//===--- CodeGenPGO.cpp - PGO Instrumentation for LLVM CodeGen --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Instrumentation-based profile-guided optimization // //===----------------------------------------------------------------------===// #include "CodeGenPGO.h" #include "CodeGenFunction.h" #include "CoverageMappingGen.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/StmtVisitor.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/MDBuilder.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Endian.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MD5.h" #include namespace llvm { extern cl::opt EnableSingleByteCoverage; } // namespace llvm static llvm::cl::opt EnableValueProfiling("enable-value-profiling", llvm::cl::desc("Enable value profiling"), llvm::cl::Hidden, llvm::cl::init(false)); using namespace clang; using namespace CodeGen; void CodeGenPGO::setFuncName(StringRef Name, llvm::GlobalValue::LinkageTypes Linkage) { llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader(); FuncName = llvm::getPGOFuncName( Name, Linkage, CGM.getCodeGenOpts().MainFileName, PGOReader ? PGOReader->getVersion() : llvm::IndexedInstrProf::Version); // If we're generating a profile, create a variable for the name. if (CGM.getCodeGenOpts().hasProfileClangInstr()) FuncNameVar = llvm::createPGOFuncNameVar(CGM.getModule(), Linkage, FuncName); } void CodeGenPGO::setFuncName(llvm::Function *Fn) { setFuncName(Fn->getName(), Fn->getLinkage()); // Create PGOFuncName meta data. llvm::createPGOFuncNameMetadata(*Fn, FuncName); } /// The version of the PGO hash algorithm. enum PGOHashVersion : unsigned { PGO_HASH_V1, PGO_HASH_V2, PGO_HASH_V3, // Keep this set to the latest hash version. PGO_HASH_LATEST = PGO_HASH_V3 }; namespace { /// Stable hasher for PGO region counters. /// /// PGOHash produces a stable hash of a given function's control flow. /// /// Changing the output of this hash will invalidate all previously generated /// profiles -- i.e., don't do it. /// /// \note When this hash does eventually change (years?), we still need to /// support old hashes. We'll need to pull in the version number from the /// profile data format and use the matching hash function. class PGOHash { uint64_t Working; unsigned Count; PGOHashVersion HashVersion; llvm::MD5 MD5; static const int NumBitsPerType = 6; static const unsigned NumTypesPerWord = sizeof(uint64_t) * 8 / NumBitsPerType; static const unsigned TooBig = 1u << NumBitsPerType; public: /// Hash values for AST nodes. /// /// Distinct values for AST nodes that have region counters attached. /// /// These values must be stable. All new members must be added at the end, /// and no members should be removed. Changing the enumeration value for an /// AST node will affect the hash of every function that contains that node. enum HashType : unsigned char { None = 0, LabelStmt = 1, WhileStmt, DoStmt, ForStmt, CXXForRangeStmt, ObjCForCollectionStmt, SwitchStmt, CaseStmt, DefaultStmt, IfStmt, CXXTryStmt, CXXCatchStmt, ConditionalOperator, BinaryOperatorLAnd, BinaryOperatorLOr, BinaryConditionalOperator, // The preceding values are available with PGO_HASH_V1. EndOfScope, IfThenBranch, IfElseBranch, GotoStmt, IndirectGotoStmt, BreakStmt, ContinueStmt, ReturnStmt, ThrowExpr, UnaryOperatorLNot, BinaryOperatorLT, BinaryOperatorGT, BinaryOperatorLE, BinaryOperatorGE, BinaryOperatorEQ, BinaryOperatorNE, // The preceding values are available since PGO_HASH_V2. // Keep this last. It's for the static assert that follows. LastHashType }; static_assert(LastHashType <= TooBig, "Too many types in HashType"); PGOHash(PGOHashVersion HashVersion) : Working(0), Count(0), HashVersion(HashVersion) {} void combine(HashType Type); uint64_t finalize(); PGOHashVersion getHashVersion() const { return HashVersion; } }; const int PGOHash::NumBitsPerType; const unsigned PGOHash::NumTypesPerWord; const unsigned PGOHash::TooBig; /// Get the PGO hash version used in the given indexed profile. static PGOHashVersion getPGOHashVersion(llvm::IndexedInstrProfReader *PGOReader, CodeGenModule &CGM) { if (PGOReader->getVersion() <= 4) return PGO_HASH_V1; if (PGOReader->getVersion() <= 5) return PGO_HASH_V2; return PGO_HASH_V3; } /// A RecursiveASTVisitor that fills a map of statements to PGO counters. struct MapRegionCounters : public RecursiveASTVisitor { using Base = RecursiveASTVisitor; /// The next counter value to assign. unsigned NextCounter; /// The function hash. PGOHash Hash; /// The map of statements to counters. llvm::DenseMap &CounterMap; /// The state of MC/DC Coverage in this function. MCDC::State &MCDCState; /// Maximum number of supported MC/DC conditions in a boolean expression. unsigned MCDCMaxCond; /// The profile version. uint64_t ProfileVersion; /// Diagnostics Engine used to report warnings. DiagnosticsEngine &Diag; MapRegionCounters(PGOHashVersion HashVersion, uint64_t ProfileVersion, llvm::DenseMap &CounterMap, MCDC::State &MCDCState, unsigned MCDCMaxCond, DiagnosticsEngine &Diag) : NextCounter(0), Hash(HashVersion), CounterMap(CounterMap), MCDCState(MCDCState), MCDCMaxCond(MCDCMaxCond), ProfileVersion(ProfileVersion), Diag(Diag) {} // Blocks and lambdas are handled as separate functions, so we need not // traverse them in the parent context. bool TraverseBlockExpr(BlockExpr *BE) { return true; } bool TraverseLambdaExpr(LambdaExpr *LE) { // Traverse the captures, but not the body. for (auto C : zip(LE->captures(), LE->capture_inits())) TraverseLambdaCapture(LE, &std::get<0>(C), std::get<1>(C)); return true; } bool TraverseCapturedStmt(CapturedStmt *CS) { return true; } bool VisitDecl(const Decl *D) { switch (D->getKind()) { default: break; case Decl::Function: case Decl::CXXMethod: case Decl::CXXConstructor: case Decl::CXXDestructor: case Decl::CXXConversion: case Decl::ObjCMethod: case Decl::Block: case Decl::Captured: CounterMap[D->getBody()] = NextCounter++; break; } return true; } /// If \p S gets a fresh counter, update the counter mappings. Return the /// V1 hash of \p S. PGOHash::HashType updateCounterMappings(Stmt *S) { auto Type = getHashType(PGO_HASH_V1, S); if (Type != PGOHash::None) CounterMap[S] = NextCounter++; return Type; } /// The following stacks are used with dataTraverseStmtPre() and /// dataTraverseStmtPost() to track the depth of nested logical operators in a /// boolean expression in a function. The ultimate purpose is to keep track /// of the number of leaf-level conditions in the boolean expression so that a /// profile bitmap can be allocated based on that number. /// /// The stacks are also used to find error cases and notify the user. A /// standard logical operator nest for a boolean expression could be in a form /// similar to this: "x = a && b && c && (d || f)" unsigned NumCond = 0; bool SplitNestedLogicalOp = false; SmallVector NonLogOpStack; SmallVector LogOpStack; // Hook: dataTraverseStmtPre() is invoked prior to visiting an AST Stmt node. bool dataTraverseStmtPre(Stmt *S) { /// If MC/DC is not enabled, MCDCMaxCond will be set to 0. Do nothing. if (MCDCMaxCond == 0) return true; /// At the top of the logical operator nest, reset the number of conditions, /// also forget previously seen split nesting cases. if (LogOpStack.empty()) { NumCond = 0; SplitNestedLogicalOp = false; } if (const Expr *E = dyn_cast(S)) { const BinaryOperator *BinOp = dyn_cast(E->IgnoreParens()); if (BinOp && BinOp->isLogicalOp()) { /// Check for "split-nested" logical operators. This happens when a new /// boolean expression logical-op nest is encountered within an existing /// boolean expression, separated by a non-logical operator. For /// example, in "x = (a && b && c && foo(d && f))", the "d && f" case /// starts a new boolean expression that is separated from the other /// conditions by the operator foo(). Split-nested cases are not /// supported by MC/DC. SplitNestedLogicalOp = SplitNestedLogicalOp || !NonLogOpStack.empty(); LogOpStack.push_back(BinOp); return true; } } /// Keep track of non-logical operators. These are OK as long as we don't /// encounter a new logical operator after seeing one. if (!LogOpStack.empty()) NonLogOpStack.push_back(S); return true; } // Hook: dataTraverseStmtPost() is invoked by the AST visitor after visiting // an AST Stmt node. MC/DC will use it to to signal when the top of a // logical operation (boolean expression) nest is encountered. bool dataTraverseStmtPost(Stmt *S) { /// If MC/DC is not enabled, MCDCMaxCond will be set to 0. Do nothing. if (MCDCMaxCond == 0) return true; if (const Expr *E = dyn_cast(S)) { const BinaryOperator *BinOp = dyn_cast(E->IgnoreParens()); if (BinOp && BinOp->isLogicalOp()) { assert(LogOpStack.back() == BinOp); LogOpStack.pop_back(); /// At the top of logical operator nest: if (LogOpStack.empty()) { /// Was the "split-nested" logical operator case encountered? if (SplitNestedLogicalOp) { unsigned DiagID = Diag.getCustomDiagID( DiagnosticsEngine::Warning, "unsupported MC/DC boolean expression; " "contains an operation with a nested boolean expression. " "Expression will not be covered"); Diag.Report(S->getBeginLoc(), DiagID); return true; } /// Was the maximum number of conditions encountered? if (NumCond > MCDCMaxCond) { unsigned DiagID = Diag.getCustomDiagID( DiagnosticsEngine::Warning, "unsupported MC/DC boolean expression; " "number of conditions (%0) exceeds max (%1). " "Expression will not be covered"); Diag.Report(S->getBeginLoc(), DiagID) << NumCond << MCDCMaxCond; return true; } // Otherwise, allocate the Decision. MCDCState.DecisionByStmt[BinOp].BitmapIdx = 0; } return true; } } if (!LogOpStack.empty()) NonLogOpStack.pop_back(); return true; } /// The RHS of all logical operators gets a fresh counter in order to count /// how many times the RHS evaluates to true or false, depending on the /// semantics of the operator. This is only valid for ">= v7" of the profile /// version so that we facilitate backward compatibility. In addition, in /// order to use MC/DC, count the number of total LHS and RHS conditions. bool VisitBinaryOperator(BinaryOperator *S) { if (S->isLogicalOp()) { if (CodeGenFunction::isInstrumentedCondition(S->getLHS())) NumCond++; if (CodeGenFunction::isInstrumentedCondition(S->getRHS())) { if (ProfileVersion >= llvm::IndexedInstrProf::Version7) CounterMap[S->getRHS()] = NextCounter++; NumCond++; } } return Base::VisitBinaryOperator(S); } bool VisitConditionalOperator(ConditionalOperator *S) { if (llvm::EnableSingleByteCoverage && S->getTrueExpr()) CounterMap[S->getTrueExpr()] = NextCounter++; if (llvm::EnableSingleByteCoverage && S->getFalseExpr()) CounterMap[S->getFalseExpr()] = NextCounter++; return Base::VisitConditionalOperator(S); } /// Include \p S in the function hash. bool VisitStmt(Stmt *S) { auto Type = updateCounterMappings(S); if (Hash.getHashVersion() != PGO_HASH_V1) Type = getHashType(Hash.getHashVersion(), S); if (Type != PGOHash::None) Hash.combine(Type); return true; } bool TraverseIfStmt(IfStmt *If) { // If we used the V1 hash, use the default traversal. if (Hash.getHashVersion() == PGO_HASH_V1) return Base::TraverseIfStmt(If); // When single byte coverage mode is enabled, add a counter to then and // else. bool NoSingleByteCoverage = !llvm::EnableSingleByteCoverage; for (Stmt *CS : If->children()) { if (!CS || NoSingleByteCoverage) continue; if (CS == If->getThen()) CounterMap[If->getThen()] = NextCounter++; else if (CS == If->getElse()) CounterMap[If->getElse()] = NextCounter++; } // Otherwise, keep track of which branch we're in while traversing. VisitStmt(If); for (Stmt *CS : If->children()) { if (!CS) continue; if (CS == If->getThen()) Hash.combine(PGOHash::IfThenBranch); else if (CS == If->getElse()) Hash.combine(PGOHash::IfElseBranch); TraverseStmt(CS); } Hash.combine(PGOHash::EndOfScope); return true; } bool TraverseWhileStmt(WhileStmt *While) { // When single byte coverage mode is enabled, add a counter to condition and // body. bool NoSingleByteCoverage = !llvm::EnableSingleByteCoverage; for (Stmt *CS : While->children()) { if (!CS || NoSingleByteCoverage) continue; if (CS == While->getCond()) CounterMap[While->getCond()] = NextCounter++; else if (CS == While->getBody()) CounterMap[While->getBody()] = NextCounter++; } Base::TraverseWhileStmt(While); if (Hash.getHashVersion() != PGO_HASH_V1) Hash.combine(PGOHash::EndOfScope); return true; } bool TraverseDoStmt(DoStmt *Do) { // When single byte coverage mode is enabled, add a counter to condition and // body. bool NoSingleByteCoverage = !llvm::EnableSingleByteCoverage; for (Stmt *CS : Do->children()) { if (!CS || NoSingleByteCoverage) continue; if (CS == Do->getCond()) CounterMap[Do->getCond()] = NextCounter++; else if (CS == Do->getBody()) CounterMap[Do->getBody()] = NextCounter++; } Base::TraverseDoStmt(Do); if (Hash.getHashVersion() != PGO_HASH_V1) Hash.combine(PGOHash::EndOfScope); return true; } bool TraverseForStmt(ForStmt *For) { // When single byte coverage mode is enabled, add a counter to condition, // increment and body. bool NoSingleByteCoverage = !llvm::EnableSingleByteCoverage; for (Stmt *CS : For->children()) { if (!CS || NoSingleByteCoverage) continue; if (CS == For->getCond()) CounterMap[For->getCond()] = NextCounter++; else if (CS == For->getInc()) CounterMap[For->getInc()] = NextCounter++; else if (CS == For->getBody()) CounterMap[For->getBody()] = NextCounter++; } Base::TraverseForStmt(For); if (Hash.getHashVersion() != PGO_HASH_V1) Hash.combine(PGOHash::EndOfScope); return true; } bool TraverseCXXForRangeStmt(CXXForRangeStmt *ForRange) { // When single byte coverage mode is enabled, add a counter to body. bool NoSingleByteCoverage = !llvm::EnableSingleByteCoverage; for (Stmt *CS : ForRange->children()) { if (!CS || NoSingleByteCoverage) continue; if (CS == ForRange->getBody()) CounterMap[ForRange->getBody()] = NextCounter++; } Base::TraverseCXXForRangeStmt(ForRange); if (Hash.getHashVersion() != PGO_HASH_V1) Hash.combine(PGOHash::EndOfScope); return true; } // If the statement type \p N is nestable, and its nesting impacts profile // stability, define a custom traversal which tracks the end of the statement // in the hash (provided we're not using the V1 hash). #define DEFINE_NESTABLE_TRAVERSAL(N) \ bool Traverse##N(N *S) { \ Base::Traverse##N(S); \ if (Hash.getHashVersion() != PGO_HASH_V1) \ Hash.combine(PGOHash::EndOfScope); \ return true; \ } DEFINE_NESTABLE_TRAVERSAL(ObjCForCollectionStmt) DEFINE_NESTABLE_TRAVERSAL(CXXTryStmt) DEFINE_NESTABLE_TRAVERSAL(CXXCatchStmt) /// Get version \p HashVersion of the PGO hash for \p S. PGOHash::HashType getHashType(PGOHashVersion HashVersion, const Stmt *S) { switch (S->getStmtClass()) { default: break; case Stmt::LabelStmtClass: return PGOHash::LabelStmt; case Stmt::WhileStmtClass: return PGOHash::WhileStmt; case Stmt::DoStmtClass: return PGOHash::DoStmt; case Stmt::ForStmtClass: return PGOHash::ForStmt; case Stmt::CXXForRangeStmtClass: return PGOHash::CXXForRangeStmt; case Stmt::ObjCForCollectionStmtClass: return PGOHash::ObjCForCollectionStmt; case Stmt::SwitchStmtClass: return PGOHash::SwitchStmt; case Stmt::CaseStmtClass: return PGOHash::CaseStmt; case Stmt::DefaultStmtClass: return PGOHash::DefaultStmt; case Stmt::IfStmtClass: return PGOHash::IfStmt; case Stmt::CXXTryStmtClass: return PGOHash::CXXTryStmt; case Stmt::CXXCatchStmtClass: return PGOHash::CXXCatchStmt; case Stmt::ConditionalOperatorClass: return PGOHash::ConditionalOperator; case Stmt::BinaryConditionalOperatorClass: return PGOHash::BinaryConditionalOperator; case Stmt::BinaryOperatorClass: { const BinaryOperator *BO = cast(S); if (BO->getOpcode() == BO_LAnd) return PGOHash::BinaryOperatorLAnd; if (BO->getOpcode() == BO_LOr) return PGOHash::BinaryOperatorLOr; if (HashVersion >= PGO_HASH_V2) { switch (BO->getOpcode()) { default: break; case BO_LT: return PGOHash::BinaryOperatorLT; case BO_GT: return PGOHash::BinaryOperatorGT; case BO_LE: return PGOHash::BinaryOperatorLE; case BO_GE: return PGOHash::BinaryOperatorGE; case BO_EQ: return PGOHash::BinaryOperatorEQ; case BO_NE: return PGOHash::BinaryOperatorNE; } } break; } } if (HashVersion >= PGO_HASH_V2) { switch (S->getStmtClass()) { default: break; case Stmt::GotoStmtClass: return PGOHash::GotoStmt; case Stmt::IndirectGotoStmtClass: return PGOHash::IndirectGotoStmt; case Stmt::BreakStmtClass: return PGOHash::BreakStmt; case Stmt::ContinueStmtClass: return PGOHash::ContinueStmt; case Stmt::ReturnStmtClass: return PGOHash::ReturnStmt; case Stmt::CXXThrowExprClass: return PGOHash::ThrowExpr; case Stmt::UnaryOperatorClass: { const UnaryOperator *UO = cast(S); if (UO->getOpcode() == UO_LNot) return PGOHash::UnaryOperatorLNot; break; } } } return PGOHash::None; } }; /// A StmtVisitor that propagates the raw counts through the AST and /// records the count at statements where the value may change. struct ComputeRegionCounts : public ConstStmtVisitor { /// PGO state. CodeGenPGO &PGO; /// A flag that is set when the current count should be recorded on the /// next statement, such as at the exit of a loop. bool RecordNextStmtCount; /// The count at the current location in the traversal. uint64_t CurrentCount; /// The map of statements to count values. llvm::DenseMap &CountMap; /// BreakContinueStack - Keep counts of breaks and continues inside loops. struct BreakContinue { uint64_t BreakCount = 0; uint64_t ContinueCount = 0; BreakContinue() = default; }; SmallVector BreakContinueStack; ComputeRegionCounts(llvm::DenseMap &CountMap, CodeGenPGO &PGO) : PGO(PGO), RecordNextStmtCount(false), CountMap(CountMap) {} void RecordStmtCount(const Stmt *S) { if (RecordNextStmtCount) { CountMap[S] = CurrentCount; RecordNextStmtCount = false; } } /// Set and return the current count. uint64_t setCount(uint64_t Count) { CurrentCount = Count; return Count; } void VisitStmt(const Stmt *S) { RecordStmtCount(S); for (const Stmt *Child : S->children()) if (Child) this->Visit(Child); } void VisitFunctionDecl(const FunctionDecl *D) { // Counter tracks entry to the function body. uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody())); CountMap[D->getBody()] = BodyCount; Visit(D->getBody()); } // Skip lambda expressions. We visit these as FunctionDecls when we're // generating them and aren't interested in the body when generating a // parent context. void VisitLambdaExpr(const LambdaExpr *LE) {} void VisitCapturedDecl(const CapturedDecl *D) { // Counter tracks entry to the capture body. uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody())); CountMap[D->getBody()] = BodyCount; Visit(D->getBody()); } void VisitObjCMethodDecl(const ObjCMethodDecl *D) { // Counter tracks entry to the method body. uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody())); CountMap[D->getBody()] = BodyCount; Visit(D->getBody()); } void VisitBlockDecl(const BlockDecl *D) { // Counter tracks entry to the block body. uint64_t BodyCount = setCount(PGO.getRegionCount(D->getBody())); CountMap[D->getBody()] = BodyCount; Visit(D->getBody()); } void VisitReturnStmt(const ReturnStmt *S) { RecordStmtCount(S); if (S->getRetValue()) Visit(S->getRetValue()); CurrentCount = 0; RecordNextStmtCount = true; } void VisitCXXThrowExpr(const CXXThrowExpr *E) { RecordStmtCount(E); if (E->getSubExpr()) Visit(E->getSubExpr()); CurrentCount = 0; RecordNextStmtCount = true; } void VisitGotoStmt(const GotoStmt *S) { RecordStmtCount(S); CurrentCount = 0; RecordNextStmtCount = true; } void VisitLabelStmt(const LabelStmt *S) { RecordNextStmtCount = false; // Counter tracks the block following the label. uint64_t BlockCount = setCount(PGO.getRegionCount(S)); CountMap[S] = BlockCount; Visit(S->getSubStmt()); } void VisitBreakStmt(const BreakStmt *S) { RecordStmtCount(S); assert(!BreakContinueStack.empty() && "break not in a loop or switch!"); BreakContinueStack.back().BreakCount += CurrentCount; CurrentCount = 0; RecordNextStmtCount = true; } void VisitContinueStmt(const ContinueStmt *S) { RecordStmtCount(S); assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); BreakContinueStack.back().ContinueCount += CurrentCount; CurrentCount = 0; RecordNextStmtCount = true; } void VisitWhileStmt(const WhileStmt *S) { RecordStmtCount(S); uint64_t ParentCount = CurrentCount; BreakContinueStack.push_back(BreakContinue()); // Visit the body region first so the break/continue adjustments can be // included when visiting the condition. uint64_t BodyCount = setCount(PGO.getRegionCount(S)); CountMap[S->getBody()] = CurrentCount; Visit(S->getBody()); uint64_t BackedgeCount = CurrentCount; // ...then go back and propagate counts through the condition. The count // at the start of the condition is the sum of the incoming edges, // the backedge from the end of the loop body, and the edges from // continue statements. BreakContinue BC = BreakContinueStack.pop_back_val(); uint64_t CondCount = setCount(ParentCount + BackedgeCount + BC.ContinueCount); CountMap[S->getCond()] = CondCount; Visit(S->getCond()); setCount(BC.BreakCount + CondCount - BodyCount); RecordNextStmtCount = true; } void VisitDoStmt(const DoStmt *S) { RecordStmtCount(S); uint64_t LoopCount = PGO.getRegionCount(S); BreakContinueStack.push_back(BreakContinue()); // The count doesn't include the fallthrough from the parent scope. Add it. uint64_t BodyCount = setCount(LoopCount + CurrentCount); CountMap[S->getBody()] = BodyCount; Visit(S->getBody()); uint64_t BackedgeCount = CurrentCount; BreakContinue BC = BreakContinueStack.pop_back_val(); // The count at the start of the condition is equal to the count at the // end of the body, plus any continues. uint64_t CondCount = setCount(BackedgeCount + BC.ContinueCount); CountMap[S->getCond()] = CondCount; Visit(S->getCond()); setCount(BC.BreakCount + CondCount - LoopCount); RecordNextStmtCount = true; } void VisitForStmt(const ForStmt *S) { RecordStmtCount(S); if (S->getInit()) Visit(S->getInit()); uint64_t ParentCount = CurrentCount; BreakContinueStack.push_back(BreakContinue()); // Visit the body region first. (This is basically the same as a while // loop; see further comments in VisitWhileStmt.) uint64_t BodyCount = setCount(PGO.getRegionCount(S)); CountMap[S->getBody()] = BodyCount; Visit(S->getBody()); uint64_t BackedgeCount = CurrentCount; BreakContinue BC = BreakContinueStack.pop_back_val(); // The increment is essentially part of the body but it needs to include // the count for all the continue statements. if (S->getInc()) { uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount); CountMap[S->getInc()] = IncCount; Visit(S->getInc()); } // ...then go back and propagate counts through the condition. uint64_t CondCount = setCount(ParentCount + BackedgeCount + BC.ContinueCount); if (S->getCond()) { CountMap[S->getCond()] = CondCount; Visit(S->getCond()); } setCount(BC.BreakCount + CondCount - BodyCount); RecordNextStmtCount = true; } void VisitCXXForRangeStmt(const CXXForRangeStmt *S) { RecordStmtCount(S); if (S->getInit()) Visit(S->getInit()); Visit(S->getLoopVarStmt()); Visit(S->getRangeStmt()); Visit(S->getBeginStmt()); Visit(S->getEndStmt()); uint64_t ParentCount = CurrentCount; BreakContinueStack.push_back(BreakContinue()); // Visit the body region first. (This is basically the same as a while // loop; see further comments in VisitWhileStmt.) uint64_t BodyCount = setCount(PGO.getRegionCount(S)); CountMap[S->getBody()] = BodyCount; Visit(S->getBody()); uint64_t BackedgeCount = CurrentCount; BreakContinue BC = BreakContinueStack.pop_back_val(); // The increment is essentially part of the body but it needs to include // the count for all the continue statements. uint64_t IncCount = setCount(BackedgeCount + BC.ContinueCount); CountMap[S->getInc()] = IncCount; Visit(S->getInc()); // ...then go back and propagate counts through the condition. uint64_t CondCount = setCount(ParentCount + BackedgeCount + BC.ContinueCount); CountMap[S->getCond()] = CondCount; Visit(S->getCond()); setCount(BC.BreakCount + CondCount - BodyCount); RecordNextStmtCount = true; } void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) { RecordStmtCount(S); Visit(S->getElement()); uint64_t ParentCount = CurrentCount; BreakContinueStack.push_back(BreakContinue()); // Counter tracks the body of the loop. uint64_t BodyCount = setCount(PGO.getRegionCount(S)); CountMap[S->getBody()] = BodyCount; Visit(S->getBody()); uint64_t BackedgeCount = CurrentCount; BreakContinue BC = BreakContinueStack.pop_back_val(); setCount(BC.BreakCount + ParentCount + BackedgeCount + BC.ContinueCount - BodyCount); RecordNextStmtCount = true; } void VisitSwitchStmt(const SwitchStmt *S) { RecordStmtCount(S); if (S->getInit()) Visit(S->getInit()); Visit(S->getCond()); CurrentCount = 0; BreakContinueStack.push_back(BreakContinue()); Visit(S->getBody()); // If the switch is inside a loop, add the continue counts. BreakContinue BC = BreakContinueStack.pop_back_val(); if (!BreakContinueStack.empty()) BreakContinueStack.back().ContinueCount += BC.ContinueCount; // Counter tracks the exit block of the switch. setCount(PGO.getRegionCount(S)); RecordNextStmtCount = true; } void VisitSwitchCase(const SwitchCase *S) { RecordNextStmtCount = false; // Counter for this particular case. This counts only jumps from the // switch header and does not include fallthrough from the case before // this one. uint64_t CaseCount = PGO.getRegionCount(S); setCount(CurrentCount + CaseCount); // We need the count without fallthrough in the mapping, so it's more useful // for branch probabilities. CountMap[S] = CaseCount; RecordNextStmtCount = true; Visit(S->getSubStmt()); } void VisitIfStmt(const IfStmt *S) { RecordStmtCount(S); if (S->isConsteval()) { const Stmt *Stm = S->isNegatedConsteval() ? S->getThen() : S->getElse(); if (Stm) Visit(Stm); return; } uint64_t ParentCount = CurrentCount; if (S->getInit()) Visit(S->getInit()); Visit(S->getCond()); // Counter tracks the "then" part of an if statement. The count for // the "else" part, if it exists, will be calculated from this counter. uint64_t ThenCount = setCount(PGO.getRegionCount(S)); CountMap[S->getThen()] = ThenCount; Visit(S->getThen()); uint64_t OutCount = CurrentCount; uint64_t ElseCount = ParentCount - ThenCount; if (S->getElse()) { setCount(ElseCount); CountMap[S->getElse()] = ElseCount; Visit(S->getElse()); OutCount += CurrentCount; } else OutCount += ElseCount; setCount(OutCount); RecordNextStmtCount = true; } void VisitCXXTryStmt(const CXXTryStmt *S) { RecordStmtCount(S); Visit(S->getTryBlock()); for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I) Visit(S->getHandler(I)); // Counter tracks the continuation block of the try statement. setCount(PGO.getRegionCount(S)); RecordNextStmtCount = true; } void VisitCXXCatchStmt(const CXXCatchStmt *S) { RecordNextStmtCount = false; // Counter tracks the catch statement's handler block. uint64_t CatchCount = setCount(PGO.getRegionCount(S)); CountMap[S] = CatchCount; Visit(S->getHandlerBlock()); } void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { RecordStmtCount(E); uint64_t ParentCount = CurrentCount; Visit(E->getCond()); // Counter tracks the "true" part of a conditional operator. The // count in the "false" part will be calculated from this counter. uint64_t TrueCount = setCount(PGO.getRegionCount(E)); CountMap[E->getTrueExpr()] = TrueCount; Visit(E->getTrueExpr()); uint64_t OutCount = CurrentCount; uint64_t FalseCount = setCount(ParentCount - TrueCount); CountMap[E->getFalseExpr()] = FalseCount; Visit(E->getFalseExpr()); OutCount += CurrentCount; setCount(OutCount); RecordNextStmtCount = true; } void VisitBinLAnd(const BinaryOperator *E) { RecordStmtCount(E); uint64_t ParentCount = CurrentCount; Visit(E->getLHS()); // Counter tracks the right hand side of a logical and operator. uint64_t RHSCount = setCount(PGO.getRegionCount(E)); CountMap[E->getRHS()] = RHSCount; Visit(E->getRHS()); setCount(ParentCount + RHSCount - CurrentCount); RecordNextStmtCount = true; } void VisitBinLOr(const BinaryOperator *E) { RecordStmtCount(E); uint64_t ParentCount = CurrentCount; Visit(E->getLHS()); // Counter tracks the right hand side of a logical or operator. uint64_t RHSCount = setCount(PGO.getRegionCount(E)); CountMap[E->getRHS()] = RHSCount; Visit(E->getRHS()); setCount(ParentCount + RHSCount - CurrentCount); RecordNextStmtCount = true; } }; } // end anonymous namespace void PGOHash::combine(HashType Type) { // Check that we never combine 0 and only have six bits. assert(Type && "Hash is invalid: unexpected type 0"); assert(unsigned(Type) < TooBig && "Hash is invalid: too many types"); // Pass through MD5 if enough work has built up. if (Count && Count % NumTypesPerWord == 0) { using namespace llvm::support; uint64_t Swapped = endian::byte_swap(Working); MD5.update(llvm::ArrayRef((uint8_t *)&Swapped, sizeof(Swapped))); Working = 0; } // Accumulate the current type. ++Count; Working = Working << NumBitsPerType | Type; } uint64_t PGOHash::finalize() { // Use Working as the hash directly if we never used MD5. if (Count <= NumTypesPerWord) // No need to byte swap here, since none of the math was endian-dependent. // This number will be byte-swapped as required on endianness transitions, // so we will see the same value on the other side. return Working; // Check for remaining work in Working. if (Working) { // Keep the buggy behavior from v1 and v2 for backward-compatibility. This // is buggy because it converts a uint64_t into an array of uint8_t. if (HashVersion < PGO_HASH_V3) { MD5.update({(uint8_t)Working}); } else { using namespace llvm::support; uint64_t Swapped = endian::byte_swap(Working); MD5.update(llvm::ArrayRef((uint8_t *)&Swapped, sizeof(Swapped))); } } // Finalize the MD5 and return the hash. llvm::MD5::MD5Result Result; MD5.final(Result); return Result.low(); } void CodeGenPGO::assignRegionCounters(GlobalDecl GD, llvm::Function *Fn) { const Decl *D = GD.getDecl(); if (!D->hasBody()) return; // Skip CUDA/HIP kernel launch stub functions. if (CGM.getLangOpts().CUDA && !CGM.getLangOpts().CUDAIsDevice && D->hasAttr()) return; bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader(); if (!InstrumentRegions && !PGOReader) return; if (D->isImplicit()) return; // Constructors and destructors may be represented by several functions in IR. // If so, instrument only base variant, others are implemented by delegation // to the base one, it would be counted twice otherwise. if (CGM.getTarget().getCXXABI().hasConstructorVariants()) { if (const auto *CCD = dyn_cast(D)) if (GD.getCtorType() != Ctor_Base && CodeGenFunction::IsConstructorDelegationValid(CCD)) return; } if (isa(D) && GD.getDtorType() != Dtor_Base) return; CGM.ClearUnusedCoverageMapping(D); if (Fn->hasFnAttribute(llvm::Attribute::NoProfile)) return; if (Fn->hasFnAttribute(llvm::Attribute::SkipProfile)) return; SourceManager &SM = CGM.getContext().getSourceManager(); if (!llvm::coverage::SystemHeadersCoverage && SM.isInSystemHeader(D->getLocation())) return; setFuncName(Fn); mapRegionCounters(D); if (CGM.getCodeGenOpts().CoverageMapping) emitCounterRegionMapping(D); if (PGOReader) { loadRegionCounts(PGOReader, SM.isInMainFile(D->getLocation())); computeRegionCounts(D); applyFunctionAttributes(PGOReader, Fn); } } void CodeGenPGO::mapRegionCounters(const Decl *D) { // Use the latest hash version when inserting instrumentation, but use the // version in the indexed profile if we're reading PGO data. PGOHashVersion HashVersion = PGO_HASH_LATEST; uint64_t ProfileVersion = llvm::IndexedInstrProf::Version; if (auto *PGOReader = CGM.getPGOReader()) { HashVersion = getPGOHashVersion(PGOReader, CGM); ProfileVersion = PGOReader->getVersion(); } // If MC/DC is enabled, set the MaxConditions to a preset value. Otherwise, // set it to zero. This value impacts the number of conditions accepted in a // given boolean expression, which impacts the size of the bitmap used to // track test vector execution for that boolean expression. Because the // bitmap scales exponentially (2^n) based on the number of conditions seen, // the maximum value is hard-coded at 6 conditions, which is more than enough // for most embedded applications. Setting a maximum value prevents the // bitmap footprint from growing too large without the user's knowledge. In // the future, this value could be adjusted with a command-line option. unsigned MCDCMaxConditions = (CGM.getCodeGenOpts().MCDCCoverage ? CGM.getCodeGenOpts().MCDCMaxConds : 0); RegionCounterMap.reset(new llvm::DenseMap); RegionMCDCState.reset(new MCDC::State); MapRegionCounters Walker(HashVersion, ProfileVersion, *RegionCounterMap, *RegionMCDCState, MCDCMaxConditions, CGM.getDiags()); if (const FunctionDecl *FD = dyn_cast_or_null(D)) Walker.TraverseDecl(const_cast(FD)); else if (const ObjCMethodDecl *MD = dyn_cast_or_null(D)) Walker.TraverseDecl(const_cast(MD)); else if (const BlockDecl *BD = dyn_cast_or_null(D)) Walker.TraverseDecl(const_cast(BD)); else if (const CapturedDecl *CD = dyn_cast_or_null(D)) Walker.TraverseDecl(const_cast(CD)); assert(Walker.NextCounter > 0 && "no entry counter mapped for decl"); NumRegionCounters = Walker.NextCounter; FunctionHash = Walker.Hash.finalize(); } bool CodeGenPGO::skipRegionMappingForDecl(const Decl *D) { if (!D->getBody()) return true; // Skip host-only functions in the CUDA device compilation and device-only // functions in the host compilation. Just roughly filter them out based on // the function attributes. If there are effectively host-only or device-only // ones, their coverage mapping may still be generated. if (CGM.getLangOpts().CUDA && ((CGM.getLangOpts().CUDAIsDevice && !D->hasAttr() && !D->hasAttr()) || (!CGM.getLangOpts().CUDAIsDevice && (D->hasAttr() || (!D->hasAttr() && D->hasAttr()))))) return true; // Don't map the functions in system headers. const auto &SM = CGM.getContext().getSourceManager(); auto Loc = D->getBody()->getBeginLoc(); return !llvm::coverage::SystemHeadersCoverage && SM.isInSystemHeader(Loc); } void CodeGenPGO::emitCounterRegionMapping(const Decl *D) { if (skipRegionMappingForDecl(D)) return; std::string CoverageMapping; llvm::raw_string_ostream OS(CoverageMapping); RegionMCDCState->BranchByStmt.clear(); CoverageMappingGen MappingGen( *CGM.getCoverageMapping(), CGM.getContext().getSourceManager(), CGM.getLangOpts(), RegionCounterMap.get(), RegionMCDCState.get()); MappingGen.emitCounterMapping(D, OS); OS.flush(); if (CoverageMapping.empty()) return; CGM.getCoverageMapping()->addFunctionMappingRecord( FuncNameVar, FuncName, FunctionHash, CoverageMapping); } void CodeGenPGO::emitEmptyCounterMapping(const Decl *D, StringRef Name, llvm::GlobalValue::LinkageTypes Linkage) { if (skipRegionMappingForDecl(D)) return; std::string CoverageMapping; llvm::raw_string_ostream OS(CoverageMapping); CoverageMappingGen MappingGen(*CGM.getCoverageMapping(), CGM.getContext().getSourceManager(), CGM.getLangOpts()); MappingGen.emitEmptyMapping(D, OS); OS.flush(); if (CoverageMapping.empty()) return; setFuncName(Name, Linkage); CGM.getCoverageMapping()->addFunctionMappingRecord( FuncNameVar, FuncName, FunctionHash, CoverageMapping, false); } void CodeGenPGO::computeRegionCounts(const Decl *D) { StmtCountMap.reset(new llvm::DenseMap); ComputeRegionCounts Walker(*StmtCountMap, *this); if (const FunctionDecl *FD = dyn_cast_or_null(D)) Walker.VisitFunctionDecl(FD); else if (const ObjCMethodDecl *MD = dyn_cast_or_null(D)) Walker.VisitObjCMethodDecl(MD); else if (const BlockDecl *BD = dyn_cast_or_null(D)) Walker.VisitBlockDecl(BD); else if (const CapturedDecl *CD = dyn_cast_or_null(D)) Walker.VisitCapturedDecl(const_cast(CD)); } void CodeGenPGO::applyFunctionAttributes(llvm::IndexedInstrProfReader *PGOReader, llvm::Function *Fn) { if (!haveRegionCounts()) return; uint64_t FunctionCount = getRegionCount(nullptr); Fn->setEntryCount(FunctionCount); } void CodeGenPGO::emitCounterSetOrIncrement(CGBuilderTy &Builder, const Stmt *S, llvm::Value *StepV) { if (!RegionCounterMap || !Builder.GetInsertBlock()) return; unsigned Counter = (*RegionCounterMap)[S]; llvm::Value *Args[] = {FuncNameVar, Builder.getInt64(FunctionHash), Builder.getInt32(NumRegionCounters), Builder.getInt32(Counter), StepV}; if (llvm::EnableSingleByteCoverage) Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::instrprof_cover), ArrayRef(Args, 4)); else { if (!StepV) Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::instrprof_increment), ArrayRef(Args, 4)); else Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::instrprof_increment_step), Args); } } bool CodeGenPGO::canEmitMCDCCoverage(const CGBuilderTy &Builder) { return (CGM.getCodeGenOpts().hasProfileClangInstr() && CGM.getCodeGenOpts().MCDCCoverage && Builder.GetInsertBlock()); } void CodeGenPGO::emitMCDCParameters(CGBuilderTy &Builder) { if (!canEmitMCDCCoverage(Builder) || !RegionMCDCState) return; auto *I8PtrTy = llvm::PointerType::getUnqual(CGM.getLLVMContext()); // Emit intrinsic representing MCDC bitmap parameters at function entry. // This is used by the instrumentation pass, but it isn't actually lowered to // anything. llvm::Value *Args[3] = {llvm::ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), Builder.getInt64(FunctionHash), Builder.getInt32(RegionMCDCState->BitmapBits)}; Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::instrprof_mcdc_parameters), Args); } void CodeGenPGO::emitMCDCTestVectorBitmapUpdate(CGBuilderTy &Builder, const Expr *S, Address MCDCCondBitmapAddr, CodeGenFunction &CGF) { if (!canEmitMCDCCoverage(Builder) || !RegionMCDCState) return; S = S->IgnoreParens(); auto DecisionStateIter = RegionMCDCState->DecisionByStmt.find(S); if (DecisionStateIter == RegionMCDCState->DecisionByStmt.end()) return; // Don't create tvbitmap_update if the record is allocated but excluded. // Or `bitmap |= (1 << 0)` would be wrongly executed to the next bitmap. if (DecisionStateIter->second.Indices.size() == 0) return; // Extract the offset of the global bitmap associated with this expression. unsigned MCDCTestVectorBitmapOffset = DecisionStateIter->second.BitmapIdx; auto *I8PtrTy = llvm::PointerType::getUnqual(CGM.getLLVMContext()); // Emit intrinsic responsible for updating the global bitmap corresponding to // a boolean expression. The index being set is based on the value loaded // from a pointer to a dedicated temporary value on the stack that is itself // updated via emitMCDCCondBitmapReset() and emitMCDCCondBitmapUpdate(). The // index represents an executed test vector. llvm::Value *Args[4] = {llvm::ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), Builder.getInt64(FunctionHash), Builder.getInt32(MCDCTestVectorBitmapOffset), MCDCCondBitmapAddr.emitRawPointer(CGF)}; Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::instrprof_mcdc_tvbitmap_update), Args); } void CodeGenPGO::emitMCDCCondBitmapReset(CGBuilderTy &Builder, const Expr *S, Address MCDCCondBitmapAddr) { if (!canEmitMCDCCoverage(Builder) || !RegionMCDCState) return; S = S->IgnoreParens(); if (!RegionMCDCState->DecisionByStmt.contains(S)) return; // Emit intrinsic that resets a dedicated temporary value on the stack to 0. Builder.CreateStore(Builder.getInt32(0), MCDCCondBitmapAddr); } void CodeGenPGO::emitMCDCCondBitmapUpdate(CGBuilderTy &Builder, const Expr *S, Address MCDCCondBitmapAddr, llvm::Value *Val, CodeGenFunction &CGF) { if (!canEmitMCDCCoverage(Builder) || !RegionMCDCState) return; // Even though, for simplicity, parentheses and unary logical-NOT operators // are considered part of their underlying condition for both MC/DC and // branch coverage, the condition IDs themselves are assigned and tracked // using the underlying condition itself. This is done solely for // consistency since parentheses and logical-NOTs are ignored when checking // whether the condition is actually an instrumentable condition. This can // also make debugging a bit easier. S = CodeGenFunction::stripCond(S); auto BranchStateIter = RegionMCDCState->BranchByStmt.find(S); if (BranchStateIter == RegionMCDCState->BranchByStmt.end()) return; // Extract the ID of the condition we are setting in the bitmap. const auto &Branch = BranchStateIter->second; assert(Branch.ID >= 0 && "Condition has no ID!"); assert(Branch.DecisionStmt); // Cancel the emission if the Decision is erased after the allocation. const auto DecisionIter = RegionMCDCState->DecisionByStmt.find(Branch.DecisionStmt); if (DecisionIter == RegionMCDCState->DecisionByStmt.end()) return; const auto &TVIdxs = DecisionIter->second.Indices[Branch.ID]; auto *CurTV = Builder.CreateLoad(MCDCCondBitmapAddr, "mcdc." + Twine(Branch.ID + 1) + ".cur"); auto *NewTV = Builder.CreateAdd(CurTV, Builder.getInt32(TVIdxs[true])); NewTV = Builder.CreateSelect( Val, NewTV, Builder.CreateAdd(CurTV, Builder.getInt32(TVIdxs[false]))); Builder.CreateStore(NewTV, MCDCCondBitmapAddr); } void CodeGenPGO::setValueProfilingFlag(llvm::Module &M) { if (CGM.getCodeGenOpts().hasProfileClangInstr()) M.addModuleFlag(llvm::Module::Warning, "EnableValueProfiling", uint32_t(EnableValueProfiling)); } void CodeGenPGO::setProfileVersion(llvm::Module &M) { if (CGM.getCodeGenOpts().hasProfileClangInstr() && llvm::EnableSingleByteCoverage) { const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR)); llvm::Type *IntTy64 = llvm::Type::getInt64Ty(M.getContext()); uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_BYTE_COVERAGE); auto IRLevelVersionVariable = new llvm::GlobalVariable( M, IntTy64, true, llvm::GlobalValue::WeakAnyLinkage, llvm::Constant::getIntegerValue(IntTy64, llvm::APInt(64, ProfileVersion)), VarName); IRLevelVersionVariable->setVisibility(llvm::GlobalValue::HiddenVisibility); llvm::Triple TT(M.getTargetTriple()); if (TT.supportsCOMDAT()) { IRLevelVersionVariable->setLinkage(llvm::GlobalValue::ExternalLinkage); IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName)); } IRLevelVersionVariable->setDSOLocal(true); } } // This method either inserts a call to the profile run-time during // instrumentation or puts profile data into metadata for PGO use. void CodeGenPGO::valueProfile(CGBuilderTy &Builder, uint32_t ValueKind, llvm::Instruction *ValueSite, llvm::Value *ValuePtr) { if (!EnableValueProfiling) return; if (!ValuePtr || !ValueSite || !Builder.GetInsertBlock()) return; if (isa(ValuePtr)) return; bool InstrumentValueSites = CGM.getCodeGenOpts().hasProfileClangInstr(); if (InstrumentValueSites && RegionCounterMap) { auto BuilderInsertPoint = Builder.saveIP(); Builder.SetInsertPoint(ValueSite); llvm::Value *Args[5] = { FuncNameVar, Builder.getInt64(FunctionHash), Builder.CreatePtrToInt(ValuePtr, Builder.getInt64Ty()), Builder.getInt32(ValueKind), Builder.getInt32(NumValueSites[ValueKind]++) }; Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::instrprof_value_profile), Args); Builder.restoreIP(BuilderInsertPoint); return; } llvm::IndexedInstrProfReader *PGOReader = CGM.getPGOReader(); if (PGOReader && haveRegionCounts()) { // We record the top most called three functions at each call site. // Profile metadata contains "VP" string identifying this metadata // as value profiling data, then a uint32_t value for the value profiling // kind, a uint64_t value for the total number of times the call is // executed, followed by the function hash and execution count (uint64_t) // pairs for each function. if (NumValueSites[ValueKind] >= ProfRecord->getNumValueSites(ValueKind)) return; llvm::annotateValueSite(CGM.getModule(), *ValueSite, *ProfRecord, (llvm::InstrProfValueKind)ValueKind, NumValueSites[ValueKind]); NumValueSites[ValueKind]++; } } void CodeGenPGO::loadRegionCounts(llvm::IndexedInstrProfReader *PGOReader, bool IsInMainFile) { CGM.getPGOStats().addVisited(IsInMainFile); RegionCounts.clear(); llvm::Expected RecordExpected = PGOReader->getInstrProfRecord(FuncName, FunctionHash); if (auto E = RecordExpected.takeError()) { auto IPE = std::get<0>(llvm::InstrProfError::take(std::move(E))); if (IPE == llvm::instrprof_error::unknown_function) CGM.getPGOStats().addMissing(IsInMainFile); else if (IPE == llvm::instrprof_error::hash_mismatch) CGM.getPGOStats().addMismatched(IsInMainFile); else if (IPE == llvm::instrprof_error::malformed) // TODO: Consider a more specific warning for this case. CGM.getPGOStats().addMismatched(IsInMainFile); return; } ProfRecord = std::make_unique(std::move(RecordExpected.get())); RegionCounts = ProfRecord->Counts; } /// Calculate what to divide by to scale weights. /// /// Given the maximum weight, calculate a divisor that will scale all the /// weights to strictly less than UINT32_MAX. static uint64_t calculateWeightScale(uint64_t MaxWeight) { return MaxWeight < UINT32_MAX ? 1 : MaxWeight / UINT32_MAX + 1; } /// Scale an individual branch weight (and add 1). /// /// Scale a 64-bit weight down to 32-bits using \c Scale. /// /// According to Laplace's Rule of Succession, it is better to compute the /// weight based on the count plus 1, so universally add 1 to the value. /// /// \pre \c Scale was calculated by \a calculateWeightScale() with a weight no /// greater than \c Weight. static uint32_t scaleBranchWeight(uint64_t Weight, uint64_t Scale) { assert(Scale && "scale by 0?"); uint64_t Scaled = Weight / Scale + 1; assert(Scaled <= UINT32_MAX && "overflow 32-bits"); return Scaled; } llvm::MDNode *CodeGenFunction::createProfileWeights(uint64_t TrueCount, uint64_t FalseCount) const { // Check for empty weights. if (!TrueCount && !FalseCount) return nullptr; // Calculate how to scale down to 32-bits. uint64_t Scale = calculateWeightScale(std::max(TrueCount, FalseCount)); llvm::MDBuilder MDHelper(CGM.getLLVMContext()); return MDHelper.createBranchWeights(scaleBranchWeight(TrueCount, Scale), scaleBranchWeight(FalseCount, Scale)); } llvm::MDNode * CodeGenFunction::createProfileWeights(ArrayRef Weights) const { // We need at least two elements to create meaningful weights. if (Weights.size() < 2) return nullptr; // Check for empty weights. uint64_t MaxWeight = *std::max_element(Weights.begin(), Weights.end()); if (MaxWeight == 0) return nullptr; // Calculate how to scale down to 32-bits. uint64_t Scale = calculateWeightScale(MaxWeight); SmallVector ScaledWeights; ScaledWeights.reserve(Weights.size()); for (uint64_t W : Weights) ScaledWeights.push_back(scaleBranchWeight(W, Scale)); llvm::MDBuilder MDHelper(CGM.getLLVMContext()); return MDHelper.createBranchWeights(ScaledWeights); } llvm::MDNode * CodeGenFunction::createProfileWeightsForLoop(const Stmt *Cond, uint64_t LoopCount) const { if (!PGO.haveRegionCounts()) return nullptr; std::optional CondCount = PGO.getStmtCount(Cond); if (!CondCount || *CondCount == 0) return nullptr; return createProfileWeights(LoopCount, std::max(*CondCount, LoopCount) - LoopCount); }