//===- ToolChain.cpp - Collections of tools for one platform --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "clang/Driver/ToolChain.h" #include "InputInfo.h" #include "ToolChains/Arch/ARM.h" #include "ToolChains/Clang.h" #include "ToolChains/InterfaceStubs.h" #include "ToolChains/Flang.h" #include "clang/Basic/ObjCRuntime.h" #include "clang/Basic/Sanitizers.h" #include "clang/Config/config.h" #include "clang/Driver/Action.h" #include "clang/Driver/Driver.h" #include "clang/Driver/DriverDiagnostic.h" #include "clang/Driver/Job.h" #include "clang/Driver/Options.h" #include "clang/Driver/SanitizerArgs.h" #include "clang/Driver/XRayArgs.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Triple.h" #include "llvm/ADT/Twine.h" #include "llvm/Config/llvm-config.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/Option/Arg.h" #include "llvm/Option/ArgList.h" #include "llvm/Option/OptTable.h" #include "llvm/Option/Option.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Path.h" #include "llvm/Support/TargetParser.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/VersionTuple.h" #include "llvm/Support/VirtualFileSystem.h" #include #include #include #include using namespace clang; using namespace driver; using namespace tools; using namespace llvm; using namespace llvm::opt; static llvm::opt::Arg *GetRTTIArgument(const ArgList &Args) { return Args.getLastArg(options::OPT_mkernel, options::OPT_fapple_kext, options::OPT_fno_rtti, options::OPT_frtti); } static ToolChain::RTTIMode CalculateRTTIMode(const ArgList &Args, const llvm::Triple &Triple, const Arg *CachedRTTIArg) { // Explicit rtti/no-rtti args if (CachedRTTIArg) { if (CachedRTTIArg->getOption().matches(options::OPT_frtti)) return ToolChain::RM_Enabled; else return ToolChain::RM_Disabled; } // -frtti is default, except for the PS4 CPU. return (Triple.isPS4CPU()) ? ToolChain::RM_Disabled : ToolChain::RM_Enabled; } ToolChain::ToolChain(const Driver &D, const llvm::Triple &T, const ArgList &Args) : D(D), Triple(T), Args(Args), CachedRTTIArg(GetRTTIArgument(Args)), CachedRTTIMode(CalculateRTTIMode(Args, Triple, CachedRTTIArg)) { if (D.CCCIsCXX()) { if (auto CXXStdlibPath = getCXXStdlibPath()) getFilePaths().push_back(*CXXStdlibPath); } if (auto RuntimePath = getRuntimePath()) getLibraryPaths().push_back(*RuntimePath); std::string CandidateLibPath = getArchSpecificLibPath(); if (getVFS().exists(CandidateLibPath)) getFilePaths().push_back(CandidateLibPath); } void ToolChain::setTripleEnvironment(llvm::Triple::EnvironmentType Env) { Triple.setEnvironment(Env); if (EffectiveTriple != llvm::Triple()) EffectiveTriple.setEnvironment(Env); } ToolChain::~ToolChain() = default; llvm::vfs::FileSystem &ToolChain::getVFS() const { return getDriver().getVFS(); } bool ToolChain::useIntegratedAs() const { return Args.hasFlag(options::OPT_fintegrated_as, options::OPT_fno_integrated_as, IsIntegratedAssemblerDefault()); } bool ToolChain::useRelaxRelocations() const { return ENABLE_X86_RELAX_RELOCATIONS; } bool ToolChain::isNoExecStackDefault() const { return false; } const SanitizerArgs& ToolChain::getSanitizerArgs() const { if (!SanitizerArguments.get()) SanitizerArguments.reset(new SanitizerArgs(*this, Args)); return *SanitizerArguments.get(); } const XRayArgs& ToolChain::getXRayArgs() const { if (!XRayArguments.get()) XRayArguments.reset(new XRayArgs(*this, Args)); return *XRayArguments.get(); } namespace { struct DriverSuffix { const char *Suffix; const char *ModeFlag; }; } // namespace static const DriverSuffix *FindDriverSuffix(StringRef ProgName, size_t &Pos) { // A list of known driver suffixes. Suffixes are compared against the // program name in order. If there is a match, the frontend type is updated as // necessary by applying the ModeFlag. static const DriverSuffix DriverSuffixes[] = { {"clang", nullptr}, {"clang++", "--driver-mode=g++"}, {"clang-c++", "--driver-mode=g++"}, {"clang-cc", nullptr}, {"clang-cpp", "--driver-mode=cpp"}, {"clang-g++", "--driver-mode=g++"}, {"clang-gcc", nullptr}, {"clang-cl", "--driver-mode=cl"}, {"cc", nullptr}, {"cpp", "--driver-mode=cpp"}, {"cl", "--driver-mode=cl"}, {"++", "--driver-mode=g++"}, {"flang", "--driver-mode=flang"}, }; for (size_t i = 0; i < llvm::array_lengthof(DriverSuffixes); ++i) { StringRef Suffix(DriverSuffixes[i].Suffix); if (ProgName.endswith(Suffix)) { Pos = ProgName.size() - Suffix.size(); return &DriverSuffixes[i]; } } return nullptr; } /// Normalize the program name from argv[0] by stripping the file extension if /// present and lower-casing the string on Windows. static std::string normalizeProgramName(llvm::StringRef Argv0) { std::string ProgName = std::string(llvm::sys::path::stem(Argv0)); #ifdef _WIN32 // Transform to lowercase for case insensitive file systems. std::transform(ProgName.begin(), ProgName.end(), ProgName.begin(), ::tolower); #endif return ProgName; } static const DriverSuffix *parseDriverSuffix(StringRef ProgName, size_t &Pos) { // Try to infer frontend type and default target from the program name by // comparing it against DriverSuffixes in order. // If there is a match, the function tries to identify a target as prefix. // E.g. "x86_64-linux-clang" as interpreted as suffix "clang" with target // prefix "x86_64-linux". If such a target prefix is found, it may be // added via -target as implicit first argument. const DriverSuffix *DS = FindDriverSuffix(ProgName, Pos); if (!DS) { // Try again after stripping any trailing version number: // clang++3.5 -> clang++ ProgName = ProgName.rtrim("0123456789."); DS = FindDriverSuffix(ProgName, Pos); } if (!DS) { // Try again after stripping trailing -component. // clang++-tot -> clang++ ProgName = ProgName.slice(0, ProgName.rfind('-')); DS = FindDriverSuffix(ProgName, Pos); } return DS; } ParsedClangName ToolChain::getTargetAndModeFromProgramName(StringRef PN) { std::string ProgName = normalizeProgramName(PN); size_t SuffixPos; const DriverSuffix *DS = parseDriverSuffix(ProgName, SuffixPos); if (!DS) return {}; size_t SuffixEnd = SuffixPos + strlen(DS->Suffix); size_t LastComponent = ProgName.rfind('-', SuffixPos); if (LastComponent == std::string::npos) return ParsedClangName(ProgName.substr(0, SuffixEnd), DS->ModeFlag); std::string ModeSuffix = ProgName.substr(LastComponent + 1, SuffixEnd - LastComponent - 1); // Infer target from the prefix. StringRef Prefix(ProgName); Prefix = Prefix.slice(0, LastComponent); std::string IgnoredError; bool IsRegistered = llvm::TargetRegistry::lookupTarget(std::string(Prefix), IgnoredError); return ParsedClangName{std::string(Prefix), ModeSuffix, DS->ModeFlag, IsRegistered}; } StringRef ToolChain::getDefaultUniversalArchName() const { // In universal driver terms, the arch name accepted by -arch isn't exactly // the same as the ones that appear in the triple. Roughly speaking, this is // an inverse of the darwin::getArchTypeForDarwinArchName() function. switch (Triple.getArch()) { case llvm::Triple::aarch64: return "arm64"; case llvm::Triple::aarch64_32: return "arm64_32"; case llvm::Triple::ppc: return "ppc"; case llvm::Triple::ppc64: return "ppc64"; case llvm::Triple::ppc64le: return "ppc64le"; default: return Triple.getArchName(); } } std::string ToolChain::getInputFilename(const InputInfo &Input) const { return Input.getFilename(); } bool ToolChain::IsUnwindTablesDefault(const ArgList &Args) const { return false; } Tool *ToolChain::getClang() const { if (!Clang) Clang.reset(new tools::Clang(*this)); return Clang.get(); } Tool *ToolChain::getFlang() const { if (!Flang) Flang.reset(new tools::Flang(*this)); return Flang.get(); } Tool *ToolChain::buildAssembler() const { return new tools::ClangAs(*this); } Tool *ToolChain::buildLinker() const { llvm_unreachable("Linking is not supported by this toolchain"); } Tool *ToolChain::buildStaticLibTool() const { llvm_unreachable("Creating static lib is not supported by this toolchain"); } Tool *ToolChain::getAssemble() const { if (!Assemble) Assemble.reset(buildAssembler()); return Assemble.get(); } Tool *ToolChain::getClangAs() const { if (!Assemble) Assemble.reset(new tools::ClangAs(*this)); return Assemble.get(); } Tool *ToolChain::getLink() const { if (!Link) Link.reset(buildLinker()); return Link.get(); } Tool *ToolChain::getStaticLibTool() const { if (!StaticLibTool) StaticLibTool.reset(buildStaticLibTool()); return StaticLibTool.get(); } Tool *ToolChain::getIfsMerge() const { if (!IfsMerge) IfsMerge.reset(new tools::ifstool::Merger(*this)); return IfsMerge.get(); } Tool *ToolChain::getOffloadBundler() const { if (!OffloadBundler) OffloadBundler.reset(new tools::OffloadBundler(*this)); return OffloadBundler.get(); } Tool *ToolChain::getOffloadWrapper() const { if (!OffloadWrapper) OffloadWrapper.reset(new tools::OffloadWrapper(*this)); return OffloadWrapper.get(); } Tool *ToolChain::getTool(Action::ActionClass AC) const { switch (AC) { case Action::AssembleJobClass: return getAssemble(); case Action::IfsMergeJobClass: return getIfsMerge(); case Action::LinkJobClass: return getLink(); case Action::StaticLibJobClass: return getStaticLibTool(); case Action::InputClass: case Action::BindArchClass: case Action::OffloadClass: case Action::LipoJobClass: case Action::DsymutilJobClass: case Action::VerifyDebugInfoJobClass: llvm_unreachable("Invalid tool kind."); case Action::CompileJobClass: case Action::PrecompileJobClass: case Action::HeaderModulePrecompileJobClass: case Action::PreprocessJobClass: case Action::AnalyzeJobClass: case Action::MigrateJobClass: case Action::VerifyPCHJobClass: case Action::BackendJobClass: return getClang(); case Action::OffloadBundlingJobClass: case Action::OffloadUnbundlingJobClass: return getOffloadBundler(); case Action::OffloadWrapperJobClass: return getOffloadWrapper(); } llvm_unreachable("Invalid tool kind."); } static StringRef getArchNameForCompilerRTLib(const ToolChain &TC, const ArgList &Args) { const llvm::Triple &Triple = TC.getTriple(); bool IsWindows = Triple.isOSWindows(); if (TC.getArch() == llvm::Triple::arm || TC.getArch() == llvm::Triple::armeb) return (arm::getARMFloatABI(TC, Args) == arm::FloatABI::Hard && !IsWindows) ? "armhf" : "arm"; // For historic reasons, Android library is using i686 instead of i386. if (TC.getArch() == llvm::Triple::x86 && Triple.isAndroid()) return "i686"; return llvm::Triple::getArchTypeName(TC.getArch()); } StringRef ToolChain::getOSLibName() const { switch (Triple.getOS()) { case llvm::Triple::FreeBSD: return "freebsd"; case llvm::Triple::NetBSD: return "netbsd"; case llvm::Triple::OpenBSD: return "openbsd"; case llvm::Triple::Solaris: return "sunos"; default: return getOS(); } } std::string ToolChain::getCompilerRTPath() const { SmallString<128> Path(getDriver().ResourceDir); if (Triple.isOSUnknown()) { llvm::sys::path::append(Path, "lib"); } else { llvm::sys::path::append(Path, "lib", getOSLibName()); } return std::string(Path.str()); } std::string ToolChain::getCompilerRTBasename(const ArgList &Args, StringRef Component, FileType Type, bool AddArch) const { const llvm::Triple &TT = getTriple(); bool IsITANMSVCWindows = TT.isWindowsMSVCEnvironment() || TT.isWindowsItaniumEnvironment(); const char *Prefix = IsITANMSVCWindows || Type == ToolChain::FT_Object ? "" : "lib"; const char *Suffix; switch (Type) { case ToolChain::FT_Object: Suffix = IsITANMSVCWindows ? ".obj" : ".o"; break; case ToolChain::FT_Static: Suffix = IsITANMSVCWindows ? ".lib" : ".a"; break; case ToolChain::FT_Shared: Suffix = Triple.isOSWindows() ? (Triple.isWindowsGNUEnvironment() ? ".dll.a" : ".lib") : ".so"; break; } std::string ArchAndEnv; if (AddArch) { StringRef Arch = getArchNameForCompilerRTLib(*this, Args); const char *Env = TT.isAndroid() ? "-android" : ""; ArchAndEnv = ("-" + Arch + Env).str(); } return (Prefix + Twine("clang_rt.") + Component + ArchAndEnv + Suffix).str(); } std::string ToolChain::getCompilerRT(const ArgList &Args, StringRef Component, FileType Type) const { // Check for runtime files in the new layout without the architecture first. std::string CRTBasename = getCompilerRTBasename(Args, Component, Type, /*AddArch=*/false); for (const auto &LibPath : getLibraryPaths()) { SmallString<128> P(LibPath); llvm::sys::path::append(P, CRTBasename); if (getVFS().exists(P)) return std::string(P.str()); } // Fall back to the old expected compiler-rt name if the new one does not // exist. CRTBasename = getCompilerRTBasename(Args, Component, Type, /*AddArch=*/true); SmallString<128> Path(getCompilerRTPath()); llvm::sys::path::append(Path, CRTBasename); return std::string(Path.str()); } const char *ToolChain::getCompilerRTArgString(const llvm::opt::ArgList &Args, StringRef Component, FileType Type) const { return Args.MakeArgString(getCompilerRT(Args, Component, Type)); } Optional ToolChain::getRuntimePath() const { SmallString<128> P; // First try the triple passed to driver as --target=. P.assign(D.ResourceDir); llvm::sys::path::append(P, "lib", D.getTargetTriple()); if (getVFS().exists(P)) return llvm::Optional(std::string(P.str())); // Second try the normalized triple. P.assign(D.ResourceDir); llvm::sys::path::append(P, "lib", Triple.str()); if (getVFS().exists(P)) return llvm::Optional(std::string(P.str())); return None; } Optional ToolChain::getCXXStdlibPath() const { SmallString<128> P; // First try the triple passed to driver as --target=. P.assign(D.Dir); llvm::sys::path::append(P, "..", "lib", D.getTargetTriple(), "c++"); if (getVFS().exists(P)) return llvm::Optional(std::string(P.str())); // Second try the normalized triple. P.assign(D.Dir); llvm::sys::path::append(P, "..", "lib", Triple.str(), "c++"); if (getVFS().exists(P)) return llvm::Optional(std::string(P.str())); return None; } std::string ToolChain::getArchSpecificLibPath() const { SmallString<128> Path(getDriver().ResourceDir); llvm::sys::path::append(Path, "lib", getOSLibName(), llvm::Triple::getArchTypeName(getArch())); return std::string(Path.str()); } bool ToolChain::needsProfileRT(const ArgList &Args) { if (Args.hasArg(options::OPT_noprofilelib)) return false; return Args.hasArg(options::OPT_fprofile_generate) || Args.hasArg(options::OPT_fprofile_generate_EQ) || Args.hasArg(options::OPT_fcs_profile_generate) || Args.hasArg(options::OPT_fcs_profile_generate_EQ) || Args.hasArg(options::OPT_fprofile_instr_generate) || Args.hasArg(options::OPT_fprofile_instr_generate_EQ) || Args.hasArg(options::OPT_fcreate_profile) || Args.hasArg(options::OPT_forder_file_instrumentation); } bool ToolChain::needsGCovInstrumentation(const llvm::opt::ArgList &Args) { return Args.hasArg(options::OPT_coverage) || Args.hasFlag(options::OPT_fprofile_arcs, options::OPT_fno_profile_arcs, false); } Tool *ToolChain::SelectTool(const JobAction &JA) const { if (D.IsFlangMode() && getDriver().ShouldUseFlangCompiler(JA)) return getFlang(); if (getDriver().ShouldUseClangCompiler(JA)) return getClang(); Action::ActionClass AC = JA.getKind(); if (AC == Action::AssembleJobClass && useIntegratedAs()) return getClangAs(); return getTool(AC); } std::string ToolChain::GetFilePath(const char *Name) const { return D.GetFilePath(Name, *this); } std::string ToolChain::GetProgramPath(const char *Name) const { return D.GetProgramPath(Name, *this); } std::string ToolChain::GetLinkerPath() const { const Arg* A = Args.getLastArg(options::OPT_fuse_ld_EQ); StringRef UseLinker = A ? A->getValue() : CLANG_DEFAULT_LINKER; if (llvm::sys::path::is_absolute(UseLinker)) { // If we're passed what looks like an absolute path, don't attempt to // second-guess that. if (llvm::sys::fs::can_execute(UseLinker)) return std::string(UseLinker); } else if (UseLinker.empty() || UseLinker == "ld") { // If we're passed -fuse-ld= with no argument, or with the argument ld, // then use whatever the default system linker is. return GetProgramPath(getDefaultLinker()); } else { llvm::SmallString<8> LinkerName; if (Triple.isOSDarwin()) LinkerName.append("ld64."); else LinkerName.append("ld."); LinkerName.append(UseLinker); std::string LinkerPath(GetProgramPath(LinkerName.c_str())); if (llvm::sys::fs::can_execute(LinkerPath)) return LinkerPath; } if (A) getDriver().Diag(diag::err_drv_invalid_linker_name) << A->getAsString(Args); return GetProgramPath(getDefaultLinker()); } std::string ToolChain::GetStaticLibToolPath() const { // TODO: Add support for static lib archiving on Windows return GetProgramPath("llvm-ar"); } types::ID ToolChain::LookupTypeForExtension(StringRef Ext) const { types::ID id = types::lookupTypeForExtension(Ext); // Flang always runs the preprocessor and has no notion of "preprocessed // fortran". Here, TY_PP_Fortran is coerced to TY_Fortran to avoid treating // them differently. if (D.IsFlangMode() && id == types::TY_PP_Fortran) id = types::TY_Fortran; return id; } bool ToolChain::HasNativeLLVMSupport() const { return false; } bool ToolChain::isCrossCompiling() const { llvm::Triple HostTriple(LLVM_HOST_TRIPLE); switch (HostTriple.getArch()) { // The A32/T32/T16 instruction sets are not separate architectures in this // context. case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: return getArch() != llvm::Triple::arm && getArch() != llvm::Triple::thumb && getArch() != llvm::Triple::armeb && getArch() != llvm::Triple::thumbeb; default: return HostTriple.getArch() != getArch(); } } ObjCRuntime ToolChain::getDefaultObjCRuntime(bool isNonFragile) const { return ObjCRuntime(isNonFragile ? ObjCRuntime::GNUstep : ObjCRuntime::GCC, VersionTuple()); } llvm::ExceptionHandling ToolChain::GetExceptionModel(const llvm::opt::ArgList &Args) const { return llvm::ExceptionHandling::None; } bool ToolChain::isThreadModelSupported(const StringRef Model) const { if (Model == "single") { // FIXME: 'single' is only supported on ARM and WebAssembly so far. return Triple.getArch() == llvm::Triple::arm || Triple.getArch() == llvm::Triple::armeb || Triple.getArch() == llvm::Triple::thumb || Triple.getArch() == llvm::Triple::thumbeb || Triple.getArch() == llvm::Triple::wasm32 || Triple.getArch() == llvm::Triple::wasm64; } else if (Model == "posix") return true; return false; } std::string ToolChain::ComputeLLVMTriple(const ArgList &Args, types::ID InputType) const { switch (getTriple().getArch()) { default: return getTripleString(); case llvm::Triple::x86_64: { llvm::Triple Triple = getTriple(); if (!Triple.isOSBinFormatMachO()) return getTripleString(); if (Arg *A = Args.getLastArg(options::OPT_march_EQ)) { // x86_64h goes in the triple. Other -march options just use the // vanilla triple we already have. StringRef MArch = A->getValue(); if (MArch == "x86_64h") Triple.setArchName(MArch); } return Triple.getTriple(); } case llvm::Triple::aarch64: { llvm::Triple Triple = getTriple(); if (!Triple.isOSBinFormatMachO()) return getTripleString(); // FIXME: older versions of ld64 expect the "arm64" component in the actual // triple string and query it to determine whether an LTO file can be // handled. Remove this when we don't care any more. Triple.setArchName("arm64"); return Triple.getTriple(); } case llvm::Triple::aarch64_32: return getTripleString(); case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: { // FIXME: Factor into subclasses. llvm::Triple Triple = getTriple(); bool IsBigEndian = getTriple().getArch() == llvm::Triple::armeb || getTriple().getArch() == llvm::Triple::thumbeb; // Handle pseudo-target flags '-mlittle-endian'/'-EL' and // '-mbig-endian'/'-EB'. if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, options::OPT_mbig_endian)) { IsBigEndian = !A->getOption().matches(options::OPT_mlittle_endian); } // Thumb2 is the default for V7 on Darwin. // // FIXME: Thumb should just be another -target-feaure, not in the triple. StringRef MCPU, MArch; if (const Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) MCPU = A->getValue(); if (const Arg *A = Args.getLastArg(options::OPT_march_EQ)) MArch = A->getValue(); std::string CPU = Triple.isOSBinFormatMachO() ? tools::arm::getARMCPUForMArch(MArch, Triple).str() : tools::arm::getARMTargetCPU(MCPU, MArch, Triple); StringRef Suffix = tools::arm::getLLVMArchSuffixForARM(CPU, MArch, Triple); bool IsMProfile = ARM::parseArchProfile(Suffix) == ARM::ProfileKind::M; bool ThumbDefault = IsMProfile || (ARM::parseArchVersion(Suffix) == 7 && getTriple().isOSBinFormatMachO()); // FIXME: this is invalid for WindowsCE if (getTriple().isOSWindows()) ThumbDefault = true; std::string ArchName; if (IsBigEndian) ArchName = "armeb"; else ArchName = "arm"; // Check if ARM ISA was explicitly selected (using -mno-thumb or -marm) for // M-Class CPUs/architecture variants, which is not supported. bool ARMModeRequested = !Args.hasFlag(options::OPT_mthumb, options::OPT_mno_thumb, ThumbDefault); if (IsMProfile && ARMModeRequested) { if (!MCPU.empty()) getDriver().Diag(diag::err_cpu_unsupported_isa) << CPU << "ARM"; else getDriver().Diag(diag::err_arch_unsupported_isa) << tools::arm::getARMArch(MArch, getTriple()) << "ARM"; } // Check to see if an explicit choice to use thumb has been made via // -mthumb. For assembler files we must check for -mthumb in the options // passed to the assembler via -Wa or -Xassembler. bool IsThumb = false; if (InputType != types::TY_PP_Asm) IsThumb = Args.hasFlag(options::OPT_mthumb, options::OPT_mno_thumb, ThumbDefault); else { // Ideally we would check for these flags in // CollectArgsForIntegratedAssembler but we can't change the ArchName at // that point. There is no assembler equivalent of -mno-thumb, -marm, or // -mno-arm. for (const auto *A : Args.filtered(options::OPT_Wa_COMMA, options::OPT_Xassembler)) { for (StringRef Value : A->getValues()) { if (Value == "-mthumb") IsThumb = true; } } } // Assembly files should start in ARM mode, unless arch is M-profile, or // -mthumb has been passed explicitly to the assembler. Windows is always // thumb. if (IsThumb || IsMProfile || getTriple().isOSWindows()) { if (IsBigEndian) ArchName = "thumbeb"; else ArchName = "thumb"; } Triple.setArchName(ArchName + Suffix.str()); return Triple.getTriple(); } } } std::string ToolChain::ComputeEffectiveClangTriple(const ArgList &Args, types::ID InputType) const { return ComputeLLVMTriple(Args, InputType); } std::string ToolChain::computeSysRoot() const { return D.SysRoot; } void ToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { // Each toolchain should provide the appropriate include flags. } void ToolChain::addClangTargetOptions( const ArgList &DriverArgs, ArgStringList &CC1Args, Action::OffloadKind DeviceOffloadKind) const {} void ToolChain::addClangWarningOptions(ArgStringList &CC1Args) const {} void ToolChain::addProfileRTLibs(const llvm::opt::ArgList &Args, llvm::opt::ArgStringList &CmdArgs) const { if (!needsProfileRT(Args) && !needsGCovInstrumentation(Args)) return; CmdArgs.push_back(getCompilerRTArgString(Args, "profile")); } ToolChain::RuntimeLibType ToolChain::GetRuntimeLibType( const ArgList &Args) const { const Arg* A = Args.getLastArg(options::OPT_rtlib_EQ); StringRef LibName = A ? A->getValue() : CLANG_DEFAULT_RTLIB; // Only use "platform" in tests to override CLANG_DEFAULT_RTLIB! if (LibName == "compiler-rt") return ToolChain::RLT_CompilerRT; else if (LibName == "libgcc") return ToolChain::RLT_Libgcc; else if (LibName == "platform") return GetDefaultRuntimeLibType(); if (A) getDriver().Diag(diag::err_drv_invalid_rtlib_name) << A->getAsString(Args); return GetDefaultRuntimeLibType(); } ToolChain::UnwindLibType ToolChain::GetUnwindLibType( const ArgList &Args) const { const Arg *A = Args.getLastArg(options::OPT_unwindlib_EQ); StringRef LibName = A ? A->getValue() : CLANG_DEFAULT_UNWINDLIB; if (LibName == "none") return ToolChain::UNW_None; else if (LibName == "platform" || LibName == "") { ToolChain::RuntimeLibType RtLibType = GetRuntimeLibType(Args); if (RtLibType == ToolChain::RLT_CompilerRT) return ToolChain::UNW_None; else if (RtLibType == ToolChain::RLT_Libgcc) return ToolChain::UNW_Libgcc; } else if (LibName == "libunwind") { if (GetRuntimeLibType(Args) == RLT_Libgcc) getDriver().Diag(diag::err_drv_incompatible_unwindlib); return ToolChain::UNW_CompilerRT; } else if (LibName == "libgcc") return ToolChain::UNW_Libgcc; if (A) getDriver().Diag(diag::err_drv_invalid_unwindlib_name) << A->getAsString(Args); return GetDefaultUnwindLibType(); } ToolChain::CXXStdlibType ToolChain::GetCXXStdlibType(const ArgList &Args) const{ const Arg *A = Args.getLastArg(options::OPT_stdlib_EQ); StringRef LibName = A ? A->getValue() : CLANG_DEFAULT_CXX_STDLIB; // Only use "platform" in tests to override CLANG_DEFAULT_CXX_STDLIB! if (LibName == "libc++") return ToolChain::CST_Libcxx; else if (LibName == "libstdc++") return ToolChain::CST_Libstdcxx; else if (LibName == "platform") return GetDefaultCXXStdlibType(); if (A) getDriver().Diag(diag::err_drv_invalid_stdlib_name) << A->getAsString(Args); return GetDefaultCXXStdlibType(); } /// Utility function to add a system include directory to CC1 arguments. /*static*/ void ToolChain::addSystemInclude(const ArgList &DriverArgs, ArgStringList &CC1Args, const Twine &Path) { CC1Args.push_back("-internal-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(Path)); } /// Utility function to add a system include directory with extern "C" /// semantics to CC1 arguments. /// /// Note that this should be used rarely, and only for directories that /// historically and for legacy reasons are treated as having implicit extern /// "C" semantics. These semantics are *ignored* by and large today, but its /// important to preserve the preprocessor changes resulting from the /// classification. /*static*/ void ToolChain::addExternCSystemInclude(const ArgList &DriverArgs, ArgStringList &CC1Args, const Twine &Path) { CC1Args.push_back("-internal-externc-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(Path)); } void ToolChain::addExternCSystemIncludeIfExists(const ArgList &DriverArgs, ArgStringList &CC1Args, const Twine &Path) { if (llvm::sys::fs::exists(Path)) addExternCSystemInclude(DriverArgs, CC1Args, Path); } /// Utility function to add a list of system include directories to CC1. /*static*/ void ToolChain::addSystemIncludes(const ArgList &DriverArgs, ArgStringList &CC1Args, ArrayRef Paths) { for (const auto &Path : Paths) { CC1Args.push_back("-internal-isystem"); CC1Args.push_back(DriverArgs.MakeArgString(Path)); } } void ToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const { // Header search paths should be handled by each of the subclasses. // Historically, they have not been, and instead have been handled inside of // the CC1-layer frontend. As the logic is hoisted out, this generic function // will slowly stop being called. // // While it is being called, replicate a bit of a hack to propagate the // '-stdlib=' flag down to CC1 so that it can in turn customize the C++ // header search paths with it. Once all systems are overriding this // function, the CC1 flag and this line can be removed. DriverArgs.AddAllArgs(CC1Args, options::OPT_stdlib_EQ); } void ToolChain::AddClangCXXStdlibIsystemArgs( const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args) const { DriverArgs.ClaimAllArgs(options::OPT_stdlibxx_isystem); if (!DriverArgs.hasArg(options::OPT_nostdincxx)) for (const auto &P : DriverArgs.getAllArgValues(options::OPT_stdlibxx_isystem)) addSystemInclude(DriverArgs, CC1Args, P); } bool ToolChain::ShouldLinkCXXStdlib(const llvm::opt::ArgList &Args) const { return getDriver().CCCIsCXX() && !Args.hasArg(options::OPT_nostdlib, options::OPT_nodefaultlibs, options::OPT_nostdlibxx); } void ToolChain::AddCXXStdlibLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { assert(!Args.hasArg(options::OPT_nostdlibxx) && "should not have called this"); CXXStdlibType Type = GetCXXStdlibType(Args); switch (Type) { case ToolChain::CST_Libcxx: CmdArgs.push_back("-lc++"); break; case ToolChain::CST_Libstdcxx: CmdArgs.push_back("-lstdc++"); break; } } void ToolChain::AddFilePathLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { for (const auto &LibPath : getFilePaths()) if(LibPath.length() > 0) CmdArgs.push_back(Args.MakeArgString(StringRef("-L") + LibPath)); } void ToolChain::AddCCKextLibArgs(const ArgList &Args, ArgStringList &CmdArgs) const { CmdArgs.push_back("-lcc_kext"); } bool ToolChain::isFastMathRuntimeAvailable(const ArgList &Args, std::string &Path) const { // Do not check for -fno-fast-math or -fno-unsafe-math when -Ofast passed // (to keep the linker options consistent with gcc and clang itself). if (!isOptimizationLevelFast(Args)) { // Check if -ffast-math or -funsafe-math. Arg *A = Args.getLastArg(options::OPT_ffast_math, options::OPT_fno_fast_math, options::OPT_funsafe_math_optimizations, options::OPT_fno_unsafe_math_optimizations); if (!A || A->getOption().getID() == options::OPT_fno_fast_math || A->getOption().getID() == options::OPT_fno_unsafe_math_optimizations) return false; } // If crtfastmath.o exists add it to the arguments. Path = GetFilePath("crtfastmath.o"); return (Path != "crtfastmath.o"); // Not found. } bool ToolChain::addFastMathRuntimeIfAvailable(const ArgList &Args, ArgStringList &CmdArgs) const { std::string Path; if (isFastMathRuntimeAvailable(Args, Path)) { CmdArgs.push_back(Args.MakeArgString(Path)); return true; } return false; } SanitizerMask ToolChain::getSupportedSanitizers() const { // Return sanitizers which don't require runtime support and are not // platform dependent. SanitizerMask Res = (SanitizerKind::Undefined & ~SanitizerKind::Vptr & ~SanitizerKind::Function) | (SanitizerKind::CFI & ~SanitizerKind::CFIICall) | SanitizerKind::CFICastStrict | SanitizerKind::FloatDivideByZero | SanitizerKind::UnsignedIntegerOverflow | SanitizerKind::ImplicitConversion | SanitizerKind::Nullability | SanitizerKind::LocalBounds; if (getTriple().getArch() == llvm::Triple::x86 || getTriple().getArch() == llvm::Triple::x86_64 || getTriple().getArch() == llvm::Triple::arm || getTriple().getArch() == llvm::Triple::wasm32 || getTriple().getArch() == llvm::Triple::wasm64 || getTriple().isAArch64()) Res |= SanitizerKind::CFIICall; if (getTriple().getArch() == llvm::Triple::x86_64 || getTriple().isAArch64()) Res |= SanitizerKind::ShadowCallStack; if (getTriple().isAArch64()) Res |= SanitizerKind::MemTag; return Res; } void ToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const {} void ToolChain::AddHIPIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const {} void ToolChain::AddIAMCUIncludeArgs(const ArgList &DriverArgs, ArgStringList &CC1Args) const {} static VersionTuple separateMSVCFullVersion(unsigned Version) { if (Version < 100) return VersionTuple(Version); if (Version < 10000) return VersionTuple(Version / 100, Version % 100); unsigned Build = 0, Factor = 1; for (; Version > 10000; Version = Version / 10, Factor = Factor * 10) Build = Build + (Version % 10) * Factor; return VersionTuple(Version / 100, Version % 100, Build); } VersionTuple ToolChain::computeMSVCVersion(const Driver *D, const llvm::opt::ArgList &Args) const { const Arg *MSCVersion = Args.getLastArg(options::OPT_fmsc_version); const Arg *MSCompatibilityVersion = Args.getLastArg(options::OPT_fms_compatibility_version); if (MSCVersion && MSCompatibilityVersion) { if (D) D->Diag(diag::err_drv_argument_not_allowed_with) << MSCVersion->getAsString(Args) << MSCompatibilityVersion->getAsString(Args); return VersionTuple(); } if (MSCompatibilityVersion) { VersionTuple MSVT; if (MSVT.tryParse(MSCompatibilityVersion->getValue())) { if (D) D->Diag(diag::err_drv_invalid_value) << MSCompatibilityVersion->getAsString(Args) << MSCompatibilityVersion->getValue(); } else { return MSVT; } } if (MSCVersion) { unsigned Version = 0; if (StringRef(MSCVersion->getValue()).getAsInteger(10, Version)) { if (D) D->Diag(diag::err_drv_invalid_value) << MSCVersion->getAsString(Args) << MSCVersion->getValue(); } else { return separateMSVCFullVersion(Version); } } return VersionTuple(); } llvm::opt::DerivedArgList *ToolChain::TranslateOpenMPTargetArgs( const llvm::opt::DerivedArgList &Args, bool SameTripleAsHost, SmallVectorImpl &AllocatedArgs) const { DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs()); const OptTable &Opts = getDriver().getOpts(); bool Modified = false; // Handle -Xopenmp-target flags for (auto *A : Args) { // Exclude flags which may only apply to the host toolchain. // Do not exclude flags when the host triple (AuxTriple) // matches the current toolchain triple. If it is not present // at all, target and host share a toolchain. if (A->getOption().matches(options::OPT_m_Group)) { if (SameTripleAsHost) DAL->append(A); else Modified = true; continue; } unsigned Index; unsigned Prev; bool XOpenMPTargetNoTriple = A->getOption().matches(options::OPT_Xopenmp_target); if (A->getOption().matches(options::OPT_Xopenmp_target_EQ)) { // Passing device args: -Xopenmp-target= -opt=val. if (A->getValue(0) == getTripleString()) Index = Args.getBaseArgs().MakeIndex(A->getValue(1)); else continue; } else if (XOpenMPTargetNoTriple) { // Passing device args: -Xopenmp-target -opt=val. Index = Args.getBaseArgs().MakeIndex(A->getValue(0)); } else { DAL->append(A); continue; } // Parse the argument to -Xopenmp-target. Prev = Index; std::unique_ptr XOpenMPTargetArg(Opts.ParseOneArg(Args, Index)); if (!XOpenMPTargetArg || Index > Prev + 1) { getDriver().Diag(diag::err_drv_invalid_Xopenmp_target_with_args) << A->getAsString(Args); continue; } if (XOpenMPTargetNoTriple && XOpenMPTargetArg && Args.getAllArgValues(options::OPT_fopenmp_targets_EQ).size() != 1) { getDriver().Diag(diag::err_drv_Xopenmp_target_missing_triple); continue; } XOpenMPTargetArg->setBaseArg(A); A = XOpenMPTargetArg.release(); AllocatedArgs.push_back(A); DAL->append(A); Modified = true; } if (Modified) return DAL; delete DAL; return nullptr; } // TODO: Currently argument values separated by space e.g. // -Xclang -mframe-pointer=no cannot be passed by -Xarch_. This should be // fixed. void ToolChain::TranslateXarchArgs( const llvm::opt::DerivedArgList &Args, llvm::opt::Arg *&A, llvm::opt::DerivedArgList *DAL, SmallVectorImpl *AllocatedArgs) const { const OptTable &Opts = getDriver().getOpts(); unsigned ValuePos = 1; if (A->getOption().matches(options::OPT_Xarch_device) || A->getOption().matches(options::OPT_Xarch_host)) ValuePos = 0; unsigned Index = Args.getBaseArgs().MakeIndex(A->getValue(ValuePos)); unsigned Prev = Index; std::unique_ptr XarchArg(Opts.ParseOneArg(Args, Index)); // If the argument parsing failed or more than one argument was // consumed, the -Xarch_ argument's parameter tried to consume // extra arguments. Emit an error and ignore. // // We also want to disallow any options which would alter the // driver behavior; that isn't going to work in our model. We // use isDriverOption() as an approximation, although things // like -O4 are going to slip through. if (!XarchArg || Index > Prev + 1) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_with_args) << A->getAsString(Args); return; } else if (XarchArg->getOption().hasFlag(options::DriverOption)) { getDriver().Diag(diag::err_drv_invalid_Xarch_argument_isdriver) << A->getAsString(Args); return; } XarchArg->setBaseArg(A); A = XarchArg.release(); if (!AllocatedArgs) DAL->AddSynthesizedArg(A); else AllocatedArgs->push_back(A); } llvm::opt::DerivedArgList *ToolChain::TranslateXarchArgs( const llvm::opt::DerivedArgList &Args, StringRef BoundArch, Action::OffloadKind OFK, SmallVectorImpl *AllocatedArgs) const { DerivedArgList *DAL = new DerivedArgList(Args.getBaseArgs()); bool Modified = false; bool IsGPU = OFK == Action::OFK_Cuda || OFK == Action::OFK_HIP; for (Arg *A : Args) { bool NeedTrans = false; bool Skip = false; if (A->getOption().matches(options::OPT_Xarch_device)) { NeedTrans = IsGPU; Skip = !IsGPU; } else if (A->getOption().matches(options::OPT_Xarch_host)) { NeedTrans = !IsGPU; Skip = IsGPU; } else if (A->getOption().matches(options::OPT_Xarch__) && IsGPU) { // Do not translate -Xarch_ options for non CUDA/HIP toolchain since // they may need special translation. // Skip this argument unless the architecture matches BoundArch if (BoundArch.empty() || A->getValue(0) != BoundArch) Skip = true; else NeedTrans = true; } if (NeedTrans || Skip) Modified = true; if (NeedTrans) TranslateXarchArgs(Args, A, DAL, AllocatedArgs); if (!Skip) DAL->append(A); } if (Modified) return DAL; delete DAL; return nullptr; }