//==- CGObjCRuntime.cpp - Interface to Shared Objective-C Runtime Features ==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This abstract class defines the interface for Objective-C runtime-specific // code generation. It provides some concrete helper methods for functionality // shared between all (or most) of the Objective-C runtimes supported by clang. // //===----------------------------------------------------------------------===// #include "CGObjCRuntime.h" #include "CGCXXABI.h" #include "CGCleanup.h" #include "CGRecordLayout.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtObjC.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "clang/CodeGen/CodeGenABITypes.h" #include "llvm/IR/Instruction.h" #include "llvm/Support/SaveAndRestore.h" using namespace clang; using namespace CodeGen; uint64_t CGObjCRuntime::ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM, const ObjCInterfaceDecl *OID, const ObjCIvarDecl *Ivar) { return CGM.getContext().lookupFieldBitOffset(OID, nullptr, Ivar) / CGM.getContext().getCharWidth(); } uint64_t CGObjCRuntime::ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM, const ObjCImplementationDecl *OID, const ObjCIvarDecl *Ivar) { return CGM.getContext().lookupFieldBitOffset(OID->getClassInterface(), OID, Ivar) / CGM.getContext().getCharWidth(); } unsigned CGObjCRuntime::ComputeBitfieldBitOffset( CodeGen::CodeGenModule &CGM, const ObjCInterfaceDecl *ID, const ObjCIvarDecl *Ivar) { return CGM.getContext().lookupFieldBitOffset(ID, ID->getImplementation(), Ivar); } LValue CGObjCRuntime::EmitValueForIvarAtOffset(CodeGen::CodeGenFunction &CGF, const ObjCInterfaceDecl *OID, llvm::Value *BaseValue, const ObjCIvarDecl *Ivar, unsigned CVRQualifiers, llvm::Value *Offset) { // Compute (type*) ( (char *) BaseValue + Offset) QualType InterfaceTy{OID->getTypeForDecl(), 0}; QualType ObjectPtrTy = CGF.CGM.getContext().getObjCObjectPointerType(InterfaceTy); QualType IvarTy = Ivar->getUsageType(ObjectPtrTy).withCVRQualifiers(CVRQualifiers); llvm::Type *LTy = CGF.CGM.getTypes().ConvertTypeForMem(IvarTy); llvm::Value *V = CGF.Builder.CreateBitCast(BaseValue, CGF.Int8PtrTy); V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, V, Offset, "add.ptr"); if (!Ivar->isBitField()) { V = CGF.Builder.CreateBitCast(V, llvm::PointerType::getUnqual(LTy)); LValue LV = CGF.MakeNaturalAlignAddrLValue(V, IvarTy); return LV; } // We need to compute an access strategy for this bit-field. We are given the // offset to the first byte in the bit-field, the sub-byte offset is taken // from the original layout. We reuse the normal bit-field access strategy by // treating this as an access to a struct where the bit-field is in byte 0, // and adjust the containing type size as appropriate. // // FIXME: Note that currently we make a very conservative estimate of the // alignment of the bit-field, because (a) it is not clear what guarantees the // runtime makes us, and (b) we don't have a way to specify that the struct is // at an alignment plus offset. // // Note, there is a subtle invariant here: we can only call this routine on // non-synthesized ivars but we may be called for synthesized ivars. However, // a synthesized ivar can never be a bit-field, so this is safe. uint64_t FieldBitOffset = CGF.CGM.getContext().lookupFieldBitOffset(OID, nullptr, Ivar); uint64_t BitOffset = FieldBitOffset % CGF.CGM.getContext().getCharWidth(); uint64_t AlignmentBits = CGF.CGM.getTarget().getCharAlign(); uint64_t BitFieldSize = Ivar->getBitWidthValue(CGF.getContext()); CharUnits StorageSize = CGF.CGM.getContext().toCharUnitsFromBits( llvm::alignTo(BitOffset + BitFieldSize, AlignmentBits)); CharUnits Alignment = CGF.CGM.getContext().toCharUnitsFromBits(AlignmentBits); // Allocate a new CGBitFieldInfo object to describe this access. // // FIXME: This is incredibly wasteful, these should be uniqued or part of some // layout object. However, this is blocked on other cleanups to the // Objective-C code, so for now we just live with allocating a bunch of these // objects. CGBitFieldInfo *Info = new (CGF.CGM.getContext()) CGBitFieldInfo( CGBitFieldInfo::MakeInfo(CGF.CGM.getTypes(), Ivar, BitOffset, BitFieldSize, CGF.CGM.getContext().toBits(StorageSize), CharUnits::fromQuantity(0))); Address Addr = Address(V, CGF.Int8Ty, Alignment); Addr = CGF.Builder.CreateElementBitCast(Addr, llvm::Type::getIntNTy(CGF.getLLVMContext(), Info->StorageSize)); return LValue::MakeBitfield(Addr, *Info, IvarTy, LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo()); } namespace { struct CatchHandler { const VarDecl *Variable; const Stmt *Body; llvm::BasicBlock *Block; llvm::Constant *TypeInfo; /// Flags used to differentiate cleanups and catchalls in Windows SEH unsigned Flags; }; struct CallObjCEndCatch final : EHScopeStack::Cleanup { CallObjCEndCatch(bool MightThrow, llvm::FunctionCallee Fn) : MightThrow(MightThrow), Fn(Fn) {} bool MightThrow; llvm::FunctionCallee Fn; void Emit(CodeGenFunction &CGF, Flags flags) override { if (MightThrow) CGF.EmitRuntimeCallOrInvoke(Fn); else CGF.EmitNounwindRuntimeCall(Fn); } }; } void CGObjCRuntime::EmitTryCatchStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S, llvm::FunctionCallee beginCatchFn, llvm::FunctionCallee endCatchFn, llvm::FunctionCallee exceptionRethrowFn) { // Jump destination for falling out of catch bodies. CodeGenFunction::JumpDest Cont; if (S.getNumCatchStmts()) Cont = CGF.getJumpDestInCurrentScope("eh.cont"); bool useFunclets = EHPersonality::get(CGF).usesFuncletPads(); CodeGenFunction::FinallyInfo FinallyInfo; if (!useFunclets) if (const ObjCAtFinallyStmt *Finally = S.getFinallyStmt()) FinallyInfo.enter(CGF, Finally->getFinallyBody(), beginCatchFn, endCatchFn, exceptionRethrowFn); SmallVector Handlers; // Enter the catch, if there is one. if (S.getNumCatchStmts()) { for (const ObjCAtCatchStmt *CatchStmt : S.catch_stmts()) { const VarDecl *CatchDecl = CatchStmt->getCatchParamDecl(); Handlers.push_back(CatchHandler()); CatchHandler &Handler = Handlers.back(); Handler.Variable = CatchDecl; Handler.Body = CatchStmt->getCatchBody(); Handler.Block = CGF.createBasicBlock("catch"); Handler.Flags = 0; // @catch(...) always matches. if (!CatchDecl) { auto catchAll = getCatchAllTypeInfo(); Handler.TypeInfo = catchAll.RTTI; Handler.Flags = catchAll.Flags; // Don't consider any other catches. break; } Handler.TypeInfo = GetEHType(CatchDecl->getType()); } EHCatchScope *Catch = CGF.EHStack.pushCatch(Handlers.size()); for (unsigned I = 0, E = Handlers.size(); I != E; ++I) Catch->setHandler(I, { Handlers[I].TypeInfo, Handlers[I].Flags }, Handlers[I].Block); } if (useFunclets) if (const ObjCAtFinallyStmt *Finally = S.getFinallyStmt()) { CodeGenFunction HelperCGF(CGM, /*suppressNewContext=*/true); if (!CGF.CurSEHParent) CGF.CurSEHParent = cast(CGF.CurFuncDecl); // Outline the finally block. const Stmt *FinallyBlock = Finally->getFinallyBody(); HelperCGF.startOutlinedSEHHelper(CGF, /*isFilter*/false, FinallyBlock); // Emit the original filter expression, convert to i32, and return. HelperCGF.EmitStmt(FinallyBlock); HelperCGF.FinishFunction(FinallyBlock->getEndLoc()); llvm::Function *FinallyFunc = HelperCGF.CurFn; // Push a cleanup for __finally blocks. CGF.pushSEHCleanup(NormalAndEHCleanup, FinallyFunc); } // Emit the try body. CGF.EmitStmt(S.getTryBody()); // Leave the try. if (S.getNumCatchStmts()) CGF.popCatchScope(); // Remember where we were. CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP(); // Emit the handlers. for (unsigned I = 0, E = Handlers.size(); I != E; ++I) { CatchHandler &Handler = Handlers[I]; CGF.EmitBlock(Handler.Block); CodeGenFunction::LexicalScope Cleanups(CGF, Handler.Body->getSourceRange()); SaveAndRestore RevertAfterScope(CGF.CurrentFuncletPad); if (useFunclets) { llvm::Instruction *CPICandidate = Handler.Block->getFirstNonPHI(); if (auto *CPI = dyn_cast_or_null(CPICandidate)) { CGF.CurrentFuncletPad = CPI; CPI->setOperand(2, CGF.getExceptionSlot().getPointer()); CGF.EHStack.pushCleanup(NormalCleanup, CPI); } } llvm::Value *RawExn = CGF.getExceptionFromSlot(); // Enter the catch. llvm::Value *Exn = RawExn; if (beginCatchFn) Exn = CGF.EmitNounwindRuntimeCall(beginCatchFn, RawExn, "exn.adjusted"); if (endCatchFn) { // Add a cleanup to leave the catch. bool EndCatchMightThrow = (Handler.Variable == nullptr); CGF.EHStack.pushCleanup(NormalAndEHCleanup, EndCatchMightThrow, endCatchFn); } // Bind the catch parameter if it exists. if (const VarDecl *CatchParam = Handler.Variable) { llvm::Type *CatchType = CGF.ConvertType(CatchParam->getType()); llvm::Value *CastExn = CGF.Builder.CreateBitCast(Exn, CatchType); CGF.EmitAutoVarDecl(*CatchParam); EmitInitOfCatchParam(CGF, CastExn, CatchParam); } CGF.ObjCEHValueStack.push_back(Exn); CGF.EmitStmt(Handler.Body); CGF.ObjCEHValueStack.pop_back(); // Leave any cleanups associated with the catch. Cleanups.ForceCleanup(); CGF.EmitBranchThroughCleanup(Cont); } // Go back to the try-statement fallthrough. CGF.Builder.restoreIP(SavedIP); // Pop out of the finally. if (!useFunclets && S.getFinallyStmt()) FinallyInfo.exit(CGF); if (Cont.isValid()) CGF.EmitBlock(Cont.getBlock()); } void CGObjCRuntime::EmitInitOfCatchParam(CodeGenFunction &CGF, llvm::Value *exn, const VarDecl *paramDecl) { Address paramAddr = CGF.GetAddrOfLocalVar(paramDecl); switch (paramDecl->getType().getQualifiers().getObjCLifetime()) { case Qualifiers::OCL_Strong: exn = CGF.EmitARCRetainNonBlock(exn); [[fallthrough]]; case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: CGF.Builder.CreateStore(exn, paramAddr); return; case Qualifiers::OCL_Weak: CGF.EmitARCInitWeak(paramAddr, exn); return; } llvm_unreachable("invalid ownership qualifier"); } namespace { struct CallSyncExit final : EHScopeStack::Cleanup { llvm::FunctionCallee SyncExitFn; llvm::Value *SyncArg; CallSyncExit(llvm::FunctionCallee SyncExitFn, llvm::Value *SyncArg) : SyncExitFn(SyncExitFn), SyncArg(SyncArg) {} void Emit(CodeGenFunction &CGF, Flags flags) override { CGF.EmitNounwindRuntimeCall(SyncExitFn, SyncArg); } }; } void CGObjCRuntime::EmitAtSynchronizedStmt(CodeGenFunction &CGF, const ObjCAtSynchronizedStmt &S, llvm::FunctionCallee syncEnterFn, llvm::FunctionCallee syncExitFn) { CodeGenFunction::RunCleanupsScope cleanups(CGF); // Evaluate the lock operand. This is guaranteed to dominate the // ARC release and lock-release cleanups. const Expr *lockExpr = S.getSynchExpr(); llvm::Value *lock; if (CGF.getLangOpts().ObjCAutoRefCount) { lock = CGF.EmitARCRetainScalarExpr(lockExpr); lock = CGF.EmitObjCConsumeObject(lockExpr->getType(), lock); } else { lock = CGF.EmitScalarExpr(lockExpr); } lock = CGF.Builder.CreateBitCast(lock, CGF.VoidPtrTy); // Acquire the lock. CGF.Builder.CreateCall(syncEnterFn, lock)->setDoesNotThrow(); // Register an all-paths cleanup to release the lock. CGF.EHStack.pushCleanup(NormalAndEHCleanup, syncExitFn, lock); // Emit the body of the statement. CGF.EmitStmt(S.getSynchBody()); } /// Compute the pointer-to-function type to which a message send /// should be casted in order to correctly call the given method /// with the given arguments. /// /// \param method - may be null /// \param resultType - the result type to use if there's no method /// \param callArgs - the actual arguments, including implicit ones CGObjCRuntime::MessageSendInfo CGObjCRuntime::getMessageSendInfo(const ObjCMethodDecl *method, QualType resultType, CallArgList &callArgs) { unsigned ProgramAS = CGM.getDataLayout().getProgramAddressSpace(); // If there's a method, use information from that. if (method) { const CGFunctionInfo &signature = CGM.getTypes().arrangeObjCMessageSendSignature(method, callArgs[0].Ty); llvm::PointerType *signatureType = CGM.getTypes().GetFunctionType(signature)->getPointerTo(ProgramAS); const CGFunctionInfo &signatureForCall = CGM.getTypes().arrangeCall(signature, callArgs); return MessageSendInfo(signatureForCall, signatureType); } // There's no method; just use a default CC. const CGFunctionInfo &argsInfo = CGM.getTypes().arrangeUnprototypedObjCMessageSend(resultType, callArgs); // Derive the signature to call from that. llvm::PointerType *signatureType = CGM.getTypes().GetFunctionType(argsInfo)->getPointerTo(ProgramAS); return MessageSendInfo(argsInfo, signatureType); } bool CGObjCRuntime::canMessageReceiverBeNull(CodeGenFunction &CGF, const ObjCMethodDecl *method, bool isSuper, const ObjCInterfaceDecl *classReceiver, llvm::Value *receiver) { // Super dispatch assumes that self is non-null; even the messenger // doesn't have a null check internally. if (isSuper) return false; // If this is a direct dispatch of a class method, check whether the class, // or anything in its hierarchy, was weak-linked. if (classReceiver && method && method->isClassMethod()) return isWeakLinkedClass(classReceiver); // If we're emitting a method, and self is const (meaning just ARC, for now), // and the receiver is a load of self, then self is a valid object. if (auto curMethod = dyn_cast_or_null(CGF.CurCodeDecl)) { auto self = curMethod->getSelfDecl(); if (self->getType().isConstQualified()) { if (auto LI = dyn_cast(receiver->stripPointerCasts())) { llvm::Value *selfAddr = CGF.GetAddrOfLocalVar(self).getPointer(); if (selfAddr == LI->getPointerOperand()) { return false; } } } } // Otherwise, assume it can be null. return true; } bool CGObjCRuntime::isWeakLinkedClass(const ObjCInterfaceDecl *ID) { do { if (ID->isWeakImported()) return true; } while ((ID = ID->getSuperClass())); return false; } void CGObjCRuntime::destroyCalleeDestroyedArguments(CodeGenFunction &CGF, const ObjCMethodDecl *method, const CallArgList &callArgs) { CallArgList::const_iterator I = callArgs.begin(); for (auto i = method->param_begin(), e = method->param_end(); i != e; ++i, ++I) { const ParmVarDecl *param = (*i); if (param->hasAttr()) { RValue RV = I->getRValue(CGF); assert(RV.isScalar() && "NullReturnState::complete - arg not on object"); CGF.EmitARCRelease(RV.getScalarVal(), ARCImpreciseLifetime); } else { QualType QT = param->getType(); auto *RT = QT->getAs(); if (RT && RT->getDecl()->isParamDestroyedInCallee()) { RValue RV = I->getRValue(CGF); QualType::DestructionKind DtorKind = QT.isDestructedType(); switch (DtorKind) { case QualType::DK_cxx_destructor: CGF.destroyCXXObject(CGF, RV.getAggregateAddress(), QT); break; case QualType::DK_nontrivial_c_struct: CGF.destroyNonTrivialCStruct(CGF, RV.getAggregateAddress(), QT); break; default: llvm_unreachable("unexpected dtor kind"); break; } } } } } llvm::Constant * clang::CodeGen::emitObjCProtocolObject(CodeGenModule &CGM, const ObjCProtocolDecl *protocol) { return CGM.getObjCRuntime().GetOrEmitProtocol(protocol); } std::string CGObjCRuntime::getSymbolNameForMethod(const ObjCMethodDecl *OMD, bool includeCategoryName) { std::string buffer; llvm::raw_string_ostream out(buffer); CGM.getCXXABI().getMangleContext().mangleObjCMethodName(OMD, out, /*includePrefixByte=*/true, includeCategoryName); return buffer; }