//===- X86.cpp ------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ABIInfoImpl.h" #include "TargetInfo.h" #include "clang/Basic/DiagnosticFrontend.h" #include "llvm/ADT/SmallBitVector.h" using namespace clang; using namespace clang::CodeGen; namespace { /// IsX86_MMXType - Return true if this is an MMX type. bool IsX86_MMXType(llvm::Type *IRType) { // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && cast(IRType)->getElementType()->isIntegerTy() && IRType->getScalarSizeInBits() != 64; } static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) { bool IsMMXCons = llvm::StringSwitch(Constraint) .Cases("y", "&y", "^Ym", true) .Default(false); if (IsMMXCons && Ty->isVectorTy()) { if (cast(Ty)->getPrimitiveSizeInBits().getFixedValue() != 64) { // Invalid MMX constraint return nullptr; } return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); } // No operation needed return Ty; } /// Returns true if this type can be passed in SSE registers with the /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { if (const BuiltinType *BT = Ty->getAs()) { if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { if (BT->getKind() == BuiltinType::LongDouble) { if (&Context.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) return false; } return true; } } else if (const VectorType *VT = Ty->getAs()) { // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX // registers specially. unsigned VecSize = Context.getTypeSize(VT); if (VecSize == 128 || VecSize == 256 || VecSize == 512) return true; } return false; } /// Returns true if this aggregate is small enough to be passed in SSE registers /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { return NumMembers <= 4; } /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { auto AI = ABIArgInfo::getDirect(T); AI.setInReg(true); AI.setCanBeFlattened(false); return AI; } //===----------------------------------------------------------------------===// // X86-32 ABI Implementation //===----------------------------------------------------------------------===// /// Similar to llvm::CCState, but for Clang. struct CCState { CCState(CGFunctionInfo &FI) : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} llvm::SmallBitVector IsPreassigned; unsigned CC = CallingConv::CC_C; unsigned FreeRegs = 0; unsigned FreeSSERegs = 0; }; /// X86_32ABIInfo - The X86-32 ABI information. class X86_32ABIInfo : public ABIInfo { enum Class { Integer, Float }; static const unsigned MinABIStackAlignInBytes = 4; bool IsDarwinVectorABI; bool IsRetSmallStructInRegABI; bool IsWin32StructABI; bool IsSoftFloatABI; bool IsMCUABI; bool IsLinuxABI; unsigned DefaultNumRegisterParameters; static bool isRegisterSize(unsigned Size) { return (Size == 8 || Size == 16 || Size == 32 || Size == 64); } bool isHomogeneousAggregateBaseType(QualType Ty) const override { // FIXME: Assumes vectorcall is in use. return isX86VectorTypeForVectorCall(getContext(), Ty); } bool isHomogeneousAggregateSmallEnough(const Type *Ty, uint64_t NumMembers) const override { // FIXME: Assumes vectorcall is in use. return isX86VectorCallAggregateSmallEnough(NumMembers); } bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be passed in memory. ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; /// Return the alignment to use for the given type on the stack. unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; Class classify(QualType Ty) const; ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State, bool isDelegateCall) const; /// Updates the number of available free registers, returns /// true if any registers were allocated. bool updateFreeRegs(QualType Ty, CCState &State) const; bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, bool &NeedsPadding) const; bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; bool canExpandIndirectArgument(QualType Ty) const; /// Rewrite the function info so that all memory arguments use /// inalloca. void rewriteWithInAlloca(CGFunctionInfo &FI) const; void addFieldToArgStruct(SmallVector &FrameFields, CharUnits &StackOffset, ABIArgInfo &Info, QualType Type) const; void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; public: void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, unsigned NumRegisterParameters, bool SoftFloatABI) : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), IsRetSmallStructInRegABI(RetSmallStructInRegABI), IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || CGT.getTarget().getTriple().isOSCygMing()), DefaultNumRegisterParameters(NumRegisterParameters) {} }; class X86_32SwiftABIInfo : public SwiftABIInfo { public: explicit X86_32SwiftABIInfo(CodeGenTypes &CGT) : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {} bool shouldPassIndirectly(ArrayRef ComponentTys, bool AsReturnValue) const override { // LLVM's x86-32 lowering currently only assigns up to three // integer registers and three fp registers. Oddly, it'll use up to // four vector registers for vectors, but those can overlap with the // scalar registers. return occupiesMoreThan(ComponentTys, /*total=*/3); } }; class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { public: X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, unsigned NumRegisterParameters, bool SoftFloatABI) : TargetCodeGenInfo(std::make_unique( CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, NumRegisterParameters, SoftFloatABI)) { SwiftInfo = std::make_unique(CGT); } static bool isStructReturnInRegABI( const llvm::Triple &Triple, const CodeGenOptions &Opts); void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override; int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { // Darwin uses different dwarf register numbers for EH. if (CGM.getTarget().getTriple().isOSDarwin()) return 5; return 4; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override; llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) const override { return X86AdjustInlineAsmType(CGF, Constraint, Ty); } void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, std::string &Constraints, std::vector &ResultRegTypes, std::vector &ResultTruncRegTypes, std::vector &ResultRegDests, std::string &AsmString, unsigned NumOutputs) const override; StringRef getARCRetainAutoreleasedReturnValueMarker() const override { return "movl\t%ebp, %ebp" "\t\t// marker for objc_retainAutoreleaseReturnValue"; } }; } /// Rewrite input constraint references after adding some output constraints. /// In the case where there is one output and one input and we add one output, /// we need to replace all operand references greater than or equal to 1: /// mov $0, $1 /// mov eax, $1 /// The result will be: /// mov $0, $2 /// mov eax, $2 static void rewriteInputConstraintReferences(unsigned FirstIn, unsigned NumNewOuts, std::string &AsmString) { std::string Buf; llvm::raw_string_ostream OS(Buf); size_t Pos = 0; while (Pos < AsmString.size()) { size_t DollarStart = AsmString.find('$', Pos); if (DollarStart == std::string::npos) DollarStart = AsmString.size(); size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); if (DollarEnd == std::string::npos) DollarEnd = AsmString.size(); OS << StringRef(&AsmString[Pos], DollarEnd - Pos); Pos = DollarEnd; size_t NumDollars = DollarEnd - DollarStart; if (NumDollars % 2 != 0 && Pos < AsmString.size()) { // We have an operand reference. size_t DigitStart = Pos; if (AsmString[DigitStart] == '{') { OS << '{'; ++DigitStart; } size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); if (DigitEnd == std::string::npos) DigitEnd = AsmString.size(); StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); unsigned OperandIndex; if (!OperandStr.getAsInteger(10, OperandIndex)) { if (OperandIndex >= FirstIn) OperandIndex += NumNewOuts; OS << OperandIndex; } else { OS << OperandStr; } Pos = DigitEnd; } } AsmString = std::move(OS.str()); } /// Add output constraints for EAX:EDX because they are return registers. void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, std::vector &ResultRegTypes, std::vector &ResultTruncRegTypes, std::vector &ResultRegDests, std::string &AsmString, unsigned NumOutputs) const { uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is // larger. if (!Constraints.empty()) Constraints += ','; if (RetWidth <= 32) { Constraints += "={eax}"; ResultRegTypes.push_back(CGF.Int32Ty); } else { // Use the 'A' constraint for EAX:EDX. Constraints += "=A"; ResultRegTypes.push_back(CGF.Int64Ty); } // Truncate EAX or EAX:EDX to an integer of the appropriate size. llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); ResultTruncRegTypes.push_back(CoerceTy); // Coerce the integer by bitcasting the return slot pointer. ReturnSlot.setAddress(ReturnSlot.getAddress(CGF).withElementType(CoerceTy)); ResultRegDests.push_back(ReturnSlot); rewriteInputConstraintReferences(NumOutputs, 1, AsmString); } /// shouldReturnTypeInRegister - Determine if the given type should be /// returned in a register (for the Darwin and MCU ABI). bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const { uint64_t Size = Context.getTypeSize(Ty); // For i386, type must be register sized. // For the MCU ABI, it only needs to be <= 8-byte if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) return false; if (Ty->isVectorType()) { // 64- and 128- bit vectors inside structures are not returned in // registers. if (Size == 64 || Size == 128) return false; return true; } // If this is a builtin, pointer, enum, complex type, member pointer, or // member function pointer it is ok. if (Ty->getAs() || Ty->hasPointerRepresentation() || Ty->isAnyComplexType() || Ty->isEnumeralType() || Ty->isBlockPointerType() || Ty->isMemberPointerType()) return true; // Arrays are treated like records. if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) return shouldReturnTypeInRegister(AT->getElementType(), Context); // Otherwise, it must be a record type. const RecordType *RT = Ty->getAs(); if (!RT) return false; // FIXME: Traverse bases here too. // Structure types are passed in register if all fields would be // passed in a register. for (const auto *FD : RT->getDecl()->fields()) { // Empty fields are ignored. if (isEmptyField(Context, FD, true)) continue; // Check fields recursively. if (!shouldReturnTypeInRegister(FD->getType(), Context)) return false; } return true; } static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { // Treat complex types as the element type. if (const ComplexType *CTy = Ty->getAs()) Ty = CTy->getElementType(); // Check for a type which we know has a simple scalar argument-passing // convention without any padding. (We're specifically looking for 32 // and 64-bit integer and integer-equivalents, float, and double.) if (!Ty->getAs() && !Ty->hasPointerRepresentation() && !Ty->isEnumeralType() && !Ty->isBlockPointerType()) return false; uint64_t Size = Context.getTypeSize(Ty); return Size == 32 || Size == 64; } static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, uint64_t &Size) { for (const auto *FD : RD->fields()) { // Scalar arguments on the stack get 4 byte alignment on x86. If the // argument is smaller than 32-bits, expanding the struct will create // alignment padding. if (!is32Or64BitBasicType(FD->getType(), Context)) return false; // FIXME: Reject bit-fields wholesale; there are two problems, we don't know // how to expand them yet, and the predicate for telling if a bitfield still // counts as "basic" is more complicated than what we were doing previously. if (FD->isBitField()) return false; Size += Context.getTypeSize(FD->getType()); } return true; } static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, uint64_t &Size) { // Don't do this if there are any non-empty bases. for (const CXXBaseSpecifier &Base : RD->bases()) { if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), Size)) return false; } if (!addFieldSizes(Context, RD, Size)) return false; return true; } /// Test whether an argument type which is to be passed indirectly (on the /// stack) would have the equivalent layout if it was expanded into separate /// arguments. If so, we prefer to do the latter to avoid inhibiting /// optimizations. bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { // We can only expand structure types. const RecordType *RT = Ty->getAs(); if (!RT) return false; const RecordDecl *RD = RT->getDecl(); uint64_t Size = 0; if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { if (!IsWin32StructABI) { // On non-Windows, we have to conservatively match our old bitcode // prototypes in order to be ABI-compatible at the bitcode level. if (!CXXRD->isCLike()) return false; } else { // Don't do this for dynamic classes. if (CXXRD->isDynamicClass()) return false; } if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) return false; } else { if (!addFieldSizes(getContext(), RD, Size)) return false; } // We can do this if there was no alignment padding. return Size == getContext().getTypeSize(Ty); } ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { // If the return value is indirect, then the hidden argument is consuming one // integer register. if (State.FreeRegs) { --State.FreeRegs; if (!IsMCUABI) return getNaturalAlignIndirectInReg(RetTy); } return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); } ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, CCState &State) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); const Type *Base = nullptr; uint64_t NumElts = 0; if ((State.CC == llvm::CallingConv::X86_VectorCall || State.CC == llvm::CallingConv::X86_RegCall) && isHomogeneousAggregate(RetTy, Base, NumElts)) { // The LLVM struct type for such an aggregate should lower properly. return ABIArgInfo::getDirect(); } if (const VectorType *VT = RetTy->getAs()) { // On Darwin, some vectors are returned in registers. if (IsDarwinVectorABI) { uint64_t Size = getContext().getTypeSize(RetTy); // 128-bit vectors are a special case; they are returned in // registers and we need to make sure to pick a type the LLVM // backend will like. if (Size == 128) return ABIArgInfo::getDirect(llvm::FixedVectorType::get( llvm::Type::getInt64Ty(getVMContext()), 2)); // Always return in register if it fits in a general purpose // register, or if it is 64 bits and has a single element. if ((Size == 8 || Size == 16 || Size == 32) || (Size == 64 && VT->getNumElements() == 1)) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); return getIndirectReturnResult(RetTy, State); } return ABIArgInfo::getDirect(); } if (isAggregateTypeForABI(RetTy)) { if (const RecordType *RT = RetTy->getAs()) { // Structures with flexible arrays are always indirect. if (RT->getDecl()->hasFlexibleArrayMember()) return getIndirectReturnResult(RetTy, State); } // If specified, structs and unions are always indirect. if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) return getIndirectReturnResult(RetTy, State); // Ignore empty structs/unions. if (isEmptyRecord(getContext(), RetTy, true)) return ABIArgInfo::getIgnore(); // Return complex of _Float16 as <2 x half> so the backend will use xmm0. if (const ComplexType *CT = RetTy->getAs()) { QualType ET = getContext().getCanonicalType(CT->getElementType()); if (ET->isFloat16Type()) return ABIArgInfo::getDirect(llvm::FixedVectorType::get( llvm::Type::getHalfTy(getVMContext()), 2)); } // Small structures which are register sized are generally returned // in a register. if (shouldReturnTypeInRegister(RetTy, getContext())) { uint64_t Size = getContext().getTypeSize(RetTy); // As a special-case, if the struct is a "single-element" struct, and // the field is of type "float" or "double", return it in a // floating-point register. (MSVC does not apply this special case.) // We apply a similar transformation for pointer types to improve the // quality of the generated IR. if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) || SeltTy->hasPointerRepresentation()) return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); // FIXME: We should be able to narrow this integer in cases with dead // padding. return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); } return getIndirectReturnResult(RetTy, State); } // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (const auto *EIT = RetTy->getAs()) if (EIT->getNumBits() > 64) return getIndirectReturnResult(RetTy, State); return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) : ABIArgInfo::getDirect()); } unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, unsigned Align) const { // Otherwise, if the alignment is less than or equal to the minimum ABI // alignment, just use the default; the backend will handle this. if (Align <= MinABIStackAlignInBytes) return 0; // Use default alignment. if (IsLinuxABI) { // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't // want to spend any effort dealing with the ramifications of ABI breaks. // // If the vector type is __m128/__m256/__m512, return the default alignment. if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) return Align; } // On non-Darwin, the stack type alignment is always 4. if (!IsDarwinVectorABI) { // Set explicit alignment, since we may need to realign the top. return MinABIStackAlignInBytes; } // Otherwise, if the type contains an SSE vector type, the alignment is 16. if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || isRecordWithSIMDVectorType(getContext(), Ty))) return 16; return MinABIStackAlignInBytes; } ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, CCState &State) const { if (!ByVal) { if (State.FreeRegs) { --State.FreeRegs; // Non-byval indirects just use one pointer. if (!IsMCUABI) return getNaturalAlignIndirectInReg(Ty); } return getNaturalAlignIndirect(Ty, false); } // Compute the byval alignment. unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); if (StackAlign == 0) return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); // If the stack alignment is less than the type alignment, realign the // argument. bool Realign = TypeAlign > StackAlign; return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), /*ByVal=*/true, Realign); } X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { const Type *T = isSingleElementStruct(Ty, getContext()); if (!T) T = Ty.getTypePtr(); if (const BuiltinType *BT = T->getAs()) { BuiltinType::Kind K = BT->getKind(); if (K == BuiltinType::Float || K == BuiltinType::Double) return Float; } return Integer; } bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { if (!IsSoftFloatABI) { Class C = classify(Ty); if (C == Float) return false; } unsigned Size = getContext().getTypeSize(Ty); unsigned SizeInRegs = (Size + 31) / 32; if (SizeInRegs == 0) return false; if (!IsMCUABI) { if (SizeInRegs > State.FreeRegs) { State.FreeRegs = 0; return false; } } else { // The MCU psABI allows passing parameters in-reg even if there are // earlier parameters that are passed on the stack. Also, // it does not allow passing >8-byte structs in-register, // even if there are 3 free registers available. if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) return false; } State.FreeRegs -= SizeInRegs; return true; } bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, bool &NeedsPadding) const { // On Windows, aggregates other than HFAs are never passed in registers, and // they do not consume register slots. Homogenous floating-point aggregates // (HFAs) have already been dealt with at this point. if (IsWin32StructABI && isAggregateTypeForABI(Ty)) return false; NeedsPadding = false; InReg = !IsMCUABI; if (!updateFreeRegs(Ty, State)) return false; if (IsMCUABI) return true; if (State.CC == llvm::CallingConv::X86_FastCall || State.CC == llvm::CallingConv::X86_VectorCall || State.CC == llvm::CallingConv::X86_RegCall) { if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) NeedsPadding = true; return false; } return true; } bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) && (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || Ty->isReferenceType()); if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall || State.CC == llvm::CallingConv::X86_VectorCall)) return false; if (!updateFreeRegs(Ty, State)) return false; if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall) return false; // Return true to apply inreg to all legal parameters except for MCU targets. return !IsMCUABI; } void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { // Vectorcall x86 works subtly different than in x64, so the format is // a bit different than the x64 version. First, all vector types (not HVAs) // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. // This differs from the x64 implementation, where the first 6 by INDEX get // registers. // In the second pass over the arguments, HVAs are passed in the remaining // vector registers if possible, or indirectly by address. The address will be // passed in ECX/EDX if available. Any other arguments are passed according to // the usual fastcall rules. MutableArrayRef Args = FI.arguments(); for (int I = 0, E = Args.size(); I < E; ++I) { const Type *Base = nullptr; uint64_t NumElts = 0; const QualType &Ty = Args[I].type; if ((Ty->isVectorType() || Ty->isBuiltinType()) && isHomogeneousAggregate(Ty, Base, NumElts)) { if (State.FreeSSERegs >= NumElts) { State.FreeSSERegs -= NumElts; Args[I].info = ABIArgInfo::getDirectInReg(); State.IsPreassigned.set(I); } } } } ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State, bool isDelegateCall) const { // FIXME: Set alignment on indirect arguments. bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; Ty = useFirstFieldIfTransparentUnion(Ty); TypeInfo TI = getContext().getTypeInfo(Ty); // Check with the C++ ABI first. const RecordType *RT = Ty->getAs(); if (RT) { CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); if (RAA == CGCXXABI::RAA_Indirect) { return getIndirectResult(Ty, false, State); } else if (isDelegateCall) { // Avoid having different alignments on delegate call args by always // setting the alignment to 4, which is what we do for inallocas. ABIArgInfo Res = getIndirectResult(Ty, false, State); Res.setIndirectAlign(CharUnits::fromQuantity(4)); return Res; } else if (RAA == CGCXXABI::RAA_DirectInMemory) { // The field index doesn't matter, we'll fix it up later. return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); } } // Regcall uses the concept of a homogenous vector aggregate, similar // to other targets. const Type *Base = nullptr; uint64_t NumElts = 0; if ((IsRegCall || IsVectorCall) && isHomogeneousAggregate(Ty, Base, NumElts)) { if (State.FreeSSERegs >= NumElts) { State.FreeSSERegs -= NumElts; // Vectorcall passes HVAs directly and does not flatten them, but regcall // does. if (IsVectorCall) return getDirectX86Hva(); if (Ty->isBuiltinType() || Ty->isVectorType()) return ABIArgInfo::getDirect(); return ABIArgInfo::getExpand(); } return getIndirectResult(Ty, /*ByVal=*/false, State); } if (isAggregateTypeForABI(Ty)) { // Structures with flexible arrays are always indirect. // FIXME: This should not be byval! if (RT && RT->getDecl()->hasFlexibleArrayMember()) return getIndirectResult(Ty, true, State); // Ignore empty structs/unions on non-Windows. if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); llvm::LLVMContext &LLVMContext = getVMContext(); llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); bool NeedsPadding = false; bool InReg; if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { unsigned SizeInRegs = (TI.Width + 31) / 32; SmallVector Elements(SizeInRegs, Int32); llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); if (InReg) return ABIArgInfo::getDirectInReg(Result); else return ABIArgInfo::getDirect(Result); } llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; // Pass over-aligned aggregates on Windows indirectly. This behavior was // added in MSVC 2015. Use the required alignment from the record layout, // since that may be less than the regular type alignment, and types with // required alignment of less than 4 bytes are not passed indirectly. if (IsWin32StructABI) { unsigned AlignInBits = 0; if (RT) { const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RT->getDecl()); AlignInBits = getContext().toBits(Layout.getRequiredAlignment()); } else if (TI.isAlignRequired()) { AlignInBits = TI.Align; } if (AlignInBits > 32) return getIndirectResult(Ty, /*ByVal=*/false, State); } // Expand small (<= 128-bit) record types when we know that the stack layout // of those arguments will match the struct. This is important because the // LLVM backend isn't smart enough to remove byval, which inhibits many // optimizations. // Don't do this for the MCU if there are still free integer registers // (see X86_64 ABI for full explanation). if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) return ABIArgInfo::getExpandWithPadding( IsFastCall || IsVectorCall || IsRegCall, PaddingType); return getIndirectResult(Ty, true, State); } if (const VectorType *VT = Ty->getAs()) { // On Windows, vectors are passed directly if registers are available, or // indirectly if not. This avoids the need to align argument memory. Pass // user-defined vector types larger than 512 bits indirectly for simplicity. if (IsWin32StructABI) { if (TI.Width <= 512 && State.FreeSSERegs > 0) { --State.FreeSSERegs; return ABIArgInfo::getDirectInReg(); } return getIndirectResult(Ty, /*ByVal=*/false, State); } // On Darwin, some vectors are passed in memory, we handle this by passing // it as an i8/i16/i32/i64. if (IsDarwinVectorABI) { if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || (TI.Width == 64 && VT->getNumElements() == 1)) return ABIArgInfo::getDirect( llvm::IntegerType::get(getVMContext(), TI.Width)); } if (IsX86_MMXType(CGT.ConvertType(Ty))) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); return ABIArgInfo::getDirect(); } if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); bool InReg = shouldPrimitiveUseInReg(Ty, State); if (isPromotableIntegerTypeForABI(Ty)) { if (InReg) return ABIArgInfo::getExtendInReg(Ty); return ABIArgInfo::getExtend(Ty); } if (const auto *EIT = Ty->getAs()) { if (EIT->getNumBits() <= 64) { if (InReg) return ABIArgInfo::getDirectInReg(); return ABIArgInfo::getDirect(); } return getIndirectResult(Ty, /*ByVal=*/false, State); } if (InReg) return ABIArgInfo::getDirectInReg(); return ABIArgInfo::getDirect(); } void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { CCState State(FI); if (IsMCUABI) State.FreeRegs = 3; else if (State.CC == llvm::CallingConv::X86_FastCall) { State.FreeRegs = 2; State.FreeSSERegs = 3; } else if (State.CC == llvm::CallingConv::X86_VectorCall) { State.FreeRegs = 2; State.FreeSSERegs = 6; } else if (FI.getHasRegParm()) State.FreeRegs = FI.getRegParm(); else if (State.CC == llvm::CallingConv::X86_RegCall) { State.FreeRegs = 5; State.FreeSSERegs = 8; } else if (IsWin32StructABI) { // Since MSVC 2015, the first three SSE vectors have been passed in // registers. The rest are passed indirectly. State.FreeRegs = DefaultNumRegisterParameters; State.FreeSSERegs = 3; } else State.FreeRegs = DefaultNumRegisterParameters; if (!::classifyReturnType(getCXXABI(), FI, *this)) { FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); } else if (FI.getReturnInfo().isIndirect()) { // The C++ ABI is not aware of register usage, so we have to check if the // return value was sret and put it in a register ourselves if appropriate. if (State.FreeRegs) { --State.FreeRegs; // The sret parameter consumes a register. if (!IsMCUABI) FI.getReturnInfo().setInReg(true); } } // The chain argument effectively gives us another free register. if (FI.isChainCall()) ++State.FreeRegs; // For vectorcall, do a first pass over the arguments, assigning FP and vector // arguments to XMM registers as available. if (State.CC == llvm::CallingConv::X86_VectorCall) runVectorCallFirstPass(FI, State); bool UsedInAlloca = false; MutableArrayRef Args = FI.arguments(); for (int I = 0, E = Args.size(); I < E; ++I) { // Skip arguments that have already been assigned. if (State.IsPreassigned.test(I)) continue; Args[I].info = classifyArgumentType(Args[I].type, State, FI.isDelegateCall()); UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); } // If we needed to use inalloca for any argument, do a second pass and rewrite // all the memory arguments to use inalloca. if (UsedInAlloca) rewriteWithInAlloca(FI); } void X86_32ABIInfo::addFieldToArgStruct(SmallVector &FrameFields, CharUnits &StackOffset, ABIArgInfo &Info, QualType Type) const { // Arguments are always 4-byte-aligned. CharUnits WordSize = CharUnits::fromQuantity(4); assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); // sret pointers and indirect things will require an extra pointer // indirection, unless they are byval. Most things are byval, and will not // require this indirection. bool IsIndirect = false; if (Info.isIndirect() && !Info.getIndirectByVal()) IsIndirect = true; Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); if (IsIndirect) LLTy = llvm::PointerType::getUnqual(getVMContext()); FrameFields.push_back(LLTy); StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); // Insert padding bytes to respect alignment. CharUnits FieldEnd = StackOffset; StackOffset = FieldEnd.alignTo(WordSize); if (StackOffset != FieldEnd) { CharUnits NumBytes = StackOffset - FieldEnd; llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); FrameFields.push_back(Ty); } } static bool isArgInAlloca(const ABIArgInfo &Info) { // Leave ignored and inreg arguments alone. switch (Info.getKind()) { case ABIArgInfo::InAlloca: return true; case ABIArgInfo::Ignore: case ABIArgInfo::IndirectAliased: return false; case ABIArgInfo::Indirect: case ABIArgInfo::Direct: case ABIArgInfo::Extend: return !Info.getInReg(); case ABIArgInfo::Expand: case ABIArgInfo::CoerceAndExpand: // These are aggregate types which are never passed in registers when // inalloca is involved. return true; } llvm_unreachable("invalid enum"); } void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { assert(IsWin32StructABI && "inalloca only supported on win32"); // Build a packed struct type for all of the arguments in memory. SmallVector FrameFields; // The stack alignment is always 4. CharUnits StackAlign = CharUnits::fromQuantity(4); CharUnits StackOffset; CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); // Put 'this' into the struct before 'sret', if necessary. bool IsThisCall = FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; ABIArgInfo &Ret = FI.getReturnInfo(); if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && isArgInAlloca(I->info)) { addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); ++I; } // Put the sret parameter into the inalloca struct if it's in memory. if (Ret.isIndirect() && !Ret.getInReg()) { addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); // On Windows, the hidden sret parameter is always returned in eax. Ret.setInAllocaSRet(IsWin32StructABI); } // Skip the 'this' parameter in ecx. if (IsThisCall) ++I; // Put arguments passed in memory into the struct. for (; I != E; ++I) { if (isArgInAlloca(I->info)) addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); } FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, /*isPacked=*/true), StackAlign); } Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { auto TypeInfo = getContext().getTypeInfoInChars(Ty); // x86-32 changes the alignment of certain arguments on the stack. // // Just messing with TypeInfo like this works because we never pass // anything indirectly. TypeInfo.Align = CharUnits::fromQuantity( getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, CharUnits::fromQuantity(4), /*AllowHigherAlign*/ true); } bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( const llvm::Triple &Triple, const CodeGenOptions &Opts) { assert(Triple.getArch() == llvm::Triple::x86); switch (Opts.getStructReturnConvention()) { case CodeGenOptions::SRCK_Default: break; case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return return false; case CodeGenOptions::SRCK_InRegs: // -freg-struct-return return true; } if (Triple.isOSDarwin() || Triple.isOSIAMCU()) return true; switch (Triple.getOS()) { case llvm::Triple::DragonFly: case llvm::Triple::FreeBSD: case llvm::Triple::OpenBSD: case llvm::Triple::Win32: return true; default: return false; } } static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) { if (!FD->hasAttr()) return; llvm::Function *Fn = cast(GV); Fn->setCallingConv(llvm::CallingConv::X86_INTR); if (FD->getNumParams() == 0) return; auto PtrTy = cast(FD->getParamDecl(0)->getType()); llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( Fn->getContext(), ByValTy); Fn->addParamAttr(0, NewAttr); } void X86_32TargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { if (GV->isDeclaration()) return; if (const FunctionDecl *FD = dyn_cast_or_null(D)) { if (FD->hasAttr()) { llvm::Function *Fn = cast(GV); Fn->addFnAttr("stackrealign"); } addX86InterruptAttrs(FD, GV, CGM); } } bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { CodeGen::CGBuilderTy &Builder = CGF.Builder; llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); // 0-7 are the eight integer registers; the order is different // on Darwin (for EH), but the range is the same. // 8 is %eip. AssignToArrayRange(Builder, Address, Four8, 0, 8); if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { // 12-16 are st(0..4). Not sure why we stop at 4. // These have size 16, which is sizeof(long double) on // platforms with 8-byte alignment for that type. llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); } else { // 9 is %eflags, which doesn't get a size on Darwin for some // reason. Builder.CreateAlignedStore( Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), CharUnits::One()); // 11-16 are st(0..5). Not sure why we stop at 5. // These have size 12, which is sizeof(long double) on // platforms with 4-byte alignment for that type. llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); AssignToArrayRange(Builder, Address, Twelve8, 11, 16); } return false; } //===----------------------------------------------------------------------===// // X86-64 ABI Implementation //===----------------------------------------------------------------------===// namespace { /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { switch (AVXLevel) { case X86AVXABILevel::AVX512: return 512; case X86AVXABILevel::AVX: return 256; case X86AVXABILevel::None: return 128; } llvm_unreachable("Unknown AVXLevel"); } /// X86_64ABIInfo - The X86_64 ABI information. class X86_64ABIInfo : public ABIInfo { enum Class { Integer = 0, SSE, SSEUp, X87, X87Up, ComplexX87, NoClass, Memory }; /// merge - Implement the X86_64 ABI merging algorithm. /// /// Merge an accumulating classification \arg Accum with a field /// classification \arg Field. /// /// \param Accum - The accumulating classification. This should /// always be either NoClass or the result of a previous merge /// call. In addition, this should never be Memory (the caller /// should just return Memory for the aggregate). static Class merge(Class Accum, Class Field); /// postMerge - Implement the X86_64 ABI post merging algorithm. /// /// Post merger cleanup, reduces a malformed Hi and Lo pair to /// final MEMORY or SSE classes when necessary. /// /// \param AggregateSize - The size of the current aggregate in /// the classification process. /// /// \param Lo - The classification for the parts of the type /// residing in the low word of the containing object. /// /// \param Hi - The classification for the parts of the type /// residing in the higher words of the containing object. /// void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; /// classify - Determine the x86_64 register classes in which the /// given type T should be passed. /// /// \param Lo - The classification for the parts of the type /// residing in the low word of the containing object. /// /// \param Hi - The classification for the parts of the type /// residing in the high word of the containing object. /// /// \param OffsetBase - The bit offset of this type in the /// containing object. Some parameters are classified different /// depending on whether they straddle an eightbyte boundary. /// /// \param isNamedArg - Whether the argument in question is a "named" /// argument, as used in AMD64-ABI 3.5.7. /// /// \param IsRegCall - Whether the calling conversion is regcall. /// /// If a word is unused its result will be NoClass; if a type should /// be passed in Memory then at least the classification of \arg Lo /// will be Memory. /// /// The \arg Lo class will be NoClass iff the argument is ignored. /// /// If the \arg Lo class is ComplexX87, then the \arg Hi class will /// also be ComplexX87. void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, bool isNamedArg, bool IsRegCall = false) const; llvm::Type *GetByteVectorType(QualType Ty) const; llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const; llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be returned in memory. ABIArgInfo getIndirectReturnResult(QualType Ty) const; /// getIndirectResult - Give a source type \arg Ty, return a suitable result /// such that the argument will be passed in memory. /// /// \param freeIntRegs - The number of free integer registers remaining /// available. ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; ABIArgInfo classifyReturnType(QualType RetTy) const; ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, bool isNamedArg, bool IsRegCall = false) const; ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, unsigned &NeededSSE, unsigned &MaxVectorWidth) const; ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, unsigned &NeededSSE, unsigned &MaxVectorWidth) const; bool IsIllegalVectorType(QualType Ty) const; /// The 0.98 ABI revision clarified a lot of ambiguities, /// unfortunately in ways that were not always consistent with /// certain previous compilers. In particular, platforms which /// required strict binary compatibility with older versions of GCC /// may need to exempt themselves. bool honorsRevision0_98() const { return !getTarget().getTriple().isOSDarwin(); } /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to /// classify it as INTEGER (for compatibility with older clang compilers). bool classifyIntegerMMXAsSSE() const { // Clang <= 3.8 did not do this. if (getContext().getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver3_8) return false; const llvm::Triple &Triple = getTarget().getTriple(); if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD()) return false; return true; } // GCC classifies vectors of __int128 as memory. bool passInt128VectorsInMem() const { // Clang <= 9.0 did not do this. if (getContext().getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver9) return false; const llvm::Triple &T = getTarget().getTriple(); return T.isOSLinux() || T.isOSNetBSD(); } X86AVXABILevel AVXLevel; // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on // 64-bit hardware. bool Has64BitPointers; public: X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : ABIInfo(CGT), AVXLevel(AVXLevel), Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {} bool isPassedUsingAVXType(QualType type) const { unsigned neededInt, neededSSE; // The freeIntRegs argument doesn't matter here. ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, /*isNamedArg*/true); if (info.isDirect()) { llvm::Type *ty = info.getCoerceToType(); if (llvm::VectorType *vectorTy = dyn_cast_or_null(ty)) return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128; } return false; } void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; bool has64BitPointers() const { return Has64BitPointers; } }; /// WinX86_64ABIInfo - The Windows X86_64 ABI information. class WinX86_64ABIInfo : public ABIInfo { public: WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : ABIInfo(CGT), AVXLevel(AVXLevel), IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} void computeInfo(CGFunctionInfo &FI) const override; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; bool isHomogeneousAggregateBaseType(QualType Ty) const override { // FIXME: Assumes vectorcall is in use. return isX86VectorTypeForVectorCall(getContext(), Ty); } bool isHomogeneousAggregateSmallEnough(const Type *Ty, uint64_t NumMembers) const override { // FIXME: Assumes vectorcall is in use. return isX86VectorCallAggregateSmallEnough(NumMembers); } private: ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, bool IsVectorCall, bool IsRegCall) const; ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const; X86AVXABILevel AVXLevel; bool IsMingw64; }; class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : TargetCodeGenInfo(std::make_unique(CGT, AVXLevel)) { SwiftInfo = std::make_unique(CGT, /*SwiftErrorInRegister=*/true); } /// Disable tail call on x86-64. The epilogue code before the tail jump blocks /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { return 7; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); // 0-15 are the 16 integer registers. // 16 is %rip. AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); return false; } llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type* Ty) const override { return X86AdjustInlineAsmType(CGF, Constraint, Ty); } bool isNoProtoCallVariadic(const CallArgList &args, const FunctionNoProtoType *fnType) const override { // The default CC on x86-64 sets %al to the number of SSA // registers used, and GCC sets this when calling an unprototyped // function, so we override the default behavior. However, don't do // that when AVX types are involved: the ABI explicitly states it is // undefined, and it doesn't work in practice because of how the ABI // defines varargs anyway. if (fnType->getCallConv() == CC_C) { bool HasAVXType = false; for (CallArgList::const_iterator it = args.begin(), ie = args.end(); it != ie; ++it) { if (getABIInfo().isPassedUsingAVXType(it->Ty)) { HasAVXType = true; break; } } if (!HasAVXType) return true; } return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); } void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { if (GV->isDeclaration()) return; if (const FunctionDecl *FD = dyn_cast_or_null(D)) { if (FD->hasAttr()) { llvm::Function *Fn = cast(GV); Fn->addFnAttr("stackrealign"); } addX86InterruptAttrs(FD, GV, CGM); } } void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, const FunctionDecl *Callee, const CallArgList &Args) const override; }; } // namespace static void initFeatureMaps(const ASTContext &Ctx, llvm::StringMap &CallerMap, const FunctionDecl *Caller, llvm::StringMap &CalleeMap, const FunctionDecl *Callee) { if (CalleeMap.empty() && CallerMap.empty()) { // The caller is potentially nullptr in the case where the call isn't in a // function. In this case, the getFunctionFeatureMap ensures we just get // the TU level setting (since it cannot be modified by 'target'.. Ctx.getFunctionFeatureMap(CallerMap, Caller); Ctx.getFunctionFeatureMap(CalleeMap, Callee); } } static bool checkAVXParamFeature(DiagnosticsEngine &Diag, SourceLocation CallLoc, const llvm::StringMap &CallerMap, const llvm::StringMap &CalleeMap, QualType Ty, StringRef Feature, bool IsArgument) { bool CallerHasFeat = CallerMap.lookup(Feature); bool CalleeHasFeat = CalleeMap.lookup(Feature); if (!CallerHasFeat && !CalleeHasFeat) return Diag.Report(CallLoc, diag::warn_avx_calling_convention) << IsArgument << Ty << Feature; // Mixing calling conventions here is very clearly an error. if (!CallerHasFeat || !CalleeHasFeat) return Diag.Report(CallLoc, diag::err_avx_calling_convention) << IsArgument << Ty << Feature; // Else, both caller and callee have the required feature, so there is no need // to diagnose. return false; } static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, SourceLocation CallLoc, const llvm::StringMap &CallerMap, const llvm::StringMap &CalleeMap, QualType Ty, bool IsArgument) { uint64_t Size = Ctx.getTypeSize(Ty); if (Size > 256) return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx512f", IsArgument); if (Size > 128) return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", IsArgument); return false; } void X86_64TargetCodeGenInfo::checkFunctionCallABI( CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, const FunctionDecl *Callee, const CallArgList &Args) const { llvm::StringMap CallerMap; llvm::StringMap CalleeMap; unsigned ArgIndex = 0; // We need to loop through the actual call arguments rather than the // function's parameters, in case this variadic. for (const CallArg &Arg : Args) { // The "avx" feature changes how vectors >128 in size are passed. "avx512f" // additionally changes how vectors >256 in size are passed. Like GCC, we // warn when a function is called with an argument where this will change. // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, // the caller and callee features are mismatched. // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can // change its ABI with attribute-target after this call. if (Arg.getType()->isVectorType() && CGM.getContext().getTypeSize(Arg.getType()) > 128) { initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); QualType Ty = Arg.getType(); // The CallArg seems to have desugared the type already, so for clearer // diagnostics, replace it with the type in the FunctionDecl if possible. if (ArgIndex < Callee->getNumParams()) Ty = Callee->getParamDecl(ArgIndex)->getType(); if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, CalleeMap, Ty, /*IsArgument*/ true)) return; } ++ArgIndex; } // Check return always, as we don't have a good way of knowing in codegen // whether this value is used, tail-called, etc. if (Callee->getReturnType()->isVectorType() && CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, CalleeMap, Callee->getReturnType(), /*IsArgument*/ false); } } std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) { // If the argument does not end in .lib, automatically add the suffix. // If the argument contains a space, enclose it in quotes. // This matches the behavior of MSVC. bool Quote = Lib.contains(' '); std::string ArgStr = Quote ? "\"" : ""; ArgStr += Lib; if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a")) ArgStr += ".lib"; ArgStr += Quote ? "\"" : ""; return ArgStr; } namespace { class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { public: WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, unsigned NumRegisterParameters) : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, NumRegisterParameters, false) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override; void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const override { Opt = "/DEFAULTLIB:"; Opt += qualifyWindowsLibrary(Lib); } void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const override { Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; } }; } // namespace void WinX86_32TargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); if (GV->isDeclaration()) return; addStackProbeTargetAttributes(D, GV, CGM); } namespace { class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { public: WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : TargetCodeGenInfo(std::make_unique(CGT, AVXLevel)) { SwiftInfo = std::make_unique(CGT, /*SwiftErrorInRegister=*/true); } void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override; int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { return 7; } bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const override { llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); // 0-15 are the 16 integer registers. // 16 is %rip. AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); return false; } void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const override { Opt = "/DEFAULTLIB:"; Opt += qualifyWindowsLibrary(Lib); } void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const override { Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; } }; } // namespace void WinX86_64TargetCodeGenInfo::setTargetAttributes( const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); if (GV->isDeclaration()) return; if (const FunctionDecl *FD = dyn_cast_or_null(D)) { if (FD->hasAttr()) { llvm::Function *Fn = cast(GV); Fn->addFnAttr("stackrealign"); } addX86InterruptAttrs(FD, GV, CGM); } addStackProbeTargetAttributes(D, GV, CGM); } void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const { // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: // // (a) If one of the classes is Memory, the whole argument is passed in // memory. // // (b) If X87UP is not preceded by X87, the whole argument is passed in // memory. // // (c) If the size of the aggregate exceeds two eightbytes and the first // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole // argument is passed in memory. NOTE: This is necessary to keep the // ABI working for processors that don't support the __m256 type. // // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. // // Some of these are enforced by the merging logic. Others can arise // only with unions; for example: // union { _Complex double; unsigned; } // // Note that clauses (b) and (c) were added in 0.98. // if (Hi == Memory) Lo = Memory; if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) Lo = Memory; if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) Lo = Memory; if (Hi == SSEUp && Lo != SSE) Hi = SSE; } X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is // classified recursively so that always two fields are // considered. The resulting class is calculated according to // the classes of the fields in the eightbyte: // // (a) If both classes are equal, this is the resulting class. // // (b) If one of the classes is NO_CLASS, the resulting class is // the other class. // // (c) If one of the classes is MEMORY, the result is the MEMORY // class. // // (d) If one of the classes is INTEGER, the result is the // INTEGER. // // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, // MEMORY is used as class. // // (f) Otherwise class SSE is used. // Accum should never be memory (we should have returned) or // ComplexX87 (because this cannot be passed in a structure). assert((Accum != Memory && Accum != ComplexX87) && "Invalid accumulated classification during merge."); if (Accum == Field || Field == NoClass) return Accum; if (Field == Memory) return Memory; if (Accum == NoClass) return Field; if (Accum == Integer || Field == Integer) return Integer; if (Field == X87 || Field == X87Up || Field == ComplexX87 || Accum == X87 || Accum == X87Up) return Memory; return SSE; } void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, Class &Hi, bool isNamedArg, bool IsRegCall) const { // FIXME: This code can be simplified by introducing a simple value class for // Class pairs with appropriate constructor methods for the various // situations. // FIXME: Some of the split computations are wrong; unaligned vectors // shouldn't be passed in registers for example, so there is no chance they // can straddle an eightbyte. Verify & simplify. Lo = Hi = NoClass; Class &Current = OffsetBase < 64 ? Lo : Hi; Current = Memory; if (const BuiltinType *BT = Ty->getAs()) { BuiltinType::Kind k = BT->getKind(); if (k == BuiltinType::Void) { Current = NoClass; } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { Lo = Integer; Hi = Integer; } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { Current = Integer; } else if (k == BuiltinType::Float || k == BuiltinType::Double || k == BuiltinType::Float16 || k == BuiltinType::BFloat16) { Current = SSE; } else if (k == BuiltinType::LongDouble) { const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); if (LDF == &llvm::APFloat::IEEEquad()) { Lo = SSE; Hi = SSEUp; } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { Lo = X87; Hi = X87Up; } else if (LDF == &llvm::APFloat::IEEEdouble()) { Current = SSE; } else llvm_unreachable("unexpected long double representation!"); } // FIXME: _Decimal32 and _Decimal64 are SSE. // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). return; } if (const EnumType *ET = Ty->getAs()) { // Classify the underlying integer type. classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); return; } if (Ty->hasPointerRepresentation()) { Current = Integer; return; } if (Ty->isMemberPointerType()) { if (Ty->isMemberFunctionPointerType()) { if (Has64BitPointers) { // If Has64BitPointers, this is an {i64, i64}, so classify both // Lo and Hi now. Lo = Hi = Integer; } else { // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that // straddles an eightbyte boundary, Hi should be classified as well. uint64_t EB_FuncPtr = (OffsetBase) / 64; uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; if (EB_FuncPtr != EB_ThisAdj) { Lo = Hi = Integer; } else { Current = Integer; } } } else { Current = Integer; } return; } if (const VectorType *VT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VT); if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { // gcc passes the following as integer: // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> // 2 bytes - <2 x char>, <1 x short> // 1 byte - <1 x char> Current = Integer; // If this type crosses an eightbyte boundary, it should be // split. uint64_t EB_Lo = (OffsetBase) / 64; uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; if (EB_Lo != EB_Hi) Hi = Lo; } else if (Size == 64) { QualType ElementType = VT->getElementType(); // gcc passes <1 x double> in memory. :( if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) return; // gcc passes <1 x long long> as SSE but clang used to unconditionally // pass them as integer. For platforms where clang is the de facto // platform compiler, we must continue to use integer. if (!classifyIntegerMMXAsSSE() && (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || ElementType->isSpecificBuiltinType(BuiltinType::Long) || ElementType->isSpecificBuiltinType(BuiltinType::ULong))) Current = Integer; else Current = SSE; // If this type crosses an eightbyte boundary, it should be // split. if (OffsetBase && OffsetBase != 64) Hi = Lo; } else if (Size == 128 || (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { QualType ElementType = VT->getElementType(); // gcc passes 256 and 512 bit vectors in memory. :( if (passInt128VectorsInMem() && Size != 128 && (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) return; // Arguments of 256-bits are split into four eightbyte chunks. The // least significant one belongs to class SSE and all the others to class // SSEUP. The original Lo and Hi design considers that types can't be // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. // This design isn't correct for 256-bits, but since there're no cases // where the upper parts would need to be inspected, avoid adding // complexity and just consider Hi to match the 64-256 part. // // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in // registers if they are "named", i.e. not part of the "..." of a // variadic function. // // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are // split into eight eightbyte chunks, one SSE and seven SSEUP. Lo = SSE; Hi = SSEUp; } return; } if (const ComplexType *CT = Ty->getAs()) { QualType ET = getContext().getCanonicalType(CT->getElementType()); uint64_t Size = getContext().getTypeSize(Ty); if (ET->isIntegralOrEnumerationType()) { if (Size <= 64) Current = Integer; else if (Size <= 128) Lo = Hi = Integer; } else if (ET->isFloat16Type() || ET == getContext().FloatTy || ET->isBFloat16Type()) { Current = SSE; } else if (ET == getContext().DoubleTy) { Lo = Hi = SSE; } else if (ET == getContext().LongDoubleTy) { const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); if (LDF == &llvm::APFloat::IEEEquad()) Current = Memory; else if (LDF == &llvm::APFloat::x87DoubleExtended()) Current = ComplexX87; else if (LDF == &llvm::APFloat::IEEEdouble()) Lo = Hi = SSE; else llvm_unreachable("unexpected long double representation!"); } // If this complex type crosses an eightbyte boundary then it // should be split. uint64_t EB_Real = (OffsetBase) / 64; uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; if (Hi == NoClass && EB_Real != EB_Imag) Hi = Lo; return; } if (const auto *EITy = Ty->getAs()) { if (EITy->getNumBits() <= 64) Current = Integer; else if (EITy->getNumBits() <= 128) Lo = Hi = Integer; // Larger values need to get passed in memory. return; } if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { // Arrays are treated like structures. uint64_t Size = getContext().getTypeSize(Ty); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger // than eight eightbytes, ..., it has class MEMORY. // regcall ABI doesn't have limitation to an object. The only limitation // is the free registers, which will be checked in computeInfo. if (!IsRegCall && Size > 512) return; // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned // fields, it has class MEMORY. // // Only need to check alignment of array base. if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) return; // Otherwise implement simplified merge. We could be smarter about // this, but it isn't worth it and would be harder to verify. Current = NoClass; uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); uint64_t ArraySize = AT->getSize().getZExtValue(); // The only case a 256-bit wide vector could be used is when the array // contains a single 256-bit element. Since Lo and Hi logic isn't extended // to work for sizes wider than 128, early check and fallback to memory. // if (Size > 128 && (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) return; for (uint64_t i=0, Offset=OffsetBase; igetElementType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } postMerge(Size, Lo, Hi); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); return; } if (const RecordType *RT = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(Ty); // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger // than eight eightbytes, ..., it has class MEMORY. if (Size > 512) return; // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial // copy constructor or a non-trivial destructor, it is passed by invisible // reference. if (getRecordArgABI(RT, getCXXABI())) return; const RecordDecl *RD = RT->getDecl(); // Assume variable sized types are passed in memory. if (RD->hasFlexibleArrayMember()) return; const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); // Reset Lo class, this will be recomputed. Current = NoClass; // If this is a C++ record, classify the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (const auto &I : CXXRD->bases()) { assert(!I.isVirtual() && !I.getType()->isDependentType() && "Unexpected base class!"); const auto *Base = cast(I.getType()->castAs()->getDecl()); // Classify this field. // // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a // single eightbyte, each is classified separately. Each eightbyte gets // initialized to class NO_CLASS. Class FieldLo, FieldHi; uint64_t Offset = OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) { postMerge(Size, Lo, Hi); return; } } } // Classify the fields one at a time, merging the results. unsigned idx = 0; bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver11 || getContext().getTargetInfo().getTriple().isPS(); bool IsUnion = RT->isUnionType() && !UseClang11Compat; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); bool BitField = i->isBitField(); // Ignore padding bit-fields. if (BitField && i->isUnnamedBitfield()) continue; // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than // eight eightbytes, or it contains unaligned fields, it has class MEMORY. // // The only case a 256-bit or a 512-bit wide vector could be used is when // the struct contains a single 256-bit or 512-bit element. Early check // and fallback to memory. // // FIXME: Extended the Lo and Hi logic properly to work for size wider // than 128. if (Size > 128 && ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || Size > getNativeVectorSizeForAVXABI(AVXLevel))) { Lo = Memory; postMerge(Size, Lo, Hi); return; } // Note, skip this test for bit-fields, see below. if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { Lo = Memory; postMerge(Size, Lo, Hi); return; } // Classify this field. // // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate // exceeds a single eightbyte, each is classified // separately. Each eightbyte gets initialized to class // NO_CLASS. Class FieldLo, FieldHi; // Bit-fields require special handling, they do not force the // structure to be passed in memory even if unaligned, and // therefore they can straddle an eightbyte. if (BitField) { assert(!i->isUnnamedBitfield()); uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); uint64_t Size = i->getBitWidthValue(getContext()); uint64_t EB_Lo = Offset / 64; uint64_t EB_Hi = (Offset + Size - 1) / 64; if (EB_Lo) { assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); FieldLo = NoClass; FieldHi = Integer; } else { FieldLo = Integer; FieldHi = EB_Hi ? Integer : NoClass; } } else classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); Lo = merge(Lo, FieldLo); Hi = merge(Hi, FieldHi); if (Lo == Memory || Hi == Memory) break; } postMerge(Size, Lo, Hi); } } ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { // If this is a scalar LLVM value then assume LLVM will pass it in the right // place naturally. if (!isAggregateTypeForABI(Ty)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (Ty->isBitIntType()) return getNaturalAlignIndirect(Ty); return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } return getNaturalAlignIndirect(Ty); } bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { if (const VectorType *VecTy = Ty->getAs()) { uint64_t Size = getContext().getTypeSize(VecTy); unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); if (Size <= 64 || Size > LargestVector) return true; QualType EltTy = VecTy->getElementType(); if (passInt128VectorsInMem() && (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) return true; } return false; } ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, unsigned freeIntRegs) const { // If this is a scalar LLVM value then assume LLVM will pass it in the right // place naturally. // // This assumption is optimistic, as there could be free registers available // when we need to pass this argument in memory, and LLVM could try to pass // the argument in the free register. This does not seem to happen currently, // but this code would be much safer if we could mark the argument with // 'onstack'. See PR12193. if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && !Ty->isBitIntType()) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) : ABIArgInfo::getDirect()); } if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); // Compute the byval alignment. We specify the alignment of the byval in all // cases so that the mid-level optimizer knows the alignment of the byval. unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); // Attempt to avoid passing indirect results using byval when possible. This // is important for good codegen. // // We do this by coercing the value into a scalar type which the backend can // handle naturally (i.e., without using byval). // // For simplicity, we currently only do this when we have exhausted all of the // free integer registers. Doing this when there are free integer registers // would require more care, as we would have to ensure that the coerced value // did not claim the unused register. That would require either reording the // arguments to the function (so that any subsequent inreg values came first), // or only doing this optimization when there were no following arguments that // might be inreg. // // We currently expect it to be rare (particularly in well written code) for // arguments to be passed on the stack when there are still free integer // registers available (this would typically imply large structs being passed // by value), so this seems like a fair tradeoff for now. // // We can revisit this if the backend grows support for 'onstack' parameter // attributes. See PR12193. if (freeIntRegs == 0) { uint64_t Size = getContext().getTypeSize(Ty); // If this type fits in an eightbyte, coerce it into the matching integral // type, which will end up on the stack (with alignment 8). if (Align == 8 && Size <= 64) return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); } return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); } /// The ABI specifies that a value should be passed in a full vector XMM/YMM /// register. Pick an LLVM IR type that will be passed as a vector register. llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { // Wrapper structs/arrays that only contain vectors are passed just like // vectors; strip them off if present. if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) Ty = QualType(InnerTy, 0); llvm::Type *IRType = CGT.ConvertType(Ty); if (isa(IRType)) { // Don't pass vXi128 vectors in their native type, the backend can't // legalize them. if (passInt128VectorsInMem() && cast(IRType)->getElementType()->isIntegerTy(128)) { // Use a vXi64 vector. uint64_t Size = getContext().getTypeSize(Ty); return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), Size / 64); } return IRType; } if (IRType->getTypeID() == llvm::Type::FP128TyID) return IRType; // We couldn't find the preferred IR vector type for 'Ty'. uint64_t Size = getContext().getTypeSize(Ty); assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); // Return a LLVM IR vector type based on the size of 'Ty'. return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), Size / 64); } /// BitsContainNoUserData - Return true if the specified [start,end) bit range /// is known to either be off the end of the specified type or being in /// alignment padding. The user type specified is known to be at most 128 bits /// in size, and have passed through X86_64ABIInfo::classify with a successful /// classification that put one of the two halves in the INTEGER class. /// /// It is conservatively correct to return false. static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, unsigned EndBit, ASTContext &Context) { // If the bytes being queried are off the end of the type, there is no user // data hiding here. This handles analysis of builtins, vectors and other // types that don't contain interesting padding. unsigned TySize = (unsigned)Context.getTypeSize(Ty); if (TySize <= StartBit) return true; if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); // Check each element to see if the element overlaps with the queried range. for (unsigned i = 0; i != NumElts; ++i) { // If the element is after the span we care about, then we're done.. unsigned EltOffset = i*EltSize; if (EltOffset >= EndBit) break; unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; if (!BitsContainNoUserData(AT->getElementType(), EltStart, EndBit-EltOffset, Context)) return false; } // If it overlaps no elements, then it is safe to process as padding. return true; } if (const RecordType *RT = Ty->getAs()) { const RecordDecl *RD = RT->getDecl(); const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (const auto &I : CXXRD->bases()) { assert(!I.isVirtual() && !I.getType()->isDependentType() && "Unexpected base class!"); const auto *Base = cast(I.getType()->castAs()->getDecl()); // If the base is after the span we care about, ignore it. unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); if (BaseOffset >= EndBit) continue; unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; if (!BitsContainNoUserData(I.getType(), BaseStart, EndBit-BaseOffset, Context)) return false; } } // Verify that no field has data that overlaps the region of interest. Yes // this could be sped up a lot by being smarter about queried fields, // however we're only looking at structs up to 16 bytes, so we don't care // much. unsigned idx = 0; for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); i != e; ++i, ++idx) { unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); // If we found a field after the region we care about, then we're done. if (FieldOffset >= EndBit) break; unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, Context)) return false; } // If nothing in this record overlapped the area of interest, then we're // clean. return true; } return false; } /// getFPTypeAtOffset - Return a floating point type at the specified offset. static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, const llvm::DataLayout &TD) { if (IROffset == 0 && IRType->isFloatingPointTy()) return IRType; // If this is a struct, recurse into the field at the specified offset. if (llvm::StructType *STy = dyn_cast(IRType)) { if (!STy->getNumContainedTypes()) return nullptr; const llvm::StructLayout *SL = TD.getStructLayout(STy); unsigned Elt = SL->getElementContainingOffset(IROffset); IROffset -= SL->getElementOffset(Elt); return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); } // If this is an array, recurse into the field at the specified offset. if (llvm::ArrayType *ATy = dyn_cast(IRType)) { llvm::Type *EltTy = ATy->getElementType(); unsigned EltSize = TD.getTypeAllocSize(EltTy); IROffset -= IROffset / EltSize * EltSize; return getFPTypeAtOffset(EltTy, IROffset, TD); } return nullptr; } /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the /// low 8 bytes of an XMM register, corresponding to the SSE class. llvm::Type *X86_64ABIInfo:: GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const { const llvm::DataLayout &TD = getDataLayout(); unsigned SourceSize = (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); if (!T0 || T0->isDoubleTy()) return llvm::Type::getDoubleTy(getVMContext()); // Get the adjacent FP type. llvm::Type *T1 = nullptr; unsigned T0Size = TD.getTypeAllocSize(T0); if (SourceSize > T0Size) T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); if (T1 == nullptr) { // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due // to its alignment. if (T0->is16bitFPTy() && SourceSize > 4) T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); // If we can't get a second FP type, return a simple half or float. // avx512fp16-abi.c:pr51813_2 shows it works to return float for // {float, i8} too. if (T1 == nullptr) return T0; } if (T0->isFloatTy() && T1->isFloatTy()) return llvm::FixedVectorType::get(T0, 2); if (T0->is16bitFPTy() && T1->is16bitFPTy()) { llvm::Type *T2 = nullptr; if (SourceSize > 4) T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); if (T2 == nullptr) return llvm::FixedVectorType::get(T0, 2); return llvm::FixedVectorType::get(T0, 4); } if (T0->is16bitFPTy() || T1->is16bitFPTy()) return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); return llvm::Type::getDoubleTy(getVMContext()); } /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in /// an 8-byte GPR. This means that we either have a scalar or we are talking /// about the high or low part of an up-to-16-byte struct. This routine picks /// the best LLVM IR type to represent this, which may be i64 or may be anything /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, /// etc). /// /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for /// the source type. IROffset is an offset in bytes into the LLVM IR type that /// the 8-byte value references. PrefType may be null. /// /// SourceTy is the source-level type for the entire argument. SourceOffset is /// an offset into this that we're processing (which is always either 0 or 8). /// llvm::Type *X86_64ABIInfo:: GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, QualType SourceTy, unsigned SourceOffset) const { // If we're dealing with an un-offset LLVM IR type, then it means that we're // returning an 8-byte unit starting with it. See if we can safely use it. if (IROffset == 0) { // Pointers and int64's always fill the 8-byte unit. if ((isa(IRType) && Has64BitPointers) || IRType->isIntegerTy(64)) return IRType; // If we have a 1/2/4-byte integer, we can use it only if the rest of the // goodness in the source type is just tail padding. This is allowed to // kick in for struct {double,int} on the int, but not on // struct{double,int,int} because we wouldn't return the second int. We // have to do this analysis on the source type because we can't depend on // unions being lowered a specific way etc. if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || IRType->isIntegerTy(32) || (isa(IRType) && !Has64BitPointers)) { unsigned BitWidth = isa(IRType) ? 32 : cast(IRType)->getBitWidth(); if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, SourceOffset*8+64, getContext())) return IRType; } } if (llvm::StructType *STy = dyn_cast(IRType)) { // If this is a struct, recurse into the field at the specified offset. const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); if (IROffset < SL->getSizeInBytes()) { unsigned FieldIdx = SL->getElementContainingOffset(IROffset); IROffset -= SL->getElementOffset(FieldIdx); return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, SourceTy, SourceOffset); } } if (llvm::ArrayType *ATy = dyn_cast(IRType)) { llvm::Type *EltTy = ATy->getElementType(); unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); unsigned EltOffset = IROffset/EltSize*EltSize; return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, SourceOffset); } // Okay, we don't have any better idea of what to pass, so we pass this in an // integer register that isn't too big to fit the rest of the struct. unsigned TySizeInBytes = (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); assert(TySizeInBytes != SourceOffset && "Empty field?"); // It is always safe to classify this as an integer type up to i64 that // isn't larger than the structure. return llvm::IntegerType::get(getVMContext(), std::min(TySizeInBytes-SourceOffset, 8U)*8); } /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally /// be used as elements of a two register pair to pass or return, return a /// first class aggregate to represent them. For example, if the low part of /// a by-value argument should be passed as i32* and the high part as float, /// return {i32*, float}. static llvm::Type * GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, const llvm::DataLayout &TD) { // In order to correctly satisfy the ABI, we need to the high part to start // at offset 8. If the high and low parts we inferred are both 4-byte types // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have // the second element at offset 8. Check for this: unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); llvm::Align HiAlign = TD.getABITypeAlign(Hi); unsigned HiStart = llvm::alignTo(LoSize, HiAlign); assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); // To handle this, we have to increase the size of the low part so that the // second element will start at an 8 byte offset. We can't increase the size // of the second element because it might make us access off the end of the // struct. if (HiStart != 8) { // There are usually two sorts of types the ABI generation code can produce // for the low part of a pair that aren't 8 bytes in size: half, float or // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and // NaCl). // Promote these to a larger type. if (Lo->isHalfTy() || Lo->isFloatTy()) Lo = llvm::Type::getDoubleTy(Lo->getContext()); else { assert((Lo->isIntegerTy() || Lo->isPointerTy()) && "Invalid/unknown lo type"); Lo = llvm::Type::getInt64Ty(Lo->getContext()); } } llvm::StructType *Result = llvm::StructType::get(Lo, Hi); // Verify that the second element is at an 8-byte offset. assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && "Invalid x86-64 argument pair!"); return Result; } ABIArgInfo X86_64ABIInfo:: classifyReturnType(QualType RetTy) const { // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the // classification algorithm. X86_64ABIInfo::Class Lo, Hi; classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); // Check some invariants. assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); llvm::Type *ResType = nullptr; switch (Lo) { case NoClass: if (Hi == NoClass) return ABIArgInfo::getIgnore(); // If the low part is just padding, it takes no register, leave ResType // null. assert((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part"); break; case SSEUp: case X87Up: llvm_unreachable("Invalid classification for lo word."); // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via // hidden argument. case Memory: return getIndirectReturnResult(RetTy); // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next // available register of the sequence %rax, %rdx is used. case Integer: ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); // If we have a sign or zero extended integer, make sure to return Extend // so that the parameter gets the right LLVM IR attributes. if (Hi == NoClass && isa(ResType)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = RetTy->getAs()) RetTy = EnumTy->getDecl()->getIntegerType(); if (RetTy->isIntegralOrEnumerationType() && isPromotableIntegerTypeForABI(RetTy)) return ABIArgInfo::getExtend(RetTy); } break; // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next // available SSE register of the sequence %xmm0, %xmm1 is used. case SSE: ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); break; // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is // returned on the X87 stack in %st0 as 80-bit x87 number. case X87: ResType = llvm::Type::getX86_FP80Ty(getVMContext()); break; // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real // part of the value is returned in %st0 and the imaginary part in // %st1. case ComplexX87: assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), llvm::Type::getX86_FP80Ty(getVMContext())); break; } llvm::Type *HighPart = nullptr; switch (Hi) { // Memory was handled previously and X87 should // never occur as a hi class. case Memory: case X87: llvm_unreachable("Invalid classification for hi word."); case ComplexX87: // Previously handled. case NoClass: break; case Integer: HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; case SSE: HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte // is passed in the next available eightbyte chunk if the last used // vector register. // // SSEUP should always be preceded by SSE, just widen. case SSEUp: assert(Lo == SSE && "Unexpected SSEUp classification."); ResType = GetByteVectorType(RetTy); break; // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is // returned together with the previous X87 value in %st0. case X87Up: // If X87Up is preceded by X87, we don't need to do // anything. However, in some cases with unions it may not be // preceded by X87. In such situations we follow gcc and pass the // extra bits in an SSE reg. if (Lo != X87) { HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); if (Lo == NoClass) // Return HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); } break; } // If a high part was specified, merge it together with the low part. It is // known to pass in the high eightbyte of the result. We do this by forming a // first class struct aggregate with the high and low part: {low, high} if (HighPart) ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); return ABIArgInfo::getDirect(ResType); } ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, bool isNamedArg, bool IsRegCall) const { Ty = useFirstFieldIfTransparentUnion(Ty); X86_64ABIInfo::Class Lo, Hi; classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall); // Check some invariants. // FIXME: Enforce these by construction. assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); neededInt = 0; neededSSE = 0; llvm::Type *ResType = nullptr; switch (Lo) { case NoClass: if (Hi == NoClass) return ABIArgInfo::getIgnore(); // If the low part is just padding, it takes no register, leave ResType // null. assert((Hi == SSE || Hi == Integer || Hi == X87Up) && "Unknown missing lo part"); break; // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument // on the stack. case Memory: // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or // COMPLEX_X87, it is passed in memory. case X87: case ComplexX87: if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) ++neededInt; return getIndirectResult(Ty, freeIntRegs); case SSEUp: case X87Up: llvm_unreachable("Invalid classification for lo word."); // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 // and %r9 is used. case Integer: ++neededInt; // Pick an 8-byte type based on the preferred type. ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); // If we have a sign or zero extended integer, make sure to return Extend // so that the parameter gets the right LLVM IR attributes. if (Hi == NoClass && isa(ResType)) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); if (Ty->isIntegralOrEnumerationType() && isPromotableIntegerTypeForABI(Ty)) return ABIArgInfo::getExtend(Ty); } break; // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next // available SSE register is used, the registers are taken in the // order from %xmm0 to %xmm7. case SSE: { llvm::Type *IRType = CGT.ConvertType(Ty); ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); ++neededSSE; break; } } llvm::Type *HighPart = nullptr; switch (Hi) { // Memory was handled previously, ComplexX87 and X87 should // never occur as hi classes, and X87Up must be preceded by X87, // which is passed in memory. case Memory: case X87: case ComplexX87: llvm_unreachable("Invalid classification for hi word."); case NoClass: break; case Integer: ++neededInt; // Pick an 8-byte type based on the preferred type. HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); if (Lo == NoClass) // Pass HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); break; // X87Up generally doesn't occur here (long double is passed in // memory), except in situations involving unions. case X87Up: case SSE: HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); if (Lo == NoClass) // Pass HighPart at offset 8 in memory. return ABIArgInfo::getDirect(HighPart, 8); ++neededSSE; break; // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the // eightbyte is passed in the upper half of the last used SSE // register. This only happens when 128-bit vectors are passed. case SSEUp: assert(Lo == SSE && "Unexpected SSEUp classification"); ResType = GetByteVectorType(Ty); break; } // If a high part was specified, merge it together with the low part. It is // known to pass in the high eightbyte of the result. We do this by forming a // first class struct aggregate with the high and low part: {low, high} if (HighPart) ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); return ABIArgInfo::getDirect(ResType); } ABIArgInfo X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, unsigned &NeededSSE, unsigned &MaxVectorWidth) const { auto RT = Ty->getAs(); assert(RT && "classifyRegCallStructType only valid with struct types"); if (RT->getDecl()->hasFlexibleArrayMember()) return getIndirectReturnResult(Ty); // Sum up bases if (auto CXXRD = dyn_cast(RT->getDecl())) { if (CXXRD->isDynamicClass()) { NeededInt = NeededSSE = 0; return getIndirectReturnResult(Ty); } for (const auto &I : CXXRD->bases()) if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE, MaxVectorWidth) .isIndirect()) { NeededInt = NeededSSE = 0; return getIndirectReturnResult(Ty); } } // Sum up members for (const auto *FD : RT->getDecl()->fields()) { QualType MTy = FD->getType(); if (MTy->isRecordType() && !MTy->isUnionType()) { if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE, MaxVectorWidth) .isIndirect()) { NeededInt = NeededSSE = 0; return getIndirectReturnResult(Ty); } } else { unsigned LocalNeededInt, LocalNeededSSE; if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE, true, true) .isIndirect()) { NeededInt = NeededSSE = 0; return getIndirectReturnResult(Ty); } if (const auto *AT = getContext().getAsConstantArrayType(MTy)) MTy = AT->getElementType(); if (const auto *VT = MTy->getAs()) if (getContext().getTypeSize(VT) > MaxVectorWidth) MaxVectorWidth = getContext().getTypeSize(VT); NeededInt += LocalNeededInt; NeededSSE += LocalNeededSSE; } } return ABIArgInfo::getDirect(); } ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt, unsigned &NeededSSE, unsigned &MaxVectorWidth) const { NeededInt = 0; NeededSSE = 0; MaxVectorWidth = 0; return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE, MaxVectorWidth); } void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { const unsigned CallingConv = FI.getCallingConvention(); // It is possible to force Win64 calling convention on any x86_64 target by // using __attribute__((ms_abi)). In such case to correctly emit Win64 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. if (CallingConv == llvm::CallingConv::Win64) { WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); Win64ABIInfo.computeInfo(FI); return; } bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; // Keep track of the number of assigned registers. unsigned FreeIntRegs = IsRegCall ? 11 : 6; unsigned FreeSSERegs = IsRegCall ? 16 : 8; unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0; if (!::classifyReturnType(getCXXABI(), FI, *this)) { if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && !FI.getReturnType()->getTypePtr()->isUnionType()) { FI.getReturnInfo() = classifyRegCallStructType( FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth); if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { FreeIntRegs -= NeededInt; FreeSSERegs -= NeededSSE; } else { FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); } } else if (IsRegCall && FI.getReturnType()->getAs() && getContext().getCanonicalType(FI.getReturnType() ->getAs() ->getElementType()) == getContext().LongDoubleTy) // Complex Long Double Type is passed in Memory when Regcall // calling convention is used. FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); else FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); } // If the return value is indirect, then the hidden argument is consuming one // integer register. if (FI.getReturnInfo().isIndirect()) --FreeIntRegs; else if (NeededSSE && MaxVectorWidth > 0) FI.setMaxVectorWidth(MaxVectorWidth); // The chain argument effectively gives us another free register. if (FI.isChainCall()) ++FreeIntRegs; unsigned NumRequiredArgs = FI.getNumRequiredArgs(); // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers // get assigned (in left-to-right order) for passing as follows... unsigned ArgNo = 0; for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); it != ie; ++it, ++ArgNo) { bool IsNamedArg = ArgNo < NumRequiredArgs; if (IsRegCall && it->type->isStructureOrClassType()) it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE, MaxVectorWidth); else it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, NeededSSE, IsNamedArg); // AMD64-ABI 3.2.3p3: If there are no registers available for any // eightbyte of an argument, the whole argument is passed on the // stack. If registers have already been assigned for some // eightbytes of such an argument, the assignments get reverted. if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { FreeIntRegs -= NeededInt; FreeSSERegs -= NeededSSE; if (MaxVectorWidth > FI.getMaxVectorWidth()) FI.setMaxVectorWidth(MaxVectorWidth); } else { it->info = getIndirectResult(it->type, FreeIntRegs); } } } static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) { Address overflow_arg_area_p = CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); llvm::Value *overflow_arg_area = CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 // byte boundary if alignment needed by type exceeds 8 byte boundary. // It isn't stated explicitly in the standard, but in practice we use // alignment greater than 16 where necessary. CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); if (Align > CharUnits::fromQuantity(8)) { overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, Align); } // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); llvm::Value *Res = CGF.Builder.CreateBitCast(overflow_arg_area, llvm::PointerType::getUnqual(LTy)); // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: // l->overflow_arg_area + sizeof(type). // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to // an 8 byte boundary. uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, Offset, "overflow_arg_area.next"); CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. return Address(Res, LTy, Align); } Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { // Assume that va_list type is correct; should be pointer to LLVM type: // struct { // i32 gp_offset; // i32 fp_offset; // i8* overflow_arg_area; // i8* reg_save_area; // }; unsigned neededInt, neededSSE; Ty = getContext().getCanonicalType(Ty); ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, /*isNamedArg*/false); // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed // in the registers. If not go to step 7. if (!neededInt && !neededSSE) return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of // general purpose registers needed to pass type and num_fp to hold // the number of floating point registers needed. // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into // registers. In the case: l->gp_offset > 48 - num_gp * 8 or // l->fp_offset > 304 - num_fp * 16 go to step 7. // // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of // register save space). llvm::Value *InRegs = nullptr; Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; if (neededInt) { gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); } if (neededSSE) { fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); llvm::Value *FitsInFP = llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; } llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); // Emit code to load the value if it was passed in registers. CGF.EmitBlock(InRegBlock); // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with // an offset of l->gp_offset and/or l->fp_offset. This may require // copying to a temporary location in case the parameter is passed // in different register classes or requires an alignment greater // than 8 for general purpose registers and 16 for XMM registers. // // FIXME: This really results in shameful code when we end up needing to // collect arguments from different places; often what should result in a // simple assembling of a structure from scattered addresses has many more // loads than necessary. Can we clean this up? llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); Address RegAddr = Address::invalid(); if (neededInt && neededSSE) { // FIXME: Cleanup. assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); llvm::StructType *ST = cast(AI.getCoerceToType()); Address Tmp = CGF.CreateMemTemp(Ty); Tmp = Tmp.withElementType(ST); assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); llvm::Type *TyLo = ST->getElementType(0); llvm::Type *TyHi = ST->getElementType(1); assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && "Unexpected ABI info for mixed regs"); llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); llvm::Value *GPAddr = CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); llvm::Value *FPAddr = CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; // Copy the first element. // FIXME: Our choice of alignment here and below is probably pessimistic. llvm::Value *V = CGF.Builder.CreateAlignedLoad( TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo))); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); // Copy the second element. V = CGF.Builder.CreateAlignedLoad( TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi))); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); RegAddr = Tmp.withElementType(LTy); } else if (neededInt) { RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), LTy, CharUnits::fromQuantity(8)); // Copy to a temporary if necessary to ensure the appropriate alignment. auto TInfo = getContext().getTypeInfoInChars(Ty); uint64_t TySize = TInfo.Width.getQuantity(); CharUnits TyAlign = TInfo.Align; // Copy into a temporary if the type is more aligned than the // register save area. if (TyAlign.getQuantity() > 8) { Address Tmp = CGF.CreateMemTemp(Ty); CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); RegAddr = Tmp; } } else if (neededSSE == 1) { RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), LTy, CharUnits::fromQuantity(16)); } else { assert(neededSSE == 2 && "Invalid number of needed registers!"); // SSE registers are spaced 16 bytes apart in the register save // area, we need to collect the two eightbytes together. // The ABI isn't explicit about this, but it seems reasonable // to assume that the slots are 16-byte aligned, since the stack is // naturally 16-byte aligned and the prologue is expected to store // all the SSE registers to the RSA. Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), CGF.Int8Ty, CharUnits::fromQuantity(16)); Address RegAddrHi = CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, CharUnits::fromQuantity(16)); llvm::Type *ST = AI.canHaveCoerceToType() ? AI.getCoerceToType() : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); llvm::Value *V; Address Tmp = CGF.CreateMemTemp(Ty); Tmp = Tmp.withElementType(ST); V = CGF.Builder.CreateLoad( RegAddrLo.withElementType(ST->getStructElementType(0))); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); V = CGF.Builder.CreateLoad( RegAddrHi.withElementType(ST->getStructElementType(1))); CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); RegAddr = Tmp.withElementType(LTy); } // AMD64-ABI 3.5.7p5: Step 5. Set: // l->gp_offset = l->gp_offset + num_gp * 8 // l->fp_offset = l->fp_offset + num_fp * 16. if (neededInt) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), gp_offset_p); } if (neededSSE) { llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), fp_offset_p); } CGF.EmitBranch(ContBlock); // Emit code to load the value if it was passed in memory. CGF.EmitBlock(InMemBlock); Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); // Return the appropriate result. CGF.EmitBlock(ContBlock); Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, "vaarg.addr"); return ResAddr; } Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." uint64_t Width = getContext().getTypeSize(Ty); bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, CGF.getContext().getTypeInfoInChars(Ty), CharUnits::fromQuantity(8), /*allowHigherAlign*/ false); } ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { const Type *Base = nullptr; uint64_t NumElts = 0; if (!Ty->isBuiltinType() && !Ty->isVectorType() && isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { FreeSSERegs -= NumElts; return getDirectX86Hva(); } return current; } ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, bool IsVectorCall, bool IsRegCall) const { if (Ty->isVoidType()) return ABIArgInfo::getIgnore(); if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); TypeInfo Info = getContext().getTypeInfo(Ty); uint64_t Width = Info.Width; CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); const RecordType *RT = Ty->getAs(); if (RT) { if (!IsReturnType) { if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); } if (RT->getDecl()->hasFlexibleArrayMember()) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } const Type *Base = nullptr; uint64_t NumElts = 0; // vectorcall adds the concept of a homogenous vector aggregate, similar to // other targets. if ((IsVectorCall || IsRegCall) && isHomogeneousAggregate(Ty, Base, NumElts)) { if (IsRegCall) { if (FreeSSERegs >= NumElts) { FreeSSERegs -= NumElts; if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) return ABIArgInfo::getDirect(); return ABIArgInfo::getExpand(); } return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); } else if (IsVectorCall) { if (FreeSSERegs >= NumElts && (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { FreeSSERegs -= NumElts; return ABIArgInfo::getDirect(); } else if (IsReturnType) { return ABIArgInfo::getExpand(); } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { // HVAs are delayed and reclassified in the 2nd step. return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); } } } if (Ty->isMemberPointerType()) { // If the member pointer is represented by an LLVM int or ptr, pass it // directly. llvm::Type *LLTy = CGT.ConvertType(Ty); if (LLTy->isPointerTy() || LLTy->isIntegerTy()) return ABIArgInfo::getDirect(); } if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." if (Width > 64 || !llvm::isPowerOf2_64(Width)) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); // Otherwise, coerce it to a small integer. return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); } if (const BuiltinType *BT = Ty->getAs()) { switch (BT->getKind()) { case BuiltinType::Bool: // Bool type is always extended to the ABI, other builtin types are not // extended. return ABIArgInfo::getExtend(Ty); case BuiltinType::LongDouble: // Mingw64 GCC uses the old 80 bit extended precision floating point // unit. It passes them indirectly through memory. if (IsMingw64) { const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); if (LDF == &llvm::APFloat::x87DoubleExtended()) return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); } break; case BuiltinType::Int128: case BuiltinType::UInt128: // If it's a parameter type, the normal ABI rule is that arguments larger // than 8 bytes are passed indirectly. GCC follows it. We follow it too, // even though it isn't particularly efficient. if (!IsReturnType) return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. // Clang matches them for compatibility. return ABIArgInfo::getDirect(llvm::FixedVectorType::get( llvm::Type::getInt64Ty(getVMContext()), 2)); default: break; } } if (Ty->isBitIntType()) { // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, // or 8 bytes anyway as long is it fits in them, so we don't have to check // the power of 2. if (Width <= 64) return ABIArgInfo::getDirect(); return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); } return ABIArgInfo::getDirect(); } void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { const unsigned CC = FI.getCallingConvention(); bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; // If __attribute__((sysv_abi)) is in use, use the SysV argument // classification rules. if (CC == llvm::CallingConv::X86_64_SysV) { X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); SysVABIInfo.computeInfo(FI); return; } unsigned FreeSSERegs = 0; if (IsVectorCall) { // We can use up to 4 SSE return registers with vectorcall. FreeSSERegs = 4; } else if (IsRegCall) { // RegCall gives us 16 SSE registers. FreeSSERegs = 16; } if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, IsVectorCall, IsRegCall); if (IsVectorCall) { // We can use up to 6 SSE register parameters with vectorcall. FreeSSERegs = 6; } else if (IsRegCall) { // RegCall gives us 16 SSE registers, we can reuse the return registers. FreeSSERegs = 16; } unsigned ArgNum = 0; unsigned ZeroSSERegs = 0; for (auto &I : FI.arguments()) { // Vectorcall in x64 only permits the first 6 arguments to be passed as // XMM/YMM registers. After the sixth argument, pretend no vector // registers are left. unsigned *MaybeFreeSSERegs = (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; I.info = classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); ++ArgNum; } if (IsVectorCall) { // For vectorcall, assign aggregate HVAs to any free vector registers in a // second pass. for (auto &I : FI.arguments()) I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); } } Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is // not 1, 2, 4, or 8 bytes, must be passed by reference." uint64_t Width = getContext().getTypeSize(Ty); bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, CGF.getContext().getTypeInfoInChars(Ty), CharUnits::fromQuantity(8), /*allowHigherAlign*/ false); } std::unique_ptr CodeGen::createX86_32TargetCodeGenInfo( CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, unsigned NumRegisterParameters, bool SoftFloatABI) { bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( CGM.getTriple(), CGM.getCodeGenOpts()); return std::make_unique( CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, NumRegisterParameters, SoftFloatABI); } std::unique_ptr CodeGen::createWinX86_32TargetCodeGenInfo( CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, unsigned NumRegisterParameters) { bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( CGM.getTriple(), CGM.getCodeGenOpts()); return std::make_unique( CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, NumRegisterParameters); } std::unique_ptr CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel) { return std::make_unique(CGM.getTypes(), AVXLevel); } std::unique_ptr CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel) { return std::make_unique(CGM.getTypes(), AVXLevel); }