UseGlobalModuleIndex, std::move(ReadTimer)); if (hasASTConsumer()) { TheASTReader->setDeserializationListener( getASTConsumer().GetASTDeserializationListener()); getASTContext().setASTMutationListener( getASTConsumer().GetASTMutationListener()); } getASTContext().setExternalSource(TheASTReader); if (hasSema()) TheASTReader->InitializeSema(getSema()); if (hasASTConsumer()) TheASTReader->StartTranslationUnit(&getASTConsumer()); for (auto &Listener : DependencyCollectors) Listener->attachToASTReader(*TheASTReader); } bool CompilerInstance::loadModuleFile(StringRef FileName) { llvm::Timer Timer; if (FrontendTimerGroup) Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), *FrontendTimerGroup); llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); // If we don't already have an ASTReader, create one now. if (!TheASTReader) createASTReader(); // If -Wmodule-file-config-mismatch is mapped as an error or worse, allow the // ASTReader to diagnose it, since it can produce better errors that we can. bool ConfigMismatchIsRecoverable = getDiagnostics().getDiagnosticLevel(diag::warn_module_config_mismatch, SourceLocation()) <= DiagnosticsEngine::Warning; auto Listener = std::make_unique(*PP); auto &ListenerRef = *Listener; ASTReader::ListenerScope ReadModuleNamesListener(*TheASTReader, std::move(Listener)); // Try to load the module file. switch (TheASTReader->ReadAST( FileName, serialization::MK_ExplicitModule, SourceLocation(), ConfigMismatchIsRecoverable ? ASTReader::ARR_ConfigurationMismatch : 0)) { case ASTReader::Success: // We successfully loaded the module file; remember the set of provided // modules so that we don't try to load implicit modules for them. ListenerRef.registerAll(); return true; case ASTReader::ConfigurationMismatch: // Ignore unusable module files. getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) << FileName; // All modules provided by any files we tried and failed to load are now // unavailable; includes of those modules should now be handled textually. ListenerRef.markAllUnavailable(); return true; default: return false; } } namespace { enum ModuleSource { MS_ModuleNotFound, MS_ModuleCache, MS_PrebuiltModulePath, MS_ModuleBuildPragma }; } // end namespace /// Select a source for loading the named module and compute the filename to /// load it from. static ModuleSource selectModuleSource( Module *M, StringRef ModuleName, std::string &ModuleFilename, const std::map> &BuiltModules, HeaderSearch &HS) { assert(ModuleFilename.empty() && "Already has a module source?"); // Check to see if the module has been built as part of this compilation // via a module build pragma. auto BuiltModuleIt = BuiltModules.find(ModuleName); if (BuiltModuleIt != BuiltModules.end()) { ModuleFilename = BuiltModuleIt->second; return MS_ModuleBuildPragma; } // Try to load the module from the prebuilt module path. const HeaderSearchOptions &HSOpts = HS.getHeaderSearchOpts(); if (!HSOpts.PrebuiltModuleFiles.empty() || !HSOpts.PrebuiltModulePaths.empty()) { ModuleFilename = HS.getPrebuiltModuleFileName(ModuleName); if (HSOpts.EnablePrebuiltImplicitModules && ModuleFilename.empty()) ModuleFilename = HS.getPrebuiltImplicitModuleFileName(M); if (!ModuleFilename.empty()) return MS_PrebuiltModulePath; } // Try to load the module from the module cache. if (M) { ModuleFilename = HS.getCachedModuleFileName(M); return MS_ModuleCache; } return MS_ModuleNotFound; } ModuleLoadResult CompilerInstance::findOrCompileModuleAndReadAST( StringRef ModuleName, SourceLocation ImportLoc, SourceLocation ModuleNameLoc, bool IsInclusionDirective) { // Search for a module with the given name. HeaderSearch &HS = PP->getHeaderSearchInfo(); Module *M = HS.lookupModule(ModuleName, ImportLoc, true, !IsInclusionDirective); // Select the source and filename for loading the named module. std::string ModuleFilename; ModuleSource Source = selectModuleSource(M, ModuleName, ModuleFilename, BuiltModules, HS); if (Source == MS_ModuleNotFound) { // We can't find a module, error out here. getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); return nullptr; } if (ModuleFilename.empty()) { if (M && M->HasIncompatibleModuleFile) { // We tried and failed to load a module file for this module. Fall // back to textual inclusion for its headers. return ModuleLoadResult::ConfigMismatch; } getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) << ModuleName; return nullptr; } // Create an ASTReader on demand. if (!getASTReader()) createASTReader(); // Time how long it takes to load the module. llvm::Timer Timer; if (FrontendTimerGroup) Timer.init("loading." + ModuleFilename, "Loading " + ModuleFilename, *FrontendTimerGroup); llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); llvm::TimeTraceScope TimeScope("Module Load", ModuleName); // Try to load the module file. If we are not trying to load from the // module cache, we don't know how to rebuild modules. unsigned ARRFlags = Source == MS_ModuleCache ? ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing | ASTReader::ARR_TreatModuleWithErrorsAsOutOfDate : Source == MS_PrebuiltModulePath ? 0 : ASTReader::ARR_ConfigurationMismatch; switch (getASTReader()->ReadAST(ModuleFilename, Source == MS_PrebuiltModulePath ? serialization::MK_PrebuiltModule : Source == MS_ModuleBuildPragma ? serialization::MK_ExplicitModule : serialization::MK_ImplicitModule, ImportLoc, ARRFlags)) { case ASTReader::Success: { if (M) return M; assert(Source != MS_ModuleCache && "missing module, but file loaded from cache"); // A prebuilt module is indexed as a ModuleFile; the Module does not exist // until the first call to ReadAST. Look it up now. M = HS.lookupModule(ModuleName, ImportLoc, true, !IsInclusionDirective); // Check whether M refers to the file in the prebuilt module path. if (M && M->getASTFile()) if (auto ModuleFile = FileMgr->getFile(ModuleFilename)) if (*ModuleFile == M->getASTFile()) return M; getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) << ModuleName; return ModuleLoadResult(); } case ASTReader::OutOfDate: case ASTReader::Missing: // The most interesting case. break; case ASTReader::ConfigurationMismatch: if (Source == MS_PrebuiltModulePath) // FIXME: We shouldn't be setting HadFatalFailure below if we only // produce a warning here! getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) << ModuleFilename; // Fall through to error out. [[fallthrough]]; case ASTReader::VersionMismatch: case ASTReader::HadErrors: ModuleLoader::HadFatalFailure = true; // FIXME: The ASTReader will already have complained, but can we shoehorn // that diagnostic information into a more useful form? return ModuleLoadResult(); case ASTReader::Failure: ModuleLoader::HadFatalFailure = true; return ModuleLoadResult(); } // ReadAST returned Missing or OutOfDate. if (Source != MS_ModuleCache) { // We don't know the desired configuration for this module and don't // necessarily even have a module map. Since ReadAST already produces // diagnostics for these two cases, we simply error out here. return ModuleLoadResult(); } // The module file is missing or out-of-date. Build it. assert(M && "missing module, but trying to compile for cache"); // Check whether there is a cycle in the module graph. ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); for (; Pos != PosEnd; ++Pos) { if (Pos->first == ModuleName) break; } if (Pos != PosEnd) { SmallString<256> CyclePath; for (; Pos != PosEnd; ++Pos) { CyclePath += Pos->first; CyclePath += " -> "; } CyclePath += ModuleName; getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) << ModuleName << CyclePath; return nullptr; } // Check whether we have already attempted to build this module (but // failed). if (getPreprocessorOpts().FailedModules && getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); return nullptr; } // Try to compile and then read the AST. if (!compileModuleAndReadAST(*this, ImportLoc, ModuleNameLoc, M, ModuleFilename)) { assert(getDiagnostics().hasErrorOccurred() && "undiagnosed error in compileModuleAndReadAST"); if (getPreprocessorOpts().FailedModules) getPreprocessorOpts().FailedModules->addFailed(ModuleName); return nullptr; } // Okay, we've rebuilt and now loaded the module. return M; } ModuleLoadResult CompilerInstance::loadModule(SourceLocation ImportLoc, ModuleIdPath Path, Module::NameVisibilityKind Visibility, bool IsInclusionDirective) { // Determine what file we're searching from. StringRef ModuleName = Path[0].first->getName(); SourceLocation ModuleNameLoc = Path[0].second; // If we've already handled this import, just return the cached result. // This one-element cache is important to eliminate redundant diagnostics // when both the preprocessor and parser see the same import declaration. if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { // Make the named module visible. if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) TheASTReader->makeModuleVisible(LastModuleImportResult, Visibility, ImportLoc); return LastModuleImportResult; } // If we don't already have information on this module, load the module now. Module *Module = nullptr; ModuleMap &MM = getPreprocessor().getHeaderSearchInfo().getModuleMap(); if (auto MaybeModule = MM.getCachedModuleLoad(*Path[0].first)) { // Use the cached result, which may be nullptr. Module = *MaybeModule; } else if (ModuleName == getLangOpts().CurrentModule) { // This is the module we're building. Module = PP->getHeaderSearchInfo().lookupModule( ModuleName, ImportLoc, /*AllowSearch*/ true, /*AllowExtraModuleMapSearch*/ !IsInclusionDirective); MM.cacheModuleLoad(*Path[0].first, Module); } else { ModuleLoadResult Result = findOrCompileModuleAndReadAST( ModuleName, ImportLoc, ModuleNameLoc, IsInclusionDirective); if (!Result.isNormal()) return Result; if (!Result) DisableGeneratingGlobalModuleIndex = true; Module = Result; MM.cacheModuleLoad(*Path[0].first, Module); } // If we never found the module, fail. Otherwise, verify the module and link // it up. if (!Module) return ModuleLoadResult(); // Verify that the rest of the module path actually corresponds to // a submodule. bool MapPrivateSubModToTopLevel = false; for (unsigned I = 1, N = Path.size(); I != N; ++I) { StringRef Name = Path[I].first->getName(); clang::Module *Sub = Module->findSubmodule(Name); // If the user is requesting Foo.Private and it doesn't exist, try to // match Foo_Private and emit a warning asking for the user to write // @import Foo_Private instead. FIXME: remove this when existing clients // migrate off of Foo.Private syntax. if (!Sub && Name == "Private" && Module == Module->getTopLevelModule()) { SmallString<128> PrivateModule(Module->Name); PrivateModule.append("_Private"); SmallVector, 2> PrivPath; auto &II = PP->getIdentifierTable().get( PrivateModule, PP->getIdentifierInfo(Module->Name)->getTokenID()); PrivPath.push_back(std::make_pair(&II, Path[0].second)); std::string FileName; // If there is a modulemap module or prebuilt module, load it. if (PP->getHeaderSearchInfo().lookupModule(PrivateModule, ImportLoc, true, !IsInclusionDirective) || selectModuleSource(nullptr, PrivateModule, FileName, BuiltModules, PP->getHeaderSearchInfo()) != MS_ModuleNotFound) Sub = loadModule(ImportLoc, PrivPath, Visibility, IsInclusionDirective); if (Sub) { MapPrivateSubModToTopLevel = true; PP->markClangModuleAsAffecting(Module); if (!getDiagnostics().isIgnored( diag::warn_no_priv_submodule_use_toplevel, ImportLoc)) { getDiagnostics().Report(Path[I].second, diag::warn_no_priv_submodule_use_toplevel) << Path[I].first << Module->getFullModuleName() << PrivateModule << SourceRange(Path[0].second, Path[I].second) << FixItHint::CreateReplacement(SourceRange(Path[0].second), PrivateModule); getDiagnostics().Report(Sub->DefinitionLoc, diag::note_private_top_level_defined); } } } if (!Sub) { // Attempt to perform typo correction to find a module name that works. SmallVector Best; unsigned BestEditDistance = (std::numeric_limits::max)(); for (class Module *SubModule : Module->submodules()) { unsigned ED = Name.edit_distance(SubModule->Name, /*AllowReplacements=*/true, BestEditDistance); if (ED <= BestEditDistance) { if (ED < BestEditDistance) { Best.clear(); BestEditDistance = ED; } Best.push_back(SubModule->Name); } } // If there was a clear winner, user it. if (Best.size() == 1) { getDiagnostics().Report(Path[I].second, diag::err_no_submodule_suggest) << Path[I].first << Module->getFullModuleName() << Best[0] << SourceRange(Path[0].second, Path[I - 1].second) << FixItHint::CreateReplacement(SourceRange(Path[I].second), Best[0]); Sub = Module->findSubmodule(Best[0]); } } if (!Sub) { // No submodule by this name. Complain, and don't look for further // submodules. getDiagnostics().Report(Path[I].second, diag::err_no_submodule) << Path[I].first << Module->getFullModuleName() << SourceRange(Path[0].second, Path[I - 1].second); break; } Module = Sub; } // Make the named module visible, if it's not already part of the module // we are parsing. if (ModuleName != getLangOpts().CurrentModule) { if (!Module->IsFromModuleFile && !MapPrivateSubModToTopLevel) { // We have an umbrella header or directory that doesn't actually include // all of the headers within the directory it covers. Complain about // this missing submodule and recover by forgetting that we ever saw // this submodule. // FIXME: Should we detect this at module load time? It seems fairly // expensive (and rare). getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) << Module->getFullModuleName() << SourceRange(Path.front().second, Path.back().second); return ModuleLoadResult(Module, ModuleLoadResult::MissingExpected); } // Check whether this module is available. if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), getDiagnostics(), Module)) { getDiagnostics().Report(ImportLoc, diag::note_module_import_here) << SourceRange(Path.front().second, Path.back().second); LastModuleImportLoc = ImportLoc; LastModuleImportResult = ModuleLoadResult(); return ModuleLoadResult(); } TheASTReader->makeModuleVisible(Module, Visibility, ImportLoc); } // Check for any configuration macros that have changed. clang::Module *TopModule = Module->getTopLevelModule(); for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], Module, ImportLoc); } // Resolve any remaining module using export_as for this one. getPreprocessor() .getHeaderSearchInfo() .getModuleMap() .resolveLinkAsDependencies(TopModule); LastModuleImportLoc = ImportLoc; LastModuleImportResult = ModuleLoadResult(Module); return LastModuleImportResult; } void CompilerInstance::createModuleFromSource(SourceLocation ImportLoc, StringRef ModuleName, StringRef Source) { // Avoid creating filenames with special characters. SmallString<128> CleanModuleName(ModuleName); for (auto &C : CleanModuleName) if (!isAlphanumeric(C)) C = '_'; // FIXME: Using a randomized filename here means that our intermediate .pcm // output is nondeterministic (as .pcm files refer to each other by name). // Can this affect the output in any way? SmallString<128> ModuleFileName; if (std::error_code EC = llvm::sys::fs::createTemporaryFile( CleanModuleName, "pcm", ModuleFileName)) { getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) << ModuleFileName << EC.message(); return; } std::string ModuleMapFileName = (CleanModuleName + ".map").str(); FrontendInputFile Input( ModuleMapFileName, InputKind(getLanguageFromOptions(*Invocation->getLangOpts()), InputKind::ModuleMap, /*Preprocessed*/true)); std::string NullTerminatedSource(Source.str()); auto PreBuildStep = [&](CompilerInstance &Other) { // Create a virtual file containing our desired source. // FIXME: We shouldn't need to do this. const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile( ModuleMapFileName, NullTerminatedSource.size(), 0); Other.getSourceManager().overrideFileContents( ModuleMapFile, llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource)); Other.BuiltModules = std::move(BuiltModules); Other.DeleteBuiltModules = false; }; auto PostBuildStep = [this](CompilerInstance &Other) { BuiltModules = std::move(Other.BuiltModules); }; // Build the module, inheriting any modules that we've built locally. if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), ModuleFileName, PreBuildStep, PostBuildStep)) { BuiltModules[std::string(ModuleName)] = std::string(ModuleFileName.str()); llvm::sys::RemoveFileOnSignal(ModuleFileName); } } void CompilerInstance::makeModuleVisible(Module *Mod, Module::NameVisibilityKind Visibility, SourceLocation ImportLoc) { if (!TheASTReader) createASTReader(); if (!TheASTReader) return; TheASTReader->makeModuleVisible(Mod, Visibility, ImportLoc); } GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( SourceLocation TriggerLoc) { if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) return nullptr; if (!TheASTReader) createASTReader(); // Can't do anything if we don't have the module manager. if (!TheASTReader) return nullptr; // Get an existing global index. This loads it if not already // loaded. TheASTReader->loadGlobalIndex(); GlobalModuleIndex *GlobalIndex = TheASTReader->getGlobalIndex(); // If the global index doesn't exist, create it. if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && hasPreprocessor()) { llvm::sys::fs::create_directories( getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); if (llvm::Error Err = GlobalModuleIndex::writeIndex( getFileManager(), getPCHContainerReader(), getPreprocessor().getHeaderSearchInfo().getModuleCachePath())) { // FIXME this drops the error on the floor. This code is only used for // typo correction and drops more than just this one source of errors // (such as the directory creation failure above). It should handle the // error. consumeError(std::move(Err)); return nullptr; } TheASTReader->resetForReload(); TheASTReader->loadGlobalIndex(); GlobalIndex = TheASTReader->getGlobalIndex(); } // For finding modules needing to be imported for fixit messages, // we need to make the global index cover all modules, so we do that here. if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); bool RecreateIndex = false; for (ModuleMap::module_iterator I = MMap.module_begin(), E = MMap.module_end(); I != E; ++I) { Module *TheModule = I->second; const FileEntry *Entry = TheModule->getASTFile(); if (!Entry) { SmallVector, 2> Path; Path.push_back(std::make_pair( getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); std::reverse(Path.begin(), Path.end()); // Load a module as hidden. This also adds it to the global index. loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); RecreateIndex = true; } } if (RecreateIndex) { if (llvm::Error Err = GlobalModuleIndex::writeIndex( getFileManager(), getPCHContainerReader(), getPreprocessor().getHeaderSearchInfo().getModuleCachePath())) { // FIXME As above, this drops the error on the floor. consumeError(std::move(Err)); return nullptr; } TheASTReader->resetForReload(); TheASTReader->loadGlobalIndex(); GlobalIndex = TheASTReader->getGlobalIndex(); } HaveFullGlobalModuleIndex = true; } return GlobalIndex; } // Check global module index for missing imports. bool CompilerInstance::lookupMissingImports(StringRef Name, SourceLocation TriggerLoc) { // Look for the symbol in non-imported modules, but only if an error // actually occurred. if (!buildingModule()) { // Load global module index, or retrieve a previously loaded one. GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( TriggerLoc); // Only if we have a global index. if (GlobalIndex) { GlobalModuleIndex::HitSet FoundModules; // Find the modules that reference the identifier. // Note that this only finds top-level modules. // We'll let diagnoseTypo find the actual declaration module. if (GlobalIndex->lookupIdentifier(Name, FoundModules)) return true; } } return false; } void CompilerInstance::resetAndLeakSema() { llvm::BuryPointer(takeSema()); } void CompilerInstance::setExternalSemaSource( IntrusiveRefCntPtr ESS) { ExternalSemaSrc = std::move(ESS); }