//===--- CGCleanup.cpp - Bookkeeping and code emission for cleanups -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains code dealing with the IR generation for cleanups // and related information. // // A "cleanup" is a piece of code which needs to be executed whenever // control transfers out of a particular scope. This can be // conditionalized to occur only on exceptional control flow, only on // normal control flow, or both. // //===----------------------------------------------------------------------===// #include "CGCleanup.h" #include "CodeGenFunction.h" #include "llvm/Support/SaveAndRestore.h" using namespace clang; using namespace CodeGen; bool DominatingValue::saved_type::needsSaving(RValue rv) { if (rv.isScalar()) return DominatingLLVMValue::needsSaving(rv.getScalarVal()); if (rv.isAggregate()) return DominatingLLVMValue::needsSaving(rv.getAggregatePointer()); return true; } DominatingValue::saved_type DominatingValue::saved_type::save(CodeGenFunction &CGF, RValue rv) { if (rv.isScalar()) { llvm::Value *V = rv.getScalarVal(); // These automatically dominate and don't need to be saved. if (!DominatingLLVMValue::needsSaving(V)) return saved_type(V, nullptr, ScalarLiteral); // Everything else needs an alloca. Address addr = CGF.CreateDefaultAlignTempAlloca(V->getType(), "saved-rvalue"); CGF.Builder.CreateStore(V, addr); return saved_type(addr.getPointer(), nullptr, ScalarAddress); } if (rv.isComplex()) { CodeGenFunction::ComplexPairTy V = rv.getComplexVal(); llvm::Type *ComplexTy = llvm::StructType::get(V.first->getType(), V.second->getType()); Address addr = CGF.CreateDefaultAlignTempAlloca(ComplexTy, "saved-complex"); CGF.Builder.CreateStore(V.first, CGF.Builder.CreateStructGEP(addr, 0)); CGF.Builder.CreateStore(V.second, CGF.Builder.CreateStructGEP(addr, 1)); return saved_type(addr.getPointer(), nullptr, ComplexAddress); } assert(rv.isAggregate()); Address V = rv.getAggregateAddress(); // TODO: volatile? if (!DominatingLLVMValue::needsSaving(V.getPointer())) return saved_type(V.getPointer(), V.getElementType(), AggregateLiteral, V.getAlignment().getQuantity()); Address addr = CGF.CreateTempAlloca(V.getType(), CGF.getPointerAlign(), "saved-rvalue"); CGF.Builder.CreateStore(V.getPointer(), addr); return saved_type(addr.getPointer(), V.getElementType(), AggregateAddress, V.getAlignment().getQuantity()); } /// Given a saved r-value produced by SaveRValue, perform the code /// necessary to restore it to usability at the current insertion /// point. RValue DominatingValue::saved_type::restore(CodeGenFunction &CGF) { auto getSavingAddress = [&](llvm::Value *value) { auto *AI = cast(value); return Address(value, AI->getAllocatedType(), CharUnits::fromQuantity(AI->getAlign().value())); }; switch (K) { case ScalarLiteral: return RValue::get(Value); case ScalarAddress: return RValue::get(CGF.Builder.CreateLoad(getSavingAddress(Value))); case AggregateLiteral: return RValue::getAggregate( Address(Value, ElementType, CharUnits::fromQuantity(Align))); case AggregateAddress: { auto addr = CGF.Builder.CreateLoad(getSavingAddress(Value)); return RValue::getAggregate( Address(addr, ElementType, CharUnits::fromQuantity(Align))); } case ComplexAddress: { Address address = getSavingAddress(Value); llvm::Value *real = CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(address, 0)); llvm::Value *imag = CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(address, 1)); return RValue::getComplex(real, imag); } } llvm_unreachable("bad saved r-value kind"); } /// Push an entry of the given size onto this protected-scope stack. char *EHScopeStack::allocate(size_t Size) { Size = llvm::alignTo(Size, ScopeStackAlignment); if (!StartOfBuffer) { unsigned Capacity = 1024; while (Capacity < Size) Capacity *= 2; StartOfBuffer = new char[Capacity]; StartOfData = EndOfBuffer = StartOfBuffer + Capacity; } else if (static_cast(StartOfData - StartOfBuffer) < Size) { unsigned CurrentCapacity = EndOfBuffer - StartOfBuffer; unsigned UsedCapacity = CurrentCapacity - (StartOfData - StartOfBuffer); unsigned NewCapacity = CurrentCapacity; do { NewCapacity *= 2; } while (NewCapacity < UsedCapacity + Size); char *NewStartOfBuffer = new char[NewCapacity]; char *NewEndOfBuffer = NewStartOfBuffer + NewCapacity; char *NewStartOfData = NewEndOfBuffer - UsedCapacity; memcpy(NewStartOfData, StartOfData, UsedCapacity); delete [] StartOfBuffer; StartOfBuffer = NewStartOfBuffer; EndOfBuffer = NewEndOfBuffer; StartOfData = NewStartOfData; } assert(StartOfBuffer + Size <= StartOfData); StartOfData -= Size; return StartOfData; } void EHScopeStack::deallocate(size_t Size) { StartOfData += llvm::alignTo(Size, ScopeStackAlignment); } bool EHScopeStack::containsOnlyLifetimeMarkers( EHScopeStack::stable_iterator Old) const { for (EHScopeStack::iterator it = begin(); stabilize(it) != Old; it++) { EHCleanupScope *cleanup = dyn_cast(&*it); if (!cleanup || !cleanup->isLifetimeMarker()) return false; } return true; } bool EHScopeStack::requiresLandingPad() const { for (stable_iterator si = getInnermostEHScope(); si != stable_end(); ) { // Skip lifetime markers. if (auto *cleanup = dyn_cast(&*find(si))) if (cleanup->isLifetimeMarker()) { si = cleanup->getEnclosingEHScope(); continue; } return true; } return false; } EHScopeStack::stable_iterator EHScopeStack::getInnermostActiveNormalCleanup() const { for (stable_iterator si = getInnermostNormalCleanup(), se = stable_end(); si != se; ) { EHCleanupScope &cleanup = cast(*find(si)); if (cleanup.isActive()) return si; si = cleanup.getEnclosingNormalCleanup(); } return stable_end(); } void *EHScopeStack::pushCleanup(CleanupKind Kind, size_t Size) { char *Buffer = allocate(EHCleanupScope::getSizeForCleanupSize(Size)); bool IsNormalCleanup = Kind & NormalCleanup; bool IsEHCleanup = Kind & EHCleanup; bool IsLifetimeMarker = Kind & LifetimeMarker; // Per C++ [except.terminate], it is implementation-defined whether none, // some, or all cleanups are called before std::terminate. Thus, when // terminate is the current EH scope, we may skip adding any EH cleanup // scopes. if (InnermostEHScope != stable_end() && find(InnermostEHScope)->getKind() == EHScope::Terminate) IsEHCleanup = false; EHCleanupScope *Scope = new (Buffer) EHCleanupScope(IsNormalCleanup, IsEHCleanup, Size, BranchFixups.size(), InnermostNormalCleanup, InnermostEHScope); if (IsNormalCleanup) InnermostNormalCleanup = stable_begin(); if (IsEHCleanup) InnermostEHScope = stable_begin(); if (IsLifetimeMarker) Scope->setLifetimeMarker(); // With Windows -EHa, Invoke llvm.seh.scope.begin() for EHCleanup if (CGF->getLangOpts().EHAsynch && IsEHCleanup && !IsLifetimeMarker && CGF->getTarget().getCXXABI().isMicrosoft()) CGF->EmitSehCppScopeBegin(); return Scope->getCleanupBuffer(); } void EHScopeStack::popCleanup() { assert(!empty() && "popping exception stack when not empty"); assert(isa(*begin())); EHCleanupScope &Cleanup = cast(*begin()); InnermostNormalCleanup = Cleanup.getEnclosingNormalCleanup(); InnermostEHScope = Cleanup.getEnclosingEHScope(); deallocate(Cleanup.getAllocatedSize()); // Destroy the cleanup. Cleanup.Destroy(); // Check whether we can shrink the branch-fixups stack. if (!BranchFixups.empty()) { // If we no longer have any normal cleanups, all the fixups are // complete. if (!hasNormalCleanups()) BranchFixups.clear(); // Otherwise we can still trim out unnecessary nulls. else popNullFixups(); } } EHFilterScope *EHScopeStack::pushFilter(unsigned numFilters) { assert(getInnermostEHScope() == stable_end()); char *buffer = allocate(EHFilterScope::getSizeForNumFilters(numFilters)); EHFilterScope *filter = new (buffer) EHFilterScope(numFilters); InnermostEHScope = stable_begin(); return filter; } void EHScopeStack::popFilter() { assert(!empty() && "popping exception stack when not empty"); EHFilterScope &filter = cast(*begin()); deallocate(EHFilterScope::getSizeForNumFilters(filter.getNumFilters())); InnermostEHScope = filter.getEnclosingEHScope(); } EHCatchScope *EHScopeStack::pushCatch(unsigned numHandlers) { char *buffer = allocate(EHCatchScope::getSizeForNumHandlers(numHandlers)); EHCatchScope *scope = new (buffer) EHCatchScope(numHandlers, InnermostEHScope); InnermostEHScope = stable_begin(); return scope; } void EHScopeStack::pushTerminate() { char *Buffer = allocate(EHTerminateScope::getSize()); new (Buffer) EHTerminateScope(InnermostEHScope); InnermostEHScope = stable_begin(); } /// Remove any 'null' fixups on the stack. However, we can't pop more /// fixups than the fixup depth on the innermost normal cleanup, or /// else fixups that we try to add to that cleanup will end up in the /// wrong place. We *could* try to shrink fixup depths, but that's /// actually a lot of work for little benefit. void EHScopeStack::popNullFixups() { // We expect this to only be called when there's still an innermost // normal cleanup; otherwise there really shouldn't be any fixups. assert(hasNormalCleanups()); EHScopeStack::iterator it = find(InnermostNormalCleanup); unsigned MinSize = cast(*it).getFixupDepth(); assert(BranchFixups.size() >= MinSize && "fixup stack out of order"); while (BranchFixups.size() > MinSize && BranchFixups.back().Destination == nullptr) BranchFixups.pop_back(); } Address CodeGenFunction::createCleanupActiveFlag() { // Create a variable to decide whether the cleanup needs to be run. Address active = CreateTempAllocaWithoutCast( Builder.getInt1Ty(), CharUnits::One(), "cleanup.cond"); // Initialize it to false at a site that's guaranteed to be run // before each evaluation. setBeforeOutermostConditional(Builder.getFalse(), active); // Initialize it to true at the current location. Builder.CreateStore(Builder.getTrue(), active); return active; } void CodeGenFunction::initFullExprCleanupWithFlag(Address ActiveFlag) { // Set that as the active flag in the cleanup. EHCleanupScope &cleanup = cast(*EHStack.begin()); assert(!cleanup.hasActiveFlag() && "cleanup already has active flag?"); cleanup.setActiveFlag(ActiveFlag); if (cleanup.isNormalCleanup()) cleanup.setTestFlagInNormalCleanup(); if (cleanup.isEHCleanup()) cleanup.setTestFlagInEHCleanup(); } void EHScopeStack::Cleanup::anchor() {} static void createStoreInstBefore(llvm::Value *value, Address addr, llvm::Instruction *beforeInst) { auto store = new llvm::StoreInst(value, addr.getPointer(), beforeInst); store->setAlignment(addr.getAlignment().getAsAlign()); } static llvm::LoadInst *createLoadInstBefore(Address addr, const Twine &name, llvm::Instruction *beforeInst) { return new llvm::LoadInst(addr.getElementType(), addr.getPointer(), name, false, addr.getAlignment().getAsAlign(), beforeInst); } /// All the branch fixups on the EH stack have propagated out past the /// outermost normal cleanup; resolve them all by adding cases to the /// given switch instruction. static void ResolveAllBranchFixups(CodeGenFunction &CGF, llvm::SwitchInst *Switch, llvm::BasicBlock *CleanupEntry) { llvm::SmallPtrSet CasesAdded; for (unsigned I = 0, E = CGF.EHStack.getNumBranchFixups(); I != E; ++I) { // Skip this fixup if its destination isn't set. BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I); if (Fixup.Destination == nullptr) continue; // If there isn't an OptimisticBranchBlock, then InitialBranch is // still pointing directly to its destination; forward it to the // appropriate cleanup entry. This is required in the specific // case of // { std::string s; goto lbl; } // lbl: // i.e. where there's an unresolved fixup inside a single cleanup // entry which we're currently popping. if (Fixup.OptimisticBranchBlock == nullptr) { createStoreInstBefore(CGF.Builder.getInt32(Fixup.DestinationIndex), CGF.getNormalCleanupDestSlot(), Fixup.InitialBranch); Fixup.InitialBranch->setSuccessor(0, CleanupEntry); } // Don't add this case to the switch statement twice. if (!CasesAdded.insert(Fixup.Destination).second) continue; Switch->addCase(CGF.Builder.getInt32(Fixup.DestinationIndex), Fixup.Destination); } CGF.EHStack.clearFixups(); } /// Transitions the terminator of the given exit-block of a cleanup to /// be a cleanup switch. static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF, llvm::BasicBlock *Block) { // If it's a branch, turn it into a switch whose default // destination is its original target. llvm::Instruction *Term = Block->getTerminator(); assert(Term && "can't transition block without terminator"); if (llvm::BranchInst *Br = dyn_cast(Term)) { assert(Br->isUnconditional()); auto Load = createLoadInstBefore(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term); llvm::SwitchInst *Switch = llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block); Br->eraseFromParent(); return Switch; } else { return cast(Term); } } void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) { assert(Block && "resolving a null target block"); if (!EHStack.getNumBranchFixups()) return; assert(EHStack.hasNormalCleanups() && "branch fixups exist with no normal cleanups on stack"); llvm::SmallPtrSet ModifiedOptimisticBlocks; bool ResolvedAny = false; for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) { // Skip this fixup if its destination doesn't match. BranchFixup &Fixup = EHStack.getBranchFixup(I); if (Fixup.Destination != Block) continue; Fixup.Destination = nullptr; ResolvedAny = true; // If it doesn't have an optimistic branch block, LatestBranch is // already pointing to the right place. llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock; if (!BranchBB) continue; // Don't process the same optimistic branch block twice. if (!ModifiedOptimisticBlocks.insert(BranchBB).second) continue; llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB); // Add a case to the switch. Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block); } if (ResolvedAny) EHStack.popNullFixups(); } /// Pops cleanup blocks until the given savepoint is reached. void CodeGenFunction::PopCleanupBlocks( EHScopeStack::stable_iterator Old, std::initializer_list ValuesToReload) { assert(Old.isValid()); bool HadBranches = false; while (EHStack.stable_begin() != Old) { EHCleanupScope &Scope = cast(*EHStack.begin()); HadBranches |= Scope.hasBranches(); // As long as Old strictly encloses the scope's enclosing normal // cleanup, we're going to emit another normal cleanup which // fallthrough can propagate through. bool FallThroughIsBranchThrough = Old.strictlyEncloses(Scope.getEnclosingNormalCleanup()); PopCleanupBlock(FallThroughIsBranchThrough); } // If we didn't have any branches, the insertion point before cleanups must // dominate the current insertion point and we don't need to reload any // values. if (!HadBranches) return; // Spill and reload all values that the caller wants to be live at the current // insertion point. for (llvm::Value **ReloadedValue : ValuesToReload) { auto *Inst = dyn_cast_or_null(*ReloadedValue); if (!Inst) continue; // Don't spill static allocas, they dominate all cleanups. These are created // by binding a reference to a local variable or temporary. auto *AI = dyn_cast(Inst); if (AI && AI->isStaticAlloca()) continue; Address Tmp = CreateDefaultAlignTempAlloca(Inst->getType(), "tmp.exprcleanup"); // Find an insertion point after Inst and spill it to the temporary. llvm::BasicBlock::iterator InsertBefore; if (auto *Invoke = dyn_cast(Inst)) InsertBefore = Invoke->getNormalDest()->getFirstInsertionPt(); else InsertBefore = std::next(Inst->getIterator()); CGBuilderTy(CGM, &*InsertBefore).CreateStore(Inst, Tmp); // Reload the value at the current insertion point. *ReloadedValue = Builder.CreateLoad(Tmp); } } /// Pops cleanup blocks until the given savepoint is reached, then add the /// cleanups from the given savepoint in the lifetime-extended cleanups stack. void CodeGenFunction::PopCleanupBlocks( EHScopeStack::stable_iterator Old, size_t OldLifetimeExtendedSize, std::initializer_list ValuesToReload) { PopCleanupBlocks(Old, ValuesToReload); // Move our deferred cleanups onto the EH stack. for (size_t I = OldLifetimeExtendedSize, E = LifetimeExtendedCleanupStack.size(); I != E; /**/) { // Alignment should be guaranteed by the vptrs in the individual cleanups. assert((I % alignof(LifetimeExtendedCleanupHeader) == 0) && "misaligned cleanup stack entry"); LifetimeExtendedCleanupHeader &Header = reinterpret_cast( LifetimeExtendedCleanupStack[I]); I += sizeof(Header); EHStack.pushCopyOfCleanup(Header.getKind(), &LifetimeExtendedCleanupStack[I], Header.getSize()); I += Header.getSize(); if (Header.isConditional()) { Address ActiveFlag = reinterpret_cast
(LifetimeExtendedCleanupStack[I]); initFullExprCleanupWithFlag(ActiveFlag); I += sizeof(ActiveFlag); } } LifetimeExtendedCleanupStack.resize(OldLifetimeExtendedSize); } static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF, EHCleanupScope &Scope) { assert(Scope.isNormalCleanup()); llvm::BasicBlock *Entry = Scope.getNormalBlock(); if (!Entry) { Entry = CGF.createBasicBlock("cleanup"); Scope.setNormalBlock(Entry); } return Entry; } /// Attempts to reduce a cleanup's entry block to a fallthrough. This /// is basically llvm::MergeBlockIntoPredecessor, except /// simplified/optimized for the tighter constraints on cleanup blocks. /// /// Returns the new block, whatever it is. static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF, llvm::BasicBlock *Entry) { llvm::BasicBlock *Pred = Entry->getSinglePredecessor(); if (!Pred) return Entry; llvm::BranchInst *Br = dyn_cast(Pred->getTerminator()); if (!Br || Br->isConditional()) return Entry; assert(Br->getSuccessor(0) == Entry); // If we were previously inserting at the end of the cleanup entry // block, we'll need to continue inserting at the end of the // predecessor. bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry; assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end()); // Kill the branch. Br->eraseFromParent(); // Replace all uses of the entry with the predecessor, in case there // are phis in the cleanup. Entry->replaceAllUsesWith(Pred); // Merge the blocks. Pred->splice(Pred->end(), Entry); // Kill the entry block. Entry->eraseFromParent(); if (WasInsertBlock) CGF.Builder.SetInsertPoint(Pred); return Pred; } static void EmitCleanup(CodeGenFunction &CGF, EHScopeStack::Cleanup *Fn, EHScopeStack::Cleanup::Flags flags, Address ActiveFlag) { // If there's an active flag, load it and skip the cleanup if it's // false. llvm::BasicBlock *ContBB = nullptr; if (ActiveFlag.isValid()) { ContBB = CGF.createBasicBlock("cleanup.done"); llvm::BasicBlock *CleanupBB = CGF.createBasicBlock("cleanup.action"); llvm::Value *IsActive = CGF.Builder.CreateLoad(ActiveFlag, "cleanup.is_active"); CGF.Builder.CreateCondBr(IsActive, CleanupBB, ContBB); CGF.EmitBlock(CleanupBB); } // Ask the cleanup to emit itself. Fn->Emit(CGF, flags); assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?"); // Emit the continuation block if there was an active flag. if (ActiveFlag.isValid()) CGF.EmitBlock(ContBB); } static void ForwardPrebranchedFallthrough(llvm::BasicBlock *Exit, llvm::BasicBlock *From, llvm::BasicBlock *To) { // Exit is the exit block of a cleanup, so it always terminates in // an unconditional branch or a switch. llvm::Instruction *Term = Exit->getTerminator(); if (llvm::BranchInst *Br = dyn_cast(Term)) { assert(Br->isUnconditional() && Br->getSuccessor(0) == From); Br->setSuccessor(0, To); } else { llvm::SwitchInst *Switch = cast(Term); for (unsigned I = 0, E = Switch->getNumSuccessors(); I != E; ++I) if (Switch->getSuccessor(I) == From) Switch->setSuccessor(I, To); } } /// We don't need a normal entry block for the given cleanup. /// Optimistic fixup branches can cause these blocks to come into /// existence anyway; if so, destroy it. /// /// The validity of this transformation is very much specific to the /// exact ways in which we form branches to cleanup entries. static void destroyOptimisticNormalEntry(CodeGenFunction &CGF, EHCleanupScope &scope) { llvm::BasicBlock *entry = scope.getNormalBlock(); if (!entry) return; // Replace all the uses with unreachable. llvm::BasicBlock *unreachableBB = CGF.getUnreachableBlock(); for (llvm::BasicBlock::use_iterator i = entry->use_begin(), e = entry->use_end(); i != e; ) { llvm::Use &use = *i; ++i; use.set(unreachableBB); // The only uses should be fixup switches. llvm::SwitchInst *si = cast(use.getUser()); if (si->getNumCases() == 1 && si->getDefaultDest() == unreachableBB) { // Replace the switch with a branch. llvm::BranchInst::Create(si->case_begin()->getCaseSuccessor(), si); // The switch operand is a load from the cleanup-dest alloca. llvm::LoadInst *condition = cast(si->getCondition()); // Destroy the switch. si->eraseFromParent(); // Destroy the load. assert(condition->getOperand(0) == CGF.NormalCleanupDest.getPointer()); assert(condition->use_empty()); condition->eraseFromParent(); } } assert(entry->use_empty()); delete entry; } /// Pops a cleanup block. If the block includes a normal cleanup, the /// current insertion point is threaded through the cleanup, as are /// any branch fixups on the cleanup. void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) { assert(!EHStack.empty() && "cleanup stack is empty!"); assert(isa(*EHStack.begin()) && "top not a cleanup!"); EHCleanupScope &Scope = cast(*EHStack.begin()); assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups()); // Remember activation information. bool IsActive = Scope.isActive(); Address NormalActiveFlag = Scope.shouldTestFlagInNormalCleanup() ? Scope.getActiveFlag() : Address::invalid(); Address EHActiveFlag = Scope.shouldTestFlagInEHCleanup() ? Scope.getActiveFlag() : Address::invalid(); // Check whether we need an EH cleanup. This is only true if we've // generated a lazy EH cleanup block. llvm::BasicBlock *EHEntry = Scope.getCachedEHDispatchBlock(); assert(Scope.hasEHBranches() == (EHEntry != nullptr)); bool RequiresEHCleanup = (EHEntry != nullptr); EHScopeStack::stable_iterator EHParent = Scope.getEnclosingEHScope(); // Check the three conditions which might require a normal cleanup: // - whether there are branch fix-ups through this cleanup unsigned FixupDepth = Scope.getFixupDepth(); bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth; // - whether there are branch-throughs or branch-afters bool HasExistingBranches = Scope.hasBranches(); // - whether there's a fallthrough llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock(); bool HasFallthrough = (FallthroughSource != nullptr && IsActive); // Branch-through fall-throughs leave the insertion point set to the // end of the last cleanup, which points to the current scope. The // rest of IR gen doesn't need to worry about this; it only happens // during the execution of PopCleanupBlocks(). bool HasPrebranchedFallthrough = (FallthroughSource && FallthroughSource->getTerminator()); // If this is a normal cleanup, then having a prebranched // fallthrough implies that the fallthrough source unconditionally // jumps here. assert(!Scope.isNormalCleanup() || !HasPrebranchedFallthrough || (Scope.getNormalBlock() && FallthroughSource->getTerminator()->getSuccessor(0) == Scope.getNormalBlock())); bool RequiresNormalCleanup = false; if (Scope.isNormalCleanup() && (HasFixups || HasExistingBranches || HasFallthrough)) { RequiresNormalCleanup = true; } // If we have a prebranched fallthrough into an inactive normal // cleanup, rewrite it so that it leads to the appropriate place. if (Scope.isNormalCleanup() && HasPrebranchedFallthrough && !IsActive) { llvm::BasicBlock *prebranchDest; // If the prebranch is semantically branching through the next // cleanup, just forward it to the next block, leaving the // insertion point in the prebranched block. if (FallthroughIsBranchThrough) { EHScope &enclosing = *EHStack.find(Scope.getEnclosingNormalCleanup()); prebranchDest = CreateNormalEntry(*this, cast(enclosing)); // Otherwise, we need to make a new block. If the normal cleanup // isn't being used at all, we could actually reuse the normal // entry block, but this is simpler, and it avoids conflicts with // dead optimistic fixup branches. } else { prebranchDest = createBasicBlock("forwarded-prebranch"); EmitBlock(prebranchDest); } llvm::BasicBlock *normalEntry = Scope.getNormalBlock(); assert(normalEntry && !normalEntry->use_empty()); ForwardPrebranchedFallthrough(FallthroughSource, normalEntry, prebranchDest); } // If we don't need the cleanup at all, we're done. if (!RequiresNormalCleanup && !RequiresEHCleanup) { destroyOptimisticNormalEntry(*this, Scope); EHStack.popCleanup(); // safe because there are no fixups assert(EHStack.getNumBranchFixups() == 0 || EHStack.hasNormalCleanups()); return; } // Copy the cleanup emission data out. This uses either a stack // array or malloc'd memory, depending on the size, which is // behavior that SmallVector would provide, if we could use it // here. Unfortunately, if you ask for a SmallVector, the // alignment isn't sufficient. auto *CleanupSource = reinterpret_cast(Scope.getCleanupBuffer()); alignas(EHScopeStack::ScopeStackAlignment) char CleanupBufferStack[8 * sizeof(void *)]; std::unique_ptr CleanupBufferHeap; size_t CleanupSize = Scope.getCleanupSize(); EHScopeStack::Cleanup *Fn; if (CleanupSize <= sizeof(CleanupBufferStack)) { memcpy(CleanupBufferStack, CleanupSource, CleanupSize); Fn = reinterpret_cast(CleanupBufferStack); } else { CleanupBufferHeap.reset(new char[CleanupSize]); memcpy(CleanupBufferHeap.get(), CleanupSource, CleanupSize); Fn = reinterpret_cast(CleanupBufferHeap.get()); } EHScopeStack::Cleanup::Flags cleanupFlags; if (Scope.isNormalCleanup()) cleanupFlags.setIsNormalCleanupKind(); if (Scope.isEHCleanup()) cleanupFlags.setIsEHCleanupKind(); // Under -EHa, invoke seh.scope.end() to mark scope end before dtor bool IsEHa = getLangOpts().EHAsynch && !Scope.isLifetimeMarker(); const EHPersonality &Personality = EHPersonality::get(*this); if (!RequiresNormalCleanup) { // Mark CPP scope end for passed-by-value Arg temp // per Windows ABI which is "normally" Cleanup in callee if (IsEHa && getInvokeDest()) { if (Personality.isMSVCXXPersonality()) EmitSehCppScopeEnd(); } destroyOptimisticNormalEntry(*this, Scope); EHStack.popCleanup(); } else { // If we have a fallthrough and no other need for the cleanup, // emit it directly. if (HasFallthrough && !HasPrebranchedFallthrough && !HasFixups && !HasExistingBranches) { // mark SEH scope end for fall-through flow if (IsEHa && getInvokeDest()) { if (Personality.isMSVCXXPersonality()) EmitSehCppScopeEnd(); else EmitSehTryScopeEnd(); } destroyOptimisticNormalEntry(*this, Scope); EHStack.popCleanup(); EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag); // Otherwise, the best approach is to thread everything through // the cleanup block and then try to clean up after ourselves. } else { // Force the entry block to exist. llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope); // I. Set up the fallthrough edge in. CGBuilderTy::InsertPoint savedInactiveFallthroughIP; // If there's a fallthrough, we need to store the cleanup // destination index. For fall-throughs this is always zero. if (HasFallthrough) { if (!HasPrebranchedFallthrough) Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot()); // Otherwise, save and clear the IP if we don't have fallthrough // because the cleanup is inactive. } else if (FallthroughSource) { assert(!IsActive && "source without fallthrough for active cleanup"); savedInactiveFallthroughIP = Builder.saveAndClearIP(); } // II. Emit the entry block. This implicitly branches to it if // we have fallthrough. All the fixups and existing branches // should already be branched to it. EmitBlock(NormalEntry); // intercept normal cleanup to mark SEH scope end if (IsEHa) { if (Personality.isMSVCXXPersonality()) EmitSehCppScopeEnd(); else EmitSehTryScopeEnd(); } // III. Figure out where we're going and build the cleanup // epilogue. bool HasEnclosingCleanups = (Scope.getEnclosingNormalCleanup() != EHStack.stable_end()); // Compute the branch-through dest if we need it: // - if there are branch-throughs threaded through the scope // - if fall-through is a branch-through // - if there are fixups that will be optimistically forwarded // to the enclosing cleanup llvm::BasicBlock *BranchThroughDest = nullptr; if (Scope.hasBranchThroughs() || (FallthroughSource && FallthroughIsBranchThrough) || (HasFixups && HasEnclosingCleanups)) { assert(HasEnclosingCleanups); EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup()); BranchThroughDest = CreateNormalEntry(*this, cast(S)); } llvm::BasicBlock *FallthroughDest = nullptr; SmallVector InstsToAppend; // If there's exactly one branch-after and no other threads, // we can route it without a switch. if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough && Scope.getNumBranchAfters() == 1) { assert(!BranchThroughDest || !IsActive); // Clean up the possibly dead store to the cleanup dest slot. llvm::Instruction *NormalCleanupDestSlot = cast(getNormalCleanupDestSlot().getPointer()); if (NormalCleanupDestSlot->hasOneUse()) { NormalCleanupDestSlot->user_back()->eraseFromParent(); NormalCleanupDestSlot->eraseFromParent(); NormalCleanupDest = Address::invalid(); } llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0); InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter)); // Build a switch-out if we need it: // - if there are branch-afters threaded through the scope // - if fall-through is a branch-after // - if there are fixups that have nowhere left to go and // so must be immediately resolved } else if (Scope.getNumBranchAfters() || (HasFallthrough && !FallthroughIsBranchThrough) || (HasFixups && !HasEnclosingCleanups)) { llvm::BasicBlock *Default = (BranchThroughDest ? BranchThroughDest : getUnreachableBlock()); // TODO: base this on the number of branch-afters and fixups const unsigned SwitchCapacity = 10; // pass the abnormal exit flag to Fn (SEH cleanup) cleanupFlags.setHasExitSwitch(); llvm::LoadInst *Load = createLoadInstBefore(getNormalCleanupDestSlot(), "cleanup.dest", nullptr); llvm::SwitchInst *Switch = llvm::SwitchInst::Create(Load, Default, SwitchCapacity); InstsToAppend.push_back(Load); InstsToAppend.push_back(Switch); // Branch-after fallthrough. if (FallthroughSource && !FallthroughIsBranchThrough) { FallthroughDest = createBasicBlock("cleanup.cont"); if (HasFallthrough) Switch->addCase(Builder.getInt32(0), FallthroughDest); } for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) { Switch->addCase(Scope.getBranchAfterIndex(I), Scope.getBranchAfterBlock(I)); } // If there aren't any enclosing cleanups, we can resolve all // the fixups now. if (HasFixups && !HasEnclosingCleanups) ResolveAllBranchFixups(*this, Switch, NormalEntry); } else { // We should always have a branch-through destination in this case. assert(BranchThroughDest); InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest)); } // IV. Pop the cleanup and emit it. EHStack.popCleanup(); assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups); EmitCleanup(*this, Fn, cleanupFlags, NormalActiveFlag); // Append the prepared cleanup prologue from above. llvm::BasicBlock *NormalExit = Builder.GetInsertBlock(); for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I) InstsToAppend[I]->insertInto(NormalExit, NormalExit->end()); // Optimistically hope that any fixups will continue falling through. for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); I < E; ++I) { BranchFixup &Fixup = EHStack.getBranchFixup(I); if (!Fixup.Destination) continue; if (!Fixup.OptimisticBranchBlock) { createStoreInstBefore(Builder.getInt32(Fixup.DestinationIndex), getNormalCleanupDestSlot(), Fixup.InitialBranch); Fixup.InitialBranch->setSuccessor(0, NormalEntry); } Fixup.OptimisticBranchBlock = NormalExit; } // V. Set up the fallthrough edge out. // Case 1: a fallthrough source exists but doesn't branch to the // cleanup because the cleanup is inactive. if (!HasFallthrough && FallthroughSource) { // Prebranched fallthrough was forwarded earlier. // Non-prebranched fallthrough doesn't need to be forwarded. // Either way, all we need to do is restore the IP we cleared before. assert(!IsActive); Builder.restoreIP(savedInactiveFallthroughIP); // Case 2: a fallthrough source exists and should branch to the // cleanup, but we're not supposed to branch through to the next // cleanup. } else if (HasFallthrough && FallthroughDest) { assert(!FallthroughIsBranchThrough); EmitBlock(FallthroughDest); // Case 3: a fallthrough source exists and should branch to the // cleanup and then through to the next. } else if (HasFallthrough) { // Everything is already set up for this. // Case 4: no fallthrough source exists. } else { Builder.ClearInsertionPoint(); } // VI. Assorted cleaning. // Check whether we can merge NormalEntry into a single predecessor. // This might invalidate (non-IR) pointers to NormalEntry. llvm::BasicBlock *NewNormalEntry = SimplifyCleanupEntry(*this, NormalEntry); // If it did invalidate those pointers, and NormalEntry was the same // as NormalExit, go back and patch up the fixups. if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit) for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups(); I < E; ++I) EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry; } } assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0); // Emit the EH cleanup if required. if (RequiresEHCleanup) { CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); EmitBlock(EHEntry); llvm::BasicBlock *NextAction = getEHDispatchBlock(EHParent); // Push a terminate scope or cleanupendpad scope around the potentially // throwing cleanups. For funclet EH personalities, the cleanupendpad models // program termination when cleanups throw. bool PushedTerminate = false; SaveAndRestore RestoreCurrentFuncletPad(CurrentFuncletPad); llvm::CleanupPadInst *CPI = nullptr; const EHPersonality &Personality = EHPersonality::get(*this); if (Personality.usesFuncletPads()) { llvm::Value *ParentPad = CurrentFuncletPad; if (!ParentPad) ParentPad = llvm::ConstantTokenNone::get(CGM.getLLVMContext()); CurrentFuncletPad = CPI = Builder.CreateCleanupPad(ParentPad); } // Non-MSVC personalities need to terminate when an EH cleanup throws. if (!Personality.isMSVCPersonality()) { EHStack.pushTerminate(); PushedTerminate = true; } // We only actually emit the cleanup code if the cleanup is either // active or was used before it was deactivated. if (EHActiveFlag.isValid() || IsActive) { cleanupFlags.setIsForEHCleanup(); EmitCleanup(*this, Fn, cleanupFlags, EHActiveFlag); } if (CPI) Builder.CreateCleanupRet(CPI, NextAction); else Builder.CreateBr(NextAction); // Leave the terminate scope. if (PushedTerminate) EHStack.popTerminate(); Builder.restoreIP(SavedIP); SimplifyCleanupEntry(*this, EHEntry); } } /// isObviouslyBranchWithoutCleanups - Return true if a branch to the /// specified destination obviously has no cleanups to run. 'false' is always /// a conservatively correct answer for this method. bool CodeGenFunction::isObviouslyBranchWithoutCleanups(JumpDest Dest) const { assert(Dest.getScopeDepth().encloses(EHStack.stable_begin()) && "stale jump destination"); // Calculate the innermost active normal cleanup. EHScopeStack::stable_iterator TopCleanup = EHStack.getInnermostActiveNormalCleanup(); // If we're not in an active normal cleanup scope, or if the // destination scope is within the innermost active normal cleanup // scope, we don't need to worry about fixups. if (TopCleanup == EHStack.stable_end() || TopCleanup.encloses(Dest.getScopeDepth())) // works for invalid return true; // Otherwise, we might need some cleanups. return false; } /// Terminate the current block by emitting a branch which might leave /// the current cleanup-protected scope. The target scope may not yet /// be known, in which case this will require a fixup. /// /// As a side-effect, this method clears the insertion point. void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) { assert(Dest.getScopeDepth().encloses(EHStack.stable_begin()) && "stale jump destination"); if (!HaveInsertPoint()) return; // Create the branch. llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock()); // Calculate the innermost active normal cleanup. EHScopeStack::stable_iterator TopCleanup = EHStack.getInnermostActiveNormalCleanup(); // If we're not in an active normal cleanup scope, or if the // destination scope is within the innermost active normal cleanup // scope, we don't need to worry about fixups. if (TopCleanup == EHStack.stable_end() || TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid Builder.ClearInsertionPoint(); return; } // If we can't resolve the destination cleanup scope, just add this // to the current cleanup scope as a branch fixup. if (!Dest.getScopeDepth().isValid()) { BranchFixup &Fixup = EHStack.addBranchFixup(); Fixup.Destination = Dest.getBlock(); Fixup.DestinationIndex = Dest.getDestIndex(); Fixup.InitialBranch = BI; Fixup.OptimisticBranchBlock = nullptr; Builder.ClearInsertionPoint(); return; } // Otherwise, thread through all the normal cleanups in scope. // Store the index at the start. llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex()); createStoreInstBefore(Index, getNormalCleanupDestSlot(), BI); // Adjust BI to point to the first cleanup block. { EHCleanupScope &Scope = cast(*EHStack.find(TopCleanup)); BI->setSuccessor(0, CreateNormalEntry(*this, Scope)); } // Add this destination to all the scopes involved. EHScopeStack::stable_iterator I = TopCleanup; EHScopeStack::stable_iterator E = Dest.getScopeDepth(); if (E.strictlyEncloses(I)) { while (true) { EHCleanupScope &Scope = cast(*EHStack.find(I)); assert(Scope.isNormalCleanup()); I = Scope.getEnclosingNormalCleanup(); // If this is the last cleanup we're propagating through, tell it // that there's a resolved jump moving through it. if (!E.strictlyEncloses(I)) { Scope.addBranchAfter(Index, Dest.getBlock()); break; } // Otherwise, tell the scope that there's a jump propagating // through it. If this isn't new information, all the rest of // the work has been done before. if (!Scope.addBranchThrough(Dest.getBlock())) break; } } Builder.ClearInsertionPoint(); } static bool IsUsedAsNormalCleanup(EHScopeStack &EHStack, EHScopeStack::stable_iterator C) { // If we needed a normal block for any reason, that counts. if (cast(*EHStack.find(C)).getNormalBlock()) return true; // Check whether any enclosed cleanups were needed. for (EHScopeStack::stable_iterator I = EHStack.getInnermostNormalCleanup(); I != C; ) { assert(C.strictlyEncloses(I)); EHCleanupScope &S = cast(*EHStack.find(I)); if (S.getNormalBlock()) return true; I = S.getEnclosingNormalCleanup(); } return false; } static bool IsUsedAsEHCleanup(EHScopeStack &EHStack, EHScopeStack::stable_iterator cleanup) { // If we needed an EH block for any reason, that counts. if (EHStack.find(cleanup)->hasEHBranches()) return true; // Check whether any enclosed cleanups were needed. for (EHScopeStack::stable_iterator i = EHStack.getInnermostEHScope(); i != cleanup; ) { assert(cleanup.strictlyEncloses(i)); EHScope &scope = *EHStack.find(i); if (scope.hasEHBranches()) return true; i = scope.getEnclosingEHScope(); } return false; } enum ForActivation_t { ForActivation, ForDeactivation }; /// The given cleanup block is changing activation state. Configure a /// cleanup variable if necessary. /// /// It would be good if we had some way of determining if there were /// extra uses *after* the change-over point. static void SetupCleanupBlockActivation(CodeGenFunction &CGF, EHScopeStack::stable_iterator C, ForActivation_t kind, llvm::Instruction *dominatingIP) { EHCleanupScope &Scope = cast(*CGF.EHStack.find(C)); // We always need the flag if we're activating the cleanup in a // conditional context, because we have to assume that the current // location doesn't necessarily dominate the cleanup's code. bool isActivatedInConditional = (kind == ForActivation && CGF.isInConditionalBranch()); bool needFlag = false; // Calculate whether the cleanup was used: // - as a normal cleanup if (Scope.isNormalCleanup() && (isActivatedInConditional || IsUsedAsNormalCleanup(CGF.EHStack, C))) { Scope.setTestFlagInNormalCleanup(); needFlag = true; } // - as an EH cleanup if (Scope.isEHCleanup() && (isActivatedInConditional || IsUsedAsEHCleanup(CGF.EHStack, C))) { Scope.setTestFlagInEHCleanup(); needFlag = true; } // If it hasn't yet been used as either, we're done. if (!needFlag) return; Address var = Scope.getActiveFlag(); if (!var.isValid()) { var = CGF.CreateTempAlloca(CGF.Builder.getInt1Ty(), CharUnits::One(), "cleanup.isactive"); Scope.setActiveFlag(var); assert(dominatingIP && "no existing variable and no dominating IP!"); // Initialize to true or false depending on whether it was // active up to this point. llvm::Constant *value = CGF.Builder.getInt1(kind == ForDeactivation); // If we're in a conditional block, ignore the dominating IP and // use the outermost conditional branch. if (CGF.isInConditionalBranch()) { CGF.setBeforeOutermostConditional(value, var); } else { createStoreInstBefore(value, var, dominatingIP); } } CGF.Builder.CreateStore(CGF.Builder.getInt1(kind == ForActivation), var); } /// Activate a cleanup that was created in an inactivated state. void CodeGenFunction::ActivateCleanupBlock(EHScopeStack::stable_iterator C, llvm::Instruction *dominatingIP) { assert(C != EHStack.stable_end() && "activating bottom of stack?"); EHCleanupScope &Scope = cast(*EHStack.find(C)); assert(!Scope.isActive() && "double activation"); SetupCleanupBlockActivation(*this, C, ForActivation, dominatingIP); Scope.setActive(true); } /// Deactive a cleanup that was created in an active state. void CodeGenFunction::DeactivateCleanupBlock(EHScopeStack::stable_iterator C, llvm::Instruction *dominatingIP) { assert(C != EHStack.stable_end() && "deactivating bottom of stack?"); EHCleanupScope &Scope = cast(*EHStack.find(C)); assert(Scope.isActive() && "double deactivation"); // If it's the top of the stack, just pop it, but do so only if it belongs // to the current RunCleanupsScope. if (C == EHStack.stable_begin() && CurrentCleanupScopeDepth.strictlyEncloses(C)) { // Per comment below, checking EHAsynch is not really necessary // it's there to assure zero-impact w/o EHAsynch option if (!Scope.isNormalCleanup() && getLangOpts().EHAsynch) { PopCleanupBlock(); } else { // If it's a normal cleanup, we need to pretend that the // fallthrough is unreachable. CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP(); PopCleanupBlock(); Builder.restoreIP(SavedIP); } return; } // Otherwise, follow the general case. SetupCleanupBlockActivation(*this, C, ForDeactivation, dominatingIP); Scope.setActive(false); } Address CodeGenFunction::getNormalCleanupDestSlot() { if (!NormalCleanupDest.isValid()) NormalCleanupDest = CreateDefaultAlignTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot"); return NormalCleanupDest; } /// Emits all the code to cause the given temporary to be cleaned up. void CodeGenFunction::EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, Address Ptr) { pushDestroy(NormalAndEHCleanup, Ptr, TempType, destroyCXXObject, /*useEHCleanup*/ true); } // Need to set "funclet" in OperandBundle properly for noThrow // intrinsic (see CGCall.cpp) static void EmitSehScope(CodeGenFunction &CGF, llvm::FunctionCallee &SehCppScope) { llvm::BasicBlock *InvokeDest = CGF.getInvokeDest(); assert(CGF.Builder.GetInsertBlock() && InvokeDest); llvm::BasicBlock *Cont = CGF.createBasicBlock("invoke.cont"); SmallVector BundleList = CGF.getBundlesForFunclet(SehCppScope.getCallee()); if (CGF.CurrentFuncletPad) BundleList.emplace_back("funclet", CGF.CurrentFuncletPad); CGF.Builder.CreateInvoke(SehCppScope, Cont, InvokeDest, std::nullopt, BundleList); CGF.EmitBlock(Cont); } // Invoke a llvm.seh.scope.begin at the beginning of a CPP scope for -EHa void CodeGenFunction::EmitSehCppScopeBegin() { assert(getLangOpts().EHAsynch); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); llvm::FunctionCallee SehCppScope = CGM.CreateRuntimeFunction(FTy, "llvm.seh.scope.begin"); EmitSehScope(*this, SehCppScope); } // Invoke a llvm.seh.scope.end at the end of a CPP scope for -EHa // llvm.seh.scope.end is emitted before popCleanup, so it's "invoked" void CodeGenFunction::EmitSehCppScopeEnd() { assert(getLangOpts().EHAsynch); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); llvm::FunctionCallee SehCppScope = CGM.CreateRuntimeFunction(FTy, "llvm.seh.scope.end"); EmitSehScope(*this, SehCppScope); } // Invoke a llvm.seh.try.begin at the beginning of a SEH scope for -EHa void CodeGenFunction::EmitSehTryScopeBegin() { assert(getLangOpts().EHAsynch); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); llvm::FunctionCallee SehCppScope = CGM.CreateRuntimeFunction(FTy, "llvm.seh.try.begin"); EmitSehScope(*this, SehCppScope); } // Invoke a llvm.seh.try.end at the end of a SEH scope for -EHa void CodeGenFunction::EmitSehTryScopeEnd() { assert(getLangOpts().EHAsynch); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); llvm::FunctionCallee SehCppScope = CGM.CreateRuntimeFunction(FTy, "llvm.seh.try.end"); EmitSehScope(*this, SehCppScope); }