//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This coordinates the per-module state used while generating code. // //===----------------------------------------------------------------------===// #include "CodeGenModule.h" #include "ABIInfo.h" #include "CGBlocks.h" #include "CGCUDARuntime.h" #include "CGCXXABI.h" #include "CGCall.h" #include "CGDebugInfo.h" #include "CGHLSLRuntime.h" #include "CGObjCRuntime.h" #include "CGOpenCLRuntime.h" #include "CGOpenMPRuntime.h" #include "CGOpenMPRuntimeGPU.h" #include "CodeGenFunction.h" #include "CodeGenPGO.h" #include "ConstantEmitter.h" #include "CoverageMappingGen.h" #include "TargetInfo.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/CharUnits.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Mangle.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/CodeGenOptions.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/Module.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Version.h" #include "clang/CodeGen/BackendUtil.h" #include "clang/CodeGen/ConstantInitBuilder.h" #include "clang/Frontend/FrontendDiagnostic.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" #include "llvm/IR/AttributeMask.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/ProfileSummary.h" #include "llvm/ProfileData/InstrProfReader.h" #include "llvm/ProfileData/SampleProf.h" #include "llvm/Support/CRC.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/RISCVISAInfo.h" #include "llvm/Support/TimeProfiler.h" #include "llvm/Support/xxhash.h" #include "llvm/TargetParser/Triple.h" #include "llvm/TargetParser/X86TargetParser.h" #include using namespace clang; using namespace CodeGen; static llvm::cl::opt LimitedCoverage( "limited-coverage-experimental", llvm::cl::Hidden, llvm::cl::desc("Emit limited coverage mapping information (experimental)")); static const char AnnotationSection[] = "llvm.metadata"; static CGCXXABI *createCXXABI(CodeGenModule &CGM) { switch (CGM.getContext().getCXXABIKind()) { case TargetCXXABI::AppleARM64: case TargetCXXABI::Fuchsia: case TargetCXXABI::GenericAArch64: case TargetCXXABI::GenericARM: case TargetCXXABI::iOS: case TargetCXXABI::WatchOS: case TargetCXXABI::GenericMIPS: case TargetCXXABI::GenericItanium: case TargetCXXABI::WebAssembly: case TargetCXXABI::XL: return CreateItaniumCXXABI(CGM); case TargetCXXABI::Microsoft: return CreateMicrosoftCXXABI(CGM); } llvm_unreachable("invalid C++ ABI kind"); } static std::unique_ptr createTargetCodeGenInfo(CodeGenModule &CGM) { const TargetInfo &Target = CGM.getTarget(); const llvm::Triple &Triple = Target.getTriple(); const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts(); switch (Triple.getArch()) { default: return createDefaultTargetCodeGenInfo(CGM); case llvm::Triple::le32: return createPNaClTargetCodeGenInfo(CGM); case llvm::Triple::m68k: return createM68kTargetCodeGenInfo(CGM); case llvm::Triple::mips: case llvm::Triple::mipsel: if (Triple.getOS() == llvm::Triple::NaCl) return createPNaClTargetCodeGenInfo(CGM); return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true); case llvm::Triple::mips64: case llvm::Triple::mips64el: return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false); case llvm::Triple::avr: { // For passing parameters, R8~R25 are used on avr, and R18~R25 are used // on avrtiny. For passing return value, R18~R25 are used on avr, and // R22~R25 are used on avrtiny. unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18; unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8; return createAVRTargetCodeGenInfo(CGM, NPR, NRR); } case llvm::Triple::aarch64: case llvm::Triple::aarch64_32: case llvm::Triple::aarch64_be: { AArch64ABIKind Kind = AArch64ABIKind::AAPCS; if (Target.getABI() == "darwinpcs") Kind = AArch64ABIKind::DarwinPCS; else if (Triple.isOSWindows()) return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64); return createAArch64TargetCodeGenInfo(CGM, Kind); } case llvm::Triple::wasm32: case llvm::Triple::wasm64: { WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP; if (Target.getABI() == "experimental-mv") Kind = WebAssemblyABIKind::ExperimentalMV; return createWebAssemblyTargetCodeGenInfo(CGM, Kind); } case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: { if (Triple.getOS() == llvm::Triple::Win32) return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP); ARMABIKind Kind = ARMABIKind::AAPCS; StringRef ABIStr = Target.getABI(); if (ABIStr == "apcs-gnu") Kind = ARMABIKind::APCS; else if (ABIStr == "aapcs16") Kind = ARMABIKind::AAPCS16_VFP; else if (CodeGenOpts.FloatABI == "hard" || (CodeGenOpts.FloatABI != "soft" && (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || Triple.getEnvironment() == llvm::Triple::MuslEABIHF || Triple.getEnvironment() == llvm::Triple::EABIHF))) Kind = ARMABIKind::AAPCS_VFP; return createARMTargetCodeGenInfo(CGM, Kind); } case llvm::Triple::ppc: { if (Triple.isOSAIX()) return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false); bool IsSoftFloat = CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe"); return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); } case llvm::Triple::ppcle: { bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat); } case llvm::Triple::ppc64: if (Triple.isOSAIX()) return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true); if (Triple.isOSBinFormatELF()) { PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1; if (Target.getABI() == "elfv2") Kind = PPC64_SVR4_ABIKind::ELFv2; bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); } return createPPC64TargetCodeGenInfo(CGM); case llvm::Triple::ppc64le: { assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2; if (Target.getABI() == "elfv1") Kind = PPC64_SVR4_ABIKind::ELFv1; bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat); } case llvm::Triple::nvptx: case llvm::Triple::nvptx64: return createNVPTXTargetCodeGenInfo(CGM); case llvm::Triple::msp430: return createMSP430TargetCodeGenInfo(CGM); case llvm::Triple::riscv32: case llvm::Triple::riscv64: { StringRef ABIStr = Target.getABI(); unsigned XLen = Target.getPointerWidth(LangAS::Default); unsigned ABIFLen = 0; if (ABIStr.ends_with("f")) ABIFLen = 32; else if (ABIStr.ends_with("d")) ABIFLen = 64; bool EABI = ABIStr.ends_with("e"); return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI); } case llvm::Triple::systemz: { bool SoftFloat = CodeGenOpts.FloatABI == "soft"; bool HasVector = !SoftFloat && Target.getABI() == "vector"; return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat); } case llvm::Triple::tce: case llvm::Triple::tcele: return createTCETargetCodeGenInfo(CGM); case llvm::Triple::x86: { bool IsDarwinVectorABI = Triple.isOSDarwin(); bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); if (Triple.getOS() == llvm::Triple::Win32) { return createWinX86_32TargetCodeGenInfo( CGM, IsDarwinVectorABI, IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters); } return createX86_32TargetCodeGenInfo( CGM, IsDarwinVectorABI, IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft"); } case llvm::Triple::x86_64: { StringRef ABI = Target.getABI(); X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); switch (Triple.getOS()) { case llvm::Triple::Win32: return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel); default: return createX86_64TargetCodeGenInfo(CGM, AVXLevel); } } case llvm::Triple::hexagon: return createHexagonTargetCodeGenInfo(CGM); case llvm::Triple::lanai: return createLanaiTargetCodeGenInfo(CGM); case llvm::Triple::r600: return createAMDGPUTargetCodeGenInfo(CGM); case llvm::Triple::amdgcn: return createAMDGPUTargetCodeGenInfo(CGM); case llvm::Triple::sparc: return createSparcV8TargetCodeGenInfo(CGM); case llvm::Triple::sparcv9: return createSparcV9TargetCodeGenInfo(CGM); case llvm::Triple::xcore: return createXCoreTargetCodeGenInfo(CGM); case llvm::Triple::arc: return createARCTargetCodeGenInfo(CGM); case llvm::Triple::spir: case llvm::Triple::spir64: return createCommonSPIRTargetCodeGenInfo(CGM); case llvm::Triple::spirv32: case llvm::Triple::spirv64: return createSPIRVTargetCodeGenInfo(CGM); case llvm::Triple::ve: return createVETargetCodeGenInfo(CGM); case llvm::Triple::csky: { bool IsSoftFloat = !Target.hasFeature("hard-float-abi"); bool hasFP64 = Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df"); return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0 : hasFP64 ? 64 : 32); } case llvm::Triple::bpfeb: case llvm::Triple::bpfel: return createBPFTargetCodeGenInfo(CGM); case llvm::Triple::loongarch32: case llvm::Triple::loongarch64: { StringRef ABIStr = Target.getABI(); unsigned ABIFRLen = 0; if (ABIStr.ends_with("f")) ABIFRLen = 32; else if (ABIStr.ends_with("d")) ABIFRLen = 64; return createLoongArchTargetCodeGenInfo( CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen); } } } const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { if (!TheTargetCodeGenInfo) TheTargetCodeGenInfo = createTargetCodeGenInfo(*this); return *TheTargetCodeGenInfo; } CodeGenModule::CodeGenModule(ASTContext &C, IntrusiveRefCntPtr FS, const HeaderSearchOptions &HSO, const PreprocessorOptions &PPO, const CodeGenOptions &CGO, llvm::Module &M, DiagnosticsEngine &diags, CoverageSourceInfo *CoverageInfo) : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO), PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), Target(C.getTargetInfo()), ABI(createCXXABI(*this)), VMContext(M.getContext()), Types(*this), VTables(*this), SanitizerMD(new SanitizerMetadata(*this)) { // Initialize the type cache. llvm::LLVMContext &LLVMContext = M.getContext(); VoidTy = llvm::Type::getVoidTy(LLVMContext); Int8Ty = llvm::Type::getInt8Ty(LLVMContext); Int16Ty = llvm::Type::getInt16Ty(LLVMContext); Int32Ty = llvm::Type::getInt32Ty(LLVMContext); Int64Ty = llvm::Type::getInt64Ty(LLVMContext); HalfTy = llvm::Type::getHalfTy(LLVMContext); BFloatTy = llvm::Type::getBFloatTy(LLVMContext); FloatTy = llvm::Type::getFloatTy(LLVMContext); DoubleTy = llvm::Type::getDoubleTy(LLVMContext); PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default); PointerAlignInBytes = C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default)) .getQuantity(); SizeSizeInBytes = C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); IntAlignInBytes = C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); CharTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth()); IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); IntPtrTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getMaxPointerWidth()); Int8PtrTy = llvm::PointerType::get(LLVMContext, 0); const llvm::DataLayout &DL = M.getDataLayout(); AllocaInt8PtrTy = llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace()); GlobalsInt8PtrTy = llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace()); ConstGlobalsPtrTy = llvm::PointerType::get( LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace())); ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); // Build C++20 Module initializers. // TODO: Add Microsoft here once we know the mangling required for the // initializers. CXX20ModuleInits = LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() == ItaniumMangleContext::MK_Itanium; RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); if (LangOpts.ObjC) createObjCRuntime(); if (LangOpts.OpenCL) createOpenCLRuntime(); if (LangOpts.OpenMP) createOpenMPRuntime(); if (LangOpts.CUDA) createCUDARuntime(); if (LangOpts.HLSL) createHLSLRuntime(); // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. if (LangOpts.Sanitize.has(SanitizerKind::Thread) || (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), getCXXABI().getMangleContext())); // If debug info or coverage generation is enabled, create the CGDebugInfo // object. if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo || CodeGenOpts.CoverageNotesFile.size() || CodeGenOpts.CoverageDataFile.size()) DebugInfo.reset(new CGDebugInfo(*this)); Block.GlobalUniqueCount = 0; if (C.getLangOpts().ObjC) ObjCData.reset(new ObjCEntrypoints()); if (CodeGenOpts.hasProfileClangUse()) { auto ReaderOrErr = llvm::IndexedInstrProfReader::create( CodeGenOpts.ProfileInstrumentUsePath, *FS, CodeGenOpts.ProfileRemappingFile); // We're checking for profile read errors in CompilerInvocation, so if // there was an error it should've already been caught. If it hasn't been // somehow, trip an assertion. assert(ReaderOrErr); PGOReader = std::move(ReaderOrErr.get()); } // If coverage mapping generation is enabled, create the // CoverageMappingModuleGen object. if (CodeGenOpts.CoverageMapping) CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); // Generate the module name hash here if needed. if (CodeGenOpts.UniqueInternalLinkageNames && !getModule().getSourceFileName().empty()) { std::string Path = getModule().getSourceFileName(); // Check if a path substitution is needed from the MacroPrefixMap. for (const auto &Entry : LangOpts.MacroPrefixMap) if (Path.rfind(Entry.first, 0) != std::string::npos) { Path = Entry.second + Path.substr(Entry.first.size()); break; } ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path); } } CodeGenModule::~CodeGenModule() {} void CodeGenModule::createObjCRuntime() { // This is just isGNUFamily(), but we want to force implementors of // new ABIs to decide how best to do this. switch (LangOpts.ObjCRuntime.getKind()) { case ObjCRuntime::GNUstep: case ObjCRuntime::GCC: case ObjCRuntime::ObjFW: ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); return; case ObjCRuntime::FragileMacOSX: case ObjCRuntime::MacOSX: case ObjCRuntime::iOS: case ObjCRuntime::WatchOS: ObjCRuntime.reset(CreateMacObjCRuntime(*this)); return; } llvm_unreachable("bad runtime kind"); } void CodeGenModule::createOpenCLRuntime() { OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); } void CodeGenModule::createOpenMPRuntime() { // Select a specialized code generation class based on the target, if any. // If it does not exist use the default implementation. switch (getTriple().getArch()) { case llvm::Triple::nvptx: case llvm::Triple::nvptx64: case llvm::Triple::amdgcn: assert(getLangOpts().OpenMPIsTargetDevice && "OpenMP AMDGPU/NVPTX is only prepared to deal with device code."); OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this)); break; default: if (LangOpts.OpenMPSimd) OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); else OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); break; } } void CodeGenModule::createCUDARuntime() { CUDARuntime.reset(CreateNVCUDARuntime(*this)); } void CodeGenModule::createHLSLRuntime() { HLSLRuntime.reset(new CGHLSLRuntime(*this)); } void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { Replacements[Name] = C; } void CodeGenModule::applyReplacements() { for (auto &I : Replacements) { StringRef MangledName = I.first; llvm::Constant *Replacement = I.second; llvm::GlobalValue *Entry = GetGlobalValue(MangledName); if (!Entry) continue; auto *OldF = cast(Entry); auto *NewF = dyn_cast(Replacement); if (!NewF) { if (auto *Alias = dyn_cast(Replacement)) { NewF = dyn_cast(Alias->getAliasee()); } else { auto *CE = cast(Replacement); assert(CE->getOpcode() == llvm::Instruction::BitCast || CE->getOpcode() == llvm::Instruction::GetElementPtr); NewF = dyn_cast(CE->getOperand(0)); } } // Replace old with new, but keep the old order. OldF->replaceAllUsesWith(Replacement); if (NewF) { NewF->removeFromParent(); OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), NewF); } OldF->eraseFromParent(); } } void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { GlobalValReplacements.push_back(std::make_pair(GV, C)); } void CodeGenModule::applyGlobalValReplacements() { for (auto &I : GlobalValReplacements) { llvm::GlobalValue *GV = I.first; llvm::Constant *C = I.second; GV->replaceAllUsesWith(C); GV->eraseFromParent(); } } // This is only used in aliases that we created and we know they have a // linear structure. static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) { const llvm::Constant *C; if (auto *GA = dyn_cast(GV)) C = GA->getAliasee(); else if (auto *GI = dyn_cast(GV)) C = GI->getResolver(); else return GV; const auto *AliaseeGV = dyn_cast(C->stripPointerCasts()); if (!AliaseeGV) return nullptr; const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject(); if (FinalGV == GV) return nullptr; return FinalGV; } static bool checkAliasedGlobal( const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location, bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV, const llvm::MapVector &MangledDeclNames, SourceRange AliasRange) { GV = getAliasedGlobal(Alias); if (!GV) { Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; return false; } if (GV->hasCommonLinkage()) { const llvm::Triple &Triple = Context.getTargetInfo().getTriple(); if (Triple.getObjectFormat() == llvm::Triple::XCOFF) { Diags.Report(Location, diag::err_alias_to_common); return false; } } if (GV->isDeclaration()) { Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; Diags.Report(Location, diag::note_alias_requires_mangled_name) << IsIFunc << IsIFunc; // Provide a note if the given function is not found and exists as a // mangled name. for (const auto &[Decl, Name] : MangledDeclNames) { if (const auto *ND = dyn_cast(Decl.getDecl())) { if (ND->getName() == GV->getName()) { Diags.Report(Location, diag::note_alias_mangled_name_alternative) << Name << FixItHint::CreateReplacement( AliasRange, (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")") .str()); } } } return false; } if (IsIFunc) { // Check resolver function type. const auto *F = dyn_cast(GV); if (!F) { Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc; return false; } llvm::FunctionType *FTy = F->getFunctionType(); if (!FTy->getReturnType()->isPointerTy()) { Diags.Report(Location, diag::err_ifunc_resolver_return); return false; } } return true; } void CodeGenModule::checkAliases() { // Check if the constructed aliases are well formed. It is really unfortunate // that we have to do this in CodeGen, but we only construct mangled names // and aliases during codegen. bool Error = false; DiagnosticsEngine &Diags = getDiags(); for (const GlobalDecl &GD : Aliases) { const auto *D = cast(GD.getDecl()); SourceLocation Location; SourceRange Range; bool IsIFunc = D->hasAttr(); if (const Attr *A = D->getDefiningAttr()) { Location = A->getLocation(); Range = A->getRange(); } else llvm_unreachable("Not an alias or ifunc?"); StringRef MangledName = getMangledName(GD); llvm::GlobalValue *Alias = GetGlobalValue(MangledName); const llvm::GlobalValue *GV = nullptr; if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV, MangledDeclNames, Range)) { Error = true; continue; } llvm::Constant *Aliasee = IsIFunc ? cast(Alias)->getResolver() : cast(Alias)->getAliasee(); llvm::GlobalValue *AliaseeGV; if (auto CE = dyn_cast(Aliasee)) AliaseeGV = cast(CE->getOperand(0)); else AliaseeGV = cast(Aliasee); if (const SectionAttr *SA = D->getAttr()) { StringRef AliasSection = SA->getName(); if (AliasSection != AliaseeGV->getSection()) Diags.Report(SA->getLocation(), diag::warn_alias_with_section) << AliasSection << IsIFunc << IsIFunc; } // We have to handle alias to weak aliases in here. LLVM itself disallows // this since the object semantics would not match the IL one. For // compatibility with gcc we implement it by just pointing the alias // to its aliasee's aliasee. We also warn, since the user is probably // expecting the link to be weak. if (auto *GA = dyn_cast(AliaseeGV)) { if (GA->isInterposable()) { Diags.Report(Location, diag::warn_alias_to_weak_alias) << GV->getName() << GA->getName() << IsIFunc; Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( GA->getAliasee(), Alias->getType()); if (IsIFunc) cast(Alias)->setResolver(Aliasee); else cast(Alias)->setAliasee(Aliasee); } } } if (!Error) return; for (const GlobalDecl &GD : Aliases) { StringRef MangledName = getMangledName(GD); llvm::GlobalValue *Alias = GetGlobalValue(MangledName); Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); Alias->eraseFromParent(); } } void CodeGenModule::clear() { DeferredDeclsToEmit.clear(); EmittedDeferredDecls.clear(); DeferredAnnotations.clear(); if (OpenMPRuntime) OpenMPRuntime->clear(); } void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, StringRef MainFile) { if (!hasDiagnostics()) return; if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { if (MainFile.empty()) MainFile = ""; Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; } else { if (Mismatched > 0) Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; if (Missing > 0) Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; } } static std::optional getLLVMVisibility(clang::LangOptions::VisibilityFromDLLStorageClassKinds K) { // Map to LLVM visibility. switch (K) { case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Keep: return std::nullopt; case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Default: return llvm::GlobalValue::DefaultVisibility; case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Hidden: return llvm::GlobalValue::HiddenVisibility; case clang::LangOptions::VisibilityFromDLLStorageClassKinds::Protected: return llvm::GlobalValue::ProtectedVisibility; } llvm_unreachable("unknown option value!"); } void setLLVMVisibility(llvm::GlobalValue &GV, std::optional V) { if (!V) return; // Reset DSO locality before setting the visibility. This removes // any effects that visibility options and annotations may have // had on the DSO locality. Setting the visibility will implicitly set // appropriate globals to DSO Local; however, this will be pessimistic // w.r.t. to the normal compiler IRGen. GV.setDSOLocal(false); GV.setVisibility(*V); } static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO, llvm::Module &M) { if (!LO.VisibilityFromDLLStorageClass) return; std::optional DLLExportVisibility = getLLVMVisibility(LO.getDLLExportVisibility()); std::optional NoDLLStorageClassVisibility = getLLVMVisibility(LO.getNoDLLStorageClassVisibility()); std::optional ExternDeclDLLImportVisibility = getLLVMVisibility(LO.getExternDeclDLLImportVisibility()); std::optional ExternDeclNoDLLStorageClassVisibility = getLLVMVisibility(LO.getExternDeclNoDLLStorageClassVisibility()); for (llvm::GlobalValue &GV : M.global_values()) { if (GV.hasAppendingLinkage() || GV.hasLocalLinkage()) continue; if (GV.isDeclarationForLinker()) setLLVMVisibility(GV, GV.getDLLStorageClass() == llvm::GlobalValue::DLLImportStorageClass ? ExternDeclDLLImportVisibility : ExternDeclNoDLLStorageClassVisibility); else setLLVMVisibility(GV, GV.getDLLStorageClass() == llvm::GlobalValue::DLLExportStorageClass ? DLLExportVisibility : NoDLLStorageClassVisibility); GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); } } static bool isStackProtectorOn(const LangOptions &LangOpts, const llvm::Triple &Triple, clang::LangOptions::StackProtectorMode Mode) { if (Triple.isAMDGPU() || Triple.isNVPTX()) return false; return LangOpts.getStackProtector() == Mode; } void CodeGenModule::Release() { Module *Primary = getContext().getCurrentNamedModule(); if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule()) EmitModuleInitializers(Primary); EmitDeferred(); DeferredDecls.insert(EmittedDeferredDecls.begin(), EmittedDeferredDecls.end()); EmittedDeferredDecls.clear(); EmitVTablesOpportunistically(); applyGlobalValReplacements(); applyReplacements(); emitMultiVersionFunctions(); if (Context.getLangOpts().IncrementalExtensions && GlobalTopLevelStmtBlockInFlight.first) { const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second; GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc()); GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr}; } // Module implementations are initialized the same way as a regular TU that // imports one or more modules. if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition()) EmitCXXModuleInitFunc(Primary); else EmitCXXGlobalInitFunc(); EmitCXXGlobalCleanUpFunc(); registerGlobalDtorsWithAtExit(); EmitCXXThreadLocalInitFunc(); if (ObjCRuntime) if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) AddGlobalCtor(ObjCInitFunction); if (Context.getLangOpts().CUDA && CUDARuntime) { if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule()) AddGlobalCtor(CudaCtorFunction); } if (OpenMPRuntime) { if (llvm::Function *OpenMPRequiresDirectiveRegFun = OpenMPRuntime->emitRequiresDirectiveRegFun()) { AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0); } OpenMPRuntime->createOffloadEntriesAndInfoMetadata(); OpenMPRuntime->clear(); } if (PGOReader) { getModule().setProfileSummary( PGOReader->getSummary(/* UseCS */ false).getMD(VMContext), llvm::ProfileSummary::PSK_Instr); if (PGOStats.hasDiagnostics()) PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); } llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) { return L.LexOrder < R.LexOrder; }); EmitCtorList(GlobalCtors, "llvm.global_ctors"); EmitCtorList(GlobalDtors, "llvm.global_dtors"); EmitGlobalAnnotations(); EmitStaticExternCAliases(); checkAliases(); EmitDeferredUnusedCoverageMappings(); CodeGenPGO(*this).setValueProfilingFlag(getModule()); if (CoverageMapping) CoverageMapping->emit(); if (CodeGenOpts.SanitizeCfiCrossDso) { CodeGenFunction(*this).EmitCfiCheckFail(); CodeGenFunction(*this).EmitCfiCheckStub(); } if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) finalizeKCFITypes(); emitAtAvailableLinkGuard(); if (Context.getTargetInfo().getTriple().isWasm()) EmitMainVoidAlias(); if (getTriple().isAMDGPU()) { // Emit amdgpu_code_object_version module flag, which is code object version // times 100. if (getTarget().getTargetOpts().CodeObjectVersion != llvm::CodeObjectVersionKind::COV_None) { getModule().addModuleFlag(llvm::Module::Error, "amdgpu_code_object_version", getTarget().getTargetOpts().CodeObjectVersion); } // Currently, "-mprintf-kind" option is only supported for HIP if (LangOpts.HIP) { auto *MDStr = llvm::MDString::get( getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal == TargetOptions::AMDGPUPrintfKind::Hostcall) ? "hostcall" : "buffered"); getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind", MDStr); } } // Emit a global array containing all external kernels or device variables // used by host functions and mark it as used for CUDA/HIP. This is necessary // to get kernels or device variables in archives linked in even if these // kernels or device variables are only used in host functions. if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) { SmallVector UsedArray; for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) { GlobalDecl GD; if (auto *FD = dyn_cast(D)) GD = GlobalDecl(FD, KernelReferenceKind::Kernel); else GD = GlobalDecl(D); UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( GetAddrOfGlobal(GD), Int8PtrTy)); } llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size()); auto *GV = new llvm::GlobalVariable( getModule(), ATy, false, llvm::GlobalValue::InternalLinkage, llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external"); addCompilerUsedGlobal(GV); } emitLLVMUsed(); if (SanStats) SanStats->finish(); if (CodeGenOpts.Autolink && (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { EmitModuleLinkOptions(); } // On ELF we pass the dependent library specifiers directly to the linker // without manipulating them. This is in contrast to other platforms where // they are mapped to a specific linker option by the compiler. This // difference is a result of the greater variety of ELF linkers and the fact // that ELF linkers tend to handle libraries in a more complicated fashion // than on other platforms. This forces us to defer handling the dependent // libs to the linker. // // CUDA/HIP device and host libraries are different. Currently there is no // way to differentiate dependent libraries for host or device. Existing // usage of #pragma comment(lib, *) is intended for host libraries on // Windows. Therefore emit llvm.dependent-libraries only for host. if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) { auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries"); for (auto *MD : ELFDependentLibraries) NMD->addOperand(MD); } // Record mregparm value now so it is visible through rest of codegen. if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", CodeGenOpts.NumRegisterParameters); if (CodeGenOpts.DwarfVersion) { getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version", CodeGenOpts.DwarfVersion); } if (CodeGenOpts.Dwarf64) getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1); if (Context.getLangOpts().SemanticInterposition) // Require various optimization to respect semantic interposition. getModule().setSemanticInterposition(true); if (CodeGenOpts.EmitCodeView) { // Indicate that we want CodeView in the metadata. getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); } if (CodeGenOpts.CodeViewGHash) { getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1); } if (CodeGenOpts.ControlFlowGuard) { // Function ID tables and checks for Control Flow Guard (cfguard=2). getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2); } else if (CodeGenOpts.ControlFlowGuardNoChecks) { // Function ID tables for Control Flow Guard (cfguard=1). getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); } if (CodeGenOpts.EHContGuard) { // Function ID tables for EH Continuation Guard. getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1); } if (Context.getLangOpts().Kernel) { // Note if we are compiling with /kernel. getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1); } if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { // We don't support LTO with 2 with different StrictVTablePointers // FIXME: we could support it by stripping all the information introduced // by StrictVTablePointers. getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); llvm::Metadata *Ops[2] = { llvm::MDString::get(VMContext, "StrictVTablePointers"), llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( llvm::Type::getInt32Ty(VMContext), 1))}; getModule().addModuleFlag(llvm::Module::Require, "StrictVTablePointersRequirement", llvm::MDNode::get(VMContext, Ops)); } if (getModuleDebugInfo()) // We support a single version in the linked module. The LLVM // parser will drop debug info with a different version number // (and warn about it, too). getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", llvm::DEBUG_METADATA_VERSION); // We need to record the widths of enums and wchar_t, so that we can generate // the correct build attributes in the ARM backend. wchar_size is also used by // TargetLibraryInfo. uint64_t WCharWidth = Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); if (getTriple().isOSzOS()) { getModule().addModuleFlag(llvm::Module::Warning, "zos_product_major_version", uint32_t(CLANG_VERSION_MAJOR)); getModule().addModuleFlag(llvm::Module::Warning, "zos_product_minor_version", uint32_t(CLANG_VERSION_MINOR)); getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel", uint32_t(CLANG_VERSION_PATCHLEVEL)); std::string ProductId = getClangVendor() + "clang"; getModule().addModuleFlag(llvm::Module::Error, "zos_product_id", llvm::MDString::get(VMContext, ProductId)); // Record the language because we need it for the PPA2. StringRef lang_str = languageToString( LangStandard::getLangStandardForKind(LangOpts.LangStd).Language); getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language", llvm::MDString::get(VMContext, lang_str)); time_t TT = PreprocessorOpts.SourceDateEpoch ? *PreprocessorOpts.SourceDateEpoch : std::time(nullptr); getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time", static_cast(TT)); // Multiple modes will be supported here. getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode", llvm::MDString::get(VMContext, "ascii")); } llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); if ( Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb) { // The minimum width of an enum in bytes uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); } if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) { StringRef ABIStr = Target.getABI(); llvm::LLVMContext &Ctx = TheModule.getContext(); getModule().addModuleFlag(llvm::Module::Error, "target-abi", llvm::MDString::get(Ctx, ABIStr)); // Add the canonical ISA string as metadata so the backend can set the ELF // attributes correctly. We use AppendUnique so LTO will keep all of the // unique ISA strings that were linked together. const std::vector &Features = getTarget().getTargetOpts().Features; auto ParseResult = llvm::RISCVISAInfo::parseFeatures( Arch == llvm::Triple::riscv64 ? 64 : 32, Features); if (!errorToBool(ParseResult.takeError())) getModule().addModuleFlag( llvm::Module::AppendUnique, "riscv-isa", llvm::MDNode::get( Ctx, llvm::MDString::get(Ctx, (*ParseResult)->toString()))); } if (CodeGenOpts.SanitizeCfiCrossDso) { // Indicate that we want cross-DSO control flow integrity checks. getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); } if (CodeGenOpts.WholeProgramVTables) { // Indicate whether VFE was enabled for this module, so that the // vcall_visibility metadata added under whole program vtables is handled // appropriately in the optimizer. getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim", CodeGenOpts.VirtualFunctionElimination); } if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) { getModule().addModuleFlag(llvm::Module::Override, "CFI Canonical Jump Tables", CodeGenOpts.SanitizeCfiCanonicalJumpTables); } if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) { getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1); // KCFI assumes patchable-function-prefix is the same for all indirectly // called functions. Store the expected offset for code generation. if (CodeGenOpts.PatchableFunctionEntryOffset) getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset", CodeGenOpts.PatchableFunctionEntryOffset); } if (CodeGenOpts.CFProtectionReturn && Target.checkCFProtectionReturnSupported(getDiags())) { // Indicate that we want to instrument return control flow protection. getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return", 1); } if (CodeGenOpts.CFProtectionBranch && Target.checkCFProtectionBranchSupported(getDiags())) { // Indicate that we want to instrument branch control flow protection. getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch", 1); } if (CodeGenOpts.FunctionReturnThunks) getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1); if (CodeGenOpts.IndirectBranchCSPrefix) getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1); // Add module metadata for return address signing (ignoring // non-leaf/all) and stack tagging. These are actually turned on by function // attributes, but we use module metadata to emit build attributes. This is // needed for LTO, where the function attributes are inside bitcode // serialised into a global variable by the time build attributes are // emitted, so we can't access them. LTO objects could be compiled with // different flags therefore module flags are set to "Min" behavior to achieve // the same end result of the normal build where e.g BTI is off if any object // doesn't support it. if (Context.getTargetInfo().hasFeature("ptrauth") && LangOpts.getSignReturnAddressScope() != LangOptions::SignReturnAddressScopeKind::None) getModule().addModuleFlag(llvm::Module::Override, "sign-return-address-buildattr", 1); if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack)) getModule().addModuleFlag(llvm::Module::Override, "tag-stack-memory-buildattr", 1); if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb || Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb || Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 || Arch == llvm::Triple::aarch64_be) { if (LangOpts.BranchTargetEnforcement) getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement", 1); if (LangOpts.BranchProtectionPAuthLR) getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr", 1); if (LangOpts.GuardedControlStack) getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1); if (LangOpts.hasSignReturnAddress()) getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1); if (LangOpts.isSignReturnAddressScopeAll()) getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all", 1); if (!LangOpts.isSignReturnAddressWithAKey()) getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-with-bkey", 1); } if (CodeGenOpts.StackClashProtector) getModule().addModuleFlag( llvm::Module::Override, "probe-stack", llvm::MDString::get(TheModule.getContext(), "inline-asm")); if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size", CodeGenOpts.StackProbeSize); if (!CodeGenOpts.MemoryProfileOutput.empty()) { llvm::LLVMContext &Ctx = TheModule.getContext(); getModule().addModuleFlag( llvm::Module::Error, "MemProfProfileFilename", llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput)); } if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { // Indicate whether __nvvm_reflect should be configured to flush denormal // floating point values to 0. (This corresponds to its "__CUDA_FTZ" // property.) getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", CodeGenOpts.FP32DenormalMode.Output != llvm::DenormalMode::IEEE); } if (LangOpts.EHAsynch) getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1); // Indicate whether this Module was compiled with -fopenmp if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP); if (getLangOpts().OpenMPIsTargetDevice) getModule().addModuleFlag(llvm::Module::Max, "openmp-device", LangOpts.OpenMP); // Emit OpenCL specific module metadata: OpenCL/SPIR version. if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) { EmitOpenCLMetadata(); // Emit SPIR version. if (getTriple().isSPIR()) { // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the // opencl.spir.version named metadata. // C++ for OpenCL has a distinct mapping for version compatibility with // OpenCL. auto Version = LangOpts.getOpenCLCompatibleVersion(); llvm::Metadata *SPIRVerElts[] = { llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( Int32Ty, Version / 100)), llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( Int32Ty, (Version / 100 > 1) ? 0 : 2))}; llvm::NamedMDNode *SPIRVerMD = TheModule.getOrInsertNamedMetadata("opencl.spir.version"); llvm::LLVMContext &Ctx = TheModule.getContext(); SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); } } // HLSL related end of code gen work items. if (LangOpts.HLSL) getHLSLRuntime().finishCodeGen(); if (uint32_t PLevel = Context.getLangOpts().PICLevel) { assert(PLevel < 3 && "Invalid PIC Level"); getModule().setPICLevel(static_cast(PLevel)); if (Context.getLangOpts().PIE) getModule().setPIELevel(static_cast(PLevel)); } if (getCodeGenOpts().CodeModel.size() > 0) { unsigned CM = llvm::StringSwitch(getCodeGenOpts().CodeModel) .Case("tiny", llvm::CodeModel::Tiny) .Case("small", llvm::CodeModel::Small) .Case("kernel", llvm::CodeModel::Kernel) .Case("medium", llvm::CodeModel::Medium) .Case("large", llvm::CodeModel::Large) .Default(~0u); if (CM != ~0u) { llvm::CodeModel::Model codeModel = static_cast(CM); getModule().setCodeModel(codeModel); if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) && Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64) { getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold); } } } if (CodeGenOpts.NoPLT) getModule().setRtLibUseGOT(); if (getTriple().isOSBinFormatELF() && CodeGenOpts.DirectAccessExternalData != getModule().getDirectAccessExternalData()) { getModule().setDirectAccessExternalData( CodeGenOpts.DirectAccessExternalData); } if (CodeGenOpts.UnwindTables) getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables)); switch (CodeGenOpts.getFramePointer()) { case CodeGenOptions::FramePointerKind::None: // 0 ("none") is the default. break; case CodeGenOptions::FramePointerKind::NonLeaf: getModule().setFramePointer(llvm::FramePointerKind::NonLeaf); break; case CodeGenOptions::FramePointerKind::All: getModule().setFramePointer(llvm::FramePointerKind::All); break; } SimplifyPersonality(); if (getCodeGenOpts().EmitDeclMetadata) EmitDeclMetadata(); if (getCodeGenOpts().CoverageNotesFile.size() || getCodeGenOpts().CoverageDataFile.size()) EmitCoverageFile(); if (CGDebugInfo *DI = getModuleDebugInfo()) DI->finalize(); if (getCodeGenOpts().EmitVersionIdentMetadata) EmitVersionIdentMetadata(); if (!getCodeGenOpts().RecordCommandLine.empty()) EmitCommandLineMetadata(); if (!getCodeGenOpts().StackProtectorGuard.empty()) getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard); if (!getCodeGenOpts().StackProtectorGuardReg.empty()) getModule().setStackProtectorGuardReg( getCodeGenOpts().StackProtectorGuardReg); if (!getCodeGenOpts().StackProtectorGuardSymbol.empty()) getModule().setStackProtectorGuardSymbol( getCodeGenOpts().StackProtectorGuardSymbol); if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX) getModule().setStackProtectorGuardOffset( getCodeGenOpts().StackProtectorGuardOffset); if (getCodeGenOpts().StackAlignment) getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment); if (getCodeGenOpts().SkipRaxSetup) getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1); if (getLangOpts().RegCall4) getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1); if (getContext().getTargetInfo().getMaxTLSAlign()) getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign", getContext().getTargetInfo().getMaxTLSAlign()); getTargetCodeGenInfo().emitTargetGlobals(*this); getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames); EmitBackendOptionsMetadata(getCodeGenOpts()); // If there is device offloading code embed it in the host now. EmbedObject(&getModule(), CodeGenOpts, getDiags()); // Set visibility from DLL storage class // We do this at the end of LLVM IR generation; after any operation // that might affect the DLL storage class or the visibility, and // before anything that might act on these. setVisibilityFromDLLStorageClass(LangOpts, getModule()); } void CodeGenModule::EmitOpenCLMetadata() { // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the // opencl.ocl.version named metadata node. // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL. auto Version = LangOpts.getOpenCLCompatibleVersion(); llvm::Metadata *OCLVerElts[] = { llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( Int32Ty, Version / 100)), llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( Int32Ty, (Version % 100) / 10))}; llvm::NamedMDNode *OCLVerMD = TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); llvm::LLVMContext &Ctx = TheModule.getContext(); OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); } void CodeGenModule::EmitBackendOptionsMetadata( const CodeGenOptions &CodeGenOpts) { if (getTriple().isRISCV()) { getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit", CodeGenOpts.SmallDataLimit); } } void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { // Make sure that this type is translated. Types.UpdateCompletedType(TD); } void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { // Make sure that this type is translated. Types.RefreshTypeCacheForClass(RD); } llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { if (!TBAA) return nullptr; return TBAA->getTypeInfo(QTy); } TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { if (!TBAA) return TBAAAccessInfo(); if (getLangOpts().CUDAIsDevice) { // As CUDA builtin surface/texture types are replaced, skip generating TBAA // access info. if (AccessType->isCUDADeviceBuiltinSurfaceType()) { if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() != nullptr) return TBAAAccessInfo(); } else if (AccessType->isCUDADeviceBuiltinTextureType()) { if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() != nullptr) return TBAAAccessInfo(); } } return TBAA->getAccessInfo(AccessType); } TBAAAccessInfo CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { if (!TBAA) return TBAAAccessInfo(); return TBAA->getVTablePtrAccessInfo(VTablePtrType); } llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { if (!TBAA) return nullptr; return TBAA->getTBAAStructInfo(QTy); } llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { if (!TBAA) return nullptr; return TBAA->getBaseTypeInfo(QTy); } llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { if (!TBAA) return nullptr; return TBAA->getAccessTagInfo(Info); } TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, TBAAAccessInfo TargetInfo) { if (!TBAA) return TBAAAccessInfo(); return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); } TBAAAccessInfo CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, TBAAAccessInfo InfoB) { if (!TBAA) return TBAAAccessInfo(); return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); } TBAAAccessInfo CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, TBAAAccessInfo SrcInfo) { if (!TBAA) return TBAAAccessInfo(); return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); } void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, TBAAAccessInfo TBAAInfo) { if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); } void CodeGenModule::DecorateInstructionWithInvariantGroup( llvm::Instruction *I, const CXXRecordDecl *RD) { I->setMetadata(llvm::LLVMContext::MD_invariant_group, llvm::MDNode::get(getLLVMContext(), {})); } void CodeGenModule::Error(SourceLocation loc, StringRef message) { unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); getDiags().Report(Context.getFullLoc(loc), diagID) << message; } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified stmt yet. void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "cannot compile this %0 yet"); std::string Msg = Type; getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID) << Msg << S->getSourceRange(); } /// ErrorUnsupported - Print out an error that codegen doesn't support the /// specified decl yet. void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "cannot compile this %0 yet"); std::string Msg = Type; getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; } llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { return llvm::ConstantInt::get(SizeTy, size.getQuantity()); } void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, const NamedDecl *D) const { // Internal definitions always have default visibility. if (GV->hasLocalLinkage()) { GV->setVisibility(llvm::GlobalValue::DefaultVisibility); return; } if (!D) return; // Set visibility for definitions, and for declarations if requested globally // or set explicitly. LinkageInfo LV = D->getLinkageAndVisibility(); // OpenMP declare target variables must be visible to the host so they can // be registered. We require protected visibility unless the variable has // the DT_nohost modifier and does not need to be registered. if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsTargetDevice && isa(D) && D->hasAttr() && D->getAttr()->getDevType() != OMPDeclareTargetDeclAttr::DT_NoHost && LV.getVisibility() == HiddenVisibility) { GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); return; } if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) { // Reject incompatible dlllstorage and visibility annotations. if (!LV.isVisibilityExplicit()) return; if (GV->hasDLLExportStorageClass()) { if (LV.getVisibility() == HiddenVisibility) getDiags().Report(D->getLocation(), diag::err_hidden_visibility_dllexport); } else if (LV.getVisibility() != DefaultVisibility) { getDiags().Report(D->getLocation(), diag::err_non_default_visibility_dllimport); } return; } if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls || !GV->isDeclarationForLinker()) GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); } static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, llvm::GlobalValue *GV) { if (GV->hasLocalLinkage()) return true; if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) return true; // DLLImport explicitly marks the GV as external. if (GV->hasDLLImportStorageClass()) return false; const llvm::Triple &TT = CGM.getTriple(); const auto &CGOpts = CGM.getCodeGenOpts(); if (TT.isWindowsGNUEnvironment()) { // In MinGW, variables without DLLImport can still be automatically // imported from a DLL by the linker; don't mark variables that // potentially could come from another DLL as DSO local. // With EmulatedTLS, TLS variables can be autoimported from other DLLs // (and this actually happens in the public interface of libstdc++), so // such variables can't be marked as DSO local. (Native TLS variables // can't be dllimported at all, though.) if (GV->isDeclarationForLinker() && isa(GV) && (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) && CGOpts.AutoImport) return false; } // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols // remain unresolved in the link, they can be resolved to zero, which is // outside the current DSO. if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage()) return false; // Every other GV is local on COFF. // Make an exception for windows OS in the triple: Some firmware builds use // *-win32-macho triples. This (accidentally?) produced windows relocations // without GOT tables in older clang versions; Keep this behaviour. // FIXME: even thread local variables? if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) return true; // Only handle COFF and ELF for now. if (!TT.isOSBinFormatELF()) return false; // If this is not an executable, don't assume anything is local. llvm::Reloc::Model RM = CGOpts.RelocationModel; const auto &LOpts = CGM.getLangOpts(); if (RM != llvm::Reloc::Static && !LOpts.PIE) { // On ELF, if -fno-semantic-interposition is specified and the target // supports local aliases, there will be neither CC1 // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set // dso_local on the function if using a local alias is preferable (can avoid // PLT indirection). if (!(isa(GV) && GV->canBenefitFromLocalAlias())) return false; return !(CGM.getLangOpts().SemanticInterposition || CGM.getLangOpts().HalfNoSemanticInterposition); } // A definition cannot be preempted from an executable. if (!GV->isDeclarationForLinker()) return true; // Most PIC code sequences that assume that a symbol is local cannot produce a // 0 if it turns out the symbol is undefined. While this is ABI and relocation // depended, it seems worth it to handle it here. if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) return false; // PowerPC64 prefers TOC indirection to avoid copy relocations. if (TT.isPPC64()) return false; if (CGOpts.DirectAccessExternalData) { // If -fdirect-access-external-data (default for -fno-pic), set dso_local // for non-thread-local variables. If the symbol is not defined in the // executable, a copy relocation will be needed at link time. dso_local is // excluded for thread-local variables because they generally don't support // copy relocations. if (auto *Var = dyn_cast(GV)) if (!Var->isThreadLocal()) return true; // -fno-pic sets dso_local on a function declaration to allow direct // accesses when taking its address (similar to a data symbol). If the // function is not defined in the executable, a canonical PLT entry will be // needed at link time. -fno-direct-access-external-data can avoid the // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as // it could just cause trouble without providing perceptible benefits. if (isa(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) return true; } // If we can use copy relocations we can assume it is local. // Otherwise don't assume it is local. return false; } void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); } void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, GlobalDecl GD) const { const auto *D = dyn_cast(GD.getDecl()); // C++ destructors have a few C++ ABI specific special cases. if (const auto *Dtor = dyn_cast_or_null(D)) { getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); return; } setDLLImportDLLExport(GV, D); } void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, const NamedDecl *D) const { if (D && D->isExternallyVisible()) { if (D->hasAttr()) GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); else if ((D->hasAttr() || shouldMapVisibilityToDLLExport(D)) && !GV->isDeclarationForLinker()) GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); } } void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, GlobalDecl GD) const { setDLLImportDLLExport(GV, GD); setGVPropertiesAux(GV, dyn_cast(GD.getDecl())); } void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, const NamedDecl *D) const { setDLLImportDLLExport(GV, D); setGVPropertiesAux(GV, D); } void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV, const NamedDecl *D) const { setGlobalVisibility(GV, D); setDSOLocal(GV); GV->setPartition(CodeGenOpts.SymbolPartition); } static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { return llvm::StringSwitch(S) .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); } llvm::GlobalVariable::ThreadLocalMode CodeGenModule::GetDefaultLLVMTLSModel() const { switch (CodeGenOpts.getDefaultTLSModel()) { case CodeGenOptions::GeneralDynamicTLSModel: return llvm::GlobalVariable::GeneralDynamicTLSModel; case CodeGenOptions::LocalDynamicTLSModel: return llvm::GlobalVariable::LocalDynamicTLSModel; case CodeGenOptions::InitialExecTLSModel: return llvm::GlobalVariable::InitialExecTLSModel; case CodeGenOptions::LocalExecTLSModel: return llvm::GlobalVariable::LocalExecTLSModel; } llvm_unreachable("Invalid TLS model!"); } void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); llvm::GlobalValue::ThreadLocalMode TLM; TLM = GetDefaultLLVMTLSModel(); // Override the TLS model if it is explicitly specified. if (const TLSModelAttr *Attr = D.getAttr()) { TLM = GetLLVMTLSModel(Attr->getModel()); } GV->setThreadLocalMode(TLM); } static std::string getCPUSpecificMangling(const CodeGenModule &CGM, StringRef Name) { const TargetInfo &Target = CGM.getTarget(); return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); } static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, const CPUSpecificAttr *Attr, unsigned CPUIndex, raw_ostream &Out) { // cpu_specific gets the current name, dispatch gets the resolver if IFunc is // supported. if (Attr) Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName()); else if (CGM.getTarget().supportsIFunc()) Out << ".resolver"; } static void AppendTargetVersionMangling(const CodeGenModule &CGM, const TargetVersionAttr *Attr, raw_ostream &Out) { if (Attr->isDefaultVersion()) { Out << ".default"; return; } Out << "._"; const TargetInfo &TI = CGM.getTarget(); llvm::SmallVector Feats; Attr->getFeatures(Feats); llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) { return TI.multiVersionSortPriority(FeatL) < TI.multiVersionSortPriority(FeatR); }); for (const auto &Feat : Feats) { Out << 'M'; Out << Feat; } } static void AppendTargetMangling(const CodeGenModule &CGM, const TargetAttr *Attr, raw_ostream &Out) { if (Attr->isDefaultVersion()) return; Out << '.'; const TargetInfo &Target = CGM.getTarget(); ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr()); llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) { // Multiversioning doesn't allow "no-${feature}", so we can // only have "+" prefixes here. assert(LHS.starts_with("+") && RHS.starts_with("+") && "Features should always have a prefix."); return Target.multiVersionSortPriority(LHS.substr(1)) > Target.multiVersionSortPriority(RHS.substr(1)); }); bool IsFirst = true; if (!Info.CPU.empty()) { IsFirst = false; Out << "arch_" << Info.CPU; } for (StringRef Feat : Info.Features) { if (!IsFirst) Out << '_'; IsFirst = false; Out << Feat.substr(1); } } // Returns true if GD is a function decl with internal linkage and // needs a unique suffix after the mangled name. static bool isUniqueInternalLinkageDecl(GlobalDecl GD, CodeGenModule &CGM) { const Decl *D = GD.getDecl(); return !CGM.getModuleNameHash().empty() && isa(D) && (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage); } static void AppendTargetClonesMangling(const CodeGenModule &CGM, const TargetClonesAttr *Attr, unsigned VersionIndex, raw_ostream &Out) { const TargetInfo &TI = CGM.getTarget(); if (TI.getTriple().isAArch64()) { StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); if (FeatureStr == "default") { Out << ".default"; return; } Out << "._"; SmallVector Features; FeatureStr.split(Features, "+"); llvm::stable_sort(Features, [&TI](const StringRef FeatL, const StringRef FeatR) { return TI.multiVersionSortPriority(FeatL) < TI.multiVersionSortPriority(FeatR); }); for (auto &Feat : Features) { Out << 'M'; Out << Feat; } } else { Out << '.'; StringRef FeatureStr = Attr->getFeatureStr(VersionIndex); if (FeatureStr.starts_with("arch=")) Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1); else Out << FeatureStr; Out << '.' << Attr->getMangledIndex(VersionIndex); } } static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD, const NamedDecl *ND, bool OmitMultiVersionMangling = false) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); MangleContext &MC = CGM.getCXXABI().getMangleContext(); if (!CGM.getModuleNameHash().empty()) MC.needsUniqueInternalLinkageNames(); bool ShouldMangle = MC.shouldMangleDeclName(ND); if (ShouldMangle) MC.mangleName(GD.getWithDecl(ND), Out); else { IdentifierInfo *II = ND->getIdentifier(); assert(II && "Attempt to mangle unnamed decl."); const auto *FD = dyn_cast(ND); if (FD && FD->getType()->castAs()->getCallConv() == CC_X86RegCall) { if (CGM.getLangOpts().RegCall4) Out << "__regcall4__" << II->getName(); else Out << "__regcall3__" << II->getName(); } else if (FD && FD->hasAttr() && GD.getKernelReferenceKind() == KernelReferenceKind::Stub) { Out << "__device_stub__" << II->getName(); } else { Out << II->getName(); } } // Check if the module name hash should be appended for internal linkage // symbols. This should come before multi-version target suffixes are // appended. This is to keep the name and module hash suffix of the // internal linkage function together. The unique suffix should only be // added when name mangling is done to make sure that the final name can // be properly demangled. For example, for C functions without prototypes, // name mangling is not done and the unique suffix should not be appeneded // then. if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) { assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames && "Hash computed when not explicitly requested"); Out << CGM.getModuleNameHash(); } if (const auto *FD = dyn_cast(ND)) if (FD->isMultiVersion() && !OmitMultiVersionMangling) { switch (FD->getMultiVersionKind()) { case MultiVersionKind::CPUDispatch: case MultiVersionKind::CPUSpecific: AppendCPUSpecificCPUDispatchMangling(CGM, FD->getAttr(), GD.getMultiVersionIndex(), Out); break; case MultiVersionKind::Target: AppendTargetMangling(CGM, FD->getAttr(), Out); break; case MultiVersionKind::TargetVersion: AppendTargetVersionMangling(CGM, FD->getAttr(), Out); break; case MultiVersionKind::TargetClones: AppendTargetClonesMangling(CGM, FD->getAttr(), GD.getMultiVersionIndex(), Out); break; case MultiVersionKind::None: llvm_unreachable("None multiversion type isn't valid here"); } } // Make unique name for device side static file-scope variable for HIP. if (CGM.getContext().shouldExternalize(ND) && CGM.getLangOpts().GPURelocatableDeviceCode && CGM.getLangOpts().CUDAIsDevice) CGM.printPostfixForExternalizedDecl(Out, ND); return std::string(Out.str()); } void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, const FunctionDecl *FD, StringRef &CurName) { if (!FD->isMultiVersion()) return; // Get the name of what this would be without the 'target' attribute. This // allows us to lookup the version that was emitted when this wasn't a // multiversion function. std::string NonTargetName = getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); GlobalDecl OtherGD; if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { assert(OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->isMultiVersion() && "Other GD should now be a multiversioned function"); // OtherFD is the version of this function that was mangled BEFORE // becoming a MultiVersion function. It potentially needs to be updated. const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl() .getDecl() ->getAsFunction() ->getMostRecentDecl(); std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); // This is so that if the initial version was already the 'default' // version, we don't try to update it. if (OtherName != NonTargetName) { // Remove instead of erase, since others may have stored the StringRef // to this. const auto ExistingRecord = Manglings.find(NonTargetName); if (ExistingRecord != std::end(Manglings)) Manglings.remove(&(*ExistingRecord)); auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); // If this is the current decl is being created, make sure we update the name. if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl()) CurName = OtherNameRef; if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) Entry->setName(OtherName); } } } StringRef CodeGenModule::getMangledName(GlobalDecl GD) { GlobalDecl CanonicalGD = GD.getCanonicalDecl(); // Some ABIs don't have constructor variants. Make sure that base and // complete constructors get mangled the same. if (const auto *CD = dyn_cast(CanonicalGD.getDecl())) { if (!getTarget().getCXXABI().hasConstructorVariants()) { CXXCtorType OrigCtorType = GD.getCtorType(); assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); if (OrigCtorType == Ctor_Base) CanonicalGD = GlobalDecl(CD, Ctor_Complete); } } // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a // static device variable depends on whether the variable is referenced by // a host or device host function. Therefore the mangled name cannot be // cached. if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) { auto FoundName = MangledDeclNames.find(CanonicalGD); if (FoundName != MangledDeclNames.end()) return FoundName->second; } // Keep the first result in the case of a mangling collision. const auto *ND = cast(GD.getDecl()); std::string MangledName = getMangledNameImpl(*this, GD, ND); // Ensure either we have different ABIs between host and device compilations, // says host compilation following MSVC ABI but device compilation follows // Itanium C++ ABI or, if they follow the same ABI, kernel names after // mangling should be the same after name stubbing. The later checking is // very important as the device kernel name being mangled in host-compilation // is used to resolve the device binaries to be executed. Inconsistent naming // result in undefined behavior. Even though we cannot check that naming // directly between host- and device-compilations, the host- and // device-mangling in host compilation could help catching certain ones. assert(!isa(ND) || !ND->hasAttr() || getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice || (getContext().getAuxTargetInfo() && (getContext().getAuxTargetInfo()->getCXXABI() != getContext().getTargetInfo().getCXXABI())) || getCUDARuntime().getDeviceSideName(ND) == getMangledNameImpl( *this, GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel), ND)); auto Result = Manglings.insert(std::make_pair(MangledName, GD)); return MangledDeclNames[CanonicalGD] = Result.first->first(); } StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, const BlockDecl *BD) { MangleContext &MangleCtx = getCXXABI().getMangleContext(); const Decl *D = GD.getDecl(); SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); if (!D) MangleCtx.mangleGlobalBlock(BD, dyn_cast_or_null(initializedGlobalDecl.getDecl()), Out); else if (const auto *CD = dyn_cast(D)) MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); else if (const auto *DD = dyn_cast(D)) MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); else MangleCtx.mangleBlock(cast(D), BD, Out); auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); return Result.first->first(); } const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) { auto it = MangledDeclNames.begin(); while (it != MangledDeclNames.end()) { if (it->second == Name) return it->first; it++; } return GlobalDecl(); } llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { return getModule().getNamedValue(Name); } /// AddGlobalCtor - Add a function to the list that will be called before /// main() runs. void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, unsigned LexOrder, llvm::Constant *AssociatedData) { // FIXME: Type coercion of void()* types. GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData)); } /// AddGlobalDtor - Add a function to the list that will be called /// when the module is unloaded. void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority, bool IsDtorAttrFunc) { if (CodeGenOpts.RegisterGlobalDtorsWithAtExit && (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) { DtorsUsingAtExit[Priority].push_back(Dtor); return; } // FIXME: Type coercion of void()* types. GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr)); } void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { if (Fns.empty()) return; // Ctor function type is void()*. llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy, TheModule.getDataLayout().getProgramAddressSpace()); // Get the type of a ctor entry, { i32, void ()*, i8* }. llvm::StructType *CtorStructTy = llvm::StructType::get( Int32Ty, CtorPFTy, VoidPtrTy); // Construct the constructor and destructor arrays. ConstantInitBuilder builder(*this); auto ctors = builder.beginArray(CtorStructTy); for (const auto &I : Fns) { auto ctor = ctors.beginStruct(CtorStructTy); ctor.addInt(Int32Ty, I.Priority); ctor.add(I.Initializer); if (I.AssociatedData) ctor.add(I.AssociatedData); else ctor.addNullPointer(VoidPtrTy); ctor.finishAndAddTo(ctors); } auto list = ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), /*constant*/ false, llvm::GlobalValue::AppendingLinkage); // The LTO linker doesn't seem to like it when we set an alignment // on appending variables. Take it off as a workaround. list->setAlignment(std::nullopt); Fns.clear(); } llvm::GlobalValue::LinkageTypes CodeGenModule::getFunctionLinkage(GlobalDecl GD) { const auto *D = cast(GD.getDecl()); GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); if (const auto *Dtor = dyn_cast(D)) return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); return getLLVMLinkageForDeclarator(D, Linkage); } llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { llvm::MDString *MDS = dyn_cast(MD); if (!MDS) return nullptr; return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); } llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) { if (auto *FnType = T->getAs()) T = getContext().getFunctionType( FnType->getReturnType(), FnType->getParamTypes(), FnType->getExtProtoInfo().withExceptionSpec(EST_None)); std::string OutName; llvm::raw_string_ostream Out(OutName); getCXXABI().getMangleContext().mangleCanonicalTypeName( T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) Out << ".normalized"; return llvm::ConstantInt::get(Int32Ty, static_cast(llvm::xxHash64(OutName))); } void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD, const CGFunctionInfo &Info, llvm::Function *F, bool IsThunk) { unsigned CallingConv; llvm::AttributeList PAL; ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv, /*AttrOnCallSite=*/false, IsThunk); F->setAttributes(PAL); F->setCallingConv(static_cast(CallingConv)); } static void removeImageAccessQualifier(std::string& TyName) { std::string ReadOnlyQual("__read_only"); std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); if (ReadOnlyPos != std::string::npos) // "+ 1" for the space after access qualifier. TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); else { std::string WriteOnlyQual("__write_only"); std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); if (WriteOnlyPos != std::string::npos) TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); else { std::string ReadWriteQual("__read_write"); std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); if (ReadWritePos != std::string::npos) TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); } } } // Returns the address space id that should be produced to the // kernel_arg_addr_space metadata. This is always fixed to the ids // as specified in the SPIR 2.0 specification in order to differentiate // for example in clGetKernelArgInfo() implementation between the address // spaces with targets without unique mapping to the OpenCL address spaces // (basically all single AS CPUs). static unsigned ArgInfoAddressSpace(LangAS AS) { switch (AS) { case LangAS::opencl_global: return 1; case LangAS::opencl_constant: return 2; case LangAS::opencl_local: return 3; case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. case LangAS::opencl_global_device: return 5; case LangAS::opencl_global_host: return 6; default: return 0; // Assume private. } } void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn, const FunctionDecl *FD, CodeGenFunction *CGF) { assert(((FD && CGF) || (!FD && !CGF)) && "Incorrect use - FD and CGF should either be both null or not!"); // Create MDNodes that represent the kernel arg metadata. // Each MDNode is a list in the form of "key", N number of values which is // the same number of values as their are kernel arguments. const PrintingPolicy &Policy = Context.getPrintingPolicy(); // MDNode for the kernel argument address space qualifiers. SmallVector addressQuals; // MDNode for the kernel argument access qualifiers (images only). SmallVector accessQuals; // MDNode for the kernel argument type names. SmallVector argTypeNames; // MDNode for the kernel argument base type names. SmallVector argBaseTypeNames; // MDNode for the kernel argument type qualifiers. SmallVector argTypeQuals; // MDNode for the kernel argument names. SmallVector argNames; if (FD && CGF) for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { const ParmVarDecl *parm = FD->getParamDecl(i); // Get argument name. argNames.push_back(llvm::MDString::get(VMContext, parm->getName())); if (!getLangOpts().OpenCL) continue; QualType ty = parm->getType(); std::string typeQuals; // Get image and pipe access qualifier: if (ty->isImageType() || ty->isPipeType()) { const Decl *PDecl = parm; if (const auto *TD = ty->getAs()) PDecl = TD->getDecl(); const OpenCLAccessAttr *A = PDecl->getAttr(); if (A && A->isWriteOnly()) accessQuals.push_back(llvm::MDString::get(VMContext, "write_only")); else if (A && A->isReadWrite()) accessQuals.push_back(llvm::MDString::get(VMContext, "read_write")); else accessQuals.push_back(llvm::MDString::get(VMContext, "read_only")); } else accessQuals.push_back(llvm::MDString::get(VMContext, "none")); auto getTypeSpelling = [&](QualType Ty) { auto typeName = Ty.getUnqualifiedType().getAsString(Policy); if (Ty.isCanonical()) { StringRef typeNameRef = typeName; // Turn "unsigned type" to "utype" if (typeNameRef.consume_front("unsigned ")) return std::string("u") + typeNameRef.str(); if (typeNameRef.consume_front("signed ")) return typeNameRef.str(); } return typeName; }; if (ty->isPointerType()) { QualType pointeeTy = ty->getPointeeType(); // Get address qualifier. addressQuals.push_back( llvm::ConstantAsMetadata::get(CGF->Builder.getInt32( ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); // Get argument type name. std::string typeName = getTypeSpelling(pointeeTy) + "*"; std::string baseTypeName = getTypeSpelling(pointeeTy.getCanonicalType()) + "*"; argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); argBaseTypeNames.push_back( llvm::MDString::get(VMContext, baseTypeName)); // Get argument type qualifiers: if (ty.isRestrictQualified()) typeQuals = "restrict"; if (pointeeTy.isConstQualified() || (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) typeQuals += typeQuals.empty() ? "const" : " const"; if (pointeeTy.isVolatileQualified()) typeQuals += typeQuals.empty() ? "volatile" : " volatile"; } else { uint32_t AddrSpc = 0; bool isPipe = ty->isPipeType(); if (ty->isImageType() || isPipe) AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); addressQuals.push_back( llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc))); // Get argument type name. ty = isPipe ? ty->castAs()->getElementType() : ty; std::string typeName = getTypeSpelling(ty); std::string baseTypeName = getTypeSpelling(ty.getCanonicalType()); // Remove access qualifiers on images // (as they are inseparable from type in clang implementation, // but OpenCL spec provides a special query to get access qualifier // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): if (ty->isImageType()) { removeImageAccessQualifier(typeName); removeImageAccessQualifier(baseTypeName); } argTypeNames.push_back(llvm::MDString::get(VMContext, typeName)); argBaseTypeNames.push_back( llvm::MDString::get(VMContext, baseTypeName)); if (isPipe) typeQuals = "pipe"; } argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals)); } if (getLangOpts().OpenCL) { Fn->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(VMContext, addressQuals)); Fn->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(VMContext, accessQuals)); Fn->setMetadata("kernel_arg_type", llvm::MDNode::get(VMContext, argTypeNames)); Fn->setMetadata("kernel_arg_base_type", llvm::MDNode::get(VMContext, argBaseTypeNames)); Fn->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(VMContext, argTypeQuals)); } if (getCodeGenOpts().EmitOpenCLArgMetadata || getCodeGenOpts().HIPSaveKernelArgName) Fn->setMetadata("kernel_arg_name", llvm::MDNode::get(VMContext, argNames)); } /// Determines whether the language options require us to model /// unwind exceptions. We treat -fexceptions as mandating this /// except under the fragile ObjC ABI with only ObjC exceptions /// enabled. This means, for example, that C with -fexceptions /// enables this. static bool hasUnwindExceptions(const LangOptions &LangOpts) { // If exceptions are completely disabled, obviously this is false. if (!LangOpts.Exceptions) return false; // If C++ exceptions are enabled, this is true. if (LangOpts.CXXExceptions) return true; // If ObjC exceptions are enabled, this depends on the ABI. if (LangOpts.ObjCExceptions) { return LangOpts.ObjCRuntime.hasUnwindExceptions(); } return true; } static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, const CXXMethodDecl *MD) { // Check that the type metadata can ever actually be used by a call. if (!CGM.getCodeGenOpts().LTOUnit || !CGM.HasHiddenLTOVisibility(MD->getParent())) return false; // Only functions whose address can be taken with a member function pointer // need this sort of type metadata. return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() && !isa(MD); } SmallVector CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { llvm::SetVector MostBases; std::function CollectMostBases; CollectMostBases = [&](const CXXRecordDecl *RD) { if (RD->getNumBases() == 0) MostBases.insert(RD); for (const CXXBaseSpecifier &B : RD->bases()) CollectMostBases(B.getType()->getAsCXXRecordDecl()); }; CollectMostBases(RD); return MostBases.takeVector(); } void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, llvm::Function *F) { llvm::AttrBuilder B(F->getContext()); if ((!D || !D->hasAttr()) && CodeGenOpts.UnwindTables) B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables)); if (CodeGenOpts.StackClashProtector) B.addAttribute("probe-stack", "inline-asm"); if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096) B.addAttribute("stack-probe-size", std::to_string(CodeGenOpts.StackProbeSize)); if (!hasUnwindExceptions(LangOpts)) B.addAttribute(llvm::Attribute::NoUnwind); if (D && D->hasAttr()) ; // Do nothing. else if (D && D->hasAttr() && isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) B.addAttribute(llvm::Attribute::StackProtectStrong); else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn)) B.addAttribute(llvm::Attribute::StackProtect); else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong)) B.addAttribute(llvm::Attribute::StackProtectStrong); else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq)) B.addAttribute(llvm::Attribute::StackProtectReq); if (!D) { // If we don't have a declaration to control inlining, the function isn't // explicitly marked as alwaysinline for semantic reasons, and inlining is // disabled, mark the function as noinline. if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) B.addAttribute(llvm::Attribute::NoInline); F->addFnAttrs(B); return; } // Handle SME attributes that apply to function definitions, // rather than to function prototypes. if (D->hasAttr()) B.addAttribute("aarch64_pstate_sm_body"); if (auto *Attr = D->getAttr()) { if (Attr->isNewZA()) B.addAttribute("aarch64_pstate_za_new"); if (Attr->isNewZT0()) B.addAttribute("aarch64_new_zt0"); } // Track whether we need to add the optnone LLVM attribute, // starting with the default for this optimization level. bool ShouldAddOptNone = !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; // We can't add optnone in the following cases, it won't pass the verifier. ShouldAddOptNone &= !D->hasAttr(); ShouldAddOptNone &= !D->hasAttr(); // Add optnone, but do so only if the function isn't always_inline. if ((ShouldAddOptNone || D->hasAttr()) && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { B.addAttribute(llvm::Attribute::OptimizeNone); // OptimizeNone implies noinline; we should not be inlining such functions. B.addAttribute(llvm::Attribute::NoInline); // We still need to handle naked functions even though optnone subsumes // much of their semantics. if (D->hasAttr()) B.addAttribute(llvm::Attribute::Naked); // OptimizeNone wins over OptimizeForSize and MinSize. F->removeFnAttr(llvm::Attribute::OptimizeForSize); F->removeFnAttr(llvm::Attribute::MinSize); } else if (D->hasAttr()) { // Naked implies noinline: we should not be inlining such functions. B.addAttribute(llvm::Attribute::Naked); B.addAttribute(llvm::Attribute::NoInline); } else if (D->hasAttr()) { B.addAttribute(llvm::Attribute::NoDuplicate); } else if (D->hasAttr() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { // Add noinline if the function isn't always_inline. B.addAttribute(llvm::Attribute::NoInline); } else if (D->hasAttr() && !F->hasFnAttribute(llvm::Attribute::NoInline)) { // (noinline wins over always_inline, and we can't specify both in IR) B.addAttribute(llvm::Attribute::AlwaysInline); } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { // If we're not inlining, then force everything that isn't always_inline to // carry an explicit noinline attribute. if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) B.addAttribute(llvm::Attribute::NoInline); } else { // Otherwise, propagate the inline hint attribute and potentially use its // absence to mark things as noinline. if (auto *FD = dyn_cast(D)) { // Search function and template pattern redeclarations for inline. auto CheckForInline = [](const FunctionDecl *FD) { auto CheckRedeclForInline = [](const FunctionDecl *Redecl) { return Redecl->isInlineSpecified(); }; if (any_of(FD->redecls(), CheckRedeclForInline)) return true; const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(); if (!Pattern) return false; return any_of(Pattern->redecls(), CheckRedeclForInline); }; if (CheckForInline(FD)) { B.addAttribute(llvm::Attribute::InlineHint); } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining && !FD->isInlined() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { B.addAttribute(llvm::Attribute::NoInline); } } } // Add other optimization related attributes if we are optimizing this // function. if (!D->hasAttr()) { if (D->hasAttr()) { if (!ShouldAddOptNone) B.addAttribute(llvm::Attribute::OptimizeForSize); B.addAttribute(llvm::Attribute::Cold); } if (D->hasAttr()) B.addAttribute(llvm::Attribute::Hot); if (D->hasAttr()) B.addAttribute(llvm::Attribute::MinSize); } F->addFnAttrs(B); unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); if (alignment) F->setAlignment(llvm::Align(alignment)); if (!D->hasAttr()) if (LangOpts.FunctionAlignment) F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment)); // Some C++ ABIs require 2-byte alignment for member functions, in order to // reserve a bit for differentiating between virtual and non-virtual member // functions. If the current target's C++ ABI requires this and this is a // member function, set its alignment accordingly. if (getTarget().getCXXABI().areMemberFunctionsAligned()) { if (isa(D) && F->getPointerAlignment(getDataLayout()) < 2) F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne())); } // In the cross-dso CFI mode with canonical jump tables, we want !type // attributes on definitions only. if (CodeGenOpts.SanitizeCfiCrossDso && CodeGenOpts.SanitizeCfiCanonicalJumpTables) { if (auto *FD = dyn_cast(D)) { // Skip available_externally functions. They won't be codegen'ed in the // current module anyway. if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally) CreateFunctionTypeMetadataForIcall(FD, F); } } // Emit type metadata on member functions for member function pointer checks. // These are only ever necessary on definitions; we're guaranteed that the // definition will be present in the LTO unit as a result of LTO visibility. auto *MD = dyn_cast(D); if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { llvm::Metadata *Id = CreateMetadataIdentifierForType(Context.getMemberPointerType( MD->getType(), Context.getRecordType(Base).getTypePtr())); F->addTypeMetadata(0, Id); } } } void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { const Decl *D = GD.getDecl(); if (isa_and_nonnull(D)) setGVProperties(GV, GD); else GV->setVisibility(llvm::GlobalValue::DefaultVisibility); if (D && D->hasAttr()) addUsedOrCompilerUsedGlobal(GV); if (const auto *VD = dyn_cast_if_present(D); VD && ((CodeGenOpts.KeepPersistentStorageVariables && (VD->getStorageDuration() == SD_Static || VD->getStorageDuration() == SD_Thread)) || (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && VD->getType().isConstQualified()))) addUsedOrCompilerUsedGlobal(GV); } bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD, llvm::AttrBuilder &Attrs, bool SetTargetFeatures) { // Add target-cpu and target-features attributes to functions. If // we have a decl for the function and it has a target attribute then // parse that and add it to the feature set. StringRef TargetCPU = getTarget().getTargetOpts().CPU; StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU; std::vector Features; const auto *FD = dyn_cast_or_null(GD.getDecl()); FD = FD ? FD->getMostRecentDecl() : FD; const auto *TD = FD ? FD->getAttr() : nullptr; const auto *TV = FD ? FD->getAttr() : nullptr; assert((!TD || !TV) && "both target_version and target specified"); const auto *SD = FD ? FD->getAttr() : nullptr; const auto *TC = FD ? FD->getAttr() : nullptr; bool AddedAttr = false; if (TD || TV || SD || TC) { llvm::StringMap FeatureMap; getContext().getFunctionFeatureMap(FeatureMap, GD); // Produce the canonical string for this set of features. for (const llvm::StringMap::value_type &Entry : FeatureMap) Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); // Now add the target-cpu and target-features to the function. // While we populated the feature map above, we still need to // get and parse the target attribute so we can get the cpu for // the function. if (TD) { ParsedTargetAttr ParsedAttr = Target.parseTargetAttr(TD->getFeaturesStr()); if (!ParsedAttr.CPU.empty() && getTarget().isValidCPUName(ParsedAttr.CPU)) { TargetCPU = ParsedAttr.CPU; TuneCPU = ""; // Clear the tune CPU. } if (!ParsedAttr.Tune.empty() && getTarget().isValidCPUName(ParsedAttr.Tune)) TuneCPU = ParsedAttr.Tune; } if (SD) { // Apply the given CPU name as the 'tune-cpu' so that the optimizer can // favor this processor. TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName(); } } else { // Otherwise just add the existing target cpu and target features to the // function. Features = getTarget().getTargetOpts().Features; } if (!TargetCPU.empty()) { Attrs.addAttribute("target-cpu", TargetCPU); AddedAttr = true; } if (!TuneCPU.empty()) { Attrs.addAttribute("tune-cpu", TuneCPU); AddedAttr = true; } if (!Features.empty() && SetTargetFeatures) { llvm::erase_if(Features, [&](const std::string& F) { return getTarget().isReadOnlyFeature(F.substr(1)); }); llvm::sort(Features); Attrs.addAttribute("target-features", llvm::join(Features, ",")); AddedAttr = true; } return AddedAttr; } void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, llvm::GlobalObject *GO) { const Decl *D = GD.getDecl(); SetCommonAttributes(GD, GO); if (D) { if (auto *GV = dyn_cast(GO)) { if (D->hasAttr()) addUsedGlobal(GV); if (auto *SA = D->getAttr()) GV->addAttribute("bss-section", SA->getName()); if (auto *SA = D->getAttr()) GV->addAttribute("data-section", SA->getName()); if (auto *SA = D->getAttr()) GV->addAttribute("rodata-section", SA->getName()); if (auto *SA = D->getAttr()) GV->addAttribute("relro-section", SA->getName()); } if (auto *F = dyn_cast(GO)) { if (D->hasAttr()) addUsedGlobal(F); if (auto *SA = D->getAttr()) if (!D->getAttr()) F->addFnAttr("implicit-section-name", SA->getName()); llvm::AttrBuilder Attrs(F->getContext()); if (GetCPUAndFeaturesAttributes(GD, Attrs)) { // We know that GetCPUAndFeaturesAttributes will always have the // newest set, since it has the newest possible FunctionDecl, so the // new ones should replace the old. llvm::AttributeMask RemoveAttrs; RemoveAttrs.addAttribute("target-cpu"); RemoveAttrs.addAttribute("target-features"); RemoveAttrs.addAttribute("tune-cpu"); F->removeFnAttrs(RemoveAttrs); F->addFnAttrs(Attrs); } } if (const auto *CSA = D->getAttr()) GO->setSection(CSA->getName()); else if (const auto *SA = D->getAttr()) GO->setSection(SA->getName()); } getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); } void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, llvm::Function *F, const CGFunctionInfo &FI) { const Decl *D = GD.getDecl(); SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false); SetLLVMFunctionAttributesForDefinition(D, F); F->setLinkage(llvm::Function::InternalLinkage); setNonAliasAttributes(GD, F); } static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { // Set linkage and visibility in case we never see a definition. LinkageInfo LV = ND->getLinkageAndVisibility(); // Don't set internal linkage on declarations. // "extern_weak" is overloaded in LLVM; we probably should have // separate linkage types for this. if (isExternallyVisible(LV.getLinkage()) && (ND->hasAttr() || ND->isWeakImported())) GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); } void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, llvm::Function *F) { // Only if we are checking indirect calls. if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) return; // Non-static class methods are handled via vtable or member function pointer // checks elsewhere. if (isa(FD) && !cast(FD)->isStatic()) return; llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); F->addTypeMetadata(0, MD); F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); // Emit a hash-based bit set entry for cross-DSO calls. if (CodeGenOpts.SanitizeCfiCrossDso) if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); } void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) { llvm::LLVMContext &Ctx = F->getContext(); llvm::MDBuilder MDB(Ctx); F->setMetadata(llvm::LLVMContext::MD_kcfi_type, llvm::MDNode::get( Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType())))); } static bool allowKCFIIdentifier(StringRef Name) { // KCFI type identifier constants are only necessary for external assembly // functions, which means it's safe to skip unusual names. Subset of // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar(). return llvm::all_of(Name, [](const char &C) { return llvm::isAlnum(C) || C == '_' || C == '.'; }); } void CodeGenModule::finalizeKCFITypes() { llvm::Module &M = getModule(); for (auto &F : M.functions()) { // Remove KCFI type metadata from non-address-taken local functions. bool AddressTaken = F.hasAddressTaken(); if (!AddressTaken && F.hasLocalLinkage()) F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type); // Generate a constant with the expected KCFI type identifier for all // address-taken function declarations to support annotating indirectly // called assembly functions. if (!AddressTaken || !F.isDeclaration()) continue; const llvm::ConstantInt *Type; if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type)) Type = llvm::mdconst::extract(MD->getOperand(0)); else continue; StringRef Name = F.getName(); if (!allowKCFIIdentifier(Name)) continue; std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" + Name + ", " + Twine(Type->getZExtValue()) + "\n") .str(); M.appendModuleInlineAsm(Asm); } } void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, bool IsIncompleteFunction, bool IsThunk) { if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { // If this is an intrinsic function, set the function's attributes // to the intrinsic's attributes. F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); return; } const auto *FD = cast(GD.getDecl()); if (!IsIncompleteFunction) SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F, IsThunk); // Add the Returned attribute for "this", except for iOS 5 and earlier // where substantial code, including the libstdc++ dylib, was compiled with // GCC and does not actually return "this". if (!IsThunk && getCXXABI().HasThisReturn(GD) && !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { assert(!F->arg_empty() && F->arg_begin()->getType() ->canLosslesslyBitCastTo(F->getReturnType()) && "unexpected this return"); F->addParamAttr(0, llvm::Attribute::Returned); } // Only a few attributes are set on declarations; these may later be // overridden by a definition. setLinkageForGV(F, FD); setGVProperties(F, FD); // Setup target-specific attributes. if (!IsIncompleteFunction && F->isDeclaration()) getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); if (const auto *CSA = FD->getAttr()) F->setSection(CSA->getName()); else if (const auto *SA = FD->getAttr()) F->setSection(SA->getName()); if (const auto *EA = FD->getAttr()) { if (EA->isError()) F->addFnAttr("dontcall-error", EA->getUserDiagnostic()); else if (EA->isWarning()) F->addFnAttr("dontcall-warn", EA->getUserDiagnostic()); } // If we plan on emitting this inline builtin, we can't treat it as a builtin. if (FD->isInlineBuiltinDeclaration()) { const FunctionDecl *FDBody; bool HasBody = FD->hasBody(FDBody); (void)HasBody; assert(HasBody && "Inline builtin declarations should always have an " "available body!"); if (shouldEmitFunction(FDBody)) F->addFnAttr(llvm::Attribute::NoBuiltin); } if (FD->isReplaceableGlobalAllocationFunction()) { // A replaceable global allocation function does not act like a builtin by // default, only if it is invoked by a new-expression or delete-expression. F->addFnAttr(llvm::Attribute::NoBuiltin); } if (isa(FD) || isa(FD)) F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); else if (const auto *MD = dyn_cast(FD)) if (MD->isVirtual()) F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); // Don't emit entries for function declarations in the cross-DSO mode. This // is handled with better precision by the receiving DSO. But if jump tables // are non-canonical then we need type metadata in order to produce the local // jump table. if (!CodeGenOpts.SanitizeCfiCrossDso || !CodeGenOpts.SanitizeCfiCanonicalJumpTables) CreateFunctionTypeMetadataForIcall(FD, F); if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) setKCFIType(FD, F); if (getLangOpts().OpenMP && FD->hasAttr()) getOpenMPRuntime().emitDeclareSimdFunction(FD, F); if (CodeGenOpts.InlineMaxStackSize != UINT_MAX) F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize)); if (const auto *CB = FD->getAttr()) { // Annotate the callback behavior as metadata: // - The callback callee (as argument number). // - The callback payloads (as argument numbers). llvm::LLVMContext &Ctx = F->getContext(); llvm::MDBuilder MDB(Ctx); // The payload indices are all but the first one in the encoding. The first // identifies the callback callee. int CalleeIdx = *CB->encoding_begin(); ArrayRef PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end()); F->addMetadata(llvm::LLVMContext::MD_callback, *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( CalleeIdx, PayloadIndices, /* VarArgsArePassed */ false)})); } } void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { assert((isa(GV) || !GV->isDeclaration()) && "Only globals with definition can force usage."); LLVMUsed.emplace_back(GV); } void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { assert(!GV->isDeclaration() && "Only globals with definition can force usage."); LLVMCompilerUsed.emplace_back(GV); } void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) { assert((isa(GV) || !GV->isDeclaration()) && "Only globals with definition can force usage."); if (getTriple().isOSBinFormatELF()) LLVMCompilerUsed.emplace_back(GV); else LLVMUsed.emplace_back(GV); } static void emitUsed(CodeGenModule &CGM, StringRef Name, std::vector &List) { // Don't create llvm.used if there is no need. if (List.empty()) return; // Convert List to what ConstantArray needs. SmallVector UsedArray; UsedArray.resize(List.size()); for (unsigned i = 0, e = List.size(); i != e; ++i) { UsedArray[i] = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( cast(&*List[i]), CGM.Int8PtrTy); } if (UsedArray.empty()) return; llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); auto *GV = new llvm::GlobalVariable( CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, llvm::ConstantArray::get(ATy, UsedArray), Name); GV->setSection("llvm.metadata"); } void CodeGenModule::emitLLVMUsed() { emitUsed(*this, "llvm.used", LLVMUsed); emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); } void CodeGenModule::AppendLinkerOptions(StringRef Opts) { auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); } void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { llvm::SmallString<32> Opt; getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); if (Opt.empty()) return; auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); } void CodeGenModule::AddDependentLib(StringRef Lib) { auto &C = getLLVMContext(); if (getTarget().getTriple().isOSBinFormatELF()) { ELFDependentLibraries.push_back( llvm::MDNode::get(C, llvm::MDString::get(C, Lib))); return; } llvm::SmallString<24> Opt; getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts)); } /// Add link options implied by the given module, including modules /// it depends on, using a postorder walk. static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, SmallVectorImpl &Metadata, llvm::SmallPtrSet &Visited) { // Import this module's parent. if (Mod->Parent && Visited.insert(Mod->Parent).second) { addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); } // Import this module's dependencies. for (Module *Import : llvm::reverse(Mod->Imports)) { if (Visited.insert(Import).second) addLinkOptionsPostorder(CGM, Import, Metadata, Visited); } // Add linker options to link against the libraries/frameworks // described by this module. llvm::LLVMContext &Context = CGM.getLLVMContext(); bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF(); // For modules that use export_as for linking, use that module // name instead. if (Mod->UseExportAsModuleLinkName) return; for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) { // Link against a framework. Frameworks are currently Darwin only, so we // don't to ask TargetCodeGenInfo for the spelling of the linker option. if (LL.IsFramework) { llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"), llvm::MDString::get(Context, LL.Library)}; Metadata.push_back(llvm::MDNode::get(Context, Args)); continue; } // Link against a library. if (IsELF) { llvm::Metadata *Args[2] = { llvm::MDString::get(Context, "lib"), llvm::MDString::get(Context, LL.Library), }; Metadata.push_back(llvm::MDNode::get(Context, Args)); } else { llvm::SmallString<24> Opt; CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt); auto *OptString = llvm::MDString::get(Context, Opt); Metadata.push_back(llvm::MDNode::get(Context, OptString)); } } } void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) { assert(Primary->isNamedModuleUnit() && "We should only emit module initializers for named modules."); // Emit the initializers in the order that sub-modules appear in the // source, first Global Module Fragments, if present. if (auto GMF = Primary->getGlobalModuleFragment()) { for (Decl *D : getContext().getModuleInitializers(GMF)) { if (isa(D)) continue; assert(isa(D) && "GMF initializer decl is not a var?"); EmitTopLevelDecl(D); } } // Second any associated with the module, itself. for (Decl *D : getContext().getModuleInitializers(Primary)) { // Skip import decls, the inits for those are called explicitly. if (isa(D)) continue; EmitTopLevelDecl(D); } // Third any associated with the Privat eMOdule Fragment, if present. if (auto PMF = Primary->getPrivateModuleFragment()) { for (Decl *D : getContext().getModuleInitializers(PMF)) { // Skip import decls, the inits for those are called explicitly. if (isa(D)) continue; assert(isa(D) && "PMF initializer decl is not a var?"); EmitTopLevelDecl(D); } } } void CodeGenModule::EmitModuleLinkOptions() { // Collect the set of all of the modules we want to visit to emit link // options, which is essentially the imported modules and all of their // non-explicit child modules. llvm::SetVector LinkModules; llvm::SmallPtrSet Visited; SmallVector Stack; // Seed the stack with imported modules. for (Module *M : ImportedModules) { // Do not add any link flags when an implementation TU of a module imports // a header of that same module. if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && !getLangOpts().isCompilingModule()) continue; if (Visited.insert(M).second) Stack.push_back(M); } // Find all of the modules to import, making a little effort to prune // non-leaf modules. while (!Stack.empty()) { clang::Module *Mod = Stack.pop_back_val(); bool AnyChildren = false; // Visit the submodules of this module. for (const auto &SM : Mod->submodules()) { // Skip explicit children; they need to be explicitly imported to be // linked against. if (SM->IsExplicit) continue; if (Visited.insert(SM).second) { Stack.push_back(SM); AnyChildren = true; } } // We didn't find any children, so add this module to the list of // modules to link against. if (!AnyChildren) { LinkModules.insert(Mod); } } // Add link options for all of the imported modules in reverse topological // order. We don't do anything to try to order import link flags with respect // to linker options inserted by things like #pragma comment(). SmallVector MetadataArgs; Visited.clear(); for (Module *M : LinkModules) if (Visited.insert(M).second) addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); std::reverse(MetadataArgs.begin(), MetadataArgs.end()); LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); // Add the linker options metadata flag. auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); for (auto *MD : LinkerOptionsMetadata) NMD->addOperand(MD); } void CodeGenModule::EmitDeferred() { // Emit deferred declare target declarations. if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd) getOpenMPRuntime().emitDeferredTargetDecls(); // Emit code for any potentially referenced deferred decls. Since a // previously unused static decl may become used during the generation of code // for a static function, iterate until no changes are made. if (!DeferredVTables.empty()) { EmitDeferredVTables(); // Emitting a vtable doesn't directly cause more vtables to // become deferred, although it can cause functions to be // emitted that then need those vtables. assert(DeferredVTables.empty()); } // Emit CUDA/HIP static device variables referenced by host code only. // Note we should not clear CUDADeviceVarODRUsedByHost since it is still // needed for further handling. if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) llvm::append_range(DeferredDeclsToEmit, getContext().CUDADeviceVarODRUsedByHost); // Stop if we're out of both deferred vtables and deferred declarations. if (DeferredDeclsToEmit.empty()) return; // Grab the list of decls to emit. If EmitGlobalDefinition schedules more // work, it will not interfere with this. std::vector CurDeclsToEmit; CurDeclsToEmit.swap(DeferredDeclsToEmit); for (GlobalDecl &D : CurDeclsToEmit) { // We should call GetAddrOfGlobal with IsForDefinition set to true in order // to get GlobalValue with exactly the type we need, not something that // might had been created for another decl with the same mangled name but // different type. llvm::GlobalValue *GV = dyn_cast( GetAddrOfGlobal(D, ForDefinition)); // In case of different address spaces, we may still get a cast, even with // IsForDefinition equal to true. Query mangled names table to get // GlobalValue. if (!GV) GV = GetGlobalValue(getMangledName(D)); // Make sure GetGlobalValue returned non-null. assert(GV); // Check to see if we've already emitted this. This is necessary // for a couple of reasons: first, decls can end up in the // deferred-decls queue multiple times, and second, decls can end // up with definitions in unusual ways (e.g. by an extern inline // function acquiring a strong function redefinition). Just // ignore these cases. if (!GV->isDeclaration()) continue; // If this is OpenMP, check if it is legal to emit this global normally. if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D)) continue; // Otherwise, emit the definition and move on to the next one. EmitGlobalDefinition(D, GV); // If we found out that we need to emit more decls, do that recursively. // This has the advantage that the decls are emitted in a DFS and related // ones are close together, which is convenient for testing. if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { EmitDeferred(); assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); } } } void CodeGenModule::EmitVTablesOpportunistically() { // Try to emit external vtables as available_externally if they have emitted // all inlined virtual functions. It runs after EmitDeferred() and therefore // is not allowed to create new references to things that need to be emitted // lazily. Note that it also uses fact that we eagerly emitting RTTI. assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) && "Only emit opportunistic vtables with optimizations"); for (const CXXRecordDecl *RD : OpportunisticVTables) { assert(getVTables().isVTableExternal(RD) && "This queue should only contain external vtables"); if (getCXXABI().canSpeculativelyEmitVTable(RD)) VTables.GenerateClassData(RD); } OpportunisticVTables.clear(); } void CodeGenModule::EmitGlobalAnnotations() { for (const auto& [MangledName, VD] : DeferredAnnotations) { llvm::GlobalValue *GV = GetGlobalValue(MangledName); if (GV) AddGlobalAnnotations(VD, GV); } DeferredAnnotations.clear(); if (Annotations.empty()) return; // Create a new global variable for the ConstantStruct in the Module. llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( Annotations[0]->getType(), Annotations.size()), Annotations); auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array, "llvm.global.annotations"); gv->setSection(AnnotationSection); } llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { llvm::Constant *&AStr = AnnotationStrings[Str]; if (AStr) return AStr; // Not found yet, create a new global. llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); auto *gv = new llvm::GlobalVariable( getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s, ".str", nullptr, llvm::GlobalValue::NotThreadLocal, ConstGlobalsPtrTy->getAddressSpace()); gv->setSection(AnnotationSection); gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); AStr = gv; return gv; } llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { SourceManager &SM = getContext().getSourceManager(); PresumedLoc PLoc = SM.getPresumedLoc(Loc); if (PLoc.isValid()) return EmitAnnotationString(PLoc.getFilename()); return EmitAnnotationString(SM.getBufferName(Loc)); } llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { SourceManager &SM = getContext().getSourceManager(); PresumedLoc PLoc = SM.getPresumedLoc(L); unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : SM.getExpansionLineNumber(L); return llvm::ConstantInt::get(Int32Ty, LineNo); } llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) { ArrayRef Exprs = {Attr->args_begin(), Attr->args_size()}; if (Exprs.empty()) return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy); llvm::FoldingSetNodeID ID; for (Expr *E : Exprs) { ID.Add(cast(E)->getAPValueResult()); } llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()]; if (Lookup) return Lookup; llvm::SmallVector LLVMArgs; LLVMArgs.reserve(Exprs.size()); ConstantEmitter ConstEmiter(*this); llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) { const auto *CE = cast(E); return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), CE->getType()); }); auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs); auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true, llvm::GlobalValue::PrivateLinkage, Struct, ".args"); GV->setSection(AnnotationSection); GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); Lookup = GV; return GV; } llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, const AnnotateAttr *AA, SourceLocation L) { // Get the globals for file name, annotation, and the line number. llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), *UnitGV = EmitAnnotationUnit(L), *LineNoCst = EmitAnnotationLineNo(L), *Args = EmitAnnotationArgs(AA); llvm::Constant *GVInGlobalsAS = GV; if (GV->getAddressSpace() != getDataLayout().getDefaultGlobalsAddressSpace()) { GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast( GV, llvm::PointerType::get( GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace())); } // Create the ConstantStruct for the global annotation. llvm::Constant *Fields[] = { GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args, }; return llvm::ConstantStruct::getAnon(Fields); } void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, llvm::GlobalValue *GV) { assert(D->hasAttr() && "no annotate attribute"); // Get the struct elements for these annotations. for (const auto *I : D->specific_attrs()) Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); } bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn, SourceLocation Loc) const { const auto &NoSanitizeL = getContext().getNoSanitizeList(); // NoSanitize by function name. if (NoSanitizeL.containsFunction(Kind, Fn->getName())) return true; // NoSanitize by location. Check "mainfile" prefix. auto &SM = Context.getSourceManager(); FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID()); if (NoSanitizeL.containsMainFile(Kind, MainFile.getName())) return true; // Check "src" prefix. if (Loc.isValid()) return NoSanitizeL.containsLocation(Kind, Loc); // If location is unknown, this may be a compiler-generated function. Assume // it's located in the main file. return NoSanitizeL.containsFile(Kind, MainFile.getName()); } bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::GlobalVariable *GV, SourceLocation Loc, QualType Ty, StringRef Category) const { const auto &NoSanitizeL = getContext().getNoSanitizeList(); if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category)) return true; auto &SM = Context.getSourceManager(); if (NoSanitizeL.containsMainFile( Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(), Category)) return true; if (NoSanitizeL.containsLocation(Kind, Loc, Category)) return true; // Check global type. if (!Ty.isNull()) { // Drill down the array types: if global variable of a fixed type is // not sanitized, we also don't instrument arrays of them. while (auto AT = dyn_cast(Ty.getTypePtr())) Ty = AT->getElementType(); Ty = Ty.getCanonicalType().getUnqualifiedType(); // Only record types (classes, structs etc.) are ignored. if (Ty->isRecordType()) { std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); if (NoSanitizeL.containsType(Kind, TypeStr, Category)) return true; } } return false; } bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, StringRef Category) const { const auto &XRayFilter = getContext().getXRayFilter(); using ImbueAttr = XRayFunctionFilter::ImbueAttribute; auto Attr = ImbueAttr::NONE; if (Loc.isValid()) Attr = XRayFilter.shouldImbueLocation(Loc, Category); if (Attr == ImbueAttr::NONE) Attr = XRayFilter.shouldImbueFunction(Fn->getName()); switch (Attr) { case ImbueAttr::NONE: return false; case ImbueAttr::ALWAYS: Fn->addFnAttr("function-instrument", "xray-always"); break; case ImbueAttr::ALWAYS_ARG1: Fn->addFnAttr("function-instrument", "xray-always"); Fn->addFnAttr("xray-log-args", "1"); break; case ImbueAttr::NEVER: Fn->addFnAttr("function-instrument", "xray-never"); break; } return true; } ProfileList::ExclusionType CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn, SourceLocation Loc) const { const auto &ProfileList = getContext().getProfileList(); // If the profile list is empty, then instrument everything. if (ProfileList.isEmpty()) return ProfileList::Allow; CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr(); // First, check the function name. if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind)) return *V; // Next, check the source location. if (Loc.isValid()) if (auto V = ProfileList.isLocationExcluded(Loc, Kind)) return *V; // If location is unknown, this may be a compiler-generated function. Assume // it's located in the main file. auto &SM = Context.getSourceManager(); if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind)) return *V; return ProfileList.getDefault(Kind); } ProfileList::ExclusionType CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn, SourceLocation Loc) const { auto V = isFunctionBlockedByProfileList(Fn, Loc); if (V != ProfileList::Allow) return V; auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups; if (NumGroups > 1) { auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups; if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup) return ProfileList::Skip; } return ProfileList::Allow; } bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { // Never defer when EmitAllDecls is specified. if (LangOpts.EmitAllDecls) return true; const auto *VD = dyn_cast(Global); if (VD && ((CodeGenOpts.KeepPersistentStorageVariables && (VD->getStorageDuration() == SD_Static || VD->getStorageDuration() == SD_Thread)) || (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static && VD->getType().isConstQualified()))) return true; return getContext().DeclMustBeEmitted(Global); } bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { // In OpenMP 5.0 variables and function may be marked as // device_type(host/nohost) and we should not emit them eagerly unless we sure // that they must be emitted on the host/device. To be sure we need to have // seen a declare target with an explicit mentioning of the function, we know // we have if the level of the declare target attribute is -1. Note that we // check somewhere else if we should emit this at all. if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) { std::optional ActiveAttr = OMPDeclareTargetDeclAttr::getActiveAttr(Global); if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1) return false; } if (const auto *FD = dyn_cast(Global)) { if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) // Implicit template instantiations may change linkage if they are later // explicitly instantiated, so they should not be emitted eagerly. return false; } if (const auto *VD = dyn_cast(Global)) { if (Context.getInlineVariableDefinitionKind(VD) == ASTContext::InlineVariableDefinitionKind::WeakUnknown) // A definition of an inline constexpr static data member may change // linkage later if it's redeclared outside the class. return false; if (CXX20ModuleInits && VD->getOwningModule() && !VD->getOwningModule()->isModuleMapModule()) { // For CXX20, module-owned initializers need to be deferred, since it is // not known at this point if they will be run for the current module or // as part of the initializer for an imported one. return false; } } // If OpenMP is enabled and threadprivates must be generated like TLS, delay // codegen for global variables, because they may be marked as threadprivate. if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && getContext().getTargetInfo().isTLSSupported() && isa(Global) && !Global->getType().isConstantStorage(getContext(), false, false) && !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global)) return false; return true; } ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) { StringRef Name = getMangledName(GD); // The UUID descriptor should be pointer aligned. CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); // Look for an existing global. if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) return ConstantAddress(GV, GV->getValueType(), Alignment); ConstantEmitter Emitter(*this); llvm::Constant *Init; APValue &V = GD->getAsAPValue(); if (!V.isAbsent()) { // If possible, emit the APValue version of the initializer. In particular, // this gets the type of the constant right. Init = Emitter.emitForInitializer( GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType()); } else { // As a fallback, directly construct the constant. // FIXME: This may get padding wrong under esoteric struct layout rules. // MSVC appears to create a complete type 'struct __s_GUID' that it // presumably uses to represent these constants. MSGuidDecl::Parts Parts = GD->getParts(); llvm::Constant *Fields[4] = { llvm::ConstantInt::get(Int32Ty, Parts.Part1), llvm::ConstantInt::get(Int16Ty, Parts.Part2), llvm::ConstantInt::get(Int16Ty, Parts.Part3), llvm::ConstantDataArray::getRaw( StringRef(reinterpret_cast(Parts.Part4And5), 8), 8, Int8Ty)}; Init = llvm::ConstantStruct::getAnon(Fields); } auto *GV = new llvm::GlobalVariable( getModule(), Init->getType(), /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); if (supportsCOMDAT()) GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); setDSOLocal(GV); if (!V.isAbsent()) { Emitter.finalize(GV); return ConstantAddress(GV, GV->getValueType(), Alignment); } llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType()); return ConstantAddress(GV, Ty, Alignment); } ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl( const UnnamedGlobalConstantDecl *GCD) { CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType()); llvm::GlobalVariable **Entry = nullptr; Entry = &UnnamedGlobalConstantDeclMap[GCD]; if (*Entry) return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment); ConstantEmitter Emitter(*this); llvm::Constant *Init; const APValue &V = GCD->getValue(); assert(!V.isAbsent()); Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(), GCD->getType()); auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, ".constant"); GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); GV->setAlignment(Alignment.getAsAlign()); Emitter.finalize(GV); *Entry = GV; return ConstantAddress(GV, GV->getValueType(), Alignment); } ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject( const TemplateParamObjectDecl *TPO) { StringRef Name = getMangledName(TPO); CharUnits Alignment = getNaturalTypeAlignment(TPO->getType()); if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) return ConstantAddress(GV, GV->getValueType(), Alignment); ConstantEmitter Emitter(*this); llvm::Constant *Init = Emitter.emitForInitializer( TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType()); if (!Init) { ErrorUnsupported(TPO, "template parameter object"); return ConstantAddress::invalid(); } llvm::GlobalValue::LinkageTypes Linkage = isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage()) ? llvm::GlobalValue::LinkOnceODRLinkage : llvm::GlobalValue::InternalLinkage; auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(), /*isConstant=*/true, Linkage, Init, Name); setGVProperties(GV, TPO); if (supportsCOMDAT()) GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); Emitter.finalize(GV); return ConstantAddress(GV, GV->getValueType(), Alignment); } ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { const AliasAttr *AA = VD->getAttr(); assert(AA && "No alias?"); CharUnits Alignment = getContext().getDeclAlign(VD); llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); // See if there is already something with the target's name in the module. llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); if (Entry) return ConstantAddress(Entry, DeclTy, Alignment); llvm::Constant *Aliasee; if (isa(DeclTy)) Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(cast(VD)), /*ForVTable=*/false); else Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, nullptr); auto *F = cast(Aliasee); F->setLinkage(llvm::Function::ExternalWeakLinkage); WeakRefReferences.insert(F); return ConstantAddress(Aliasee, DeclTy, Alignment); } template static bool hasImplicitAttr(const ValueDecl *D) { if (!D) return false; if (auto *A = D->getAttr()) return A->isImplicit(); return D->isImplicit(); } void CodeGenModule::EmitGlobal(GlobalDecl GD) { const auto *Global = cast(GD.getDecl()); // Weak references don't produce any output by themselves. if (Global->hasAttr()) return; // If this is an alias definition (which otherwise looks like a declaration) // emit it now. if (Global->hasAttr()) return EmitAliasDefinition(GD); // IFunc like an alias whose value is resolved at runtime by calling resolver. if (Global->hasAttr()) return emitIFuncDefinition(GD); // If this is a cpu_dispatch multiversion function, emit the resolver. if (Global->hasAttr()) return emitCPUDispatchDefinition(GD); // If this is CUDA, be selective about which declarations we emit. // Non-constexpr non-lambda implicit host device functions are not emitted // unless they are used on device side. if (LangOpts.CUDA) { if (LangOpts.CUDAIsDevice) { const auto *FD = dyn_cast(Global); if ((!Global->hasAttr() || (LangOpts.OffloadImplicitHostDeviceTemplates && FD && hasImplicitAttr(FD) && hasImplicitAttr(FD) && !FD->isConstexpr() && !isLambdaCallOperator(FD) && !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) && !Global->hasAttr() && !Global->hasAttr() && !Global->hasAttr() && !Global->getType()->isCUDADeviceBuiltinSurfaceType() && !Global->getType()->isCUDADeviceBuiltinTextureType() && !(LangOpts.HIPStdPar && isa(Global) && !Global->hasAttr())) return; } else { // We need to emit host-side 'shadows' for all global // device-side variables because the CUDA runtime needs their // size and host-side address in order to provide access to // their device-side incarnations. // So device-only functions are the only things we skip. if (isa(Global) && !Global->hasAttr() && Global->hasAttr()) return; assert((isa(Global) || isa(Global)) && "Expected Variable or Function"); } } if (LangOpts.OpenMP) { // If this is OpenMP, check if it is legal to emit this global normally. if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) return; if (auto *DRD = dyn_cast(Global)) { if (MustBeEmitted(Global)) EmitOMPDeclareReduction(DRD); return; } if (auto *DMD = dyn_cast(Global)) { if (MustBeEmitted(Global)) EmitOMPDeclareMapper(DMD); return; } } // Ignore declarations, they will be emitted on their first use. if (const auto *FD = dyn_cast(Global)) { // Update deferred annotations with the latest declaration if the function // function was already used or defined. if (FD->hasAttr()) { StringRef MangledName = getMangledName(GD); if (GetGlobalValue(MangledName)) DeferredAnnotations[MangledName] = FD; } // Forward declarations are emitted lazily on first use. if (!FD->doesThisDeclarationHaveABody()) { if (!FD->doesDeclarationForceExternallyVisibleDefinition()) return; StringRef MangledName = getMangledName(GD); // Compute the function info and LLVM type. const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); llvm::Type *Ty = getTypes().GetFunctionType(FI); GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, /*DontDefer=*/false); return; } } else { const auto *VD = cast(Global); assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); if (VD->isThisDeclarationADefinition() != VarDecl::Definition && !Context.isMSStaticDataMemberInlineDefinition(VD)) { if (LangOpts.OpenMP) { // Emit declaration of the must-be-emitted declare target variable. if (std::optional Res = OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { // If this variable has external storage and doesn't require special // link handling we defer to its canonical definition. if (VD->hasExternalStorage() && Res != OMPDeclareTargetDeclAttr::MT_Link) return; bool UnifiedMemoryEnabled = getOpenMPRuntime().hasRequiresUnifiedSharedMemory(); if ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && !UnifiedMemoryEnabled) { (void)GetAddrOfGlobalVar(VD); } else { assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || ((*Res == OMPDeclareTargetDeclAttr::MT_To || *Res == OMPDeclareTargetDeclAttr::MT_Enter) && UnifiedMemoryEnabled)) && "Link clause or to clause with unified memory expected."); (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); } return; } } // If this declaration may have caused an inline variable definition to // change linkage, make sure that it's emitted. if (Context.getInlineVariableDefinitionKind(VD) == ASTContext::InlineVariableDefinitionKind::Strong) GetAddrOfGlobalVar(VD); return; } } // Defer code generation to first use when possible, e.g. if this is an inline // function. If the global must always be emitted, do it eagerly if possible // to benefit from cache locality. if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { // Emit the definition if it can't be deferred. EmitGlobalDefinition(GD); addEmittedDeferredDecl(GD); return; } // If we're deferring emission of a C++ variable with an // initializer, remember the order in which it appeared in the file. if (getLangOpts().CPlusPlus && isa(Global) && cast(Global)->hasInit()) { DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); CXXGlobalInits.push_back(nullptr); } StringRef MangledName = getMangledName(GD); if (GetGlobalValue(MangledName) != nullptr) { // The value has already been used and should therefore be emitted. addDeferredDeclToEmit(GD); } else if (MustBeEmitted(Global)) { // The value must be emitted, but cannot be emitted eagerly. assert(!MayBeEmittedEagerly(Global)); addDeferredDeclToEmit(GD); } else { // Otherwise, remember that we saw a deferred decl with this name. The // first use of the mangled name will cause it to move into // DeferredDeclsToEmit. DeferredDecls[MangledName] = GD; } } // Check if T is a class type with a destructor that's not dllimport. static bool HasNonDllImportDtor(QualType T) { if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs()) if (CXXRecordDecl *RD = dyn_cast(RT->getDecl())) if (RD->getDestructor() && !RD->getDestructor()->hasAttr()) return true; return false; } namespace { struct FunctionIsDirectlyRecursive : public ConstStmtVisitor { const StringRef Name; const Builtin::Context &BI; FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : Name(N), BI(C) {} bool VisitCallExpr(const CallExpr *E) { const FunctionDecl *FD = E->getDirectCallee(); if (!FD) return false; AsmLabelAttr *Attr = FD->getAttr(); if (Attr && Name == Attr->getLabel()) return true; unsigned BuiltinID = FD->getBuiltinID(); if (!BuiltinID || !BI.isLibFunction(BuiltinID)) return false; StringRef BuiltinName = BI.getName(BuiltinID); if (BuiltinName.starts_with("__builtin_") && Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { return true; } return false; } bool VisitStmt(const Stmt *S) { for (const Stmt *Child : S->children()) if (Child && this->Visit(Child)) return true; return false; } }; // Make sure we're not referencing non-imported vars or functions. struct DLLImportFunctionVisitor : public RecursiveASTVisitor { bool SafeToInline = true; bool shouldVisitImplicitCode() const { return true; } bool VisitVarDecl(VarDecl *VD) { if (VD->getTLSKind()) { // A thread-local variable cannot be imported. SafeToInline = false; return SafeToInline; } // A variable definition might imply a destructor call. if (VD->isThisDeclarationADefinition()) SafeToInline = !HasNonDllImportDtor(VD->getType()); return SafeToInline; } bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { if (const auto *D = E->getTemporary()->getDestructor()) SafeToInline = D->hasAttr(); return SafeToInline; } bool VisitDeclRefExpr(DeclRefExpr *E) { ValueDecl *VD = E->getDecl(); if (isa(VD)) SafeToInline = VD->hasAttr(); else if (VarDecl *V = dyn_cast(VD)) SafeToInline = !V->hasGlobalStorage() || V->hasAttr(); return SafeToInline; } bool VisitCXXConstructExpr(CXXConstructExpr *E) { SafeToInline = E->getConstructor()->hasAttr(); return SafeToInline; } bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { CXXMethodDecl *M = E->getMethodDecl(); if (!M) { // Call through a pointer to member function. This is safe to inline. SafeToInline = true; } else { SafeToInline = M->hasAttr(); } return SafeToInline; } bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { SafeToInline = E->getOperatorDelete()->hasAttr(); return SafeToInline; } bool VisitCXXNewExpr(CXXNewExpr *E) { SafeToInline = E->getOperatorNew()->hasAttr(); return SafeToInline; } }; } // isTriviallyRecursive - Check if this function calls another // decl that, because of the asm attribute or the other decl being a builtin, // ends up pointing to itself. bool CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { StringRef Name; if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { // asm labels are a special kind of mangling we have to support. AsmLabelAttr *Attr = FD->getAttr(); if (!Attr) return false; Name = Attr->getLabel(); } else { Name = FD->getName(); } FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); const Stmt *Body = FD->getBody(); return Body ? Walker.Visit(Body) : false; } bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) return true; const auto *F = cast(GD.getDecl()); if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr()) return false; // We don't import function bodies from other named module units since that // behavior may break ABI compatibility of the current unit. if (const Module *M = F->getOwningModule(); M && M->getTopLevelModule()->isNamedModule() && getContext().getCurrentNamedModule() != M->getTopLevelModule() && !F->hasAttr()) return false; if (F->hasAttr()) return false; if (F->hasAttr() && !F->hasAttr()) { // Check whether it would be safe to inline this dllimport function. DLLImportFunctionVisitor Visitor; Visitor.TraverseFunctionDecl(const_cast(F)); if (!Visitor.SafeToInline) return false; if (const CXXDestructorDecl *Dtor = dyn_cast(F)) { // Implicit destructor invocations aren't captured in the AST, so the // check above can't see them. Check for them manually here. for (const Decl *Member : Dtor->getParent()->decls()) if (isa(Member)) if (HasNonDllImportDtor(cast(Member)->getType())) return false; for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) if (HasNonDllImportDtor(B.getType())) return false; } } // Inline builtins declaration must be emitted. They often are fortified // functions. if (F->isInlineBuiltinDeclaration()) return true; // PR9614. Avoid cases where the source code is lying to us. An available // externally function should have an equivalent function somewhere else, // but a function that calls itself through asm label/`__builtin_` trickery is // clearly not equivalent to the real implementation. // This happens in glibc's btowc and in some configure checks. return !isTriviallyRecursive(F); } bool CodeGenModule::shouldOpportunisticallyEmitVTables() { return CodeGenOpts.OptimizationLevel > 0; } void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { const auto *FD = cast(GD.getDecl()); if (FD->isCPUSpecificMultiVersion()) { auto *Spec = FD->getAttr(); for (unsigned I = 0; I < Spec->cpus_size(); ++I) EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); } else if (FD->isTargetClonesMultiVersion()) { auto *Clone = FD->getAttr(); for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I) if (Clone->isFirstOfVersion(I)) EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr); // Ensure that the resolver function is also emitted. GetOrCreateMultiVersionResolver(GD); } else if (FD->hasAttr()) { GetOrCreateMultiVersionResolver(GD); } else EmitGlobalFunctionDefinition(GD, GV); } void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { const auto *D = cast(GD.getDecl()); PrettyStackTraceDecl CrashInfo(const_cast(D), D->getLocation(), Context.getSourceManager(), "Generating code for declaration"); if (const auto *FD = dyn_cast(D)) { // At -O0, don't generate IR for functions with available_externally // linkage. if (!shouldEmitFunction(GD)) return; llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() { std::string Name; llvm::raw_string_ostream OS(Name); FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(), /*Qualified=*/true); return Name; }); if (const auto *Method = dyn_cast(D)) { // Make sure to emit the definition(s) before we emit the thunks. // This is necessary for the generation of certain thunks. if (isa(Method) || isa(Method)) ABI->emitCXXStructor(GD); else if (FD->isMultiVersion()) EmitMultiVersionFunctionDefinition(GD, GV); else EmitGlobalFunctionDefinition(GD, GV); if (Method->isVirtual()) getVTables().EmitThunks(GD); return; } if (FD->isMultiVersion()) return EmitMultiVersionFunctionDefinition(GD, GV); return EmitGlobalFunctionDefinition(GD, GV); } if (const auto *VD = dyn_cast(D)) return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); } static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, llvm::Function *NewFn); static unsigned TargetMVPriority(const TargetInfo &TI, const CodeGenFunction::MultiVersionResolverOption &RO) { unsigned Priority = 0; unsigned NumFeatures = 0; for (StringRef Feat : RO.Conditions.Features) { Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); NumFeatures++; } if (!RO.Conditions.Architecture.empty()) Priority = std::max( Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); Priority += TI.multiVersionFeatureCost() * NumFeatures; return Priority; } // Multiversion functions should be at most 'WeakODRLinkage' so that a different // TU can forward declare the function without causing problems. Particularly // in the cases of CPUDispatch, this causes issues. This also makes sure we // work with internal linkage functions, so that the same function name can be // used with internal linkage in multiple TUs. llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM, GlobalDecl GD) { const FunctionDecl *FD = cast(GD.getDecl()); if (FD->getFormalLinkage() == Linkage::Internal) return llvm::GlobalValue::InternalLinkage; return llvm::GlobalValue::WeakODRLinkage; } void CodeGenModule::emitMultiVersionFunctions() { std::vector MVFuncsToEmit; MultiVersionFuncs.swap(MVFuncsToEmit); for (GlobalDecl GD : MVFuncsToEmit) { const auto *FD = cast(GD.getDecl()); assert(FD && "Expected a FunctionDecl"); SmallVector Options; if (FD->isTargetMultiVersion()) { getContext().forEachMultiversionedFunctionVersion( FD, [this, &GD, &Options](const FunctionDecl *CurFD) { GlobalDecl CurGD{ (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; StringRef MangledName = getMangledName(CurGD); llvm::Constant *Func = GetGlobalValue(MangledName); if (!Func) { if (CurFD->isDefined()) { EmitGlobalFunctionDefinition(CurGD, nullptr); Func = GetGlobalValue(MangledName); } else { const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, ForDefinition); } assert(Func && "This should have just been created"); } if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) { const auto *TA = CurFD->getAttr(); llvm::SmallVector Feats; TA->getAddedFeatures(Feats); Options.emplace_back(cast(Func), TA->getArchitecture(), Feats); } else { const auto *TVA = CurFD->getAttr(); llvm::SmallVector Feats; TVA->getFeatures(Feats); Options.emplace_back(cast(Func), /*Architecture*/ "", Feats); } }); } else if (FD->isTargetClonesMultiVersion()) { const auto *TC = FD->getAttr(); for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size(); ++VersionIndex) { if (!TC->isFirstOfVersion(VersionIndex)) continue; GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD), VersionIndex}; StringRef Version = TC->getFeatureStr(VersionIndex); StringRef MangledName = getMangledName(CurGD); llvm::Constant *Func = GetGlobalValue(MangledName); if (!Func) { if (FD->isDefined()) { EmitGlobalFunctionDefinition(CurGD, nullptr); Func = GetGlobalValue(MangledName); } else { const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(CurGD); llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, ForDefinition); } assert(Func && "This should have just been created"); } StringRef Architecture; llvm::SmallVector Feature; if (getTarget().getTriple().isAArch64()) { if (Version != "default") { llvm::SmallVector VerFeats; Version.split(VerFeats, "+"); for (auto &CurFeat : VerFeats) Feature.push_back(CurFeat.trim()); } } else { if (Version.starts_with("arch=")) Architecture = Version.drop_front(sizeof("arch=") - 1); else if (Version != "default") Feature.push_back(Version); } Options.emplace_back(cast(Func), Architecture, Feature); } } else { assert(0 && "Expected a target or target_clones multiversion function"); continue; } llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD); if (auto *IFunc = dyn_cast(ResolverConstant)) { ResolverConstant = IFunc->getResolver(); if (FD->isTargetClonesMultiVersion()) { const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); std::string MangledName = getMangledNameImpl( *this, GD, FD, /*OmitMultiVersionMangling=*/true); // In prior versions of Clang, the mangling for ifuncs incorrectly // included an .ifunc suffix. This alias is generated for backward // compatibility. It is deprecated, and may be removed in the future. auto *Alias = llvm::GlobalAlias::create( DeclTy, 0, getMultiversionLinkage(*this, GD), MangledName + ".ifunc", IFunc, &getModule()); SetCommonAttributes(FD, Alias); } } llvm::Function *ResolverFunc = cast(ResolverConstant); ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT()) ResolverFunc->setComdat( getModule().getOrInsertComdat(ResolverFunc->getName())); const TargetInfo &TI = getTarget(); llvm::stable_sort( Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, const CodeGenFunction::MultiVersionResolverOption &RHS) { return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); }); CodeGenFunction CGF(*this); CGF.EmitMultiVersionResolver(ResolverFunc, Options); } // Ensure that any additions to the deferred decls list caused by emitting a // variant are emitted. This can happen when the variant itself is inline and // calls a function without linkage. if (!MVFuncsToEmit.empty()) EmitDeferred(); // Ensure that any additions to the multiversion funcs list from either the // deferred decls or the multiversion functions themselves are emitted. if (!MultiVersionFuncs.empty()) emitMultiVersionFunctions(); } void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { const auto *FD = cast(GD.getDecl()); assert(FD && "Not a FunctionDecl?"); assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?"); const auto *DD = FD->getAttr(); assert(DD && "Not a cpu_dispatch Function?"); const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); StringRef ResolverName = getMangledName(GD); UpdateMultiVersionNames(GD, FD, ResolverName); llvm::Type *ResolverType; GlobalDecl ResolverGD; if (getTarget().supportsIFunc()) { ResolverType = llvm::FunctionType::get( llvm::PointerType::get(DeclTy, getTypes().getTargetAddressSpace(FD->getType())), false); } else { ResolverType = DeclTy; ResolverGD = GD; } auto *ResolverFunc = cast(GetOrCreateLLVMFunction( ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false)); ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD)); if (supportsCOMDAT()) ResolverFunc->setComdat( getModule().getOrInsertComdat(ResolverFunc->getName())); SmallVector Options; const TargetInfo &Target = getTarget(); unsigned Index = 0; for (const IdentifierInfo *II : DD->cpus()) { // Get the name of the target function so we can look it up/create it. std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + getCPUSpecificMangling(*this, II->getName()); llvm::Constant *Func = GetGlobalValue(MangledName); if (!Func) { GlobalDecl ExistingDecl = Manglings.lookup(MangledName); if (ExistingDecl.getDecl() && ExistingDecl.getDecl()->getAsFunction()->isDefined()) { EmitGlobalFunctionDefinition(ExistingDecl, nullptr); Func = GetGlobalValue(MangledName); } else { if (!ExistingDecl.getDecl()) ExistingDecl = GD.getWithMultiVersionIndex(Index); Func = GetOrCreateLLVMFunction( MangledName, DeclTy, ExistingDecl, /*ForVTable=*/false, /*DontDefer=*/true, /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); } } llvm::SmallVector Features; Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); llvm::transform(Features, Features.begin(), [](StringRef Str) { return Str.substr(1); }); llvm::erase_if(Features, [&Target](StringRef Feat) { return !Target.validateCpuSupports(Feat); }); Options.emplace_back(cast(Func), StringRef{}, Features); ++Index; } llvm::stable_sort( Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS, const CodeGenFunction::MultiVersionResolverOption &RHS) { return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) > llvm::X86::getCpuSupportsMask(RHS.Conditions.Features); }); // If the list contains multiple 'default' versions, such as when it contains // 'pentium' and 'generic', don't emit the call to the generic one (since we // always run on at least a 'pentium'). We do this by deleting the 'least // advanced' (read, lowest mangling letter). while (Options.size() > 1 && llvm::all_of(llvm::X86::getCpuSupportsMask( (Options.end() - 2)->Conditions.Features), [](auto X) { return X == 0; })) { StringRef LHSName = (Options.end() - 2)->Function->getName(); StringRef RHSName = (Options.end() - 1)->Function->getName(); if (LHSName.compare(RHSName) < 0) Options.erase(Options.end() - 2); else Options.erase(Options.end() - 1); } CodeGenFunction CGF(*this); CGF.EmitMultiVersionResolver(ResolverFunc, Options); if (getTarget().supportsIFunc()) { llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD); auto *IFunc = cast(GetOrCreateMultiVersionResolver(GD)); // Fix up function declarations that were created for cpu_specific before // cpu_dispatch was known if (!isa(IFunc)) { assert(cast(IFunc)->isDeclaration()); auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc, &getModule()); GI->takeName(IFunc); IFunc->replaceAllUsesWith(GI); IFunc->eraseFromParent(); IFunc = GI; } std::string AliasName = getMangledNameImpl( *this, GD, FD, /*OmitMultiVersionMangling=*/true); llvm::Constant *AliasFunc = GetGlobalValue(AliasName); if (!AliasFunc) { auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc, &getModule()); SetCommonAttributes(GD, GA); } } } /// If a dispatcher for the specified mangled name is not in the module, create /// and return an llvm Function with the specified type. llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) { const auto *FD = cast(GD.getDecl()); assert(FD && "Not a FunctionDecl?"); std::string MangledName = getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); // Holds the name of the resolver, in ifunc mode this is the ifunc (which has // a separate resolver). std::string ResolverName = MangledName; if (getTarget().supportsIFunc()) { if (!FD->isTargetClonesMultiVersion()) ResolverName += ".ifunc"; } else if (FD->isTargetMultiVersion()) { ResolverName += ".resolver"; } // If the resolver has already been created, just return it. if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName)) return ResolverGV; const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI); // The resolver needs to be created. For target and target_clones, defer // creation until the end of the TU. if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion()) MultiVersionFuncs.push_back(GD); // For cpu_specific, don't create an ifunc yet because we don't know if the // cpu_dispatch will be emitted in this translation unit. if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) { llvm::Type *ResolverType = llvm::FunctionType::get( llvm::PointerType::get(DeclTy, getTypes().getTargetAddressSpace(FD->getType())), false); llvm::Constant *Resolver = GetOrCreateLLVMFunction( MangledName + ".resolver", ResolverType, GlobalDecl{}, /*ForVTable=*/false); llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD), "", Resolver, &getModule()); GIF->setName(ResolverName); SetCommonAttributes(FD, GIF); return GIF; } llvm::Constant *Resolver = GetOrCreateLLVMFunction( ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false); assert(isa(Resolver) && "Resolver should be created for the first time"); SetCommonAttributes(FD, cast(Resolver)); return Resolver; } /// GetOrCreateLLVMFunction - If the specified mangled name is not in the /// module, create and return an llvm Function with the specified type. If there /// is something in the module with the specified name, return it potentially /// bitcasted to the right type. /// /// If D is non-null, it specifies a decl that correspond to this. This is used /// to set the attributes on the function when it is first created. llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, ForDefinition_t IsForDefinition) { const Decl *D = GD.getDecl(); // Any attempts to use a MultiVersion function should result in retrieving // the iFunc instead. Name Mangling will handle the rest of the changes. if (const FunctionDecl *FD = cast_or_null(D)) { // For the device mark the function as one that should be emitted. if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime && !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && !DontDefer && !IsForDefinition) { if (const FunctionDecl *FDDef = FD->getDefinition()) { GlobalDecl GDDef; if (const auto *CD = dyn_cast(FDDef)) GDDef = GlobalDecl(CD, GD.getCtorType()); else if (const auto *DD = dyn_cast(FDDef)) GDDef = GlobalDecl(DD, GD.getDtorType()); else GDDef = GlobalDecl(FDDef); EmitGlobal(GDDef); } } if (FD->isMultiVersion()) { UpdateMultiVersionNames(GD, FD, MangledName); if (!IsForDefinition) return GetOrCreateMultiVersionResolver(GD); } } // Lookup the entry, lazily creating it if necessary. llvm::GlobalValue *Entry = GetGlobalValue(MangledName); if (Entry) { if (WeakRefReferences.erase(Entry)) { const FunctionDecl *FD = cast_or_null(D); if (FD && !FD->hasAttr()) Entry->setLinkage(llvm::Function::ExternalLinkage); } // Handle dropped DLL attributes. if (D && !D->hasAttr() && !D->hasAttr() && !shouldMapVisibilityToDLLExport(cast_or_null(D))) { Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); setDSOLocal(Entry); } // If there are two attempts to define the same mangled name, issue an // error. if (IsForDefinition && !Entry->isDeclaration()) { GlobalDecl OtherGD; // Check that GD is not yet in DiagnosedConflictingDefinitions is required // to make sure that we issue an error only once. if (lookupRepresentativeDecl(MangledName, OtherGD) && (GD.getCanonicalDecl().getDecl() != OtherGD.getCanonicalDecl().getDecl()) && DiagnosedConflictingDefinitions.insert(GD).second) { getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) << MangledName; getDiags().Report(OtherGD.getDecl()->getLocation(), diag::note_previous_definition); } } if ((isa(Entry) || isa(Entry)) && (Entry->getValueType() == Ty)) { return Entry; } // Make sure the result is of the correct type. // (If function is requested for a definition, we always need to create a new // function, not just return a bitcast.) if (!IsForDefinition) return Entry; } // This function doesn't have a complete type (for example, the return // type is an incomplete struct). Use a fake type instead, and make // sure not to try to set attributes. bool IsIncompleteFunction = false; llvm::FunctionType *FTy; if (isa(Ty)) { FTy = cast(Ty); } else { FTy = llvm::FunctionType::get(VoidTy, false); IsIncompleteFunction = true; } llvm::Function *F = llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, Entry ? StringRef() : MangledName, &getModule()); // Store the declaration associated with this function so it is potentially // updated by further declarations or definitions and emitted at the end. if (D && D->hasAttr()) DeferredAnnotations[MangledName] = cast(D); // If we already created a function with the same mangled name (but different // type) before, take its name and add it to the list of functions to be // replaced with F at the end of CodeGen. // // This happens if there is a prototype for a function (e.g. "int f()") and // then a definition of a different type (e.g. "int f(int x)"). if (Entry) { F->takeName(Entry); // This might be an implementation of a function without a prototype, in // which case, try to do special replacement of calls which match the new // prototype. The really key thing here is that we also potentially drop // arguments from the call site so as to make a direct call, which makes the // inliner happier and suppresses a number of optimizer warnings (!) about // dropping arguments. if (!Entry->use_empty()) { ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); Entry->removeDeadConstantUsers(); } addGlobalValReplacement(Entry, F); } assert(F->getName() == MangledName && "name was uniqued!"); if (D) SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); if (ExtraAttrs.hasFnAttrs()) { llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs()); F->addFnAttrs(B); } if (!DontDefer) { // All MSVC dtors other than the base dtor are linkonce_odr and delegate to // each other bottoming out with the base dtor. Therefore we emit non-base // dtors on usage, even if there is no dtor definition in the TU. if (isa_and_nonnull(D) && getCXXABI().useThunkForDtorVariant(cast(D), GD.getDtorType())) addDeferredDeclToEmit(GD); // This is the first use or definition of a mangled name. If there is a // deferred decl with this name, remember that we need to emit it at the end // of the file. auto DDI = DeferredDecls.find(MangledName); if (DDI != DeferredDecls.end()) { // Move the potentially referenced deferred decl to the // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we // don't need it anymore). addDeferredDeclToEmit(DDI->second); DeferredDecls.erase(DDI); // Otherwise, there are cases we have to worry about where we're // using a declaration for which we must emit a definition but where // we might not find a top-level definition: // - member functions defined inline in their classes // - friend functions defined inline in some class // - special member functions with implicit definitions // If we ever change our AST traversal to walk into class methods, // this will be unnecessary. // // We also don't emit a definition for a function if it's going to be an // entry in a vtable, unless it's already marked as used. } else if (getLangOpts().CPlusPlus && D) { // Look for a declaration that's lexically in a record. for (const auto *FD = cast(D)->getMostRecentDecl(); FD; FD = FD->getPreviousDecl()) { if (isa(FD->getLexicalDeclContext())) { if (FD->doesThisDeclarationHaveABody()) { addDeferredDeclToEmit(GD.getWithDecl(FD)); break; } } } } } // Make sure the result is of the requested type. if (!IsIncompleteFunction) { assert(F->getFunctionType() == Ty); return F; } return F; } /// GetAddrOfFunction - Return the address of the given function. If Ty is /// non-null, then this function will use the specified type if it has to /// create it (this occurs when we see a definition of the function). llvm::Constant * CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable, bool DontDefer, ForDefinition_t IsForDefinition) { // If there was no specific requested type, just convert it now. if (!Ty) { const auto *FD = cast(GD.getDecl()); Ty = getTypes().ConvertType(FD->getType()); } // Devirtualized destructor calls may come through here instead of via // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead // of the complete destructor when necessary. if (const auto *DD = dyn_cast(GD.getDecl())) { if (getTarget().getCXXABI().isMicrosoft() && GD.getDtorType() == Dtor_Complete && DD->getParent()->getNumVBases() == 0) GD = GlobalDecl(DD, Dtor_Base); } StringRef MangledName = getMangledName(GD); auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, /*IsThunk=*/false, llvm::AttributeList(), IsForDefinition); // Returns kernel handle for HIP kernel stub function. if (LangOpts.CUDA && !LangOpts.CUDAIsDevice && cast(GD.getDecl())->hasAttr()) { auto *Handle = getCUDARuntime().getKernelHandle( cast(F->stripPointerCasts()), GD); if (IsForDefinition) return F; return Handle; } return F; } llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) { llvm::GlobalValue *F = cast(GetAddrOfFunction(Decl)->stripPointerCasts()); return llvm::NoCFIValue::get(F); } static const FunctionDecl * GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); IdentifierInfo &CII = C.Idents.get(Name); for (const auto *Result : DC->lookup(&CII)) if (const auto *FD = dyn_cast(Result)) return FD; if (!C.getLangOpts().CPlusPlus) return nullptr; // Demangle the premangled name from getTerminateFn() IdentifierInfo &CXXII = (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") ? C.Idents.get("terminate") : C.Idents.get(Name); for (const auto &N : {"__cxxabiv1", "std"}) { IdentifierInfo &NS = C.Idents.get(N); for (const auto *Result : DC->lookup(&NS)) { const NamespaceDecl *ND = dyn_cast(Result); if (auto *LSD = dyn_cast(Result)) for (const auto *Result : LSD->lookup(&NS)) if ((ND = dyn_cast(Result))) break; if (ND) for (const auto *Result : ND->lookup(&CXXII)) if (const auto *FD = dyn_cast(Result)) return FD; } } return nullptr; } /// CreateRuntimeFunction - Create a new runtime function with the specified /// type and name. llvm::FunctionCallee CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, llvm::AttributeList ExtraAttrs, bool Local, bool AssumeConvergent) { if (AssumeConvergent) { ExtraAttrs = ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent); } llvm::Constant *C = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); if (auto *F = dyn_cast(C)) { if (F->empty()) { F->setCallingConv(getRuntimeCC()); // In Windows Itanium environments, try to mark runtime functions // dllimport. For Mingw and MSVC, don't. We don't really know if the user // will link their standard library statically or dynamically. Marking // functions imported when they are not imported can cause linker errors // and warnings. if (!Local && getTriple().isWindowsItaniumEnvironment() && !getCodeGenOpts().LTOVisibilityPublicStd) { const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); if (!FD || FD->hasAttr()) { F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); F->setLinkage(llvm::GlobalValue::ExternalLinkage); } } setDSOLocal(F); } } return {FTy, C}; } /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, /// create and return an llvm GlobalVariable with the specified type and address /// space. If there is something in the module with the specified name, return /// it potentially bitcasted to the right type. /// /// If D is non-null, it specifies a decl that correspond to this. This is used /// to set the attributes on the global when it is first created. /// /// If IsForDefinition is true, it is guaranteed that an actual global with /// type Ty will be returned, not conversion of a variable with the same /// mangled name but some other type. llvm::Constant * CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty, LangAS AddrSpace, const VarDecl *D, ForDefinition_t IsForDefinition) { // Lookup the entry, lazily creating it if necessary. llvm::GlobalValue *Entry = GetGlobalValue(MangledName); unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace); if (Entry) { if (WeakRefReferences.erase(Entry)) { if (D && !D->hasAttr()) Entry->setLinkage(llvm::Function::ExternalLinkage); } // Handle dropped DLL attributes. if (D && !D->hasAttr() && !D->hasAttr() && !shouldMapVisibilityToDLLExport(D)) Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS) return Entry; // If there are two attempts to define the same mangled name, issue an // error. if (IsForDefinition && !Entry->isDeclaration()) { GlobalDecl OtherGD; const VarDecl *OtherD; // Check that D is not yet in DiagnosedConflictingDefinitions is required // to make sure that we issue an error only once. if (D && lookupRepresentativeDecl(MangledName, OtherGD) && (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && (OtherD = dyn_cast(OtherGD.getDecl())) && OtherD->hasInit() && DiagnosedConflictingDefinitions.insert(D).second) { getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) << MangledName; getDiags().Report(OtherGD.getDecl()->getLocation(), diag::note_previous_definition); } } // Make sure the result is of the correct type. if (Entry->getType()->getAddressSpace() != TargetAS) return llvm::ConstantExpr::getAddrSpaceCast( Entry, llvm::PointerType::get(Ty->getContext(), TargetAS)); // (If global is requested for a definition, we always need to create a new // global, not just return a bitcast.) if (!IsForDefinition) return Entry; } auto DAddrSpace = GetGlobalVarAddressSpace(D); auto *GV = new llvm::GlobalVariable( getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal, getContext().getTargetAddressSpace(DAddrSpace)); // If we already created a global with the same mangled name (but different // type) before, take its name and remove it from its parent. if (Entry) { GV->takeName(Entry); if (!Entry->use_empty()) { Entry->replaceAllUsesWith(GV); } Entry->eraseFromParent(); } // This is the first use or definition of a mangled name. If there is a // deferred decl with this name, remember that we need to emit it at the end // of the file. auto DDI = DeferredDecls.find(MangledName); if (DDI != DeferredDecls.end()) { // Move the potentially referenced deferred decl to the DeferredDeclsToEmit // list, and remove it from DeferredDecls (since we don't need it anymore). addDeferredDeclToEmit(DDI->second); DeferredDecls.erase(DDI); } // Handle things which are present even on external declarations. if (D) { if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) getOpenMPRuntime().registerTargetGlobalVariable(D, GV); // FIXME: This code is overly simple and should be merged with other global // handling. GV->setConstant(D->getType().isConstantStorage(getContext(), false, false)); GV->setAlignment(getContext().getDeclAlign(D).getAsAlign()); setLinkageForGV(GV, D); if (D->getTLSKind()) { if (D->getTLSKind() == VarDecl::TLS_Dynamic) CXXThreadLocals.push_back(D); setTLSMode(GV, *D); } setGVProperties(GV, D); // If required by the ABI, treat declarations of static data members with // inline initializers as definitions. if (getContext().isMSStaticDataMemberInlineDefinition(D)) { EmitGlobalVarDefinition(D); } // Emit section information for extern variables. if (D->hasExternalStorage()) { if (const SectionAttr *SA = D->getAttr()) GV->setSection(SA->getName()); } // Handle XCore specific ABI requirements. if (getTriple().getArch() == llvm::Triple::xcore && D->getLanguageLinkage() == CLanguageLinkage && D->getType().isConstant(Context) && isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) GV->setSection(".cp.rodata"); // Handle code model attribute if (const auto *CMA = D->getAttr()) GV->setCodeModel(CMA->getModel()); // Check if we a have a const declaration with an initializer, we may be // able to emit it as available_externally to expose it's value to the // optimizer. if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && D->getType().isConstQualified() && !GV->hasInitializer() && !D->hasDefinition() && D->hasInit() && !D->hasAttr()) { const auto *Record = Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); bool HasMutableFields = Record && Record->hasMutableFields(); if (!HasMutableFields) { const VarDecl *InitDecl; const Expr *InitExpr = D->getAnyInitializer(InitDecl); if (InitExpr) { ConstantEmitter emitter(*this); llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); if (Init) { auto *InitType = Init->getType(); if (GV->getValueType() != InitType) { // The type of the initializer does not match the definition. // This happens when an initializer has a different type from // the type of the global (because of padding at the end of a // structure for instance). GV->setName(StringRef()); // Make a new global with the correct type, this is now guaranteed // to work. auto *NewGV = cast( GetAddrOfGlobalVar(D, InitType, IsForDefinition) ->stripPointerCasts()); // Erase the old global, since it is no longer used. GV->eraseFromParent(); GV = NewGV; } else { GV->setInitializer(Init); GV->setConstant(true); GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); } emitter.finalize(GV); } } } } } if (D && D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) { getTargetCodeGenInfo().setTargetAttributes(D, GV, *this); // External HIP managed variables needed to be recorded for transformation // in both device and host compilations. if (getLangOpts().CUDA && D && D->hasAttr() && D->hasExternalStorage()) getCUDARuntime().handleVarRegistration(D, *GV); } if (D) SanitizerMD->reportGlobal(GV, *D); LangAS ExpectedAS = D ? D->getType().getAddressSpace() : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS); if (DAddrSpace != ExpectedAS) { return getTargetCodeGenInfo().performAddrSpaceCast( *this, GV, DAddrSpace, ExpectedAS, llvm::PointerType::get(getLLVMContext(), TargetAS)); } return GV; } llvm::Constant * CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) { const Decl *D = GD.getDecl(); if (isa(D) || isa(D)) return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr, /*DontDefer=*/false, IsForDefinition); if (isa(D)) { auto FInfo = &getTypes().arrangeCXXMethodDeclaration(cast(D)); auto Ty = getTypes().GetFunctionType(*FInfo); return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, IsForDefinition); } if (isa(D)) { const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, IsForDefinition); } return GetAddrOfGlobalVar(cast(D), /*Ty=*/nullptr, IsForDefinition); } llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable( StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage, llvm::Align Alignment) { llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); llvm::GlobalVariable *OldGV = nullptr; if (GV) { // Check if the variable has the right type. if (GV->getValueType() == Ty) return GV; // Because C++ name mangling, the only way we can end up with an already // existing global with the same name is if it has been declared extern "C". assert(GV->isDeclaration() && "Declaration has wrong type!"); OldGV = GV; } // Create a new variable. GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, Linkage, nullptr, Name); if (OldGV) { // Replace occurrences of the old variable if needed. GV->takeName(OldGV); if (!OldGV->use_empty()) { OldGV->replaceAllUsesWith(GV); } OldGV->eraseFromParent(); } if (supportsCOMDAT() && GV->isWeakForLinker() && !GV->hasAvailableExternallyLinkage()) GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); GV->setAlignment(Alignment); return GV; } /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the /// given global variable. If Ty is non-null and if the global doesn't exist, /// then it will be created with the specified type instead of whatever the /// normal requested type would be. If IsForDefinition is true, it is guaranteed /// that an actual global with type Ty will be returned, not conversion of a /// variable with the same mangled name but some other type. llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, llvm::Type *Ty, ForDefinition_t IsForDefinition) { assert(D->hasGlobalStorage() && "Not a global variable"); QualType ASTTy = D->getType(); if (!Ty) Ty = getTypes().ConvertTypeForMem(ASTTy); StringRef MangledName = getMangledName(D); return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D, IsForDefinition); } /// CreateRuntimeVariable - Create a new runtime global variable with the /// specified type and name. llvm::Constant * CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, StringRef Name) { LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global : LangAS::Default; auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr); setDSOLocal(cast(Ret->stripPointerCasts())); return Ret; } void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { assert(!D->getInit() && "Cannot emit definite definitions here!"); StringRef MangledName = getMangledName(D); llvm::GlobalValue *GV = GetGlobalValue(MangledName); // We already have a definition, not declaration, with the same mangled name. // Emitting of declaration is not required (and actually overwrites emitted // definition). if (GV && !GV->isDeclaration()) return; // If we have not seen a reference to this variable yet, place it into the // deferred declarations table to be emitted if needed later. if (!MustBeEmitted(D) && !GV) { DeferredDecls[MangledName] = D; return; } // The tentative definition is the only definition. EmitGlobalVarDefinition(D); } void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) { EmitExternalVarDeclaration(D); } CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { return Context.toCharUnitsFromBits( getDataLayout().getTypeStoreSizeInBits(Ty)); } LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { if (LangOpts.OpenCL) { LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global; assert(AS == LangAS::opencl_global || AS == LangAS::opencl_global_device || AS == LangAS::opencl_global_host || AS == LangAS::opencl_constant || AS == LangAS::opencl_local || AS >= LangAS::FirstTargetAddressSpace); return AS; } if (LangOpts.SYCLIsDevice && (!D || D->getType().getAddressSpace() == LangAS::Default)) return LangAS::sycl_global; if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { if (D) { if (D->hasAttr()) return LangAS::cuda_constant; if (D->hasAttr()) return LangAS::cuda_shared; if (D->hasAttr()) return LangAS::cuda_device; if (D->getType().isConstQualified()) return LangAS::cuda_constant; } return LangAS::cuda_device; } if (LangOpts.OpenMP) { LangAS AS; if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS)) return AS; } return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); } LangAS CodeGenModule::GetGlobalConstantAddressSpace() const { // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. if (LangOpts.OpenCL) return LangAS::opencl_constant; if (LangOpts.SYCLIsDevice) return LangAS::sycl_global; if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV()) // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V) // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up // with OpVariable instructions with Generic storage class which is not // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V // UniformConstant storage class is not viable as pointers to it may not be // casted to Generic pointers which are used to model HIP's "flat" pointers. return LangAS::cuda_device; if (auto AS = getTarget().getConstantAddressSpace()) return *AS; return LangAS::Default; } // In address space agnostic languages, string literals are in default address // space in AST. However, certain targets (e.g. amdgcn) request them to be // emitted in constant address space in LLVM IR. To be consistent with other // parts of AST, string literal global variables in constant address space // need to be casted to default address space before being put into address // map and referenced by other part of CodeGen. // In OpenCL, string literals are in constant address space in AST, therefore // they should not be casted to default address space. static llvm::Constant * castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, llvm::GlobalVariable *GV) { llvm::Constant *Cast = GV; if (!CGM.getLangOpts().OpenCL) { auto AS = CGM.GetGlobalConstantAddressSpace(); if (AS != LangAS::Default) Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( CGM, GV, AS, LangAS::Default, llvm::PointerType::get( CGM.getLLVMContext(), CGM.getContext().getTargetAddressSpace(LangAS::Default))); } return Cast; } template void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, llvm::GlobalValue *GV) { if (!getLangOpts().CPlusPlus) return; // Must have 'used' attribute, or else inline assembly can't rely on // the name existing. if (!D->template hasAttr()) return; // Must have internal linkage and an ordinary name. if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal) return; // Must be in an extern "C" context. Entities declared directly within // a record are not extern "C" even if the record is in such a context. const SomeDecl *First = D->getFirstDecl(); if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) return; // OK, this is an internal linkage entity inside an extern "C" linkage // specification. Make a note of that so we can give it the "expected" // mangled name if nothing else is using that name. std::pair R = StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); // If we have multiple internal linkage entities with the same name // in extern "C" regions, none of them gets that name. if (!R.second) R.first->second = nullptr; } static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { if (!CGM.supportsCOMDAT()) return false; if (D.hasAttr()) return true; GVALinkage Linkage; if (auto *VD = dyn_cast(&D)) Linkage = CGM.getContext().GetGVALinkageForVariable(VD); else Linkage = CGM.getContext().GetGVALinkageForFunction(cast(&D)); switch (Linkage) { case GVA_Internal: case GVA_AvailableExternally: case GVA_StrongExternal: return false; case GVA_DiscardableODR: case GVA_StrongODR: return true; } llvm_unreachable("No such linkage"); } bool CodeGenModule::supportsCOMDAT() const { return getTriple().supportsCOMDAT(); } void CodeGenModule::maybeSetTrivialComdat(const Decl &D, llvm::GlobalObject &GO) { if (!shouldBeInCOMDAT(*this, D)) return; GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); } /// Pass IsTentative as true if you want to create a tentative definition. void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, bool IsTentative) { // OpenCL global variables of sampler type are translated to function calls, // therefore no need to be translated. QualType ASTTy = D->getType(); if (getLangOpts().OpenCL && ASTTy->isSamplerT()) return; // If this is OpenMP device, check if it is legal to emit this global // normally. if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime && OpenMPRuntime->emitTargetGlobalVariable(D)) return; llvm::TrackingVH Init; bool NeedsGlobalCtor = false; // Whether the definition of the variable is available externally. // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable // since this is the job for its original source. bool IsDefinitionAvailableExternally = getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally; bool NeedsGlobalDtor = !IsDefinitionAvailableExternally && D->needsDestruction(getContext()) == QualType::DK_cxx_destructor; const VarDecl *InitDecl; const Expr *InitExpr = D->getAnyInitializer(InitDecl); std::optional emitter; // CUDA E.2.4.1 "__shared__ variables cannot have an initialization // as part of their declaration." Sema has already checked for // error cases, so we just need to set Init to UndefValue. bool IsCUDASharedVar = getLangOpts().CUDAIsDevice && D->hasAttr(); // Shadows of initialized device-side global variables are also left // undefined. // Managed Variables should be initialized on both host side and device side. bool IsCUDAShadowVar = !getLangOpts().CUDAIsDevice && !D->hasAttr() && (D->hasAttr() || D->hasAttr() || D->hasAttr()); bool IsCUDADeviceShadowVar = getLangOpts().CUDAIsDevice && !D->hasAttr() && (D->getType()->isCUDADeviceBuiltinSurfaceType() || D->getType()->isCUDADeviceBuiltinTextureType()); if (getLangOpts().CUDA && (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar)) Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); else if (D->hasAttr()) Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy)); else if (!InitExpr) { // This is a tentative definition; tentative definitions are // implicitly initialized with { 0 }. // // Note that tentative definitions are only emitted at the end of // a translation unit, so they should never have incomplete // type. In addition, EmitTentativeDefinition makes sure that we // never attempt to emit a tentative definition if a real one // exists. A use may still exists, however, so we still may need // to do a RAUW. assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); Init = EmitNullConstant(D->getType()); } else { initializedGlobalDecl = GlobalDecl(D); emitter.emplace(*this); llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl); if (!Initializer) { QualType T = InitExpr->getType(); if (D->getType()->isReferenceType()) T = D->getType(); if (getLangOpts().CPlusPlus) { if (InitDecl->hasFlexibleArrayInit(getContext())) ErrorUnsupported(D, "flexible array initializer"); Init = EmitNullConstant(T); if (!IsDefinitionAvailableExternally) NeedsGlobalCtor = true; } else { ErrorUnsupported(D, "static initializer"); Init = llvm::UndefValue::get(getTypes().ConvertType(T)); } } else { Init = Initializer; // We don't need an initializer, so remove the entry for the delayed // initializer position (just in case this entry was delayed) if we // also don't need to register a destructor. if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) DelayedCXXInitPosition.erase(D); #ifndef NDEBUG CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) + InitDecl->getFlexibleArrayInitChars(getContext()); CharUnits CstSize = CharUnits::fromQuantity( getDataLayout().getTypeAllocSize(Init->getType())); assert(VarSize == CstSize && "Emitted constant has unexpected size"); #endif } } llvm::Type* InitType = Init->getType(); llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); // Strip off pointer casts if we got them. Entry = Entry->stripPointerCasts(); // Entry is now either a Function or GlobalVariable. auto *GV = dyn_cast(Entry); // We have a definition after a declaration with the wrong type. // We must make a new GlobalVariable* and update everything that used OldGV // (a declaration or tentative definition) with the new GlobalVariable* // (which will be a definition). // // This happens if there is a prototype for a global (e.g. // "extern int x[];") and then a definition of a different type (e.g. // "int x[10];"). This also happens when an initializer has a different type // from the type of the global (this happens with unions). if (!GV || GV->getValueType() != InitType || GV->getType()->getAddressSpace() != getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { // Move the old entry aside so that we'll create a new one. Entry->setName(StringRef()); // Make a new global with the correct type, this is now guaranteed to work. GV = cast( GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)) ->stripPointerCasts()); // Replace all uses of the old global with the new global llvm::Constant *NewPtrForOldDecl = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Entry->getType()); Entry->replaceAllUsesWith(NewPtrForOldDecl); // Erase the old global, since it is no longer used. cast(Entry)->eraseFromParent(); } MaybeHandleStaticInExternC(D, GV); if (D->hasAttr()) AddGlobalAnnotations(D, GV); // Set the llvm linkage type as appropriate. llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D); // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on // the device. [...]" // CUDA B.2.2 "The __constant__ qualifier, optionally used together with // __device__, declares a variable that: [...] // Is accessible from all the threads within the grid and from the host // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." if (LangOpts.CUDA) { if (LangOpts.CUDAIsDevice) { if (Linkage != llvm::GlobalValue::InternalLinkage && (D->hasAttr() || D->hasAttr() || D->getType()->isCUDADeviceBuiltinSurfaceType() || D->getType()->isCUDADeviceBuiltinTextureType())) GV->setExternallyInitialized(true); } else { getCUDARuntime().internalizeDeviceSideVar(D, Linkage); } getCUDARuntime().handleVarRegistration(D, *GV); } GV->setInitializer(Init); if (emitter) emitter->finalize(GV); // If it is safe to mark the global 'constant', do so now. GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && D->getType().isConstantStorage(getContext(), true, true)); // If it is in a read-only section, mark it 'constant'. if (const SectionAttr *SA = D->getAttr()) { const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) GV->setConstant(true); } CharUnits AlignVal = getContext().getDeclAlign(D); // Check for alignment specifed in an 'omp allocate' directive. if (std::optional AlignValFromAllocate = getOMPAllocateAlignment(D)) AlignVal = *AlignValFromAllocate; GV->setAlignment(AlignVal.getAsAlign()); // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper // function is only defined alongside the variable, not also alongside // callers. Normally, all accesses to a thread_local go through the // thread-wrapper in order to ensure initialization has occurred, underlying // variable will never be used other than the thread-wrapper, so it can be // converted to internal linkage. // // However, if the variable has the 'constinit' attribute, it _can_ be // referenced directly, without calling the thread-wrapper, so the linkage // must not be changed. // // Additionally, if the variable isn't plain external linkage, e.g. if it's // weak or linkonce, the de-duplication semantics are important to preserve, // so we don't change the linkage. if (D->getTLSKind() == VarDecl::TLS_Dynamic && Linkage == llvm::GlobalValue::ExternalLinkage && Context.getTargetInfo().getTriple().isOSDarwin() && !D->hasAttr()) Linkage = llvm::GlobalValue::InternalLinkage; GV->setLinkage(Linkage); if (D->hasAttr()) GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); else if (D->hasAttr()) GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); else GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); if (Linkage == llvm::GlobalVariable::CommonLinkage) { // common vars aren't constant even if declared const. GV->setConstant(false); // Tentative definition of global variables may be initialized with // non-zero null pointers. In this case they should have weak linkage // since common linkage must have zero initializer and must not have // explicit section therefore cannot have non-zero initial value. if (!GV->getInitializer()->isNullValue()) GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); } setNonAliasAttributes(D, GV); if (D->getTLSKind() && !GV->isThreadLocal()) { if (D->getTLSKind() == VarDecl::TLS_Dynamic) CXXThreadLocals.push_back(D); setTLSMode(GV, *D); } maybeSetTrivialComdat(*D, *GV); // Emit the initializer function if necessary. if (NeedsGlobalCtor || NeedsGlobalDtor) EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor); // Emit global variable debug information. if (CGDebugInfo *DI = getModuleDebugInfo()) if (getCodeGenOpts().hasReducedDebugInfo()) DI->EmitGlobalVariable(GV, D); } void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) { if (CGDebugInfo *DI = getModuleDebugInfo()) if (getCodeGenOpts().hasReducedDebugInfo()) { QualType ASTTy = D->getType(); llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType()); llvm::Constant *GV = GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D); DI->EmitExternalVariable( cast(GV->stripPointerCasts()), D); } } static bool isVarDeclStrongDefinition(const ASTContext &Context, CodeGenModule &CGM, const VarDecl *D, bool NoCommon) { // Don't give variables common linkage if -fno-common was specified unless it // was overridden by a NoCommon attribute. if ((NoCommon || D->hasAttr()) && !D->hasAttr()) return true; // C11 6.9.2/2: // A declaration of an identifier for an object that has file scope without // an initializer, and without a storage-class specifier or with the // storage-class specifier static, constitutes a tentative definition. if (D->getInit() || D->hasExternalStorage()) return true; // A variable cannot be both common and exist in a section. if (D->hasAttr()) return true; // A variable cannot be both common and exist in a section. // We don't try to determine which is the right section in the front-end. // If no specialized section name is applicable, it will resort to default. if (D->hasAttr() || D->hasAttr() || D->hasAttr() || D->hasAttr()) return true; // Thread local vars aren't considered common linkage. if (D->getTLSKind()) return true; // Tentative definitions marked with WeakImportAttr are true definitions. if (D->hasAttr()) return true; // A variable cannot be both common and exist in a comdat. if (shouldBeInCOMDAT(CGM, *D)) return true; // Declarations with a required alignment do not have common linkage in MSVC // mode. if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { if (D->hasAttr()) return true; QualType VarType = D->getType(); if (Context.isAlignmentRequired(VarType)) return true; if (const auto *RT = VarType->getAs()) { const RecordDecl *RD = RT->getDecl(); for (const FieldDecl *FD : RD->fields()) { if (FD->isBitField()) continue; if (FD->hasAttr()) return true; if (Context.isAlignmentRequired(FD->getType())) return true; } } } // Microsoft's link.exe doesn't support alignments greater than 32 bytes for // common symbols, so symbols with greater alignment requirements cannot be // common. // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two // alignments for common symbols via the aligncomm directive, so this // restriction only applies to MSVC environments. if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() && Context.getTypeAlignIfKnown(D->getType()) > Context.toBits(CharUnits::fromQuantity(32))) return true; return false; } llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D, GVALinkage Linkage) { if (Linkage == GVA_Internal) return llvm::Function::InternalLinkage; if (D->hasAttr()) return llvm::GlobalVariable::WeakAnyLinkage; if (const auto *FD = D->getAsFunction()) if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally) return llvm::GlobalVariable::LinkOnceAnyLinkage; // We are guaranteed to have a strong definition somewhere else, // so we can use available_externally linkage. if (Linkage == GVA_AvailableExternally) return llvm::GlobalValue::AvailableExternallyLinkage; // Note that Apple's kernel linker doesn't support symbol // coalescing, so we need to avoid linkonce and weak linkages there. // Normally, this means we just map to internal, but for explicit // instantiations we'll map to external. // In C++, the compiler has to emit a definition in every translation unit // that references the function. We should use linkonce_odr because // a) if all references in this translation unit are optimized away, we // don't need to codegen it. b) if the function persists, it needs to be // merged with other definitions. c) C++ has the ODR, so we know the // definition is dependable. if (Linkage == GVA_DiscardableODR) return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage : llvm::Function::InternalLinkage; // An explicit instantiation of a template has weak linkage, since // explicit instantiations can occur in multiple translation units // and must all be equivalent. However, we are not allowed to // throw away these explicit instantiations. // // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU, // so say that CUDA templates are either external (for kernels) or internal. // This lets llvm perform aggressive inter-procedural optimizations. For // -fgpu-rdc case, device function calls across multiple TU's are allowed, // therefore we need to follow the normal linkage paradigm. if (Linkage == GVA_StrongODR) { if (getLangOpts().AppleKext) return llvm::Function::ExternalLinkage; if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && !getLangOpts().GPURelocatableDeviceCode) return D->hasAttr() ? llvm::Function::ExternalLinkage : llvm::Function::InternalLinkage; return llvm::Function::WeakODRLinkage; } // C++ doesn't have tentative definitions and thus cannot have common // linkage. if (!getLangOpts().CPlusPlus && isa(D) && !isVarDeclStrongDefinition(Context, *this, cast(D), CodeGenOpts.NoCommon)) return llvm::GlobalVariable::CommonLinkage; // selectany symbols are externally visible, so use weak instead of // linkonce. MSVC optimizes away references to const selectany globals, so // all definitions should be the same and ODR linkage should be used. // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx if (D->hasAttr()) return llvm::GlobalVariable::WeakODRLinkage; // Otherwise, we have strong external linkage. assert(Linkage == GVA_StrongExternal); return llvm::GlobalVariable::ExternalLinkage; } llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) { GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); return getLLVMLinkageForDeclarator(VD, Linkage); } /// Replace the uses of a function that was declared with a non-proto type. /// We want to silently drop extra arguments from call sites static void replaceUsesOfNonProtoConstant(llvm::Constant *old, llvm::Function *newFn) { // Fast path. if (old->use_empty()) return; llvm::Type *newRetTy = newFn->getReturnType(); SmallVector newArgs; for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); ui != ue; ) { llvm::Value::use_iterator use = ui++; // Increment before the use is erased. llvm::User *user = use->getUser(); // Recognize and replace uses of bitcasts. Most calls to // unprototyped functions will use bitcasts. if (auto *bitcast = dyn_cast(user)) { if (bitcast->getOpcode() == llvm::Instruction::BitCast) replaceUsesOfNonProtoConstant(bitcast, newFn); continue; } // Recognize calls to the function. llvm::CallBase *callSite = dyn_cast(user); if (!callSite) continue; if (!callSite->isCallee(&*use)) continue; // If the return types don't match exactly, then we can't // transform this call unless it's dead. if (callSite->getType() != newRetTy && !callSite->use_empty()) continue; // Get the call site's attribute list. SmallVector newArgAttrs; llvm::AttributeList oldAttrs = callSite->getAttributes(); // If the function was passed too few arguments, don't transform. unsigned newNumArgs = newFn->arg_size(); if (callSite->arg_size() < newNumArgs) continue; // If extra arguments were passed, we silently drop them. // If any of the types mismatch, we don't transform. unsigned argNo = 0; bool dontTransform = false; for (llvm::Argument &A : newFn->args()) { if (callSite->getArgOperand(argNo)->getType() != A.getType()) { dontTransform = true; break; } // Add any parameter attributes. newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo)); argNo++; } if (dontTransform) continue; // Okay, we can transform this. Create the new call instruction and copy // over the required information. newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo); // Copy over any operand bundles. SmallVector newBundles; callSite->getOperandBundlesAsDefs(newBundles); llvm::CallBase *newCall; if (isa(callSite)) { newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite); } else { auto *oldInvoke = cast(callSite); newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(), oldInvoke->getUnwindDest(), newArgs, newBundles, "", callSite); } newArgs.clear(); // for the next iteration if (!newCall->getType()->isVoidTy()) newCall->takeName(callSite); newCall->setAttributes( llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(), oldAttrs.getRetAttrs(), newArgAttrs)); newCall->setCallingConv(callSite->getCallingConv()); // Finally, remove the old call, replacing any uses with the new one. if (!callSite->use_empty()) callSite->replaceAllUsesWith(newCall); // Copy debug location attached to CI. if (callSite->getDebugLoc()) newCall->setDebugLoc(callSite->getDebugLoc()); callSite->eraseFromParent(); } } /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we /// implement a function with no prototype, e.g. "int foo() {}". If there are /// existing call uses of the old function in the module, this adjusts them to /// call the new function directly. /// /// This is not just a cleanup: the always_inline pass requires direct calls to /// functions to be able to inline them. If there is a bitcast in the way, it /// won't inline them. Instcombine normally deletes these calls, but it isn't /// run at -O0. static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, llvm::Function *NewFn) { // If we're redefining a global as a function, don't transform it. if (!isa(Old)) return; replaceUsesOfNonProtoConstant(Old, NewFn); } void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { auto DK = VD->isThisDeclarationADefinition(); if (DK == VarDecl::Definition && VD->hasAttr()) return; TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); // If we have a definition, this might be a deferred decl. If the // instantiation is explicit, make sure we emit it at the end. if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) GetAddrOfGlobalVar(VD); EmitTopLevelDecl(VD); } void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { const auto *D = cast(GD.getDecl()); // Compute the function info and LLVM type. const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); // Get or create the prototype for the function. if (!GV || (GV->getValueType() != Ty)) GV = cast(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/true, ForDefinition)); // Already emitted. if (!GV->isDeclaration()) return; // We need to set linkage and visibility on the function before // generating code for it because various parts of IR generation // want to propagate this information down (e.g. to local static // declarations). auto *Fn = cast(GV); setFunctionLinkage(GD, Fn); // FIXME: this is redundant with part of setFunctionDefinitionAttributes setGVProperties(Fn, GD); MaybeHandleStaticInExternC(D, Fn); maybeSetTrivialComdat(*D, *Fn); CodeGenFunction(*this).GenerateCode(GD, Fn, FI); setNonAliasAttributes(GD, Fn); SetLLVMFunctionAttributesForDefinition(D, Fn); if (const ConstructorAttr *CA = D->getAttr()) AddGlobalCtor(Fn, CA->getPriority()); if (const DestructorAttr *DA = D->getAttr()) AddGlobalDtor(Fn, DA->getPriority(), true); if (getLangOpts().OpenMP && D->hasAttr()) getOpenMPRuntime().emitDeclareTargetFunction(D, GV); } void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { const auto *D = cast(GD.getDecl()); const AliasAttr *AA = D->getAttr(); assert(AA && "Not an alias?"); StringRef MangledName = getMangledName(GD); if (AA->getAliasee() == MangledName) { Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; return; } // If there is a definition in the module, then it wins over the alias. // This is dubious, but allow it to be safe. Just ignore the alias. llvm::GlobalValue *Entry = GetGlobalValue(MangledName); if (Entry && !Entry->isDeclaration()) return; Aliases.push_back(GD); llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); // Create a reference to the named value. This ensures that it is emitted // if a deferred decl. llvm::Constant *Aliasee; llvm::GlobalValue::LinkageTypes LT; if (isa(DeclTy)) { Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, /*ForVTable=*/false); LT = getFunctionLinkage(GD); } else { Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default, /*D=*/nullptr); if (const auto *VD = dyn_cast(GD.getDecl())) LT = getLLVMLinkageVarDefinition(VD); else LT = getFunctionLinkage(GD); } // Create the new alias itself, but don't set a name yet. unsigned AS = Aliasee->getType()->getPointerAddressSpace(); auto *GA = llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule()); if (Entry) { if (GA->getAliasee() == Entry) { Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; return; } assert(Entry->isDeclaration()); // If there is a declaration in the module, then we had an extern followed // by the alias, as in: // extern int test6(); // ... // int test6() __attribute__((alias("test7"))); // // Remove it and replace uses of it with the alias. GA->takeName(Entry); Entry->replaceAllUsesWith(GA); Entry->eraseFromParent(); } else { GA->setName(MangledName); } // Set attributes which are particular to an alias; this is a // specialization of the attributes which may be set on a global // variable/function. if (D->hasAttr() || D->hasAttr() || D->isWeakImported()) { GA->setLinkage(llvm::Function::WeakAnyLinkage); } if (const auto *VD = dyn_cast(D)) if (VD->getTLSKind()) setTLSMode(GA, *VD); SetCommonAttributes(GD, GA); // Emit global alias debug information. if (isa(D)) if (CGDebugInfo *DI = getModuleDebugInfo()) DI->EmitGlobalAlias(cast(GA->getAliasee()->stripPointerCasts()), GD); } void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { const auto *D = cast(GD.getDecl()); const IFuncAttr *IFA = D->getAttr(); assert(IFA && "Not an ifunc?"); StringRef MangledName = getMangledName(GD); if (IFA->getResolver() == MangledName) { Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; return; } // Report an error if some definition overrides ifunc. llvm::GlobalValue *Entry = GetGlobalValue(MangledName); if (Entry && !Entry->isDeclaration()) { GlobalDecl OtherGD; if (lookupRepresentativeDecl(MangledName, OtherGD) && DiagnosedConflictingDefinitions.insert(GD).second) { Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) << MangledName; Diags.Report(OtherGD.getDecl()->getLocation(), diag::note_previous_definition); } return; } Aliases.push_back(GD); llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy); llvm::Constant *Resolver = GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {}, /*ForVTable=*/false); llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); if (Entry) { if (GIF->getResolver() == Entry) { Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; return; } assert(Entry->isDeclaration()); // If there is a declaration in the module, then we had an extern followed // by the ifunc, as in: // extern int test(); // ... // int test() __attribute__((ifunc("resolver"))); // // Remove it and replace uses of it with the ifunc. GIF->takeName(Entry); Entry->replaceAllUsesWith(GIF); Entry->eraseFromParent(); } else GIF->setName(MangledName); if (auto *F = dyn_cast(Resolver)) { F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); } SetCommonAttributes(GD, GIF); } llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, ArrayRef Tys) { return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, Tys); } static llvm::StringMapEntry & GetConstantCFStringEntry(llvm::StringMap &Map, const StringLiteral *Literal, bool TargetIsLSB, bool &IsUTF16, unsigned &StringLength) { StringRef String = Literal->getString(); unsigned NumBytes = String.size(); // Check for simple case. if (!Literal->containsNonAsciiOrNull()) { StringLength = NumBytes; return *Map.insert(std::make_pair(String, nullptr)).first; } // Otherwise, convert the UTF8 literals into a string of shorts. IsUTF16 = true; SmallVector ToBuf(NumBytes + 1); // +1 for ending nulls. const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); llvm::UTF16 *ToPtr = &ToBuf[0]; (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, ToPtr + NumBytes, llvm::strictConversion); // ConvertUTF8toUTF16 returns the length in ToPtr. StringLength = ToPtr - &ToBuf[0]; // Add an explicit null. *ToPtr = 0; return *Map.insert(std::make_pair( StringRef(reinterpret_cast(ToBuf.data()), (StringLength + 1) * 2), nullptr)).first; } ConstantAddress CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { unsigned StringLength = 0; bool isUTF16 = false; llvm::StringMapEntry &Entry = GetConstantCFStringEntry(CFConstantStringMap, Literal, getDataLayout().isLittleEndian(), isUTF16, StringLength); if (auto *C = Entry.second) return ConstantAddress( C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment())); llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); llvm::Constant *Zeros[] = { Zero, Zero }; const ASTContext &Context = getContext(); const llvm::Triple &Triple = getTriple(); const auto CFRuntime = getLangOpts().CFRuntime; const bool IsSwiftABI = static_cast(CFRuntime) >= static_cast(LangOptions::CoreFoundationABI::Swift); const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1; // If we don't already have it, get __CFConstantStringClassReference. if (!CFConstantStringClassRef) { const char *CFConstantStringClassName = "__CFConstantStringClassReference"; llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); Ty = llvm::ArrayType::get(Ty, 0); switch (CFRuntime) { default: break; case LangOptions::CoreFoundationABI::Swift: [[fallthrough]]; case LangOptions::CoreFoundationABI::Swift5_0: CFConstantStringClassName = Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN" : "$s10Foundation19_NSCFConstantStringCN"; Ty = IntPtrTy; break; case LangOptions::CoreFoundationABI::Swift4_2: CFConstantStringClassName = Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN" : "$S10Foundation19_NSCFConstantStringCN"; Ty = IntPtrTy; break; case LangOptions::CoreFoundationABI::Swift4_1: CFConstantStringClassName = Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN" : "__T010Foundation19_NSCFConstantStringCN"; Ty = IntPtrTy; break; } llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName); if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) { llvm::GlobalValue *GV = nullptr; if ((GV = dyn_cast(C))) { IdentifierInfo &II = Context.Idents.get(GV->getName()); TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl(); DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); const VarDecl *VD = nullptr; for (const auto *Result : DC->lookup(&II)) if ((VD = dyn_cast(Result))) break; if (Triple.isOSBinFormatELF()) { if (!VD) GV->setLinkage(llvm::GlobalValue::ExternalLinkage); } else { GV->setLinkage(llvm::GlobalValue::ExternalLinkage); if (!VD || !VD->hasAttr()) GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); else GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); } setDSOLocal(GV); } } // Decay array -> ptr CFConstantStringClassRef = IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty) : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros); } QualType CFTy = Context.getCFConstantStringType(); auto *STy = cast(getTypes().ConvertType(CFTy)); ConstantInitBuilder Builder(*this); auto Fields = Builder.beginStruct(STy); // Class pointer. Fields.add(cast(CFConstantStringClassRef)); // Flags. if (IsSwiftABI) { Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01); Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8); } else { Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); } // String pointer. llvm::Constant *C = nullptr; if (isUTF16) { auto Arr = llvm::ArrayRef( reinterpret_cast(const_cast(Entry.first().data())), Entry.first().size() / 2); C = llvm::ConstantDataArray::get(VMContext, Arr); } else { C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); } // Note: -fwritable-strings doesn't make the backing store strings of // CFStrings writable. auto *GV = new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, C, ".str"); GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); // Don't enforce the target's minimum global alignment, since the only use // of the string is via this class initializer. CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy) : Context.getTypeAlignInChars(Context.CharTy); GV->setAlignment(Align.getAsAlign()); // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. // Without it LLVM can merge the string with a non unnamed_addr one during // LTO. Doing that changes the section it ends in, which surprises ld64. if (Triple.isOSBinFormatMachO()) GV->setSection(isUTF16 ? "__TEXT,__ustring" : "__TEXT,__cstring,cstring_literals"); // Make sure the literal ends up in .rodata to allow for safe ICF and for // the static linker to adjust permissions to read-only later on. else if (Triple.isOSBinFormatELF()) GV->setSection(".rodata"); // String. llvm::Constant *Str = llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); Fields.add(Str); // String length. llvm::IntegerType *LengthTy = llvm::IntegerType::get(getModule().getContext(), Context.getTargetInfo().getLongWidth()); if (IsSwiftABI) { if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 || CFRuntime == LangOptions::CoreFoundationABI::Swift4_2) LengthTy = Int32Ty; else LengthTy = IntPtrTy; } Fields.addInt(LengthTy, StringLength); // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is // properly aligned on 32-bit platforms. CharUnits Alignment = IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign(); // The struct. GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, /*isConstant=*/false, llvm::GlobalVariable::PrivateLinkage); GV->addAttribute("objc_arc_inert"); switch (Triple.getObjectFormat()) { case llvm::Triple::UnknownObjectFormat: llvm_unreachable("unknown file format"); case llvm::Triple::DXContainer: case llvm::Triple::GOFF: case llvm::Triple::SPIRV: case llvm::Triple::XCOFF: llvm_unreachable("unimplemented"); case llvm::Triple::COFF: case llvm::Triple::ELF: case llvm::Triple::Wasm: GV->setSection("cfstring"); break; case llvm::Triple::MachO: GV->setSection("__DATA,__cfstring"); break; } Entry.second = GV; return ConstantAddress(GV, GV->getValueType(), Alignment); } bool CodeGenModule::getExpressionLocationsEnabled() const { return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; } QualType CodeGenModule::getObjCFastEnumerationStateType() { if (ObjCFastEnumerationStateType.isNull()) { RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); D->startDefinition(); QualType FieldTypes[] = { Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()), Context.getPointerType(Context.UnsignedLongTy), Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5), nullptr, ArraySizeModifier::Normal, 0)}; for (size_t i = 0; i < 4; ++i) { FieldDecl *Field = FieldDecl::Create(Context, D, SourceLocation(), SourceLocation(), nullptr, FieldTypes[i], /*TInfo=*/nullptr, /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit); Field->setAccess(AS_public); D->addDecl(Field); } D->completeDefinition(); ObjCFastEnumerationStateType = Context.getTagDeclType(D); } return ObjCFastEnumerationStateType; } llvm::Constant * CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { assert(!E->getType()->isPointerType() && "Strings are always arrays"); // Don't emit it as the address of the string, emit the string data itself // as an inline array. if (E->getCharByteWidth() == 1) { SmallString<64> Str(E->getString()); // Resize the string to the right size, which is indicated by its type. const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); assert(CAT && "String literal not of constant array type!"); Str.resize(CAT->getSize().getZExtValue()); return llvm::ConstantDataArray::getString(VMContext, Str, false); } auto *AType = cast(getTypes().ConvertType(E->getType())); llvm::Type *ElemTy = AType->getElementType(); unsigned NumElements = AType->getNumElements(); // Wide strings have either 2-byte or 4-byte elements. if (ElemTy->getPrimitiveSizeInBits() == 16) { SmallVector Elements; Elements.reserve(NumElements); for(unsigned i = 0, e = E->getLength(); i != e; ++i) Elements.push_back(E->getCodeUnit(i)); Elements.resize(NumElements); return llvm::ConstantDataArray::get(VMContext, Elements); } assert(ElemTy->getPrimitiveSizeInBits() == 32); SmallVector Elements; Elements.reserve(NumElements); for(unsigned i = 0, e = E->getLength(); i != e; ++i) Elements.push_back(E->getCodeUnit(i)); Elements.resize(NumElements); return llvm::ConstantDataArray::get(VMContext, Elements); } static llvm::GlobalVariable * GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, CodeGenModule &CGM, StringRef GlobalName, CharUnits Alignment) { unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( CGM.GetGlobalConstantAddressSpace()); llvm::Module &M = CGM.getModule(); // Create a global variable for this string auto *GV = new llvm::GlobalVariable( M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); GV->setAlignment(Alignment.getAsAlign()); GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); if (GV->isWeakForLinker()) { assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); GV->setComdat(M.getOrInsertComdat(GV->getName())); } CGM.setDSOLocal(GV); return GV; } /// GetAddrOfConstantStringFromLiteral - Return a pointer to a /// constant array for the given string literal. ConstantAddress CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, StringRef Name) { CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); llvm::Constant *C = GetConstantArrayFromStringLiteral(S); llvm::GlobalVariable **Entry = nullptr; if (!LangOpts.WritableStrings) { Entry = &ConstantStringMap[C]; if (auto GV = *Entry) { if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) GV->setAlignment(Alignment.getAsAlign()); return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), GV->getValueType(), Alignment); } } SmallString<256> MangledNameBuffer; StringRef GlobalVariableName; llvm::GlobalValue::LinkageTypes LT; // Mangle the string literal if that's how the ABI merges duplicate strings. // Don't do it if they are writable, since we don't want writes in one TU to // affect strings in another. if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) && !LangOpts.WritableStrings) { llvm::raw_svector_ostream Out(MangledNameBuffer); getCXXABI().getMangleContext().mangleStringLiteral(S, Out); LT = llvm::GlobalValue::LinkOnceODRLinkage; GlobalVariableName = MangledNameBuffer; } else { LT = llvm::GlobalValue::PrivateLinkage; GlobalVariableName = Name; } auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); CGDebugInfo *DI = getModuleDebugInfo(); if (DI && getCodeGenOpts().hasReducedDebugInfo()) DI->AddStringLiteralDebugInfo(GV, S); if (Entry) *Entry = GV; SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), ""); return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), GV->getValueType(), Alignment); } /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant /// array for the given ObjCEncodeExpr node. ConstantAddress CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { std::string Str; getContext().getObjCEncodingForType(E->getEncodedType(), Str); return GetAddrOfConstantCString(Str); } /// GetAddrOfConstantCString - Returns a pointer to a character array containing /// the literal and a terminating '\0' character. /// The result has pointer to array type. ConstantAddress CodeGenModule::GetAddrOfConstantCString( const std::string &Str, const char *GlobalName) { StringRef StrWithNull(Str.c_str(), Str.size() + 1); CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy); llvm::Constant *C = llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); // Don't share any string literals if strings aren't constant. llvm::GlobalVariable **Entry = nullptr; if (!LangOpts.WritableStrings) { Entry = &ConstantStringMap[C]; if (auto GV = *Entry) { if (uint64_t(Alignment.getQuantity()) > GV->getAlignment()) GV->setAlignment(Alignment.getAsAlign()); return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), GV->getValueType(), Alignment); } } // Get the default prefix if a name wasn't specified. if (!GlobalName) GlobalName = ".str"; // Create a global variable for this. auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, GlobalName, Alignment); if (Entry) *Entry = GV; return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), GV->getValueType(), Alignment); } ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( const MaterializeTemporaryExpr *E, const Expr *Init) { assert((E->getStorageDuration() == SD_Static || E->getStorageDuration() == SD_Thread) && "not a global temporary"); const auto *VD = cast(E->getExtendingDecl()); // If we're not materializing a subobject of the temporary, keep the // cv-qualifiers from the type of the MaterializeTemporaryExpr. QualType MaterializedType = Init->getType(); if (Init == E->getSubExpr()) MaterializedType = E->getType(); CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr}); if (!InsertResult.second) { // We've seen this before: either we already created it or we're in the // process of doing so. if (!InsertResult.first->second) { // We recursively re-entered this function, probably during emission of // the initializer. Create a placeholder. We'll clean this up in the // outer call, at the end of this function. llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType); InsertResult.first->second = new llvm::GlobalVariable( getModule(), Type, false, llvm::GlobalVariable::InternalLinkage, nullptr); } return ConstantAddress(InsertResult.first->second, llvm::cast( InsertResult.first->second->stripPointerCasts()) ->getValueType(), Align); } // FIXME: If an externally-visible declaration extends multiple temporaries, // we need to give each temporary the same name in every translation unit (and // we also need to make the temporaries externally-visible). SmallString<256> Name; llvm::raw_svector_ostream Out(Name); getCXXABI().getMangleContext().mangleReferenceTemporary( VD, E->getManglingNumber(), Out); APValue *Value = nullptr; if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) { // If the initializer of the extending declaration is a constant // initializer, we should have a cached constant initializer for this // temporary. Note that this might have a different value from the value // computed by evaluating the initializer if the surrounding constant // expression modifies the temporary. Value = E->getOrCreateValue(false); } // Try evaluating it now, it might have a constant initializer. Expr::EvalResult EvalResult; if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && !EvalResult.hasSideEffects()) Value = &EvalResult.Val; LangAS AddrSpace = GetGlobalVarAddressSpace(VD); std::optional emitter; llvm::Constant *InitialValue = nullptr; bool Constant = false; llvm::Type *Type; if (Value) { // The temporary has a constant initializer, use it. emitter.emplace(*this); InitialValue = emitter->emitForInitializer(*Value, AddrSpace, MaterializedType); Constant = MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value, /*ExcludeDtor*/ false); Type = InitialValue->getType(); } else { // No initializer, the initialization will be provided when we // initialize the declaration which performed lifetime extension. Type = getTypes().ConvertTypeForMem(MaterializedType); } // Create a global variable for this lifetime-extended temporary. llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD); if (Linkage == llvm::GlobalVariable::ExternalLinkage) { const VarDecl *InitVD; if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && isa(InitVD->getLexicalDeclContext())) { // Temporaries defined inside a class get linkonce_odr linkage because the // class can be defined in multiple translation units. Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; } else { // There is no need for this temporary to have external linkage if the // VarDecl has external linkage. Linkage = llvm::GlobalVariable::InternalLinkage; } } auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); auto *GV = new llvm::GlobalVariable( getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); if (emitter) emitter->finalize(GV); // Don't assign dllimport or dllexport to local linkage globals. if (!llvm::GlobalValue::isLocalLinkage(Linkage)) { setGVProperties(GV, VD); if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass) // The reference temporary should never be dllexport. GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); } GV->setAlignment(Align.getAsAlign()); if (supportsCOMDAT() && GV->isWeakForLinker()) GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); if (VD->getTLSKind()) setTLSMode(GV, *VD); llvm::Constant *CV = GV; if (AddrSpace != LangAS::Default) CV = getTargetCodeGenInfo().performAddrSpaceCast( *this, GV, AddrSpace, LangAS::Default, llvm::PointerType::get( getLLVMContext(), getContext().getTargetAddressSpace(LangAS::Default))); // Update the map with the new temporary. If we created a placeholder above, // replace it with the new global now. llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E]; if (Entry) { Entry->replaceAllUsesWith(CV); llvm::cast(Entry)->eraseFromParent(); } Entry = CV; return ConstantAddress(CV, Type, Align); } /// EmitObjCPropertyImplementations - Emit information for synthesized /// properties for an implementation. void CodeGenModule::EmitObjCPropertyImplementations(const ObjCImplementationDecl *D) { for (const auto *PID : D->property_impls()) { // Dynamic is just for type-checking. if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { ObjCPropertyDecl *PD = PID->getPropertyDecl(); // Determine which methods need to be implemented, some may have // been overridden. Note that ::isPropertyAccessor is not the method // we want, that just indicates if the decl came from a // property. What we want to know is if the method is defined in // this implementation. auto *Getter = PID->getGetterMethodDecl(); if (!Getter || Getter->isSynthesizedAccessorStub()) CodeGenFunction(*this).GenerateObjCGetter( const_cast(D), PID); auto *Setter = PID->getSetterMethodDecl(); if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub())) CodeGenFunction(*this).GenerateObjCSetter( const_cast(D), PID); } } } static bool needsDestructMethod(ObjCImplementationDecl *impl) { const ObjCInterfaceDecl *iface = impl->getClassInterface(); for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); ivar; ivar = ivar->getNextIvar()) if (ivar->getType().isDestructedType()) return true; return false; } static bool AllTrivialInitializers(CodeGenModule &CGM, ObjCImplementationDecl *D) { CodeGenFunction CGF(CGM); for (ObjCImplementationDecl::init_iterator B = D->init_begin(), E = D->init_end(); B != E; ++B) { CXXCtorInitializer *CtorInitExp = *B; Expr *Init = CtorInitExp->getInit(); if (!CGF.isTrivialInitializer(Init)) return false; } return true; } /// EmitObjCIvarInitializations - Emit information for ivar initialization /// for an implementation. void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { // We might need a .cxx_destruct even if we don't have any ivar initializers. if (needsDestructMethod(D)) { IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); Selector cxxSelector = getContext().Selectors.getSelector(0, &II); ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create( getContext(), D->getLocation(), D->getLocation(), cxxSelector, getContext().VoidTy, nullptr, D, /*isInstance=*/true, /*isVariadic=*/false, /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, /*isImplicitlyDeclared=*/true, /*isDefined=*/false, ObjCImplementationControl::Required); D->addInstanceMethod(DTORMethod); CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); D->setHasDestructors(true); } // If the implementation doesn't have any ivar initializers, we don't need // a .cxx_construct. if (D->getNumIvarInitializers() == 0 || AllTrivialInitializers(*this, D)) return; IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); Selector cxxSelector = getContext().Selectors.getSelector(0, &II); // The constructor returns 'self'. ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create( getContext(), D->getLocation(), D->getLocation(), cxxSelector, getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true, /*isVariadic=*/false, /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false, /*isImplicitlyDeclared=*/true, /*isDefined=*/false, ObjCImplementationControl::Required); D->addInstanceMethod(CTORMethod); CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); D->setHasNonZeroConstructors(true); } // EmitLinkageSpec - Emit all declarations in a linkage spec. void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { if (LSD->getLanguage() != LinkageSpecLanguageIDs::C && LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) { ErrorUnsupported(LSD, "linkage spec"); return; } EmitDeclContext(LSD); } void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) { // Device code should not be at top level. if (LangOpts.CUDA && LangOpts.CUDAIsDevice) return; std::unique_ptr &CurCGF = GlobalTopLevelStmtBlockInFlight.first; // We emitted a top-level stmt but after it there is initialization. // Stop squashing the top-level stmts into a single function. if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) { CurCGF->FinishFunction(D->getEndLoc()); CurCGF = nullptr; } if (!CurCGF) { // void __stmts__N(void) // FIXME: Ask the ABI name mangler to pick a name. std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size()); FunctionArgList Args; QualType RetTy = getContext().VoidTy; const CGFunctionInfo &FnInfo = getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args); llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo); llvm::Function *Fn = llvm::Function::Create( FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule()); CurCGF.reset(new CodeGenFunction(*this)); GlobalTopLevelStmtBlockInFlight.second = D; CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args, D->getBeginLoc(), D->getBeginLoc()); CXXGlobalInits.push_back(Fn); } CurCGF->EmitStmt(D->getStmt()); } void CodeGenModule::EmitDeclContext(const DeclContext *DC) { for (auto *I : DC->decls()) { // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope // are themselves considered "top-level", so EmitTopLevelDecl on an // ObjCImplDecl does not recursively visit them. We need to do that in // case they're nested inside another construct (LinkageSpecDecl / // ExportDecl) that does stop them from being considered "top-level". if (auto *OID = dyn_cast(I)) { for (auto *M : OID->methods()) EmitTopLevelDecl(M); } EmitTopLevelDecl(I); } } /// EmitTopLevelDecl - Emit code for a single top level declaration. void CodeGenModule::EmitTopLevelDecl(Decl *D) { // Ignore dependent declarations. if (D->isTemplated()) return; // Consteval function shouldn't be emitted. if (auto *FD = dyn_cast(D); FD && FD->isImmediateFunction()) return; switch (D->getKind()) { case Decl::CXXConversion: case Decl::CXXMethod: case Decl::Function: EmitGlobal(cast(D)); // Always provide some coverage mapping // even for the functions that aren't emitted. AddDeferredUnusedCoverageMapping(D); break; case Decl::CXXDeductionGuide: // Function-like, but does not result in code emission. break; case Decl::Var: case Decl::Decomposition: case Decl::VarTemplateSpecialization: EmitGlobal(cast(D)); if (auto *DD = dyn_cast(D)) for (auto *B : DD->bindings()) if (auto *HD = B->getHoldingVar()) EmitGlobal(HD); break; // Indirect fields from global anonymous structs and unions can be // ignored; only the actual variable requires IR gen support. case Decl::IndirectField: break; // C++ Decls case Decl::Namespace: EmitDeclContext(cast(D)); break; case Decl::ClassTemplateSpecialization: { const auto *Spec = cast(D); if (CGDebugInfo *DI = getModuleDebugInfo()) if (Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && Spec->hasDefinition()) DI->completeTemplateDefinition(*Spec); } [[fallthrough]]; case Decl::CXXRecord: { CXXRecordDecl *CRD = cast(D); if (CGDebugInfo *DI = getModuleDebugInfo()) { if (CRD->hasDefinition()) DI->EmitAndRetainType(getContext().getRecordType(cast(D))); if (auto *ES = D->getASTContext().getExternalSource()) if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) DI->completeUnusedClass(*CRD); } // Emit any static data members, they may be definitions. for (auto *I : CRD->decls()) if (isa(I) || isa(I)) EmitTopLevelDecl(I); break; } // No code generation needed. case Decl::UsingShadow: case Decl::ClassTemplate: case Decl::VarTemplate: case Decl::Concept: case Decl::VarTemplatePartialSpecialization: case Decl::FunctionTemplate: case Decl::TypeAliasTemplate: case Decl::Block: case Decl::Empty: case Decl::Binding: break; case Decl::Using: // using X; [C++] if (CGDebugInfo *DI = getModuleDebugInfo()) DI->EmitUsingDecl(cast(*D)); break; case Decl::UsingEnum: // using enum X; [C++] if (CGDebugInfo *DI = getModuleDebugInfo()) DI->EmitUsingEnumDecl(cast(*D)); break; case Decl::NamespaceAlias: if (CGDebugInfo *DI = getModuleDebugInfo()) DI->EmitNamespaceAlias(cast(*D)); break; case Decl::UsingDirective: // using namespace X; [C++] if (CGDebugInfo *DI = getModuleDebugInfo()) DI->EmitUsingDirective(cast(*D)); break; case Decl::CXXConstructor: getCXXABI().EmitCXXConstructors(cast(D)); break; case Decl::CXXDestructor: getCXXABI().EmitCXXDestructors(cast(D)); break; case Decl::StaticAssert: // Nothing to do. break; // Objective-C Decls // Forward declarations, no (immediate) code generation. case Decl::ObjCInterface: case Decl::ObjCCategory: break; case Decl::ObjCProtocol: { auto *Proto = cast(D); if (Proto->isThisDeclarationADefinition()) ObjCRuntime->GenerateProtocol(Proto); break; } case Decl::ObjCCategoryImpl: // Categories have properties but don't support synthesize so we // can ignore them here. ObjCRuntime->GenerateCategory(cast(D)); break; case Decl::ObjCImplementation: { auto *OMD = cast(D); EmitObjCPropertyImplementations(OMD); EmitObjCIvarInitializations(OMD); ObjCRuntime->GenerateClass(OMD); // Emit global variable debug information. if (CGDebugInfo *DI = getModuleDebugInfo()) if (getCodeGenOpts().hasReducedDebugInfo()) DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( OMD->getClassInterface()), OMD->getLocation()); break; } case Decl::ObjCMethod: { auto *OMD = cast(D); // If this is not a prototype, emit the body. if (OMD->getBody()) CodeGenFunction(*this).GenerateObjCMethod(OMD); break; } case Decl::ObjCCompatibleAlias: ObjCRuntime->RegisterAlias(cast(D)); break; case Decl::PragmaComment: { const auto *PCD = cast(D); switch (PCD->getCommentKind()) { case PCK_Unknown: llvm_unreachable("unexpected pragma comment kind"); case PCK_Linker: AppendLinkerOptions(PCD->getArg()); break; case PCK_Lib: AddDependentLib(PCD->getArg()); break; case PCK_Compiler: case PCK_ExeStr: case PCK_User: break; // We ignore all of these. } break; } case Decl::PragmaDetectMismatch: { const auto *PDMD = cast(D); AddDetectMismatch(PDMD->getName(), PDMD->getValue()); break; } case Decl::LinkageSpec: EmitLinkageSpec(cast(D)); break; case Decl::FileScopeAsm: { // File-scope asm is ignored during device-side CUDA compilation. if (LangOpts.CUDA && LangOpts.CUDAIsDevice) break; // File-scope asm is ignored during device-side OpenMP compilation. if (LangOpts.OpenMPIsTargetDevice) break; // File-scope asm is ignored during device-side SYCL compilation. if (LangOpts.SYCLIsDevice) break; auto *AD = cast(D); getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); break; } case Decl::TopLevelStmt: EmitTopLevelStmt(cast(D)); break; case Decl::Import: { auto *Import = cast(D); // If we've already imported this module, we're done. if (!ImportedModules.insert(Import->getImportedModule())) break; // Emit debug information for direct imports. if (!Import->getImportedOwningModule()) { if (CGDebugInfo *DI = getModuleDebugInfo()) DI->EmitImportDecl(*Import); } // For C++ standard modules we are done - we will call the module // initializer for imported modules, and that will likewise call those for // any imports it has. if (CXX20ModuleInits && Import->getImportedOwningModule() && !Import->getImportedOwningModule()->isModuleMapModule()) break; // For clang C++ module map modules the initializers for sub-modules are // emitted here. // Find all of the submodules and emit the module initializers. llvm::SmallPtrSet Visited; SmallVector Stack; Visited.insert(Import->getImportedModule()); Stack.push_back(Import->getImportedModule()); while (!Stack.empty()) { clang::Module *Mod = Stack.pop_back_val(); if (!EmittedModuleInitializers.insert(Mod).second) continue; for (auto *D : Context.getModuleInitializers(Mod)) EmitTopLevelDecl(D); // Visit the submodules of this module. for (auto *Submodule : Mod->submodules()) { // Skip explicit children; they need to be explicitly imported to emit // the initializers. if (Submodule->IsExplicit) continue; if (Visited.insert(Submodule).second) Stack.push_back(Submodule); } } break; } case Decl::Export: EmitDeclContext(cast(D)); break; case Decl::OMPThreadPrivate: EmitOMPThreadPrivateDecl(cast(D)); break; case Decl::OMPAllocate: EmitOMPAllocateDecl(cast(D)); break; case Decl::OMPDeclareReduction: EmitOMPDeclareReduction(cast(D)); break; case Decl::OMPDeclareMapper: EmitOMPDeclareMapper(cast(D)); break; case Decl::OMPRequires: EmitOMPRequiresDecl(cast(D)); break; case Decl::Typedef: case Decl::TypeAlias: // using foo = bar; [C++11] if (CGDebugInfo *DI = getModuleDebugInfo()) DI->EmitAndRetainType( getContext().getTypedefType(cast(D))); break; case Decl::Record: if (CGDebugInfo *DI = getModuleDebugInfo()) if (cast(D)->getDefinition()) DI->EmitAndRetainType(getContext().getRecordType(cast(D))); break; case Decl::Enum: if (CGDebugInfo *DI = getModuleDebugInfo()) if (cast(D)->getDefinition()) DI->EmitAndRetainType(getContext().getEnumType(cast(D))); break; case Decl::HLSLBuffer: getHLSLRuntime().addBuffer(cast(D)); break; default: // Make sure we handled everything we should, every other kind is a // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind // function. Need to recode Decl::Kind to do that easily. assert(isa(D) && "Unsupported decl kind"); break; } } void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { // Do we need to generate coverage mapping? if (!CodeGenOpts.CoverageMapping) return; switch (D->getKind()) { case Decl::CXXConversion: case Decl::CXXMethod: case Decl::Function: case Decl::ObjCMethod: case Decl::CXXConstructor: case Decl::CXXDestructor: { if (!cast(D)->doesThisDeclarationHaveABody()) break; SourceManager &SM = getContext().getSourceManager(); if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc())) break; DeferredEmptyCoverageMappingDecls.try_emplace(D, true); break; } default: break; }; } void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { // Do we need to generate coverage mapping? if (!CodeGenOpts.CoverageMapping) return; if (const auto *Fn = dyn_cast(D)) { if (Fn->isTemplateInstantiation()) ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); } DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false); } void CodeGenModule::EmitDeferredUnusedCoverageMappings() { // We call takeVector() here to avoid use-after-free. // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because // we deserialize function bodies to emit coverage info for them, and that // deserializes more declarations. How should we handle that case? for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { if (!Entry.second) continue; const Decl *D = Entry.first; switch (D->getKind()) { case Decl::CXXConversion: case Decl::CXXMethod: case Decl::Function: case Decl::ObjCMethod: { CodeGenPGO PGO(*this); GlobalDecl GD(cast(D)); PGO.emitEmptyCounterMapping(D, getMangledName(GD), getFunctionLinkage(GD)); break; } case Decl::CXXConstructor: { CodeGenPGO PGO(*this); GlobalDecl GD(cast(D), Ctor_Base); PGO.emitEmptyCounterMapping(D, getMangledName(GD), getFunctionLinkage(GD)); break; } case Decl::CXXDestructor: { CodeGenPGO PGO(*this); GlobalDecl GD(cast(D), Dtor_Base); PGO.emitEmptyCounterMapping(D, getMangledName(GD), getFunctionLinkage(GD)); break; } default: break; }; } } void CodeGenModule::EmitMainVoidAlias() { // In order to transition away from "__original_main" gracefully, emit an // alias for "main" in the no-argument case so that libc can detect when // new-style no-argument main is in used. if (llvm::Function *F = getModule().getFunction("main")) { if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() && F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) { auto *GA = llvm::GlobalAlias::create("__main_void", F); GA->setVisibility(llvm::GlobalValue::HiddenVisibility); } } } /// Turns the given pointer into a constant. static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, const void *Ptr) { uintptr_t PtrInt = reinterpret_cast(Ptr); llvm::Type *i64 = llvm::Type::getInt64Ty(Context); return llvm::ConstantInt::get(i64, PtrInt); } static void EmitGlobalDeclMetadata(CodeGenModule &CGM, llvm::NamedMDNode *&GlobalMetadata, GlobalDecl D, llvm::GlobalValue *Addr) { if (!GlobalMetadata) GlobalMetadata = CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); // TODO: should we report variant information for ctors/dtors? llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), llvm::ConstantAsMetadata::get(GetPointerConstant( CGM.getLLVMContext(), D.getDecl()))}; GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); } bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem, llvm::GlobalValue *CppFunc) { // Store the list of ifuncs we need to replace uses in. llvm::SmallVector IFuncs; // List of ConstantExprs that we should be able to delete when we're done // here. llvm::SmallVector CEs; // It isn't valid to replace the extern-C ifuncs if all we find is itself! if (Elem == CppFunc) return false; // First make sure that all users of this are ifuncs (or ifuncs via a // bitcast), and collect the list of ifuncs and CEs so we can work on them // later. for (llvm::User *User : Elem->users()) { // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an // ifunc directly. In any other case, just give up, as we don't know what we // could break by changing those. if (auto *ConstExpr = dyn_cast(User)) { if (ConstExpr->getOpcode() != llvm::Instruction::BitCast) return false; for (llvm::User *CEUser : ConstExpr->users()) { if (auto *IFunc = dyn_cast(CEUser)) { IFuncs.push_back(IFunc); } else { return false; } } CEs.push_back(ConstExpr); } else if (auto *IFunc = dyn_cast(User)) { IFuncs.push_back(IFunc); } else { // This user is one we don't know how to handle, so fail redirection. This // will result in an ifunc retaining a resolver name that will ultimately // fail to be resolved to a defined function. return false; } } // Now we know this is a valid case where we can do this alias replacement, we // need to remove all of the references to Elem (and the bitcasts!) so we can // delete it. for (llvm::GlobalIFunc *IFunc : IFuncs) IFunc->setResolver(nullptr); for (llvm::ConstantExpr *ConstExpr : CEs) ConstExpr->destroyConstant(); // We should now be out of uses for the 'old' version of this function, so we // can erase it as well. Elem->eraseFromParent(); for (llvm::GlobalIFunc *IFunc : IFuncs) { // The type of the resolver is always just a function-type that returns the // type of the IFunc, so create that here. If the type of the actual // resolver doesn't match, it just gets bitcast to the right thing. auto *ResolverTy = llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false); llvm::Constant *Resolver = GetOrCreateLLVMFunction( CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false); IFunc->setResolver(Resolver); } return true; } /// For each function which is declared within an extern "C" region and marked /// as 'used', but has internal linkage, create an alias from the unmangled /// name to the mangled name if possible. People expect to be able to refer /// to such functions with an unmangled name from inline assembly within the /// same translation unit. void CodeGenModule::EmitStaticExternCAliases() { if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) return; for (auto &I : StaticExternCValues) { IdentifierInfo *Name = I.first; llvm::GlobalValue *Val = I.second; // If Val is null, that implies there were multiple declarations that each // had a claim to the unmangled name. In this case, generation of the alias // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC. if (!Val) break; llvm::GlobalValue *ExistingElem = getModule().getNamedValue(Name->getName()); // If there is either not something already by this name, or we were able to // replace all uses from IFuncs, create the alias. if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val)) addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); } } bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, GlobalDecl &Result) const { auto Res = Manglings.find(MangledName); if (Res == Manglings.end()) return false; Result = Res->getValue(); return true; } /// Emits metadata nodes associating all the global values in the /// current module with the Decls they came from. This is useful for /// projects using IR gen as a subroutine. /// /// Since there's currently no way to associate an MDNode directly /// with an llvm::GlobalValue, we create a global named metadata /// with the name 'clang.global.decl.ptrs'. void CodeGenModule::EmitDeclMetadata() { llvm::NamedMDNode *GlobalMetadata = nullptr; for (auto &I : MangledDeclNames) { llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); // Some mangled names don't necessarily have an associated GlobalValue // in this module, e.g. if we mangled it for DebugInfo. if (Addr) EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); } } /// Emits metadata nodes for all the local variables in the current /// function. void CodeGenFunction::EmitDeclMetadata() { if (LocalDeclMap.empty()) return; llvm::LLVMContext &Context = getLLVMContext(); // Find the unique metadata ID for this name. unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); llvm::NamedMDNode *GlobalMetadata = nullptr; for (auto &I : LocalDeclMap) { const Decl *D = I.first; llvm::Value *Addr = I.second.getPointer(); if (auto *Alloca = dyn_cast(Addr)) { llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); Alloca->setMetadata( DeclPtrKind, llvm::MDNode::get( Context, llvm::ValueAsMetadata::getConstant(DAddr))); } else if (auto *GV = dyn_cast(Addr)) { GlobalDecl GD = GlobalDecl(cast(D)); EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); } } } void CodeGenModule::EmitVersionIdentMetadata() { llvm::NamedMDNode *IdentMetadata = TheModule.getOrInsertNamedMetadata("llvm.ident"); std::string Version = getClangFullVersion(); llvm::LLVMContext &Ctx = TheModule.getContext(); llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); } void CodeGenModule::EmitCommandLineMetadata() { llvm::NamedMDNode *CommandLineMetadata = TheModule.getOrInsertNamedMetadata("llvm.commandline"); std::string CommandLine = getCodeGenOpts().RecordCommandLine; llvm::LLVMContext &Ctx = TheModule.getContext(); llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)}; CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode)); } void CodeGenModule::EmitCoverageFile() { llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); if (!CUNode) return; llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); llvm::LLVMContext &Ctx = TheModule.getContext(); auto *CoverageDataFile = llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); auto *CoverageNotesFile = llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { llvm::MDNode *CU = CUNode->getOperand(i); llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); } } llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, bool ForEH) { // Return a bogus pointer if RTTI is disabled, unless it's for EH. // FIXME: should we even be calling this method if RTTI is disabled // and it's not for EH? if (!shouldEmitRTTI(ForEH)) return llvm::Constant::getNullValue(GlobalsInt8PtrTy); if (ForEH && Ty->isObjCObjectPointerType() && LangOpts.ObjCRuntime.isGNUFamily()) return ObjCRuntime->GetEHType(Ty); return getCXXABI().getAddrOfRTTIDescriptor(Ty); } void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { // Do not emit threadprivates in simd-only mode. if (LangOpts.OpenMP && LangOpts.OpenMPSimd) return; for (auto RefExpr : D->varlists()) { auto *VD = cast(cast(RefExpr)->getDecl()); bool PerformInit = VD->getAnyInitializer() && !VD->getAnyInitializer()->isConstantInitializer(getContext(), /*ForRef=*/false); Address Addr(GetAddrOfGlobalVar(VD), getTypes().ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD)); if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( VD, Addr, RefExpr->getBeginLoc(), PerformInit)) CXXGlobalInits.push_back(InitFunction); } } llvm::Metadata * CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, StringRef Suffix) { if (auto *FnType = T->getAs()) T = getContext().getFunctionType( FnType->getReturnType(), FnType->getParamTypes(), FnType->getExtProtoInfo().withExceptionSpec(EST_None)); llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; if (InternalId) return InternalId; if (isExternallyVisible(T->getLinkage())) { std::string OutName; llvm::raw_string_ostream Out(OutName); getCXXABI().getMangleContext().mangleCanonicalTypeName( T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers); if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers) Out << ".normalized"; Out << Suffix; InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); } else { InternalId = llvm::MDNode::getDistinct(getLLVMContext(), llvm::ArrayRef()); } return InternalId; } llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); } llvm::Metadata * CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); } // Generalize pointer types to a void pointer with the qualifiers of the // originally pointed-to type, e.g. 'const char *' and 'char * const *' // generalize to 'const void *' while 'char *' and 'const char **' generalize to // 'void *'. static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { if (!Ty->isPointerType()) return Ty; return Ctx.getPointerType( QualType(Ctx.VoidTy).withCVRQualifiers( Ty->getPointeeType().getCVRQualifiers())); } // Apply type generalization to a FunctionType's return and argument types static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { if (auto *FnType = Ty->getAs()) { SmallVector GeneralizedParams; for (auto &Param : FnType->param_types()) GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); return Ctx.getFunctionType( GeneralizeType(Ctx, FnType->getReturnType()), GeneralizedParams, FnType->getExtProtoInfo()); } if (auto *FnType = Ty->getAs()) return Ctx.getFunctionNoProtoType( GeneralizeType(Ctx, FnType->getReturnType())); llvm_unreachable("Encountered unknown FunctionType"); } llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), GeneralizedMetadataIdMap, ".generalized"); } /// Returns whether this module needs the "all-vtables" type identifier. bool CodeGenModule::NeedAllVtablesTypeId() const { // Returns true if at least one of vtable-based CFI checkers is enabled and // is not in the trapping mode. return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); } void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, CharUnits Offset, const CXXRecordDecl *RD) { llvm::Metadata *MD = CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); VTable->addTypeMetadata(Offset.getQuantity(), MD); if (CodeGenOpts.SanitizeCfiCrossDso) if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) VTable->addTypeMetadata(Offset.getQuantity(), llvm::ConstantAsMetadata::get(CrossDsoTypeId)); if (NeedAllVtablesTypeId()) { llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); VTable->addTypeMetadata(Offset.getQuantity(), MD); } } llvm::SanitizerStatReport &CodeGenModule::getSanStats() { if (!SanStats) SanStats = std::make_unique(&getModule()); return *SanStats; } llvm::Value * CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, CodeGenFunction &CGF) { llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); auto *Call = CGF.EmitRuntimeCall( CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C}); return Call; } CharUnits CodeGenModule::getNaturalPointeeTypeAlignment( QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) { return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, /* forPointeeType= */ true); } CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo, bool forPointeeType) { if (TBAAInfo) *TBAAInfo = getTBAAAccessInfo(T); // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But // that doesn't return the information we need to compute BaseInfo. // Honor alignment typedef attributes even on incomplete types. // We also honor them straight for C++ class types, even as pointees; // there's an expressivity gap here. if (auto TT = T->getAs()) { if (auto Align = TT->getDecl()->getMaxAlignment()) { if (BaseInfo) *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); return getContext().toCharUnitsFromBits(Align); } } bool AlignForArray = T->isArrayType(); // Analyze the base element type, so we don't get confused by incomplete // array types. T = getContext().getBaseElementType(T); if (T->isIncompleteType()) { // We could try to replicate the logic from // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the // type is incomplete, so it's impossible to test. We could try to reuse // getTypeAlignIfKnown, but that doesn't return the information we need // to set BaseInfo. So just ignore the possibility that the alignment is // greater than one. if (BaseInfo) *BaseInfo = LValueBaseInfo(AlignmentSource::Type); return CharUnits::One(); } if (BaseInfo) *BaseInfo = LValueBaseInfo(AlignmentSource::Type); CharUnits Alignment; const CXXRecordDecl *RD; if (T.getQualifiers().hasUnaligned()) { Alignment = CharUnits::One(); } else if (forPointeeType && !AlignForArray && (RD = T->getAsCXXRecordDecl())) { // For C++ class pointees, we don't know whether we're pointing at a // base or a complete object, so we generally need to use the // non-virtual alignment. Alignment = getClassPointerAlignment(RD); } else { Alignment = getContext().getTypeAlignInChars(T); } // Cap to the global maximum type alignment unless the alignment // was somehow explicit on the type. if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { if (Alignment.getQuantity() > MaxAlign && !getContext().isAlignmentRequired(T)) Alignment = CharUnits::fromQuantity(MaxAlign); } return Alignment; } bool CodeGenModule::stopAutoInit() { unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter; if (StopAfter) { // This number is positive only when -ftrivial-auto-var-init-stop-after=* is // used if (NumAutoVarInit >= StopAfter) { return true; } if (!NumAutoVarInit) { unsigned DiagID = getDiags().getCustomDiagID( DiagnosticsEngine::Warning, "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the " "number of times ftrivial-auto-var-init=%1 gets applied."); getDiags().Report(DiagID) << StopAfter << (getContext().getLangOpts().getTrivialAutoVarInit() == LangOptions::TrivialAutoVarInitKind::Zero ? "zero" : "pattern"); } ++NumAutoVarInit; } return false; } void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS, const Decl *D) const { // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers // postfix beginning with '.' since the symbol name can be demangled. if (LangOpts.HIP) OS << (isa(D) ? ".static." : ".intern."); else OS << (isa(D) ? "__static__" : "__intern__"); // If the CUID is not specified we try to generate a unique postfix. if (getLangOpts().CUID.empty()) { SourceManager &SM = getContext().getSourceManager(); PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation()); assert(PLoc.isValid() && "Source location is expected to be valid."); // Get the hash of the user defined macros. llvm::MD5 Hash; llvm::MD5::MD5Result Result; for (const auto &Arg : PreprocessorOpts.Macros) Hash.update(Arg.first); Hash.final(Result); // Get the UniqueID for the file containing the decl. llvm::sys::fs::UniqueID ID; if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) { PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false); assert(PLoc.isValid() && "Source location is expected to be valid."); if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) SM.getDiagnostics().Report(diag::err_cannot_open_file) << PLoc.getFilename() << EC.message(); } OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice()) << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8); } else { OS << getContext().getCUIDHash(); } } void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) { assert(DeferredDeclsToEmit.empty() && "Should have emitted all decls deferred to emit."); assert(NewBuilder->DeferredDecls.empty() && "Newly created module should not have deferred decls"); NewBuilder->DeferredDecls = std::move(DeferredDecls); assert(EmittedDeferredDecls.empty() && "Still have (unmerged) EmittedDeferredDecls deferred decls"); assert(NewBuilder->DeferredVTables.empty() && "Newly created module should not have deferred vtables"); NewBuilder->DeferredVTables = std::move(DeferredVTables); assert(NewBuilder->MangledDeclNames.empty() && "Newly created module should not have mangled decl names"); assert(NewBuilder->Manglings.empty() && "Newly created module should not have manglings"); NewBuilder->Manglings = std::move(Manglings); NewBuilder->WeakRefReferences = std::move(WeakRefReferences); NewBuilder->TBAA = std::move(TBAA); NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx); }