//===--- CGDeclCXX.cpp - Emit LLVM Code for C++ declarations --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This contains code dealing with code generation of C++ declarations // //===----------------------------------------------------------------------===// #include "CGCXXABI.h" #include "CGObjCRuntime.h" #include "CGOpenMPRuntime.h" #include "CodeGenFunction.h" #include "TargetInfo.h" #include "clang/AST/Attr.h" #include "clang/Basic/LangOptions.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/MDBuilder.h" #include "llvm/Support/Path.h" #include "llvm/Transforms/Utils/ModuleUtils.h" using namespace clang; using namespace CodeGen; static void EmitDeclInit(CodeGenFunction &CGF, const VarDecl &D, ConstantAddress DeclPtr) { assert( (D.hasGlobalStorage() || (D.hasLocalStorage() && CGF.getContext().getLangOpts().OpenCLCPlusPlus)) && "VarDecl must have global or local (in the case of OpenCL) storage!"); assert(!D.getType()->isReferenceType() && "Should not call EmitDeclInit on a reference!"); QualType type = D.getType(); LValue lv = CGF.MakeAddrLValue(DeclPtr, type); const Expr *Init = D.getInit(); switch (CGF.getEvaluationKind(type)) { case TEK_Scalar: { CodeGenModule &CGM = CGF.CGM; if (lv.isObjCStrong()) CGM.getObjCRuntime().EmitObjCGlobalAssign(CGF, CGF.EmitScalarExpr(Init), DeclPtr, D.getTLSKind()); else if (lv.isObjCWeak()) CGM.getObjCRuntime().EmitObjCWeakAssign(CGF, CGF.EmitScalarExpr(Init), DeclPtr); else CGF.EmitScalarInit(Init, &D, lv, false); return; } case TEK_Complex: CGF.EmitComplexExprIntoLValue(Init, lv, /*isInit*/ true); return; case TEK_Aggregate: CGF.EmitAggExpr(Init, AggValueSlot::forLValue(lv, CGF, AggValueSlot::IsDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); return; } llvm_unreachable("bad evaluation kind"); } /// Emit code to cause the destruction of the given variable with /// static storage duration. static void EmitDeclDestroy(CodeGenFunction &CGF, const VarDecl &D, ConstantAddress Addr) { // Honor __attribute__((no_destroy)) and bail instead of attempting // to emit a reference to a possibly nonexistent destructor, which // in turn can cause a crash. This will result in a global constructor // that isn't balanced out by a destructor call as intended by the // attribute. This also checks for -fno-c++-static-destructors and // bails even if the attribute is not present. QualType::DestructionKind DtorKind = D.needsDestruction(CGF.getContext()); // FIXME: __attribute__((cleanup)) ? switch (DtorKind) { case QualType::DK_none: return; case QualType::DK_cxx_destructor: break; case QualType::DK_objc_strong_lifetime: case QualType::DK_objc_weak_lifetime: case QualType::DK_nontrivial_c_struct: // We don't care about releasing objects during process teardown. assert(!D.getTLSKind() && "should have rejected this"); return; } llvm::FunctionCallee Func; llvm::Constant *Argument; CodeGenModule &CGM = CGF.CGM; QualType Type = D.getType(); // Special-case non-array C++ destructors, if they have the right signature. // Under some ABIs, destructors return this instead of void, and cannot be // passed directly to __cxa_atexit if the target does not allow this // mismatch. const CXXRecordDecl *Record = Type->getAsCXXRecordDecl(); bool CanRegisterDestructor = Record && (!CGM.getCXXABI().HasThisReturn( GlobalDecl(Record->getDestructor(), Dtor_Complete)) || CGM.getCXXABI().canCallMismatchedFunctionType()); // If __cxa_atexit is disabled via a flag, a different helper function is // generated elsewhere which uses atexit instead, and it takes the destructor // directly. bool UsingExternalHelper = !CGM.getCodeGenOpts().CXAAtExit; if (Record && (CanRegisterDestructor || UsingExternalHelper)) { assert(!Record->hasTrivialDestructor()); CXXDestructorDecl *Dtor = Record->getDestructor(); Func = CGM.getAddrAndTypeOfCXXStructor(GlobalDecl(Dtor, Dtor_Complete)); if (CGF.getContext().getLangOpts().OpenCL) { auto DestAS = CGM.getTargetCodeGenInfo().getAddrSpaceOfCxaAtexitPtrParam(); auto DestTy = CGF.getTypes().ConvertType(Type)->getPointerTo( CGM.getContext().getTargetAddressSpace(DestAS)); auto SrcAS = D.getType().getQualifiers().getAddressSpace(); if (DestAS == SrcAS) Argument = llvm::ConstantExpr::getBitCast(Addr.getPointer(), DestTy); else // FIXME: On addr space mismatch we are passing NULL. The generation // of the global destructor function should be adjusted accordingly. Argument = llvm::ConstantPointerNull::get(DestTy); } else { Argument = llvm::ConstantExpr::getBitCast( Addr.getPointer(), CGF.getTypes().ConvertType(Type)->getPointerTo()); } // Otherwise, the standard logic requires a helper function. } else { Func = CodeGenFunction(CGM) .generateDestroyHelper(Addr, Type, CGF.getDestroyer(DtorKind), CGF.needsEHCleanup(DtorKind), &D); Argument = llvm::Constant::getNullValue(CGF.Int8PtrTy); } CGM.getCXXABI().registerGlobalDtor(CGF, D, Func, Argument); } /// Emit code to cause the variable at the given address to be considered as /// constant from this point onwards. static void EmitDeclInvariant(CodeGenFunction &CGF, const VarDecl &D, llvm::Constant *Addr) { return CGF.EmitInvariantStart( Addr, CGF.getContext().getTypeSizeInChars(D.getType())); } void CodeGenFunction::EmitInvariantStart(llvm::Constant *Addr, CharUnits Size) { // Do not emit the intrinsic if we're not optimizing. if (!CGM.getCodeGenOpts().OptimizationLevel) return; // Grab the llvm.invariant.start intrinsic. llvm::Intrinsic::ID InvStartID = llvm::Intrinsic::invariant_start; // Overloaded address space type. llvm::Type *ObjectPtr[1] = {Int8PtrTy}; llvm::Function *InvariantStart = CGM.getIntrinsic(InvStartID, ObjectPtr); // Emit a call with the size in bytes of the object. uint64_t Width = Size.getQuantity(); llvm::Value *Args[2] = { llvm::ConstantInt::getSigned(Int64Ty, Width), llvm::ConstantExpr::getBitCast(Addr, Int8PtrTy)}; Builder.CreateCall(InvariantStart, Args); } void CodeGenFunction::EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, bool PerformInit) { const Expr *Init = D.getInit(); QualType T = D.getType(); // The address space of a static local variable (DeclPtr) may be different // from the address space of the "this" argument of the constructor. In that // case, we need an addrspacecast before calling the constructor. // // struct StructWithCtor { // __device__ StructWithCtor() {...} // }; // __device__ void foo() { // __shared__ StructWithCtor s; // ... // } // // For example, in the above CUDA code, the static local variable s has a // "shared" address space qualifier, but the constructor of StructWithCtor // expects "this" in the "generic" address space. unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(T); unsigned ActualAddrSpace = DeclPtr->getType()->getPointerAddressSpace(); if (ActualAddrSpace != ExpectedAddrSpace) { llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(T); llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace); DeclPtr = llvm::ConstantExpr::getAddrSpaceCast(DeclPtr, PTy); } ConstantAddress DeclAddr(DeclPtr, getContext().getDeclAlign(&D)); if (!T->isReferenceType()) { if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd && D.hasAttr()) { (void)CGM.getOpenMPRuntime().emitThreadPrivateVarDefinition( &D, DeclAddr, D.getAttr()->getLocation(), PerformInit, this); } if (PerformInit) EmitDeclInit(*this, D, DeclAddr); if (CGM.isTypeConstant(D.getType(), true)) EmitDeclInvariant(*this, D, DeclPtr); else EmitDeclDestroy(*this, D, DeclAddr); return; } assert(PerformInit && "cannot have constant initializer which needs " "destruction for reference"); RValue RV = EmitReferenceBindingToExpr(Init); EmitStoreOfScalar(RV.getScalarVal(), DeclAddr, false, T); } /// Create a stub function, suitable for being passed to atexit, /// which passes the given address to the given destructor function. llvm::Function *CodeGenFunction::createAtExitStub(const VarDecl &VD, llvm::FunctionCallee dtor, llvm::Constant *addr) { // Get the destructor function type, void(*)(void). llvm::FunctionType *ty = llvm::FunctionType::get(CGM.VoidTy, false); SmallString<256> FnName; { llvm::raw_svector_ostream Out(FnName); CGM.getCXXABI().getMangleContext().mangleDynamicAtExitDestructor(&VD, Out); } const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); llvm::Function *fn = CGM.CreateGlobalInitOrCleanUpFunction( ty, FnName.str(), FI, VD.getLocation()); CodeGenFunction CGF(CGM); CGF.StartFunction(GlobalDecl(&VD, DynamicInitKind::AtExit), CGM.getContext().VoidTy, fn, FI, FunctionArgList()); llvm::CallInst *call = CGF.Builder.CreateCall(dtor, addr); // Make sure the call and the callee agree on calling convention. if (auto *dtorFn = dyn_cast( dtor.getCallee()->stripPointerCastsAndAliases())) call->setCallingConv(dtorFn->getCallingConv()); CGF.FinishFunction(); return fn; } /// Register a global destructor using the C atexit runtime function. void CodeGenFunction::registerGlobalDtorWithAtExit(const VarDecl &VD, llvm::FunctionCallee dtor, llvm::Constant *addr) { // Create a function which calls the destructor. llvm::Constant *dtorStub = createAtExitStub(VD, dtor, addr); registerGlobalDtorWithAtExit(dtorStub); } void CodeGenFunction::registerGlobalDtorWithAtExit(llvm::Constant *dtorStub) { // extern "C" int atexit(void (*f)(void)); assert(cast(dtorStub)->getFunctionType() == llvm::FunctionType::get(CGM.VoidTy, false) && "Argument to atexit has a wrong type."); llvm::FunctionType *atexitTy = llvm::FunctionType::get(IntTy, dtorStub->getType(), false); llvm::FunctionCallee atexit = CGM.CreateRuntimeFunction(atexitTy, "atexit", llvm::AttributeList(), /*Local=*/true); if (llvm::Function *atexitFn = dyn_cast(atexit.getCallee())) atexitFn->setDoesNotThrow(); EmitNounwindRuntimeCall(atexit, dtorStub); } llvm::Value * CodeGenFunction::unregisterGlobalDtorWithUnAtExit(llvm::Function *dtorStub) { // The unatexit subroutine unregisters __dtor functions that were previously // registered by the atexit subroutine. If the referenced function is found, // it is removed from the list of functions that are called at normal program // termination and the unatexit returns a value of 0, otherwise a non-zero // value is returned. // // extern "C" int unatexit(void (*f)(void)); assert(dtorStub->getFunctionType() == llvm::FunctionType::get(CGM.VoidTy, false) && "Argument to unatexit has a wrong type."); llvm::FunctionType *unatexitTy = llvm::FunctionType::get(IntTy, {dtorStub->getType()}, /*isVarArg=*/false); llvm::FunctionCallee unatexit = CGM.CreateRuntimeFunction(unatexitTy, "unatexit", llvm::AttributeList()); cast(unatexit.getCallee())->setDoesNotThrow(); return EmitNounwindRuntimeCall(unatexit, dtorStub); } void CodeGenFunction::EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, bool PerformInit) { // If we've been asked to forbid guard variables, emit an error now. // This diagnostic is hard-coded for Darwin's use case; we can find // better phrasing if someone else needs it. if (CGM.getCodeGenOpts().ForbidGuardVariables) CGM.Error(D.getLocation(), "this initialization requires a guard variable, which " "the kernel does not support"); CGM.getCXXABI().EmitGuardedInit(*this, D, DeclPtr, PerformInit); } void CodeGenFunction::EmitCXXGuardedInitBranch(llvm::Value *NeedsInit, llvm::BasicBlock *InitBlock, llvm::BasicBlock *NoInitBlock, GuardKind Kind, const VarDecl *D) { assert((Kind == GuardKind::TlsGuard || D) && "no guarded variable"); // A guess at how many times we will enter the initialization of a // variable, depending on the kind of variable. static const uint64_t InitsPerTLSVar = 1024; static const uint64_t InitsPerLocalVar = 1024 * 1024; llvm::MDNode *Weights; if (Kind == GuardKind::VariableGuard && !D->isLocalVarDecl()) { // For non-local variables, don't apply any weighting for now. Due to our // use of COMDATs, we expect there to be at most one initialization of the // variable per DSO, but we have no way to know how many DSOs will try to // initialize the variable. Weights = nullptr; } else { uint64_t NumInits; // FIXME: For the TLS case, collect and use profiling information to // determine a more accurate brach weight. if (Kind == GuardKind::TlsGuard || D->getTLSKind()) NumInits = InitsPerTLSVar; else NumInits = InitsPerLocalVar; // The probability of us entering the initializer is // 1 / (total number of times we attempt to initialize the variable). llvm::MDBuilder MDHelper(CGM.getLLVMContext()); Weights = MDHelper.createBranchWeights(1, NumInits - 1); } Builder.CreateCondBr(NeedsInit, InitBlock, NoInitBlock, Weights); } llvm::Function *CodeGenModule::CreateGlobalInitOrCleanUpFunction( llvm::FunctionType *FTy, const Twine &Name, const CGFunctionInfo &FI, SourceLocation Loc, bool TLS, bool IsExternalLinkage) { llvm::Function *Fn = llvm::Function::Create( FTy, IsExternalLinkage ? llvm::GlobalValue::ExternalLinkage : llvm::GlobalValue::InternalLinkage, Name, &getModule()); if (!getLangOpts().AppleKext && !TLS) { // Set the section if needed. if (const char *Section = getTarget().getStaticInitSectionSpecifier()) Fn->setSection(Section); } if (Fn->hasInternalLinkage()) SetInternalFunctionAttributes(GlobalDecl(), Fn, FI); Fn->setCallingConv(getRuntimeCC()); if (!getLangOpts().Exceptions) Fn->setDoesNotThrow(); if (getLangOpts().Sanitize.has(SanitizerKind::Address) && !isInSanitizerBlacklist(SanitizerKind::Address, Fn, Loc)) Fn->addFnAttr(llvm::Attribute::SanitizeAddress); if (getLangOpts().Sanitize.has(SanitizerKind::KernelAddress) && !isInSanitizerBlacklist(SanitizerKind::KernelAddress, Fn, Loc)) Fn->addFnAttr(llvm::Attribute::SanitizeAddress); if (getLangOpts().Sanitize.has(SanitizerKind::HWAddress) && !isInSanitizerBlacklist(SanitizerKind::HWAddress, Fn, Loc)) Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); if (getLangOpts().Sanitize.has(SanitizerKind::KernelHWAddress) && !isInSanitizerBlacklist(SanitizerKind::KernelHWAddress, Fn, Loc)) Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); if (getLangOpts().Sanitize.has(SanitizerKind::MemTag) && !isInSanitizerBlacklist(SanitizerKind::MemTag, Fn, Loc)) Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); if (getLangOpts().Sanitize.has(SanitizerKind::Thread) && !isInSanitizerBlacklist(SanitizerKind::Thread, Fn, Loc)) Fn->addFnAttr(llvm::Attribute::SanitizeThread); if (getLangOpts().Sanitize.has(SanitizerKind::Memory) && !isInSanitizerBlacklist(SanitizerKind::Memory, Fn, Loc)) Fn->addFnAttr(llvm::Attribute::SanitizeMemory); if (getLangOpts().Sanitize.has(SanitizerKind::KernelMemory) && !isInSanitizerBlacklist(SanitizerKind::KernelMemory, Fn, Loc)) Fn->addFnAttr(llvm::Attribute::SanitizeMemory); if (getLangOpts().Sanitize.has(SanitizerKind::SafeStack) && !isInSanitizerBlacklist(SanitizerKind::SafeStack, Fn, Loc)) Fn->addFnAttr(llvm::Attribute::SafeStack); if (getLangOpts().Sanitize.has(SanitizerKind::ShadowCallStack) && !isInSanitizerBlacklist(SanitizerKind::ShadowCallStack, Fn, Loc)) Fn->addFnAttr(llvm::Attribute::ShadowCallStack); auto RASignKind = getLangOpts().getSignReturnAddressScope(); if (RASignKind != LangOptions::SignReturnAddressScopeKind::None) { Fn->addFnAttr("sign-return-address", RASignKind == LangOptions::SignReturnAddressScopeKind::All ? "all" : "non-leaf"); auto RASignKey = getLangOpts().getSignReturnAddressKey(); Fn->addFnAttr("sign-return-address-key", RASignKey == LangOptions::SignReturnAddressKeyKind::AKey ? "a_key" : "b_key"); } if (getLangOpts().BranchTargetEnforcement) Fn->addFnAttr("branch-target-enforcement"); return Fn; } /// Create a global pointer to a function that will initialize a global /// variable. The user has requested that this pointer be emitted in a specific /// section. void CodeGenModule::EmitPointerToInitFunc(const VarDecl *D, llvm::GlobalVariable *GV, llvm::Function *InitFunc, InitSegAttr *ISA) { llvm::GlobalVariable *PtrArray = new llvm::GlobalVariable( TheModule, InitFunc->getType(), /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, InitFunc, "__cxx_init_fn_ptr"); PtrArray->setSection(ISA->getSection()); addUsedGlobal(PtrArray); // If the GV is already in a comdat group, then we have to join it. if (llvm::Comdat *C = GV->getComdat()) PtrArray->setComdat(C); } void CodeGenModule::EmitCXXGlobalVarDeclInitFunc(const VarDecl *D, llvm::GlobalVariable *Addr, bool PerformInit) { // According to E.2.3.1 in CUDA-7.5 Programming guide: __device__, // __constant__ and __shared__ variables defined in namespace scope, // that are of class type, cannot have a non-empty constructor. All // the checks have been done in Sema by now. Whatever initializers // are allowed are empty and we just need to ignore them here. if (getLangOpts().CUDAIsDevice && !getLangOpts().GPUAllowDeviceInit && (D->hasAttr() || D->hasAttr() || D->hasAttr())) return; if (getLangOpts().OpenMP && getOpenMPRuntime().emitDeclareTargetVarDefinition(D, Addr, PerformInit)) return; // Check if we've already initialized this decl. auto I = DelayedCXXInitPosition.find(D); if (I != DelayedCXXInitPosition.end() && I->second == ~0U) return; llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); SmallString<256> FnName; { llvm::raw_svector_ostream Out(FnName); getCXXABI().getMangleContext().mangleDynamicInitializer(D, Out); } // Create a variable initialization function. llvm::Function *Fn = CreateGlobalInitOrCleanUpFunction( FTy, FnName.str(), getTypes().arrangeNullaryFunction(), D->getLocation()); auto *ISA = D->getAttr(); CodeGenFunction(*this).GenerateCXXGlobalVarDeclInitFunc(Fn, D, Addr, PerformInit); llvm::GlobalVariable *COMDATKey = supportsCOMDAT() && D->isExternallyVisible() ? Addr : nullptr; if (D->getTLSKind()) { // FIXME: Should we support init_priority for thread_local? // FIXME: We only need to register one __cxa_thread_atexit function for the // entire TU. CXXThreadLocalInits.push_back(Fn); CXXThreadLocalInitVars.push_back(D); } else if (PerformInit && ISA) { EmitPointerToInitFunc(D, Addr, Fn, ISA); } else if (auto *IPA = D->getAttr()) { OrderGlobalInits Key(IPA->getPriority(), PrioritizedCXXGlobalInits.size()); PrioritizedCXXGlobalInits.push_back(std::make_pair(Key, Fn)); } else if (isTemplateInstantiation(D->getTemplateSpecializationKind()) || getContext().GetGVALinkageForVariable(D) == GVA_DiscardableODR) { // C++ [basic.start.init]p2: // Definitions of explicitly specialized class template static data // members have ordered initialization. Other class template static data // members (i.e., implicitly or explicitly instantiated specializations) // have unordered initialization. // // As a consequence, we can put them into their own llvm.global_ctors entry. // // If the global is externally visible, put the initializer into a COMDAT // group with the global being initialized. On most platforms, this is a // minor startup time optimization. In the MS C++ ABI, there are no guard // variables, so this COMDAT key is required for correctness. AddGlobalCtor(Fn, 65535, COMDATKey); if (getTarget().getCXXABI().isMicrosoft() && COMDATKey) { // In The MS C++, MS add template static data member in the linker // drective. addUsedGlobal(COMDATKey); } } else if (D->hasAttr()) { // SelectAny globals will be comdat-folded. Put the initializer into a // COMDAT group associated with the global, so the initializers get folded // too. AddGlobalCtor(Fn, 65535, COMDATKey); } else { I = DelayedCXXInitPosition.find(D); // Re-do lookup in case of re-hash. if (I == DelayedCXXInitPosition.end()) { CXXGlobalInits.push_back(Fn); } else if (I->second != ~0U) { assert(I->second < CXXGlobalInits.size() && CXXGlobalInits[I->second] == nullptr); CXXGlobalInits[I->second] = Fn; } } // Remember that we already emitted the initializer for this global. DelayedCXXInitPosition[D] = ~0U; } void CodeGenModule::EmitCXXThreadLocalInitFunc() { getCXXABI().EmitThreadLocalInitFuncs( *this, CXXThreadLocals, CXXThreadLocalInits, CXXThreadLocalInitVars); CXXThreadLocalInits.clear(); CXXThreadLocalInitVars.clear(); CXXThreadLocals.clear(); } static SmallString<128> getTransformedFileName(llvm::Module &M) { SmallString<128> FileName = llvm::sys::path::filename(M.getName()); if (FileName.empty()) FileName = ""; for (size_t i = 0; i < FileName.size(); ++i) { // Replace everything that's not [a-zA-Z0-9._] with a _. This set happens // to be the set of C preprocessing numbers. if (!isPreprocessingNumberBody(FileName[i])) FileName[i] = '_'; } return FileName; } void CodeGenModule::EmitCXXGlobalInitFunc() { while (!CXXGlobalInits.empty() && !CXXGlobalInits.back()) CXXGlobalInits.pop_back(); if (CXXGlobalInits.empty() && PrioritizedCXXGlobalInits.empty()) return; const bool UseSinitAndSterm = getCXXABI().useSinitAndSterm(); if (UseSinitAndSterm) { GlobalUniqueModuleId = getUniqueModuleId(&getModule()); // FIXME: We need to figure out what to hash on or encode into the unique ID // we need. if (GlobalUniqueModuleId.compare("") == 0) llvm::report_fatal_error( "cannot produce a unique identifier for this module" " based on strong external symbols"); GlobalUniqueModuleId = GlobalUniqueModuleId.substr(1); } llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); const CGFunctionInfo &FI = getTypes().arrangeNullaryFunction(); // Create our global prioritized initialization function. if (!PrioritizedCXXGlobalInits.empty()) { assert(!UseSinitAndSterm && "Prioritized sinit and sterm functions are not" " supported yet."); SmallVector LocalCXXGlobalInits; llvm::array_pod_sort(PrioritizedCXXGlobalInits.begin(), PrioritizedCXXGlobalInits.end()); // Iterate over "chunks" of ctors with same priority and emit each chunk // into separate function. Note - everything is sorted first by priority, // second - by lex order, so we emit ctor functions in proper order. for (SmallVectorImpl::iterator I = PrioritizedCXXGlobalInits.begin(), E = PrioritizedCXXGlobalInits.end(); I != E; ) { SmallVectorImpl::iterator PrioE = std::upper_bound(I + 1, E, *I, GlobalInitPriorityCmp()); LocalCXXGlobalInits.clear(); unsigned Priority = I->first.priority; // Compute the function suffix from priority. Prepend with zeroes to make // sure the function names are also ordered as priorities. std::string PrioritySuffix = llvm::utostr(Priority); // Priority is always <= 65535 (enforced by sema). PrioritySuffix = std::string(6-PrioritySuffix.size(), '0')+PrioritySuffix; llvm::Function *Fn = CreateGlobalInitOrCleanUpFunction( FTy, "_GLOBAL__I_" + PrioritySuffix, FI); for (; I < PrioE; ++I) LocalCXXGlobalInits.push_back(I->second); CodeGenFunction(*this).GenerateCXXGlobalInitFunc(Fn, LocalCXXGlobalInits); AddGlobalCtor(Fn, Priority); } PrioritizedCXXGlobalInits.clear(); } if (UseSinitAndSterm && CXXGlobalInits.empty()) return; // Create our global initialization function. SmallString<128> FuncName; bool IsExternalLinkage = false; if (UseSinitAndSterm) { llvm::Twine("__sinit80000000_clang_", GlobalUniqueModuleId) .toVector(FuncName); IsExternalLinkage = true; } else { // Include the filename in the symbol name. Including "sub_" matches gcc // and makes sure these symbols appear lexicographically behind the symbols // with priority emitted above. llvm::Twine("_GLOBAL__sub_I_", getTransformedFileName(getModule())) .toVector(FuncName); } llvm::Function *Fn = CreateGlobalInitOrCleanUpFunction( FTy, FuncName, FI, SourceLocation(), false /* TLS */, IsExternalLinkage); CodeGenFunction(*this).GenerateCXXGlobalInitFunc(Fn, CXXGlobalInits); AddGlobalCtor(Fn); // In OpenCL global init functions must be converted to kernels in order to // be able to launch them from the host. // FIXME: Some more work might be needed to handle destructors correctly. // Current initialization function makes use of function pointers callbacks. // We can't support function pointers especially between host and device. // However it seems global destruction has little meaning without any // dynamic resource allocation on the device and program scope variables are // destroyed by the runtime when program is released. if (getLangOpts().OpenCL) { GenOpenCLArgMetadata(Fn); Fn->setCallingConv(llvm::CallingConv::SPIR_KERNEL); } if (getLangOpts().HIP) { Fn->setCallingConv(llvm::CallingConv::AMDGPU_KERNEL); Fn->addFnAttr("device-init"); } CXXGlobalInits.clear(); } void CodeGenModule::EmitCXXGlobalCleanUpFunc() { if (CXXGlobalDtorsOrStermFinalizers.empty()) return; llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); const CGFunctionInfo &FI = getTypes().arrangeNullaryFunction(); // Create our global cleanup function. llvm::Function *Fn = nullptr; if (getCXXABI().useSinitAndSterm()) { if (GlobalUniqueModuleId.empty()) { GlobalUniqueModuleId = getUniqueModuleId(&getModule()); // FIXME: We need to figure out what to hash on or encode into the unique // ID we need. if (GlobalUniqueModuleId.compare("") == 0) llvm::report_fatal_error( "cannot produce a unique identifier for this module" " based on strong external symbols"); GlobalUniqueModuleId = GlobalUniqueModuleId.substr(1); } Fn = CreateGlobalInitOrCleanUpFunction( FTy, llvm::Twine("__sterm80000000_clang_", GlobalUniqueModuleId), FI, SourceLocation(), false /* TLS */, true /* IsExternalLinkage */); } else { Fn = CreateGlobalInitOrCleanUpFunction(FTy, "_GLOBAL__D_a", FI); } CodeGenFunction(*this).GenerateCXXGlobalCleanUpFunc( Fn, CXXGlobalDtorsOrStermFinalizers); AddGlobalDtor(Fn); CXXGlobalDtorsOrStermFinalizers.clear(); } /// Emit the code necessary to initialize the given global variable. void CodeGenFunction::GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, const VarDecl *D, llvm::GlobalVariable *Addr, bool PerformInit) { // Check if we need to emit debug info for variable initializer. if (D->hasAttr()) DebugInfo = nullptr; // disable debug info indefinitely for this function CurEHLocation = D->getBeginLoc(); StartFunction(GlobalDecl(D, DynamicInitKind::Initializer), getContext().VoidTy, Fn, getTypes().arrangeNullaryFunction(), FunctionArgList(), D->getLocation(), D->getInit()->getExprLoc()); // Use guarded initialization if the global variable is weak. This // occurs for, e.g., instantiated static data members and // definitions explicitly marked weak. // // Also use guarded initialization for a variable with dynamic TLS and // unordered initialization. (If the initialization is ordered, the ABI // layer will guard the whole-TU initialization for us.) if (Addr->hasWeakLinkage() || Addr->hasLinkOnceLinkage() || (D->getTLSKind() == VarDecl::TLS_Dynamic && isTemplateInstantiation(D->getTemplateSpecializationKind()))) { EmitCXXGuardedInit(*D, Addr, PerformInit); } else { EmitCXXGlobalVarDeclInit(*D, Addr, PerformInit); } FinishFunction(); } void CodeGenFunction::GenerateCXXGlobalInitFunc(llvm::Function *Fn, ArrayRef Decls, ConstantAddress Guard) { { auto NL = ApplyDebugLocation::CreateEmpty(*this); StartFunction(GlobalDecl(), getContext().VoidTy, Fn, getTypes().arrangeNullaryFunction(), FunctionArgList()); // Emit an artificial location for this function. auto AL = ApplyDebugLocation::CreateArtificial(*this); llvm::BasicBlock *ExitBlock = nullptr; if (Guard.isValid()) { // If we have a guard variable, check whether we've already performed // these initializations. This happens for TLS initialization functions. llvm::Value *GuardVal = Builder.CreateLoad(Guard); llvm::Value *Uninit = Builder.CreateIsNull(GuardVal, "guard.uninitialized"); llvm::BasicBlock *InitBlock = createBasicBlock("init"); ExitBlock = createBasicBlock("exit"); EmitCXXGuardedInitBranch(Uninit, InitBlock, ExitBlock, GuardKind::TlsGuard, nullptr); EmitBlock(InitBlock); // Mark as initialized before initializing anything else. If the // initializers use previously-initialized thread_local vars, that's // probably supposed to be OK, but the standard doesn't say. Builder.CreateStore(llvm::ConstantInt::get(GuardVal->getType(),1), Guard); // The guard variable can't ever change again. EmitInvariantStart( Guard.getPointer(), CharUnits::fromQuantity( CGM.getDataLayout().getTypeAllocSize(GuardVal->getType()))); } RunCleanupsScope Scope(*this); // When building in Objective-C++ ARC mode, create an autorelease pool // around the global initializers. if (getLangOpts().ObjCAutoRefCount && getLangOpts().CPlusPlus) { llvm::Value *token = EmitObjCAutoreleasePoolPush(); EmitObjCAutoreleasePoolCleanup(token); } for (unsigned i = 0, e = Decls.size(); i != e; ++i) if (Decls[i]) EmitRuntimeCall(Decls[i]); Scope.ForceCleanup(); if (ExitBlock) { Builder.CreateBr(ExitBlock); EmitBlock(ExitBlock); } } FinishFunction(); } void CodeGenFunction::GenerateCXXGlobalCleanUpFunc( llvm::Function *Fn, const std::vector> &DtorsOrStermFinalizers) { { auto NL = ApplyDebugLocation::CreateEmpty(*this); StartFunction(GlobalDecl(), getContext().VoidTy, Fn, getTypes().arrangeNullaryFunction(), FunctionArgList()); // Emit an artificial location for this function. auto AL = ApplyDebugLocation::CreateArtificial(*this); // Emit the cleanups, in reverse order from construction. for (unsigned i = 0, e = DtorsOrStermFinalizers.size(); i != e; ++i) { llvm::FunctionType *CalleeTy; llvm::Value *Callee; llvm::Constant *Arg; std::tie(CalleeTy, Callee, Arg) = DtorsOrStermFinalizers[e - i - 1]; llvm::CallInst *CI = nullptr; if (Arg == nullptr) { assert( CGM.getCXXABI().useSinitAndSterm() && "Arg could not be nullptr unless using sinit and sterm functions."); CI = Builder.CreateCall(CalleeTy, Callee); } else CI = Builder.CreateCall(CalleeTy, Callee, Arg); // Make sure the call and the callee agree on calling convention. if (llvm::Function *F = dyn_cast(Callee)) CI->setCallingConv(F->getCallingConv()); } } FinishFunction(); } /// generateDestroyHelper - Generates a helper function which, when /// invoked, destroys the given object. The address of the object /// should be in global memory. llvm::Function *CodeGenFunction::generateDestroyHelper( Address addr, QualType type, Destroyer *destroyer, bool useEHCleanupForArray, const VarDecl *VD) { FunctionArgList args; ImplicitParamDecl Dst(getContext(), getContext().VoidPtrTy, ImplicitParamDecl::Other); args.push_back(&Dst); const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, args); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *fn = CGM.CreateGlobalInitOrCleanUpFunction( FTy, "__cxx_global_array_dtor", FI, VD->getLocation()); CurEHLocation = VD->getBeginLoc(); StartFunction(VD, getContext().VoidTy, fn, FI, args); emitDestroy(addr, type, destroyer, useEHCleanupForArray); FinishFunction(); return fn; }