//===- RISCV.cpp ----------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ABIInfoImpl.h" #include "TargetInfo.h" using namespace clang; using namespace clang::CodeGen; //===----------------------------------------------------------------------===// // RISC-V ABI Implementation //===----------------------------------------------------------------------===// namespace { class RISCVABIInfo : public DefaultABIInfo { private: // Size of the integer ('x') registers in bits. unsigned XLen; // Size of the floating point ('f') registers in bits. Note that the target // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target // with soft float ABI has FLen==0). unsigned FLen; static const int NumArgGPRs = 8; static const int NumArgFPRs = 8; bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off) const; public: RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} // DefaultABIInfo's classifyReturnType and classifyArgumentType are // non-virtual, but computeInfo is virtual, so we overload it. void computeInfo(CGFunctionInfo &FI) const override; ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, int &ArgFPRsLeft) const; ABIArgInfo classifyReturnType(QualType RetTy) const; Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const override; ABIArgInfo extendType(QualType Ty) const; bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededArgGPRs, int &NeededArgFPRs) const; ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, CharUnits Field2Off) const; ABIArgInfo coerceVLSVector(QualType Ty) const; }; } // end anonymous namespace void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { QualType RetTy = FI.getReturnType(); if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(RetTy); // IsRetIndirect is true if classifyArgumentType indicated the value should // be passed indirect, or if the type size is a scalar greater than 2*XLen // and not a complex type with elements <= FLen. e.g. fp128 is passed direct // in LLVM IR, relying on the backend lowering code to rewrite the argument // list and pass indirectly on RV32. bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; if (!IsRetIndirect && RetTy->isScalarType() && getContext().getTypeSize(RetTy) > (2 * XLen)) { if (RetTy->isComplexType() && FLen) { QualType EltTy = RetTy->castAs()->getElementType(); IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; } else { // This is a normal scalar > 2*XLen, such as fp128 on RV32. IsRetIndirect = true; } } int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; int ArgFPRsLeft = FLen ? NumArgFPRs : 0; int NumFixedArgs = FI.getNumRequiredArgs(); int ArgNum = 0; for (auto &ArgInfo : FI.arguments()) { bool IsFixed = ArgNum < NumFixedArgs; ArgInfo.info = classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); ArgNum++; } } // Returns true if the struct is a potential candidate for the floating point // calling convention. If this function returns true, the caller is // responsible for checking that if there is only a single field then that // field is a float. bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off) const { bool IsInt = Ty->isIntegralOrEnumerationType(); bool IsFloat = Ty->isRealFloatingType(); if (IsInt || IsFloat) { uint64_t Size = getContext().getTypeSize(Ty); if (IsInt && Size > XLen) return false; // Can't be eligible if larger than the FP registers. Handling of half // precision values has been specified in the ABI, so don't block those. if (IsFloat && Size > FLen) return false; // Can't be eligible if an integer type was already found (int+int pairs // are not eligible). if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) return false; if (!Field1Ty) { Field1Ty = CGT.ConvertType(Ty); Field1Off = CurOff; return true; } if (!Field2Ty) { Field2Ty = CGT.ConvertType(Ty); Field2Off = CurOff; return true; } return false; } if (auto CTy = Ty->getAs()) { if (Field1Ty) return false; QualType EltTy = CTy->getElementType(); if (getContext().getTypeSize(EltTy) > FLen) return false; Field1Ty = CGT.ConvertType(EltTy); Field1Off = CurOff; Field2Ty = Field1Ty; Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); return true; } if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { uint64_t ArraySize = ATy->getSize().getZExtValue(); QualType EltTy = ATy->getElementType(); // Non-zero-length arrays of empty records make the struct ineligible for // the FP calling convention in C++. if (const auto *RTy = EltTy->getAs()) { if (ArraySize != 0 && isa(RTy->getDecl()) && isEmptyRecord(getContext(), EltTy, true, true)) return false; } CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); for (uint64_t i = 0; i < ArraySize; ++i) { bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off, Field2Ty, Field2Off); if (!Ret) return false; CurOff += EltSize; } return true; } if (const auto *RTy = Ty->getAs()) { // Structures with either a non-trivial destructor or a non-trivial // copy constructor are not eligible for the FP calling convention. if (getRecordArgABI(Ty, CGT.getCXXABI())) return false; if (isEmptyRecord(getContext(), Ty, true, true)) return true; const RecordDecl *RD = RTy->getDecl(); // Unions aren't eligible unless they're empty (which is caught above). if (RD->isUnion()) return false; const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (const CXXBaseSpecifier &B : CXXRD->bases()) { const auto *BDecl = cast(B.getType()->castAs()->getDecl()); CharUnits BaseOff = Layout.getBaseClassOffset(BDecl); bool Ret = detectFPCCEligibleStructHelper(B.getType(), CurOff + BaseOff, Field1Ty, Field1Off, Field2Ty, Field2Off); if (!Ret) return false; } } int ZeroWidthBitFieldCount = 0; for (const FieldDecl *FD : RD->fields()) { uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); QualType QTy = FD->getType(); if (FD->isBitField()) { unsigned BitWidth = FD->getBitWidthValue(getContext()); // Allow a bitfield with a type greater than XLen as long as the // bitwidth is XLen or less. if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) QTy = getContext().getIntTypeForBitwidth(XLen, false); if (BitWidth == 0) { ZeroWidthBitFieldCount++; continue; } } bool Ret = detectFPCCEligibleStructHelper( QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), Field1Ty, Field1Off, Field2Ty, Field2Off); if (!Ret) return false; // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp // or int+fp structs, but are ignored for a struct with an fp field and // any number of zero-width bitfields. if (Field2Ty && ZeroWidthBitFieldCount > 0) return false; } return Field1Ty != nullptr; } return false; } // Determine if a struct is eligible for passing according to the floating // point calling convention (i.e., when flattened it contains a single fp // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and // NeededArgGPRs are incremented appropriately. bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededArgGPRs, int &NeededArgFPRs) const { Field1Ty = nullptr; Field2Ty = nullptr; NeededArgGPRs = 0; NeededArgFPRs = 0; bool IsCandidate = detectFPCCEligibleStructHelper( Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); if (!Field1Ty) return false; // Not really a candidate if we have a single int but no float. if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) return false; if (!IsCandidate) return false; if (Field1Ty && Field1Ty->isFloatingPointTy()) NeededArgFPRs++; else if (Field1Ty) NeededArgGPRs++; if (Field2Ty && Field2Ty->isFloatingPointTy()) NeededArgFPRs++; else if (Field2Ty) NeededArgGPRs++; return true; } // Call getCoerceAndExpand for the two-element flattened struct described by // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an // appropriate coerceToType and unpaddedCoerceToType. ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, CharUnits Field2Off) const { SmallVector CoerceElts; SmallVector UnpaddedCoerceElts; if (!Field1Off.isZero()) CoerceElts.push_back(llvm::ArrayType::get( llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); CoerceElts.push_back(Field1Ty); UnpaddedCoerceElts.push_back(Field1Ty); if (!Field2Ty) { return ABIArgInfo::getCoerceAndExpand( llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), UnpaddedCoerceElts[0]); } CharUnits Field2Align = CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty)); CharUnits Field1End = Field1Off + CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); CharUnits Padding = CharUnits::Zero(); if (Field2Off > Field2OffNoPadNoPack) Padding = Field2Off - Field2OffNoPadNoPack; else if (Field2Off != Field2Align && Field2Off > Field1End) Padding = Field2Off - Field1End; bool IsPacked = !Field2Off.isMultipleOf(Field2Align); if (!Padding.isZero()) CoerceElts.push_back(llvm::ArrayType::get( llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); CoerceElts.push_back(Field2Ty); UnpaddedCoerceElts.push_back(Field2Ty); auto CoerceToType = llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); auto UnpaddedCoerceToType = llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); } // Fixed-length RVV vectors are represented as scalable vectors in function // args/return and must be coerced from fixed vectors. ABIArgInfo RISCVABIInfo::coerceVLSVector(QualType Ty) const { assert(Ty->isVectorType() && "expected vector type!"); const auto *VT = Ty->castAs(); assert(VT->getVectorKind() == VectorType::RVVFixedLengthDataVector && "Unexpected vector kind"); assert(VT->getElementType()->isBuiltinType() && "expected builtin type!"); auto VScale = getContext().getTargetInfo().getVScaleRange(getContext().getLangOpts()); // The MinNumElts is simplified from equation: // NumElts / VScale = // (EltSize * NumElts / (VScale * RVVBitsPerBlock)) // * (RVVBitsPerBlock / EltSize) llvm::ScalableVectorType *ResType = llvm::ScalableVectorType::get(CGT.ConvertType(VT->getElementType()), VT->getNumElements() / VScale->first); return ABIArgInfo::getDirect(ResType); } ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, int &ArgFPRsLeft) const { assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); Ty = useFirstFieldIfTransparentUnion(Ty); // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always passed indirectly. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { if (ArgGPRsLeft) ArgGPRsLeft -= 1; return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == CGCXXABI::RAA_DirectInMemory); } // Ignore empty structs/unions. if (isEmptyRecord(getContext(), Ty, true)) return ABIArgInfo::getIgnore(); uint64_t Size = getContext().getTypeSize(Ty); // Pass floating point values via FPRs if possible. if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && FLen >= Size && ArgFPRsLeft) { ArgFPRsLeft--; return ABIArgInfo::getDirect(); } // Complex types for the hard float ABI must be passed direct rather than // using CoerceAndExpand. if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { QualType EltTy = Ty->castAs()->getElementType(); if (getContext().getTypeSize(EltTy) <= FLen) { ArgFPRsLeft -= 2; return ABIArgInfo::getDirect(); } } if (IsFixed && FLen && Ty->isStructureOrClassType()) { llvm::Type *Field1Ty = nullptr; llvm::Type *Field2Ty = nullptr; CharUnits Field1Off = CharUnits::Zero(); CharUnits Field2Off = CharUnits::Zero(); int NeededArgGPRs = 0; int NeededArgFPRs = 0; bool IsCandidate = detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededArgGPRs, NeededArgFPRs); if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && NeededArgFPRs <= ArgFPRsLeft) { ArgGPRsLeft -= NeededArgGPRs; ArgFPRsLeft -= NeededArgFPRs; return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, Field2Off); } } uint64_t NeededAlign = getContext().getTypeAlign(Ty); // Determine the number of GPRs needed to pass the current argument // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" // register pairs, so may consume 3 registers. int NeededArgGPRs = 1; if (!IsFixed && NeededAlign == 2 * XLen) NeededArgGPRs = 2 + (ArgGPRsLeft % 2); else if (Size > XLen && Size <= 2 * XLen) NeededArgGPRs = 2; if (NeededArgGPRs > ArgGPRsLeft) { NeededArgGPRs = ArgGPRsLeft; } ArgGPRsLeft -= NeededArgGPRs; if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // All integral types are promoted to XLen width if (Size < XLen && Ty->isIntegralOrEnumerationType()) { return extendType(Ty); } if (const auto *EIT = Ty->getAs()) { if (EIT->getNumBits() < XLen) return extendType(Ty); if (EIT->getNumBits() > 128 || (!getContext().getTargetInfo().hasInt128Type() && EIT->getNumBits() > 64)) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } return ABIArgInfo::getDirect(); } if (const VectorType *VT = Ty->getAs()) if (VT->getVectorKind() == VectorType::RVVFixedLengthDataVector) return coerceVLSVector(Ty); // Aggregates which are <= 2*XLen will be passed in registers if possible, // so coerce to integers. if (Size <= 2 * XLen) { unsigned Alignment = getContext().getTypeAlign(Ty); // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is // required, and a 2-element XLen array if only XLen alignment is required. if (Size <= XLen) { return ABIArgInfo::getDirect( llvm::IntegerType::get(getVMContext(), XLen)); } else if (Alignment == 2 * XLen) { return ABIArgInfo::getDirect( llvm::IntegerType::get(getVMContext(), 2 * XLen)); } else { return ABIArgInfo::getDirect(llvm::ArrayType::get( llvm::IntegerType::get(getVMContext(), XLen), 2)); } } return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); int ArgGPRsLeft = 2; int ArgFPRsLeft = FLen ? 2 : 0; // The rules for return and argument types are the same, so defer to // classifyArgumentType. return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, ArgFPRsLeft); } Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty) const { CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); // Empty records are ignored for parameter passing purposes. if (isEmptyRecord(getContext(), Ty, true)) { return Address(CGF.Builder.CreateLoad(VAListAddr), CGF.ConvertTypeForMem(Ty), SlotSize); } auto TInfo = getContext().getTypeInfoInChars(Ty); // Arguments bigger than 2*Xlen bytes are passed indirectly. bool IsIndirect = TInfo.Width > 2 * SlotSize; return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TInfo, SlotSize, /*AllowHigherAlign=*/true); } ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { int TySize = getContext().getTypeSize(Ty); // RV64 ABI requires unsigned 32 bit integers to be sign extended. if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) return ABIArgInfo::getSignExtend(Ty); return ABIArgInfo::getExtend(Ty); } namespace { class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { public: RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) : TargetCodeGenInfo(std::make_unique(CGT, XLen, FLen)) {} void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const override { const auto *FD = dyn_cast_or_null(D); if (!FD) return; const auto *Attr = FD->getAttr(); if (!Attr) return; const char *Kind; switch (Attr->getInterrupt()) { case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; case RISCVInterruptAttr::machine: Kind = "machine"; break; } auto *Fn = cast(GV); Fn->addFnAttr("interrupt", Kind); } }; } // namespace std::unique_ptr CodeGen::createRISCVTargetCodeGenInfo(CodeGenModule &CGM, unsigned XLen, unsigned FLen) { return std::make_unique(CGM.getTypes(), XLen, FLen); }