//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // These classes wrap the information about a call or function // definition used to handle ABI compliancy. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_CODEGEN_CGCALL_H #define LLVM_CLANG_LIB_CODEGEN_CGCALL_H #include "CGPointerAuthInfo.h" #include "CGValue.h" #include "EHScopeStack.h" #include "clang/AST/ASTFwd.h" #include "clang/AST/CanonicalType.h" #include "clang/AST/GlobalDecl.h" #include "clang/AST/Type.h" #include "llvm/ADT/STLForwardCompat.h" #include "llvm/IR/Value.h" namespace llvm { class Type; class Value; } // namespace llvm namespace clang { class Decl; class FunctionDecl; class TargetOptions; class VarDecl; namespace CodeGen { /// Abstract information about a function or function prototype. class CGCalleeInfo { /// The function prototype of the callee. const FunctionProtoType *CalleeProtoTy; /// The function declaration of the callee. GlobalDecl CalleeDecl; public: explicit CGCalleeInfo() : CalleeProtoTy(nullptr) {} CGCalleeInfo(const FunctionProtoType *calleeProtoTy, GlobalDecl calleeDecl) : CalleeProtoTy(calleeProtoTy), CalleeDecl(calleeDecl) {} CGCalleeInfo(const FunctionProtoType *calleeProtoTy) : CalleeProtoTy(calleeProtoTy) {} CGCalleeInfo(GlobalDecl calleeDecl) : CalleeProtoTy(nullptr), CalleeDecl(calleeDecl) {} const FunctionProtoType *getCalleeFunctionProtoType() const { return CalleeProtoTy; } const GlobalDecl getCalleeDecl() const { return CalleeDecl; } }; /// All available information about a concrete callee. class CGCallee { enum class SpecialKind : uintptr_t { Invalid, Builtin, PseudoDestructor, Virtual, Last = Virtual }; struct OrdinaryInfoStorage { CGCalleeInfo AbstractInfo; CGPointerAuthInfo PointerAuthInfo; }; struct BuiltinInfoStorage { const FunctionDecl *Decl; unsigned ID; }; struct PseudoDestructorInfoStorage { const CXXPseudoDestructorExpr *Expr; }; struct VirtualInfoStorage { const CallExpr *CE; GlobalDecl MD; Address Addr; llvm::FunctionType *FTy; }; SpecialKind KindOrFunctionPointer; union { OrdinaryInfoStorage OrdinaryInfo; BuiltinInfoStorage BuiltinInfo; PseudoDestructorInfoStorage PseudoDestructorInfo; VirtualInfoStorage VirtualInfo; }; explicit CGCallee(SpecialKind kind) : KindOrFunctionPointer(kind) {} CGCallee(const FunctionDecl *builtinDecl, unsigned builtinID) : KindOrFunctionPointer(SpecialKind::Builtin) { BuiltinInfo.Decl = builtinDecl; BuiltinInfo.ID = builtinID; } public: CGCallee() : KindOrFunctionPointer(SpecialKind::Invalid) {} /// Construct a callee. Call this constructor directly when this /// isn't a direct call. CGCallee(const CGCalleeInfo &abstractInfo, llvm::Value *functionPtr, /* FIXME: make parameter pointerAuthInfo mandatory */ const CGPointerAuthInfo &pointerAuthInfo = CGPointerAuthInfo()) : KindOrFunctionPointer( SpecialKind(reinterpret_cast(functionPtr))) { OrdinaryInfo.AbstractInfo = abstractInfo; OrdinaryInfo.PointerAuthInfo = pointerAuthInfo; assert(functionPtr && "configuring callee without function pointer"); assert(functionPtr->getType()->isPointerTy()); } static CGCallee forBuiltin(unsigned builtinID, const FunctionDecl *builtinDecl) { CGCallee result(SpecialKind::Builtin); result.BuiltinInfo.Decl = builtinDecl; result.BuiltinInfo.ID = builtinID; return result; } static CGCallee forPseudoDestructor(const CXXPseudoDestructorExpr *E) { CGCallee result(SpecialKind::PseudoDestructor); result.PseudoDestructorInfo.Expr = E; return result; } static CGCallee forDirect(llvm::Constant *functionPtr, const CGCalleeInfo &abstractInfo = CGCalleeInfo()) { return CGCallee(abstractInfo, functionPtr); } static CGCallee forDirect(llvm::FunctionCallee functionPtr, const CGCalleeInfo &abstractInfo = CGCalleeInfo()) { return CGCallee(abstractInfo, functionPtr.getCallee()); } static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr, llvm::FunctionType *FTy) { CGCallee result(SpecialKind::Virtual); result.VirtualInfo.CE = CE; result.VirtualInfo.MD = MD; result.VirtualInfo.Addr = Addr; result.VirtualInfo.FTy = FTy; return result; } bool isBuiltin() const { return KindOrFunctionPointer == SpecialKind::Builtin; } const FunctionDecl *getBuiltinDecl() const { assert(isBuiltin()); return BuiltinInfo.Decl; } unsigned getBuiltinID() const { assert(isBuiltin()); return BuiltinInfo.ID; } bool isPseudoDestructor() const { return KindOrFunctionPointer == SpecialKind::PseudoDestructor; } const CXXPseudoDestructorExpr *getPseudoDestructorExpr() const { assert(isPseudoDestructor()); return PseudoDestructorInfo.Expr; } bool isOrdinary() const { return uintptr_t(KindOrFunctionPointer) > uintptr_t(SpecialKind::Last); } CGCalleeInfo getAbstractInfo() const { if (isVirtual()) return VirtualInfo.MD; assert(isOrdinary()); return OrdinaryInfo.AbstractInfo; } const CGPointerAuthInfo &getPointerAuthInfo() const { assert(isOrdinary()); return OrdinaryInfo.PointerAuthInfo; } llvm::Value *getFunctionPointer() const { assert(isOrdinary()); return reinterpret_cast(uintptr_t(KindOrFunctionPointer)); } void setFunctionPointer(llvm::Value *functionPtr) { assert(isOrdinary()); KindOrFunctionPointer = SpecialKind(reinterpret_cast(functionPtr)); } void setPointerAuthInfo(CGPointerAuthInfo PointerAuth) { assert(isOrdinary()); OrdinaryInfo.PointerAuthInfo = PointerAuth; } bool isVirtual() const { return KindOrFunctionPointer == SpecialKind::Virtual; } const CallExpr *getVirtualCallExpr() const { assert(isVirtual()); return VirtualInfo.CE; } GlobalDecl getVirtualMethodDecl() const { assert(isVirtual()); return VirtualInfo.MD; } Address getThisAddress() const { assert(isVirtual()); return VirtualInfo.Addr; } llvm::FunctionType *getVirtualFunctionType() const { assert(isVirtual()); return VirtualInfo.FTy; } /// If this is a delayed callee computation of some sort, prepare /// a concrete callee. CGCallee prepareConcreteCallee(CodeGenFunction &CGF) const; }; struct CallArg { private: union { RValue RV; LValue LV; /// The argument is semantically a load from this l-value. }; bool HasLV; /// A data-flow flag to make sure getRValue and/or copyInto are not /// called twice for duplicated IR emission. mutable bool IsUsed; public: QualType Ty; CallArg(RValue rv, QualType ty) : RV(rv), HasLV(false), IsUsed(false), Ty(ty) {} CallArg(LValue lv, QualType ty) : LV(lv), HasLV(true), IsUsed(false), Ty(ty) {} bool hasLValue() const { return HasLV; } QualType getType() const { return Ty; } /// \returns an independent RValue. If the CallArg contains an LValue, /// a temporary copy is returned. RValue getRValue(CodeGenFunction &CGF) const; LValue getKnownLValue() const { assert(HasLV && !IsUsed); return LV; } RValue getKnownRValue() const { assert(!HasLV && !IsUsed); return RV; } void setRValue(RValue _RV) { assert(!HasLV); RV = _RV; } bool isAggregate() const { return HasLV || RV.isAggregate(); } void copyInto(CodeGenFunction &CGF, Address A) const; }; /// CallArgList - Type for representing both the value and type of /// arguments in a call. class CallArgList : public SmallVector { public: CallArgList() = default; struct Writeback { /// The original argument. Note that the argument l-value /// is potentially null. LValue Source; /// The temporary alloca. Address Temporary; /// A value to "use" after the writeback, or null. llvm::Value *ToUse; }; struct CallArgCleanup { EHScopeStack::stable_iterator Cleanup; /// The "is active" insertion point. This instruction is temporary and /// will be removed after insertion. llvm::Instruction *IsActiveIP; }; void add(RValue rvalue, QualType type) { push_back(CallArg(rvalue, type)); } void addUncopiedAggregate(LValue LV, QualType type) { push_back(CallArg(LV, type)); } /// Add all the arguments from another CallArgList to this one. After doing /// this, the old CallArgList retains its list of arguments, but must not /// be used to emit a call. void addFrom(const CallArgList &other) { insert(end(), other.begin(), other.end()); Writebacks.insert(Writebacks.end(), other.Writebacks.begin(), other.Writebacks.end()); CleanupsToDeactivate.insert(CleanupsToDeactivate.end(), other.CleanupsToDeactivate.begin(), other.CleanupsToDeactivate.end()); assert(!(StackBase && other.StackBase) && "can't merge stackbases"); if (!StackBase) StackBase = other.StackBase; } void addWriteback(LValue srcLV, Address temporary, llvm::Value *toUse) { Writeback writeback = {srcLV, temporary, toUse}; Writebacks.push_back(writeback); } bool hasWritebacks() const { return !Writebacks.empty(); } typedef llvm::iterator_range::const_iterator> writeback_const_range; writeback_const_range writebacks() const { return writeback_const_range(Writebacks.begin(), Writebacks.end()); } void addArgCleanupDeactivation(EHScopeStack::stable_iterator Cleanup, llvm::Instruction *IsActiveIP) { CallArgCleanup ArgCleanup; ArgCleanup.Cleanup = Cleanup; ArgCleanup.IsActiveIP = IsActiveIP; CleanupsToDeactivate.push_back(ArgCleanup); } ArrayRef getCleanupsToDeactivate() const { return CleanupsToDeactivate; } void allocateArgumentMemory(CodeGenFunction &CGF); llvm::Instruction *getStackBase() const { return StackBase; } void freeArgumentMemory(CodeGenFunction &CGF) const; /// Returns if we're using an inalloca struct to pass arguments in /// memory. bool isUsingInAlloca() const { return StackBase; } private: SmallVector Writebacks; /// Deactivate these cleanups immediately before making the call. This /// is used to cleanup objects that are owned by the callee once the call /// occurs. SmallVector CleanupsToDeactivate; /// The stacksave call. It dominates all of the argument evaluation. llvm::CallInst *StackBase = nullptr; }; /// FunctionArgList - Type for representing both the decl and type /// of parameters to a function. The decl must be either a /// ParmVarDecl or ImplicitParamDecl. class FunctionArgList : public SmallVector {}; /// ReturnValueSlot - Contains the address where the return value of a /// function can be stored, and whether the address is volatile or not. class ReturnValueSlot { Address Addr = Address::invalid(); // Return value slot flags LLVM_PREFERRED_TYPE(bool) unsigned IsVolatile : 1; LLVM_PREFERRED_TYPE(bool) unsigned IsUnused : 1; LLVM_PREFERRED_TYPE(bool) unsigned IsExternallyDestructed : 1; public: ReturnValueSlot() : IsVolatile(false), IsUnused(false), IsExternallyDestructed(false) {} ReturnValueSlot(Address Addr, bool IsVolatile, bool IsUnused = false, bool IsExternallyDestructed = false) : Addr(Addr), IsVolatile(IsVolatile), IsUnused(IsUnused), IsExternallyDestructed(IsExternallyDestructed) {} bool isNull() const { return !Addr.isValid(); } bool isVolatile() const { return IsVolatile; } Address getValue() const { return Addr; } bool isUnused() const { return IsUnused; } bool isExternallyDestructed() const { return IsExternallyDestructed; } Address getAddress() const { return Addr; } }; /// Adds attributes to \p F according to our \p CodeGenOpts and \p LangOpts, as /// though we had emitted it ourselves. We remove any attributes on F that /// conflict with the attributes we add here. /// /// This is useful for adding attrs to bitcode modules that you want to link /// with but don't control, such as CUDA's libdevice. When linking with such /// a bitcode library, you might want to set e.g. its functions' /// "unsafe-fp-math" attribute to match the attr of the functions you're /// codegen'ing. Otherwise, LLVM will interpret the bitcode module's lack of /// unsafe-fp-math attrs as tantamount to unsafe-fp-math=false, and then LLVM /// will propagate unsafe-fp-math=false up to every transitive caller of a /// function in the bitcode library! /// /// With the exception of fast-math attrs, this will only make the attributes /// on the function more conservative. But it's unsafe to call this on a /// function which relies on particular fast-math attributes for correctness. /// It's up to you to ensure that this is safe. void mergeDefaultFunctionDefinitionAttributes(llvm::Function &F, const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts, const TargetOptions &TargetOpts, bool WillInternalize); enum class FnInfoOpts { None = 0, IsInstanceMethod = 1 << 0, IsChainCall = 1 << 1, IsDelegateCall = 1 << 2, }; inline FnInfoOpts operator|(FnInfoOpts A, FnInfoOpts B) { return static_cast(llvm::to_underlying(A) | llvm::to_underlying(B)); } inline FnInfoOpts operator&(FnInfoOpts A, FnInfoOpts B) { return static_cast(llvm::to_underlying(A) & llvm::to_underlying(B)); } inline FnInfoOpts operator|=(FnInfoOpts A, FnInfoOpts B) { A = A | B; return A; } inline FnInfoOpts operator&=(FnInfoOpts A, FnInfoOpts B) { A = A & B; return A; } } // end namespace CodeGen } // end namespace clang #endif