//===--- CGCall.cpp - Encapsulate calling convention details --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // These classes wrap the information about a call or function // definition used to handle ABI compliancy. // //===----------------------------------------------------------------------===// #include "CGCall.h" #include "ABIInfo.h" #include "CGBlocks.h" #include "CGCXXABI.h" #include "CGCleanup.h" #include "CGRecordLayout.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "TargetInfo.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/Basic/CodeGenOptions.h" #include "clang/Basic/TargetBuiltins.h" #include "clang/Basic/TargetInfo.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "clang/CodeGen/SwiftCallingConv.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Assumptions.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Transforms/Utils/Local.h" using namespace clang; using namespace CodeGen; /***/ unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { switch (CC) { default: return llvm::CallingConv::C; case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; case CC_Win64: return llvm::CallingConv::Win64; case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; // TODO: Add support for __pascal to LLVM. case CC_X86Pascal: return llvm::CallingConv::C; // TODO: Add support for __vectorcall to LLVM. case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); case CC_PreserveMost: return llvm::CallingConv::PreserveMost; case CC_PreserveAll: return llvm::CallingConv::PreserveAll; case CC_Swift: return llvm::CallingConv::Swift; case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; } } /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR /// qualification. Either or both of RD and MD may be null. A null RD indicates /// that there is no meaningful 'this' type, and a null MD can occur when /// calling a method pointer. CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, const CXXMethodDecl *MD) { QualType RecTy; if (RD) RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); else RecTy = Context.VoidTy; if (MD) RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); } /// Returns the canonical formal type of the given C++ method. static CanQual GetFormalType(const CXXMethodDecl *MD) { return MD->getType()->getCanonicalTypeUnqualified() .getAs(); } /// Returns the "extra-canonicalized" return type, which discards /// qualifiers on the return type. Codegen doesn't care about them, /// and it makes ABI code a little easier to be able to assume that /// all parameter and return types are top-level unqualified. static CanQualType GetReturnType(QualType RetTy) { return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); } /// Arrange the argument and result information for a value of the given /// unprototyped freestanding function type. const CGFunctionInfo & CodeGenTypes::arrangeFreeFunctionType(CanQual FTNP) { // When translating an unprototyped function type, always use a // variadic type. return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), /*instanceMethod=*/false, /*chainCall=*/false, None, FTNP->getExtInfo(), {}, RequiredArgs(0)); } static void addExtParameterInfosForCall( llvm::SmallVectorImpl ¶mInfos, const FunctionProtoType *proto, unsigned prefixArgs, unsigned totalArgs) { assert(proto->hasExtParameterInfos()); assert(paramInfos.size() <= prefixArgs); assert(proto->getNumParams() + prefixArgs <= totalArgs); paramInfos.reserve(totalArgs); // Add default infos for any prefix args that don't already have infos. paramInfos.resize(prefixArgs); // Add infos for the prototype. for (const auto &ParamInfo : proto->getExtParameterInfos()) { paramInfos.push_back(ParamInfo); // pass_object_size params have no parameter info. if (ParamInfo.hasPassObjectSize()) paramInfos.emplace_back(); } assert(paramInfos.size() <= totalArgs && "Did we forget to insert pass_object_size args?"); // Add default infos for the variadic and/or suffix arguments. paramInfos.resize(totalArgs); } /// Adds the formal parameters in FPT to the given prefix. If any parameter in /// FPT has pass_object_size attrs, then we'll add parameters for those, too. static void appendParameterTypes(const CodeGenTypes &CGT, SmallVectorImpl &prefix, SmallVectorImpl ¶mInfos, CanQual FPT) { // Fast path: don't touch param info if we don't need to. if (!FPT->hasExtParameterInfos()) { assert(paramInfos.empty() && "We have paramInfos, but the prototype doesn't?"); prefix.append(FPT->param_type_begin(), FPT->param_type_end()); return; } unsigned PrefixSize = prefix.size(); // In the vast majority of cases, we'll have precisely FPT->getNumParams() // parameters; the only thing that can change this is the presence of // pass_object_size. So, we preallocate for the common case. prefix.reserve(prefix.size() + FPT->getNumParams()); auto ExtInfos = FPT->getExtParameterInfos(); assert(ExtInfos.size() == FPT->getNumParams()); for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { prefix.push_back(FPT->getParamType(I)); if (ExtInfos[I].hasPassObjectSize()) prefix.push_back(CGT.getContext().getSizeType()); } addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, prefix.size()); } /// Arrange the LLVM function layout for a value of the given function /// type, on top of any implicit parameters already stored. static const CGFunctionInfo & arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, SmallVectorImpl &prefix, CanQual FTP) { SmallVector paramInfos; RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); // FIXME: Kill copy. appendParameterTypes(CGT, prefix, paramInfos, FTP); CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, /*chainCall=*/false, prefix, FTP->getExtInfo(), paramInfos, Required); } /// Arrange the argument and result information for a value of the /// given freestanding function type. const CGFunctionInfo & CodeGenTypes::arrangeFreeFunctionType(CanQual FTP) { SmallVector argTypes; return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, FTP); } static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, bool IsWindows) { // Set the appropriate calling convention for the Function. if (D->hasAttr()) return CC_X86StdCall; if (D->hasAttr()) return CC_X86FastCall; if (D->hasAttr()) return CC_X86RegCall; if (D->hasAttr()) return CC_X86ThisCall; if (D->hasAttr()) return CC_X86VectorCall; if (D->hasAttr()) return CC_X86Pascal; if (PcsAttr *PCS = D->getAttr()) return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); if (D->hasAttr()) return CC_AArch64VectorCall; if (D->hasAttr()) return CC_IntelOclBicc; if (D->hasAttr()) return IsWindows ? CC_C : CC_Win64; if (D->hasAttr()) return IsWindows ? CC_X86_64SysV : CC_C; if (D->hasAttr()) return CC_PreserveMost; if (D->hasAttr()) return CC_PreserveAll; return CC_C; } /// Arrange the argument and result information for a call to an /// unknown C++ non-static member function of the given abstract type. /// (A null RD means we don't have any meaningful "this" argument type, /// so fall back to a generic pointer type). /// The member function must be an ordinary function, i.e. not a /// constructor or destructor. const CGFunctionInfo & CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, const FunctionProtoType *FTP, const CXXMethodDecl *MD) { SmallVector argTypes; // Add the 'this' pointer. argTypes.push_back(DeriveThisType(RD, MD)); return ::arrangeLLVMFunctionInfo( *this, true, argTypes, FTP->getCanonicalTypeUnqualified().getAs()); } /// Set calling convention for CUDA/HIP kernel. static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, const FunctionDecl *FD) { if (FD->hasAttr()) { const FunctionType *FT = FTy->getAs(); CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); FTy = FT->getCanonicalTypeUnqualified(); } } /// Arrange the argument and result information for a declaration or /// definition of the given C++ non-static member function. The /// member function must be an ordinary function, i.e. not a /// constructor or destructor. const CGFunctionInfo & CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { assert(!isa(MD) && "wrong method for constructors!"); assert(!isa(MD) && "wrong method for destructors!"); CanQualType FT = GetFormalType(MD).getAs(); setCUDAKernelCallingConvention(FT, CGM, MD); auto prototype = FT.getAs(); if (MD->isInstance()) { // The abstract case is perfectly fine. const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); } return arrangeFreeFunctionType(prototype); } bool CodeGenTypes::inheritingCtorHasParams( const InheritedConstructor &Inherited, CXXCtorType Type) { // Parameters are unnecessary if we're constructing a base class subobject // and the inherited constructor lives in a virtual base. return Type == Ctor_Complete || !Inherited.getShadowDecl()->constructsVirtualBase() || !Target.getCXXABI().hasConstructorVariants(); } const CGFunctionInfo & CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { auto *MD = cast(GD.getDecl()); SmallVector argTypes; SmallVector paramInfos; argTypes.push_back(DeriveThisType(MD->getParent(), MD)); bool PassParams = true; if (auto *CD = dyn_cast(MD)) { // A base class inheriting constructor doesn't get forwarded arguments // needed to construct a virtual base (or base class thereof). if (auto Inherited = CD->getInheritedConstructor()) PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); } CanQual FTP = GetFormalType(MD); // Add the formal parameters. if (PassParams) appendParameterTypes(*this, argTypes, paramInfos, FTP); CGCXXABI::AddedStructorArgCounts AddedArgs = TheCXXABI.buildStructorSignature(GD, argTypes); if (!paramInfos.empty()) { // Note: prefix implies after the first param. if (AddedArgs.Prefix) paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, FunctionProtoType::ExtParameterInfo{}); if (AddedArgs.Suffix) paramInfos.append(AddedArgs.Suffix, FunctionProtoType::ExtParameterInfo{}); } RequiredArgs required = (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); FunctionType::ExtInfo extInfo = FTP->getExtInfo(); CanQualType resultType = TheCXXABI.HasThisReturn(GD) ? argTypes.front() : TheCXXABI.hasMostDerivedReturn(GD) ? CGM.getContext().VoidPtrTy : Context.VoidTy; return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, /*chainCall=*/false, argTypes, extInfo, paramInfos, required); } static SmallVector getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { SmallVector argTypes; for (auto &arg : args) argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); return argTypes; } static SmallVector getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { SmallVector argTypes; for (auto &arg : args) argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); return argTypes; } static llvm::SmallVector getExtParameterInfosForCall(const FunctionProtoType *proto, unsigned prefixArgs, unsigned totalArgs) { llvm::SmallVector result; if (proto->hasExtParameterInfos()) { addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); } return result; } /// Arrange a call to a C++ method, passing the given arguments. /// /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` /// parameter. /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of /// args. /// PassProtoArgs indicates whether `args` has args for the parameters in the /// given CXXConstructorDecl. const CGFunctionInfo & CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, const CXXConstructorDecl *D, CXXCtorType CtorKind, unsigned ExtraPrefixArgs, unsigned ExtraSuffixArgs, bool PassProtoArgs) { // FIXME: Kill copy. SmallVector ArgTypes; for (const auto &Arg : args) ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); // +1 for implicit this, which should always be args[0]. unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; CanQual FPT = GetFormalType(D); RequiredArgs Required = PassProtoArgs ? RequiredArgs::forPrototypePlus( FPT, TotalPrefixArgs + ExtraSuffixArgs) : RequiredArgs::All; GlobalDecl GD(D, CtorKind); CanQualType ResultType = TheCXXABI.HasThisReturn(GD) ? ArgTypes.front() : TheCXXABI.hasMostDerivedReturn(GD) ? CGM.getContext().VoidPtrTy : Context.VoidTy; FunctionType::ExtInfo Info = FPT->getExtInfo(); llvm::SmallVector ParamInfos; // If the prototype args are elided, we should only have ABI-specific args, // which never have param info. if (PassProtoArgs && FPT->hasExtParameterInfos()) { // ABI-specific suffix arguments are treated the same as variadic arguments. addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, ArgTypes.size()); } return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, /*chainCall=*/false, ArgTypes, Info, ParamInfos, Required); } /// Arrange the argument and result information for the declaration or /// definition of the given function. const CGFunctionInfo & CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { if (const CXXMethodDecl *MD = dyn_cast(FD)) if (MD->isInstance()) return arrangeCXXMethodDeclaration(MD); CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); assert(isa(FTy)); setCUDAKernelCallingConvention(FTy, CGM, FD); // When declaring a function without a prototype, always use a // non-variadic type. if (CanQual noProto = FTy.getAs()) { return arrangeLLVMFunctionInfo( noProto->getReturnType(), /*instanceMethod=*/false, /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); } return arrangeFreeFunctionType(FTy.castAs()); } /// Arrange the argument and result information for the declaration or /// definition of an Objective-C method. const CGFunctionInfo & CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { // It happens that this is the same as a call with no optional // arguments, except also using the formal 'self' type. return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); } /// Arrange the argument and result information for the function type /// through which to perform a send to the given Objective-C method, /// using the given receiver type. The receiver type is not always /// the 'self' type of the method or even an Objective-C pointer type. /// This is *not* the right method for actually performing such a /// message send, due to the possibility of optional arguments. const CGFunctionInfo & CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, QualType receiverType) { SmallVector argTys; SmallVector extParamInfos(2); argTys.push_back(Context.getCanonicalParamType(receiverType)); argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); // FIXME: Kill copy? for (const auto *I : MD->parameters()) { argTys.push_back(Context.getCanonicalParamType(I->getType())); auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( I->hasAttr()); extParamInfos.push_back(extParamInfo); } FunctionType::ExtInfo einfo; bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); if (getContext().getLangOpts().ObjCAutoRefCount && MD->hasAttr()) einfo = einfo.withProducesResult(true); RequiredArgs required = (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); return arrangeLLVMFunctionInfo( GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, /*chainCall=*/false, argTys, einfo, extParamInfos, required); } const CGFunctionInfo & CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, const CallArgList &args) { auto argTypes = getArgTypesForCall(Context, args); FunctionType::ExtInfo einfo; return arrangeLLVMFunctionInfo( GetReturnType(returnType), /*instanceMethod=*/false, /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); } const CGFunctionInfo & CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { // FIXME: Do we need to handle ObjCMethodDecl? const FunctionDecl *FD = cast(GD.getDecl()); if (isa(GD.getDecl()) || isa(GD.getDecl())) return arrangeCXXStructorDeclaration(GD); return arrangeFunctionDeclaration(FD); } /// Arrange a thunk that takes 'this' as the first parameter followed by /// varargs. Return a void pointer, regardless of the actual return type. /// The body of the thunk will end in a musttail call to a function of the /// correct type, and the caller will bitcast the function to the correct /// prototype. const CGFunctionInfo & CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { assert(MD->isVirtual() && "only methods have thunks"); CanQual FTP = GetFormalType(MD); CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, ArgTys, FTP->getExtInfo(), {}, RequiredArgs(1)); } const CGFunctionInfo & CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, CXXCtorType CT) { assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); CanQual FTP = GetFormalType(CD); SmallVector ArgTys; const CXXRecordDecl *RD = CD->getParent(); ArgTys.push_back(DeriveThisType(RD, CD)); if (CT == Ctor_CopyingClosure) ArgTys.push_back(*FTP->param_type_begin()); if (RD->getNumVBases() > 0) ArgTys.push_back(Context.IntTy); CallingConv CC = Context.getDefaultCallingConvention( /*IsVariadic=*/false, /*IsCXXMethod=*/true); return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, /*chainCall=*/false, ArgTys, FunctionType::ExtInfo(CC), {}, RequiredArgs::All); } /// Arrange a call as unto a free function, except possibly with an /// additional number of formal parameters considered required. static const CGFunctionInfo & arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, CodeGenModule &CGM, const CallArgList &args, const FunctionType *fnType, unsigned numExtraRequiredArgs, bool chainCall) { assert(args.size() >= numExtraRequiredArgs); llvm::SmallVector paramInfos; // In most cases, there are no optional arguments. RequiredArgs required = RequiredArgs::All; // If we have a variadic prototype, the required arguments are the // extra prefix plus the arguments in the prototype. if (const FunctionProtoType *proto = dyn_cast(fnType)) { if (proto->isVariadic()) required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); if (proto->hasExtParameterInfos()) addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, args.size()); // If we don't have a prototype at all, but we're supposed to // explicitly use the variadic convention for unprototyped calls, // treat all of the arguments as required but preserve the nominal // possibility of variadics. } else if (CGM.getTargetCodeGenInfo() .isNoProtoCallVariadic(args, cast(fnType))) { required = RequiredArgs(args.size()); } // FIXME: Kill copy. SmallVector argTypes; for (const auto &arg : args) argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), /*instanceMethod=*/false, chainCall, argTypes, fnType->getExtInfo(), paramInfos, required); } /// Figure out the rules for calling a function with the given formal /// type using the given arguments. The arguments are necessary /// because the function might be unprototyped, in which case it's /// target-dependent in crazy ways. const CGFunctionInfo & CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, const FunctionType *fnType, bool chainCall) { return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, chainCall ? 1 : 0, chainCall); } /// A block function is essentially a free function with an /// extra implicit argument. const CGFunctionInfo & CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, const FunctionType *fnType) { return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, /*chainCall=*/false); } const CGFunctionInfo & CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, const FunctionArgList ¶ms) { auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); auto argTypes = getArgTypesForDeclaration(Context, params); return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), /*instanceMethod*/ false, /*chainCall*/ false, argTypes, proto->getExtInfo(), paramInfos, RequiredArgs::forPrototypePlus(proto, 1)); } const CGFunctionInfo & CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, const CallArgList &args) { // FIXME: Kill copy. SmallVector argTypes; for (const auto &Arg : args) argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); return arrangeLLVMFunctionInfo( GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), /*paramInfos=*/ {}, RequiredArgs::All); } const CGFunctionInfo & CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, const FunctionArgList &args) { auto argTypes = getArgTypesForDeclaration(Context, args); return arrangeLLVMFunctionInfo( GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); } const CGFunctionInfo & CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, ArrayRef argTypes) { return arrangeLLVMFunctionInfo( resultType, /*instanceMethod=*/false, /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); } /// Arrange a call to a C++ method, passing the given arguments. /// /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It /// does not count `this`. const CGFunctionInfo & CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, const FunctionProtoType *proto, RequiredArgs required, unsigned numPrefixArgs) { assert(numPrefixArgs + 1 <= args.size() && "Emitting a call with less args than the required prefix?"); // Add one to account for `this`. It's a bit awkward here, but we don't count // `this` in similar places elsewhere. auto paramInfos = getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); // FIXME: Kill copy. auto argTypes = getArgTypesForCall(Context, args); FunctionType::ExtInfo info = proto->getExtInfo(); return arrangeLLVMFunctionInfo( GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, /*chainCall=*/false, argTypes, info, paramInfos, required); } const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { return arrangeLLVMFunctionInfo( getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, None, FunctionType::ExtInfo(), {}, RequiredArgs::All); } const CGFunctionInfo & CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, const CallArgList &args) { assert(signature.arg_size() <= args.size()); if (signature.arg_size() == args.size()) return signature; SmallVector paramInfos; auto sigParamInfos = signature.getExtParameterInfos(); if (!sigParamInfos.empty()) { paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); paramInfos.resize(args.size()); } auto argTypes = getArgTypesForCall(Context, args); assert(signature.getRequiredArgs().allowsOptionalArgs()); return arrangeLLVMFunctionInfo(signature.getReturnType(), signature.isInstanceMethod(), signature.isChainCall(), argTypes, signature.getExtInfo(), paramInfos, signature.getRequiredArgs()); } namespace clang { namespace CodeGen { void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); } } /// Arrange the argument and result information for an abstract value /// of a given function type. This is the method which all of the /// above functions ultimately defer to. const CGFunctionInfo & CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, bool instanceMethod, bool chainCall, ArrayRef argTypes, FunctionType::ExtInfo info, ArrayRef paramInfos, RequiredArgs required) { assert(llvm::all_of(argTypes, [](CanQualType T) { return T.isCanonicalAsParam(); })); // Lookup or create unique function info. llvm::FoldingSetNodeID ID; CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, required, resultType, argTypes); void *insertPos = nullptr; CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); if (FI) return *FI; unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); // Construct the function info. We co-allocate the ArgInfos. FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, paramInfos, resultType, argTypes, required); FunctionInfos.InsertNode(FI, insertPos); bool inserted = FunctionsBeingProcessed.insert(FI).second; (void)inserted; assert(inserted && "Recursively being processed?"); // Compute ABI information. if (CC == llvm::CallingConv::SPIR_KERNEL) { // Force target independent argument handling for the host visible // kernel functions. computeSPIRKernelABIInfo(CGM, *FI); } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { swiftcall::computeABIInfo(CGM, *FI); } else { getABIInfo().computeInfo(*FI); } // Loop over all of the computed argument and return value info. If any of // them are direct or extend without a specified coerce type, specify the // default now. ABIArgInfo &retInfo = FI->getReturnInfo(); if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) retInfo.setCoerceToType(ConvertType(FI->getReturnType())); for (auto &I : FI->arguments()) if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) I.info.setCoerceToType(ConvertType(I.type)); bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; assert(erased && "Not in set?"); return *FI; } CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, bool instanceMethod, bool chainCall, const FunctionType::ExtInfo &info, ArrayRef paramInfos, CanQualType resultType, ArrayRef argTypes, RequiredArgs required) { assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); assert(!required.allowsOptionalArgs() || required.getNumRequiredArgs() <= argTypes.size()); void *buffer = operator new(totalSizeToAlloc( argTypes.size() + 1, paramInfos.size())); CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); FI->CallingConvention = llvmCC; FI->EffectiveCallingConvention = llvmCC; FI->ASTCallingConvention = info.getCC(); FI->InstanceMethod = instanceMethod; FI->ChainCall = chainCall; FI->CmseNSCall = info.getCmseNSCall(); FI->NoReturn = info.getNoReturn(); FI->ReturnsRetained = info.getProducesResult(); FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); FI->NoCfCheck = info.getNoCfCheck(); FI->Required = required; FI->HasRegParm = info.getHasRegParm(); FI->RegParm = info.getRegParm(); FI->ArgStruct = nullptr; FI->ArgStructAlign = 0; FI->NumArgs = argTypes.size(); FI->HasExtParameterInfos = !paramInfos.empty(); FI->getArgsBuffer()[0].type = resultType; for (unsigned i = 0, e = argTypes.size(); i != e; ++i) FI->getArgsBuffer()[i + 1].type = argTypes[i]; for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; return FI; } /***/ namespace { // ABIArgInfo::Expand implementation. // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. struct TypeExpansion { enum TypeExpansionKind { // Elements of constant arrays are expanded recursively. TEK_ConstantArray, // Record fields are expanded recursively (but if record is a union, only // the field with the largest size is expanded). TEK_Record, // For complex types, real and imaginary parts are expanded recursively. TEK_Complex, // All other types are not expandable. TEK_None }; const TypeExpansionKind Kind; TypeExpansion(TypeExpansionKind K) : Kind(K) {} virtual ~TypeExpansion() {} }; struct ConstantArrayExpansion : TypeExpansion { QualType EltTy; uint64_t NumElts; ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} static bool classof(const TypeExpansion *TE) { return TE->Kind == TEK_ConstantArray; } }; struct RecordExpansion : TypeExpansion { SmallVector Bases; SmallVector Fields; RecordExpansion(SmallVector &&Bases, SmallVector &&Fields) : TypeExpansion(TEK_Record), Bases(std::move(Bases)), Fields(std::move(Fields)) {} static bool classof(const TypeExpansion *TE) { return TE->Kind == TEK_Record; } }; struct ComplexExpansion : TypeExpansion { QualType EltTy; ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} static bool classof(const TypeExpansion *TE) { return TE->Kind == TEK_Complex; } }; struct NoExpansion : TypeExpansion { NoExpansion() : TypeExpansion(TEK_None) {} static bool classof(const TypeExpansion *TE) { return TE->Kind == TEK_None; } }; } // namespace static std::unique_ptr getTypeExpansion(QualType Ty, const ASTContext &Context) { if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { return std::make_unique( AT->getElementType(), AT->getSize().getZExtValue()); } if (const RecordType *RT = Ty->getAs()) { SmallVector Bases; SmallVector Fields; const RecordDecl *RD = RT->getDecl(); assert(!RD->hasFlexibleArrayMember() && "Cannot expand structure with flexible array."); if (RD->isUnion()) { // Unions can be here only in degenerative cases - all the fields are same // after flattening. Thus we have to use the "largest" field. const FieldDecl *LargestFD = nullptr; CharUnits UnionSize = CharUnits::Zero(); for (const auto *FD : RD->fields()) { if (FD->isZeroLengthBitField(Context)) continue; assert(!FD->isBitField() && "Cannot expand structure with bit-field members."); CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); if (UnionSize < FieldSize) { UnionSize = FieldSize; LargestFD = FD; } } if (LargestFD) Fields.push_back(LargestFD); } else { if (const auto *CXXRD = dyn_cast(RD)) { assert(!CXXRD->isDynamicClass() && "cannot expand vtable pointers in dynamic classes"); for (const CXXBaseSpecifier &BS : CXXRD->bases()) Bases.push_back(&BS); } for (const auto *FD : RD->fields()) { if (FD->isZeroLengthBitField(Context)) continue; assert(!FD->isBitField() && "Cannot expand structure with bit-field members."); Fields.push_back(FD); } } return std::make_unique(std::move(Bases), std::move(Fields)); } if (const ComplexType *CT = Ty->getAs()) { return std::make_unique(CT->getElementType()); } return std::make_unique(); } static int getExpansionSize(QualType Ty, const ASTContext &Context) { auto Exp = getTypeExpansion(Ty, Context); if (auto CAExp = dyn_cast(Exp.get())) { return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); } if (auto RExp = dyn_cast(Exp.get())) { int Res = 0; for (auto BS : RExp->Bases) Res += getExpansionSize(BS->getType(), Context); for (auto FD : RExp->Fields) Res += getExpansionSize(FD->getType(), Context); return Res; } if (isa(Exp.get())) return 2; assert(isa(Exp.get())); return 1; } void CodeGenTypes::getExpandedTypes(QualType Ty, SmallVectorImpl::iterator &TI) { auto Exp = getTypeExpansion(Ty, Context); if (auto CAExp = dyn_cast(Exp.get())) { for (int i = 0, n = CAExp->NumElts; i < n; i++) { getExpandedTypes(CAExp->EltTy, TI); } } else if (auto RExp = dyn_cast(Exp.get())) { for (auto BS : RExp->Bases) getExpandedTypes(BS->getType(), TI); for (auto FD : RExp->Fields) getExpandedTypes(FD->getType(), TI); } else if (auto CExp = dyn_cast(Exp.get())) { llvm::Type *EltTy = ConvertType(CExp->EltTy); *TI++ = EltTy; *TI++ = EltTy; } else { assert(isa(Exp.get())); *TI++ = ConvertType(Ty); } } static void forConstantArrayExpansion(CodeGenFunction &CGF, ConstantArrayExpansion *CAE, Address BaseAddr, llvm::function_ref Fn) { CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); CharUnits EltAlign = BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); for (int i = 0, n = CAE->NumElts; i < n; i++) { llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); Fn(Address(EltAddr, EltAlign)); } } void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, llvm::Function::arg_iterator &AI) { assert(LV.isSimple() && "Unexpected non-simple lvalue during struct expansion."); auto Exp = getTypeExpansion(Ty, getContext()); if (auto CAExp = dyn_cast(Exp.get())) { forConstantArrayExpansion( *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); ExpandTypeFromArgs(CAExp->EltTy, LV, AI); }); } else if (auto RExp = dyn_cast(Exp.get())) { Address This = LV.getAddress(*this); for (const CXXBaseSpecifier *BS : RExp->Bases) { // Perform a single step derived-to-base conversion. Address Base = GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, /*NullCheckValue=*/false, SourceLocation()); LValue SubLV = MakeAddrLValue(Base, BS->getType()); // Recurse onto bases. ExpandTypeFromArgs(BS->getType(), SubLV, AI); } for (auto FD : RExp->Fields) { // FIXME: What are the right qualifiers here? LValue SubLV = EmitLValueForFieldInitialization(LV, FD); ExpandTypeFromArgs(FD->getType(), SubLV, AI); } } else if (isa(Exp.get())) { auto realValue = &*AI++; auto imagValue = &*AI++; EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); } else { // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a // primitive store. assert(isa(Exp.get())); if (LV.isBitField()) EmitStoreThroughLValue(RValue::get(&*AI++), LV); else EmitStoreOfScalar(&*AI++, LV); } } void CodeGenFunction::ExpandTypeToArgs( QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, SmallVectorImpl &IRCallArgs, unsigned &IRCallArgPos) { auto Exp = getTypeExpansion(Ty, getContext()); if (auto CAExp = dyn_cast(Exp.get())) { Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) : Arg.getKnownRValue().getAggregateAddress(); forConstantArrayExpansion( *this, CAExp, Addr, [&](Address EltAddr) { CallArg EltArg = CallArg( convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), CAExp->EltTy); ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, IRCallArgPos); }); } else if (auto RExp = dyn_cast(Exp.get())) { Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) : Arg.getKnownRValue().getAggregateAddress(); for (const CXXBaseSpecifier *BS : RExp->Bases) { // Perform a single step derived-to-base conversion. Address Base = GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, /*NullCheckValue=*/false, SourceLocation()); CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); // Recurse onto bases. ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, IRCallArgPos); } LValue LV = MakeAddrLValue(This, Ty); for (auto FD : RExp->Fields) { CallArg FldArg = CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, IRCallArgPos); } } else if (isa(Exp.get())) { ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); IRCallArgs[IRCallArgPos++] = CV.first; IRCallArgs[IRCallArgPos++] = CV.second; } else { assert(isa(Exp.get())); auto RV = Arg.getKnownRValue(); assert(RV.isScalar() && "Unexpected non-scalar rvalue during struct expansion."); // Insert a bitcast as needed. llvm::Value *V = RV.getScalarVal(); if (IRCallArgPos < IRFuncTy->getNumParams() && V->getType() != IRFuncTy->getParamType(IRCallArgPos)) V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); IRCallArgs[IRCallArgPos++] = V; } } /// Create a temporary allocation for the purposes of coercion. static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, CharUnits MinAlign, const Twine &Name = "tmp") { // Don't use an alignment that's worse than what LLVM would prefer. auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); } /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are /// accessing some number of bytes out of it, try to gep into the struct to get /// at its inner goodness. Dive as deep as possible without entering an element /// with an in-memory size smaller than DstSize. static Address EnterStructPointerForCoercedAccess(Address SrcPtr, llvm::StructType *SrcSTy, uint64_t DstSize, CodeGenFunction &CGF) { // We can't dive into a zero-element struct. if (SrcSTy->getNumElements() == 0) return SrcPtr; llvm::Type *FirstElt = SrcSTy->getElementType(0); // If the first elt is at least as large as what we're looking for, or if the // first element is the same size as the whole struct, we can enter it. The // comparison must be made on the store size and not the alloca size. Using // the alloca size may overstate the size of the load. uint64_t FirstEltSize = CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); if (FirstEltSize < DstSize && FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) return SrcPtr; // GEP into the first element. SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); // If the first element is a struct, recurse. llvm::Type *SrcTy = SrcPtr.getElementType(); if (llvm::StructType *SrcSTy = dyn_cast(SrcTy)) return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); return SrcPtr; } /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both /// are either integers or pointers. This does a truncation of the value if it /// is too large or a zero extension if it is too small. /// /// This behaves as if the value were coerced through memory, so on big-endian /// targets the high bits are preserved in a truncation, while little-endian /// targets preserve the low bits. static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, llvm::Type *Ty, CodeGenFunction &CGF) { if (Val->getType() == Ty) return Val; if (isa(Val->getType())) { // If this is Pointer->Pointer avoid conversion to and from int. if (isa(Ty)) return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); // Convert the pointer to an integer so we can play with its width. Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); } llvm::Type *DestIntTy = Ty; if (isa(DestIntTy)) DestIntTy = CGF.IntPtrTy; if (Val->getType() != DestIntTy) { const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); if (DL.isBigEndian()) { // Preserve the high bits on big-endian targets. // That is what memory coercion does. uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); if (SrcSize > DstSize) { Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); } else { Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); } } else { // Little-endian targets preserve the low bits. No shifts required. Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); } } if (isa(Ty)) Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); return Val; } /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as /// a pointer to an object of type \arg Ty, known to be aligned to /// \arg SrcAlign bytes. /// /// This safely handles the case when the src type is smaller than the /// destination type; in this situation the values of bits which not /// present in the src are undefined. static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, CodeGenFunction &CGF) { llvm::Type *SrcTy = Src.getElementType(); // If SrcTy and Ty are the same, just do a load. if (SrcTy == Ty) return CGF.Builder.CreateLoad(Src); llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); if (llvm::StructType *SrcSTy = dyn_cast(SrcTy)) { Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize.getFixedSize(), CGF); SrcTy = Src.getElementType(); } llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); // If the source and destination are integer or pointer types, just do an // extension or truncation to the desired type. if ((isa(Ty) || isa(Ty)) && (isa(SrcTy) || isa(SrcTy))) { llvm::Value *Load = CGF.Builder.CreateLoad(Src); return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); } // If load is legal, just bitcast the src pointer. if (!SrcSize.isScalable() && !DstSize.isScalable() && SrcSize.getFixedSize() >= DstSize.getFixedSize()) { // Generally SrcSize is never greater than DstSize, since this means we are // losing bits. However, this can happen in cases where the structure has // additional padding, for example due to a user specified alignment. // // FIXME: Assert that we aren't truncating non-padding bits when have access // to that information. Src = CGF.Builder.CreateElementBitCast(Src, Ty); return CGF.Builder.CreateLoad(Src); } // If coercing a fixed vector to a scalable vector for ABI compatibility, and // the types match, use the llvm.experimental.vector.insert intrinsic to // perform the conversion. if (auto *ScalableDst = dyn_cast(Ty)) { if (auto *FixedSrc = dyn_cast(SrcTy)) { // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate // vector, use a vector insert and bitcast the result. bool NeedsBitcast = false; auto PredType = llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); llvm::Type *OrigType = Ty; if (ScalableDst == PredType && FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); NeedsBitcast = true; } if (ScalableDst->getElementType() == FixedSrc->getElementType()) { auto *Load = CGF.Builder.CreateLoad(Src); auto *UndefVec = llvm::UndefValue::get(ScalableDst); auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); llvm::Value *Result = CGF.Builder.CreateInsertVector( ScalableDst, UndefVec, Load, Zero, "castScalableSve"); if (NeedsBitcast) Result = CGF.Builder.CreateBitCast(Result, OrigType); return Result; } } } // Otherwise do coercion through memory. This is stupid, but simple. Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); CGF.Builder.CreateMemCpy( Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), Src.getAlignment().getAsAlign(), llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); return CGF.Builder.CreateLoad(Tmp); } // Function to store a first-class aggregate into memory. We prefer to // store the elements rather than the aggregate to be more friendly to // fast-isel. // FIXME: Do we need to recurse here? void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile) { // Prefer scalar stores to first-class aggregate stores. if (llvm::StructType *STy = dyn_cast(Val->getType())) { for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { Address EltPtr = Builder.CreateStructGEP(Dest, i); llvm::Value *Elt = Builder.CreateExtractValue(Val, i); Builder.CreateStore(Elt, EltPtr, DestIsVolatile); } } else { Builder.CreateStore(Val, Dest, DestIsVolatile); } } /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, /// where the source and destination may have different types. The /// destination is known to be aligned to \arg DstAlign bytes. /// /// This safely handles the case when the src type is larger than the /// destination type; the upper bits of the src will be lost. static void CreateCoercedStore(llvm::Value *Src, Address Dst, bool DstIsVolatile, CodeGenFunction &CGF) { llvm::Type *SrcTy = Src->getType(); llvm::Type *DstTy = Dst.getElementType(); if (SrcTy == DstTy) { CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); return; } llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); if (llvm::StructType *DstSTy = dyn_cast(DstTy)) { Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize.getFixedSize(), CGF); DstTy = Dst.getElementType(); } llvm::PointerType *SrcPtrTy = llvm::dyn_cast(SrcTy); llvm::PointerType *DstPtrTy = llvm::dyn_cast(DstTy); if (SrcPtrTy && DstPtrTy && SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); return; } // If the source and destination are integer or pointer types, just do an // extension or truncation to the desired type. if ((isa(SrcTy) || isa(SrcTy)) && (isa(DstTy) || isa(DstTy))) { Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); return; } llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); // If store is legal, just bitcast the src pointer. if (isa(SrcTy) || isa(DstTy) || SrcSize.getFixedSize() <= DstSize.getFixedSize()) { Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); } else { // Otherwise do coercion through memory. This is stupid, but // simple. // Generally SrcSize is never greater than DstSize, since this means we are // losing bits. However, this can happen in cases where the structure has // additional padding, for example due to a user specified alignment. // // FIXME: Assert that we aren't truncating non-padding bits when have access // to that information. Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); CGF.Builder.CreateStore(Src, Tmp); CGF.Builder.CreateMemCpy( Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); } } static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, const ABIArgInfo &info) { if (unsigned offset = info.getDirectOffset()) { addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, CharUnits::fromQuantity(offset)); addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); } return addr; } namespace { /// Encapsulates information about the way function arguments from /// CGFunctionInfo should be passed to actual LLVM IR function. class ClangToLLVMArgMapping { static const unsigned InvalidIndex = ~0U; unsigned InallocaArgNo; unsigned SRetArgNo; unsigned TotalIRArgs; /// Arguments of LLVM IR function corresponding to single Clang argument. struct IRArgs { unsigned PaddingArgIndex; // Argument is expanded to IR arguments at positions // [FirstArgIndex, FirstArgIndex + NumberOfArgs). unsigned FirstArgIndex; unsigned NumberOfArgs; IRArgs() : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), NumberOfArgs(0) {} }; SmallVector ArgInfo; public: ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, bool OnlyRequiredArgs = false) : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { construct(Context, FI, OnlyRequiredArgs); } bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } unsigned getInallocaArgNo() const { assert(hasInallocaArg()); return InallocaArgNo; } bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } unsigned getSRetArgNo() const { assert(hasSRetArg()); return SRetArgNo; } unsigned totalIRArgs() const { return TotalIRArgs; } bool hasPaddingArg(unsigned ArgNo) const { assert(ArgNo < ArgInfo.size()); return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; } unsigned getPaddingArgNo(unsigned ArgNo) const { assert(hasPaddingArg(ArgNo)); return ArgInfo[ArgNo].PaddingArgIndex; } /// Returns index of first IR argument corresponding to ArgNo, and their /// quantity. std::pair getIRArgs(unsigned ArgNo) const { assert(ArgNo < ArgInfo.size()); return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, ArgInfo[ArgNo].NumberOfArgs); } private: void construct(const ASTContext &Context, const CGFunctionInfo &FI, bool OnlyRequiredArgs); }; void ClangToLLVMArgMapping::construct(const ASTContext &Context, const CGFunctionInfo &FI, bool OnlyRequiredArgs) { unsigned IRArgNo = 0; bool SwapThisWithSRet = false; const ABIArgInfo &RetAI = FI.getReturnInfo(); if (RetAI.getKind() == ABIArgInfo::Indirect) { SwapThisWithSRet = RetAI.isSRetAfterThis(); SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; } unsigned ArgNo = 0; unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; ++I, ++ArgNo) { assert(I != FI.arg_end()); QualType ArgType = I->type; const ABIArgInfo &AI = I->info; // Collect data about IR arguments corresponding to Clang argument ArgNo. auto &IRArgs = ArgInfo[ArgNo]; if (AI.getPaddingType()) IRArgs.PaddingArgIndex = IRArgNo++; switch (AI.getKind()) { case ABIArgInfo::Extend: case ABIArgInfo::Direct: { // FIXME: handle sseregparm someday... llvm::StructType *STy = dyn_cast(AI.getCoerceToType()); if (AI.isDirect() && AI.getCanBeFlattened() && STy) { IRArgs.NumberOfArgs = STy->getNumElements(); } else { IRArgs.NumberOfArgs = 1; } break; } case ABIArgInfo::Indirect: case ABIArgInfo::IndirectAliased: IRArgs.NumberOfArgs = 1; break; case ABIArgInfo::Ignore: case ABIArgInfo::InAlloca: // ignore and inalloca doesn't have matching LLVM parameters. IRArgs.NumberOfArgs = 0; break; case ABIArgInfo::CoerceAndExpand: IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); break; case ABIArgInfo::Expand: IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); break; } if (IRArgs.NumberOfArgs > 0) { IRArgs.FirstArgIndex = IRArgNo; IRArgNo += IRArgs.NumberOfArgs; } // Skip over the sret parameter when it comes second. We already handled it // above. if (IRArgNo == 1 && SwapThisWithSRet) IRArgNo++; } assert(ArgNo == ArgInfo.size()); if (FI.usesInAlloca()) InallocaArgNo = IRArgNo++; TotalIRArgs = IRArgNo; } } // namespace /***/ bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { const auto &RI = FI.getReturnInfo(); return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); } bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { return ReturnTypeUsesSRet(FI) && getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); } bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { if (const BuiltinType *BT = ResultType->getAs()) { switch (BT->getKind()) { default: return false; case BuiltinType::Float: return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); case BuiltinType::Double: return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); case BuiltinType::LongDouble: return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); } } return false; } bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { if (const ComplexType *CT = ResultType->getAs()) { if (const BuiltinType *BT = CT->getElementType()->getAs()) { if (BT->getKind() == BuiltinType::LongDouble) return getTarget().useObjCFP2RetForComplexLongDouble(); } } return false; } llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); return GetFunctionType(FI); } llvm::FunctionType * CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { bool Inserted = FunctionsBeingProcessed.insert(&FI).second; (void)Inserted; assert(Inserted && "Recursively being processed?"); llvm::Type *resultType = nullptr; const ABIArgInfo &retAI = FI.getReturnInfo(); switch (retAI.getKind()) { case ABIArgInfo::Expand: case ABIArgInfo::IndirectAliased: llvm_unreachable("Invalid ABI kind for return argument"); case ABIArgInfo::Extend: case ABIArgInfo::Direct: resultType = retAI.getCoerceToType(); break; case ABIArgInfo::InAlloca: if (retAI.getInAllocaSRet()) { // sret things on win32 aren't void, they return the sret pointer. QualType ret = FI.getReturnType(); llvm::Type *ty = ConvertType(ret); unsigned addressSpace = Context.getTargetAddressSpace(ret); resultType = llvm::PointerType::get(ty, addressSpace); } else { resultType = llvm::Type::getVoidTy(getLLVMContext()); } break; case ABIArgInfo::Indirect: case ABIArgInfo::Ignore: resultType = llvm::Type::getVoidTy(getLLVMContext()); break; case ABIArgInfo::CoerceAndExpand: resultType = retAI.getUnpaddedCoerceAndExpandType(); break; } ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); SmallVector ArgTypes(IRFunctionArgs.totalIRArgs()); // Add type for sret argument. if (IRFunctionArgs.hasSRetArg()) { QualType Ret = FI.getReturnType(); llvm::Type *Ty = ConvertType(Ret); unsigned AddressSpace = Context.getTargetAddressSpace(Ret); ArgTypes[IRFunctionArgs.getSRetArgNo()] = llvm::PointerType::get(Ty, AddressSpace); } // Add type for inalloca argument. if (IRFunctionArgs.hasInallocaArg()) { auto ArgStruct = FI.getArgStruct(); assert(ArgStruct); ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); } // Add in all of the required arguments. unsigned ArgNo = 0; CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie = it + FI.getNumRequiredArgs(); for (; it != ie; ++it, ++ArgNo) { const ABIArgInfo &ArgInfo = it->info; // Insert a padding type to ensure proper alignment. if (IRFunctionArgs.hasPaddingArg(ArgNo)) ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = ArgInfo.getPaddingType(); unsigned FirstIRArg, NumIRArgs; std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); switch (ArgInfo.getKind()) { case ABIArgInfo::Ignore: case ABIArgInfo::InAlloca: assert(NumIRArgs == 0); break; case ABIArgInfo::Indirect: { assert(NumIRArgs == 1); // indirect arguments are always on the stack, which is alloca addr space. llvm::Type *LTy = ConvertTypeForMem(it->type); ArgTypes[FirstIRArg] = LTy->getPointerTo( CGM.getDataLayout().getAllocaAddrSpace()); break; } case ABIArgInfo::IndirectAliased: { assert(NumIRArgs == 1); llvm::Type *LTy = ConvertTypeForMem(it->type); ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); break; } case ABIArgInfo::Extend: case ABIArgInfo::Direct: { // Fast-isel and the optimizer generally like scalar values better than // FCAs, so we flatten them if this is safe to do for this argument. llvm::Type *argType = ArgInfo.getCoerceToType(); llvm::StructType *st = dyn_cast(argType); if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { assert(NumIRArgs == st->getNumElements()); for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) ArgTypes[FirstIRArg + i] = st->getElementType(i); } else { assert(NumIRArgs == 1); ArgTypes[FirstIRArg] = argType; } break; } case ABIArgInfo::CoerceAndExpand: { auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { *ArgTypesIter++ = EltTy; } assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); break; } case ABIArgInfo::Expand: auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; getExpandedTypes(it->type, ArgTypesIter); assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); break; } } bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; assert(Erased && "Not in set?"); return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); } llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { const CXXMethodDecl *MD = cast(GD.getDecl()); const FunctionProtoType *FPT = MD->getType()->getAs(); if (!isFuncTypeConvertible(FPT)) return llvm::StructType::get(getLLVMContext()); return GetFunctionType(GD); } static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, llvm::AttrBuilder &FuncAttrs, const FunctionProtoType *FPT) { if (!FPT) return; if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && FPT->isNothrow()) FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); } static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs, const Decl *Callee) { if (!Callee) return; SmallVector Attrs; for (const AssumptionAttr *AA : Callee->specific_attrs()) AA->getAssumption().split(Attrs, ","); if (!Attrs.empty()) FuncAttrs.addAttribute(llvm::AssumptionAttrKey, llvm::join(Attrs.begin(), Attrs.end(), ",")); } bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, QualType ReturnType) { // We can't just discard the return value for a record type with a // complex destructor or a non-trivially copyable type. if (const RecordType *RT = ReturnType.getCanonicalType()->getAs()) { if (const auto *ClassDecl = dyn_cast(RT->getDecl())) return ClassDecl->hasTrivialDestructor(); } return ReturnType.isTriviallyCopyableType(Context); } void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, bool HasOptnone, bool AttrOnCallSite, llvm::AttrBuilder &FuncAttrs) { // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. if (!HasOptnone) { if (CodeGenOpts.OptimizeSize) FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); if (CodeGenOpts.OptimizeSize == 2) FuncAttrs.addAttribute(llvm::Attribute::MinSize); } if (CodeGenOpts.DisableRedZone) FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); if (CodeGenOpts.IndirectTlsSegRefs) FuncAttrs.addAttribute("indirect-tls-seg-refs"); if (CodeGenOpts.NoImplicitFloat) FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); if (AttrOnCallSite) { // Attributes that should go on the call site only. if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); if (!CodeGenOpts.TrapFuncName.empty()) FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); } else { StringRef FpKind; switch (CodeGenOpts.getFramePointer()) { case CodeGenOptions::FramePointerKind::None: FpKind = "none"; break; case CodeGenOptions::FramePointerKind::NonLeaf: FpKind = "non-leaf"; break; case CodeGenOptions::FramePointerKind::All: FpKind = "all"; break; } FuncAttrs.addAttribute("frame-pointer", FpKind); if (CodeGenOpts.LessPreciseFPMAD) FuncAttrs.addAttribute("less-precise-fpmad", "true"); if (CodeGenOpts.NullPointerIsValid) FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode.str()); if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { FuncAttrs.addAttribute( "denormal-fp-math-f32", CodeGenOpts.FP32DenormalMode.str()); } if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore) FuncAttrs.addAttribute("no-trapping-math", "true"); // TODO: Are these all needed? // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. if (LangOpts.NoHonorInfs) FuncAttrs.addAttribute("no-infs-fp-math", "true"); if (LangOpts.NoHonorNaNs) FuncAttrs.addAttribute("no-nans-fp-math", "true"); if (LangOpts.ApproxFunc) FuncAttrs.addAttribute("approx-func-fp-math", "true"); if (LangOpts.UnsafeFPMath) FuncAttrs.addAttribute("unsafe-fp-math", "true"); if (CodeGenOpts.SoftFloat) FuncAttrs.addAttribute("use-soft-float", "true"); FuncAttrs.addAttribute("stack-protector-buffer-size", llvm::utostr(CodeGenOpts.SSPBufferSize)); if (LangOpts.NoSignedZero) FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); // TODO: Reciprocal estimate codegen options should apply to instructions? const std::vector &Recips = CodeGenOpts.Reciprocals; if (!Recips.empty()) FuncAttrs.addAttribute("reciprocal-estimates", llvm::join(Recips, ",")); if (!CodeGenOpts.PreferVectorWidth.empty() && CodeGenOpts.PreferVectorWidth != "none") FuncAttrs.addAttribute("prefer-vector-width", CodeGenOpts.PreferVectorWidth); if (CodeGenOpts.StackRealignment) FuncAttrs.addAttribute("stackrealign"); if (CodeGenOpts.Backchain) FuncAttrs.addAttribute("backchain"); if (CodeGenOpts.EnableSegmentedStacks) FuncAttrs.addAttribute("split-stack"); if (CodeGenOpts.SpeculativeLoadHardening) FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); } if (getLangOpts().assumeFunctionsAreConvergent()) { // Conservatively, mark all functions and calls in CUDA and OpenCL as // convergent (meaning, they may call an intrinsically convergent op, such // as __syncthreads() / barrier(), and so can't have certain optimizations // applied around them). LLVM will remove this attribute where it safely // can. FuncAttrs.addAttribute(llvm::Attribute::Convergent); } if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { // Exceptions aren't supported in CUDA device code. FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); } for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { StringRef Var, Value; std::tie(Var, Value) = Attr.split('='); FuncAttrs.addAttribute(Var, Value); } } void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { llvm::AttrBuilder FuncAttrs(F.getContext()); getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), /* AttrOnCallSite = */ false, FuncAttrs); // TODO: call GetCPUAndFeaturesAttributes? F.addFnAttrs(FuncAttrs); } void CodeGenModule::addDefaultFunctionDefinitionAttributes( llvm::AttrBuilder &attrs) { getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, /*for call*/ false, attrs); GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); } static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, const LangOptions &LangOpts, const NoBuiltinAttr *NBA = nullptr) { auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { SmallString<32> AttributeName; AttributeName += "no-builtin-"; AttributeName += BuiltinName; FuncAttrs.addAttribute(AttributeName); }; // First, handle the language options passed through -fno-builtin. if (LangOpts.NoBuiltin) { // -fno-builtin disables them all. FuncAttrs.addAttribute("no-builtins"); return; } // Then, add attributes for builtins specified through -fno-builtin-. llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); // Now, let's check the __attribute__((no_builtin("...")) attribute added to // the source. if (!NBA) return; // If there is a wildcard in the builtin names specified through the // attribute, disable them all. if (llvm::is_contained(NBA->builtinNames(), "*")) { FuncAttrs.addAttribute("no-builtins"); return; } // And last, add the rest of the builtin names. llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); } static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, const llvm::DataLayout &DL, const ABIArgInfo &AI, bool CheckCoerce = true) { llvm::Type *Ty = Types.ConvertTypeForMem(QTy); if (AI.getKind() == ABIArgInfo::Indirect) return true; if (AI.getKind() == ABIArgInfo::Extend) return true; if (!DL.typeSizeEqualsStoreSize(Ty)) // TODO: This will result in a modest amount of values not marked noundef // when they could be. We care about values that *invisibly* contain undef // bits from the perspective of LLVM IR. return false; if (CheckCoerce && AI.canHaveCoerceToType()) { llvm::Type *CoerceTy = AI.getCoerceToType(); if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), DL.getTypeSizeInBits(Ty))) // If we're coercing to a type with a greater size than the canonical one, // we're introducing new undef bits. // Coercing to a type of smaller or equal size is ok, as we know that // there's no internal padding (typeSizeEqualsStoreSize). return false; } if (QTy->isBitIntType()) return true; if (QTy->isReferenceType()) return true; if (QTy->isNullPtrType()) return false; if (QTy->isMemberPointerType()) // TODO: Some member pointers are `noundef`, but it depends on the ABI. For // now, never mark them. return false; if (QTy->isScalarType()) { if (const ComplexType *Complex = dyn_cast(QTy)) return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); return true; } if (const VectorType *Vector = dyn_cast(QTy)) return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); if (const MatrixType *Matrix = dyn_cast(QTy)) return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); if (const ArrayType *Array = dyn_cast(QTy)) return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); // TODO: Some structs may be `noundef`, in specific situations. return false; } /// Construct the IR attribute list of a function or call. /// /// When adding an attribute, please consider where it should be handled: /// /// - getDefaultFunctionAttributes is for attributes that are essentially /// part of the global target configuration (but perhaps can be /// overridden on a per-function basis). Adding attributes there /// will cause them to also be set in frontends that build on Clang's /// target-configuration logic, as well as for code defined in library /// modules such as CUDA's libdevice. /// /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes /// and adds declaration-specific, convention-specific, and /// frontend-specific logic. The last is of particular importance: /// attributes that restrict how the frontend generates code must be /// added here rather than getDefaultFunctionAttributes. /// void CodeGenModule::ConstructAttributeList(StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite, bool IsThunk) { llvm::AttrBuilder FuncAttrs(getLLVMContext()); llvm::AttrBuilder RetAttrs(getLLVMContext()); // Collect function IR attributes from the CC lowering. // We'll collect the paramete and result attributes later. CallingConv = FI.getEffectiveCallingConvention(); if (FI.isNoReturn()) FuncAttrs.addAttribute(llvm::Attribute::NoReturn); if (FI.isCmseNSCall()) FuncAttrs.addAttribute("cmse_nonsecure_call"); // Collect function IR attributes from the callee prototype if we have one. AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, CalleeInfo.getCalleeFunctionProtoType()); const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); // Attach assumption attributes to the declaration. If this is a call // site, attach assumptions from the caller to the call as well. AddAttributesFromAssumes(FuncAttrs, TargetDecl); bool HasOptnone = false; // The NoBuiltinAttr attached to the target FunctionDecl. const NoBuiltinAttr *NBA = nullptr; // Collect function IR attributes based on declaration-specific // information. // FIXME: handle sseregparm someday... if (TargetDecl) { if (TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); if (TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); if (TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::NoReturn); if (TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::Cold); if (TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::Hot); if (TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); if (TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::Convergent); if (const FunctionDecl *Fn = dyn_cast(TargetDecl)) { AddAttributesFromFunctionProtoType( getContext(), FuncAttrs, Fn->getType()->getAs()); if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { // A sane operator new returns a non-aliasing pointer. auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); if (getCodeGenOpts().AssumeSaneOperatorNew && (Kind == OO_New || Kind == OO_Array_New)) RetAttrs.addAttribute(llvm::Attribute::NoAlias); } const CXXMethodDecl *MD = dyn_cast(Fn); const bool IsVirtualCall = MD && MD->isVirtual(); // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a // virtual function. These attributes are not inherited by overloads. if (!(AttrOnCallSite && IsVirtualCall)) { if (Fn->isNoReturn()) FuncAttrs.addAttribute(llvm::Attribute::NoReturn); NBA = Fn->getAttr(); } // Only place nomerge attribute on call sites, never functions. This // allows it to work on indirect virtual function calls. if (AttrOnCallSite && TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::NoMerge); } // 'const', 'pure' and 'noalias' attributed functions are also nounwind. if (TargetDecl->hasAttr()) { FuncAttrs.addAttribute(llvm::Attribute::ReadNone); FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); // gcc specifies that 'const' functions have greater restrictions than // 'pure' functions, so they also cannot have infinite loops. FuncAttrs.addAttribute(llvm::Attribute::WillReturn); } else if (TargetDecl->hasAttr()) { FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); // gcc specifies that 'pure' functions cannot have infinite loops. FuncAttrs.addAttribute(llvm::Attribute::WillReturn); } else if (TargetDecl->hasAttr()) { FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); } if (TargetDecl->hasAttr()) RetAttrs.addAttribute(llvm::Attribute::NoAlias); if (TargetDecl->hasAttr() && !CodeGenOpts.NullPointerIsValid) RetAttrs.addAttribute(llvm::Attribute::NonNull); if (TargetDecl->hasAttr()) FuncAttrs.addAttribute("no_caller_saved_registers"); if (TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); if (TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::NoCallback); HasOptnone = TargetDecl->hasAttr(); if (auto *AllocSize = TargetDecl->getAttr()) { Optional NumElemsParam; if (AllocSize->getNumElemsParam().isValid()) NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), NumElemsParam); } if (TargetDecl->hasAttr()) { if (getLangOpts().OpenCLVersion <= 120) { // OpenCL v1.2 Work groups are always uniform FuncAttrs.addAttribute("uniform-work-group-size", "true"); } else { // OpenCL v2.0 Work groups may be whether uniform or not. // '-cl-uniform-work-group-size' compile option gets a hint // to the compiler that the global work-size be a multiple of // the work-group size specified to clEnqueueNDRangeKernel // (i.e. work groups are uniform). FuncAttrs.addAttribute("uniform-work-group-size", llvm::toStringRef(CodeGenOpts.UniformWGSize)); } } } // Attach "no-builtins" attributes to: // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-". // * definitions: "no-builtins" or "no-builtin-" only. // The attributes can come from: // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin- // * FunctionDecl attributes: __attribute__((no_builtin(...))) addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); // Collect function IR attributes based on global settiings. getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); // Override some default IR attributes based on declaration-specific // information. if (TargetDecl) { if (TargetDecl->hasAttr()) FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); if (TargetDecl->hasAttr()) FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); if (TargetDecl->hasAttr()) FuncAttrs.removeAttribute("split-stack"); // Add NonLazyBind attribute to function declarations when -fno-plt // is used. // FIXME: what if we just haven't processed the function definition // yet, or if it's an external definition like C99 inline? if (CodeGenOpts.NoPLT) { if (auto *Fn = dyn_cast(TargetDecl)) { if (!Fn->isDefined() && !AttrOnCallSite) { FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); } } } } // Add "sample-profile-suffix-elision-policy" attribute for internal linkage // functions with -funique-internal-linkage-names. if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { if (isa(TargetDecl)) { if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) == llvm::GlobalValue::InternalLinkage) FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", "selected"); } } // Collect non-call-site function IR attributes from declaration-specific // information. if (!AttrOnCallSite) { if (TargetDecl && TargetDecl->hasAttr()) FuncAttrs.addAttribute("cmse_nonsecure_entry"); // Whether tail calls are enabled. auto shouldDisableTailCalls = [&] { // Should this be honored in getDefaultFunctionAttributes? if (CodeGenOpts.DisableTailCalls) return true; if (!TargetDecl) return false; if (TargetDecl->hasAttr() || TargetDecl->hasAttr()) return true; if (CodeGenOpts.NoEscapingBlockTailCalls) { if (const auto *BD = dyn_cast(TargetDecl)) if (!BD->doesNotEscape()) return true; } return false; }; if (shouldDisableTailCalls()) FuncAttrs.addAttribute("disable-tail-calls", "true"); // CPU/feature overrides. addDefaultFunctionDefinitionAttributes // handles these separately to set them based on the global defaults. GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); } // Collect attributes from arguments and return values. ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); QualType RetTy = FI.getReturnType(); const ABIArgInfo &RetAI = FI.getReturnInfo(); const llvm::DataLayout &DL = getDataLayout(); // C++ explicitly makes returning undefined values UB. C's rule only applies // to used values, so we never mark them noundef for now. bool HasStrictReturn = getLangOpts().CPlusPlus; if (TargetDecl && HasStrictReturn) { if (const FunctionDecl *FDecl = dyn_cast(TargetDecl)) HasStrictReturn &= !FDecl->isExternC(); else if (const VarDecl *VDecl = dyn_cast(TargetDecl)) // Function pointer HasStrictReturn &= !VDecl->isExternC(); } // We don't want to be too aggressive with the return checking, unless // it's explicit in the code opts or we're using an appropriate sanitizer. // Try to respect what the programmer intended. HasStrictReturn &= getCodeGenOpts().StrictReturn || !MayDropFunctionReturn(getContext(), RetTy) || getLangOpts().Sanitize.has(SanitizerKind::Memory) || getLangOpts().Sanitize.has(SanitizerKind::Return); // Determine if the return type could be partially undef if (!CodeGenOpts.DisableNoundefAttrs && HasStrictReturn) { if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) RetAttrs.addAttribute(llvm::Attribute::NoUndef); } switch (RetAI.getKind()) { case ABIArgInfo::Extend: if (RetAI.isSignExt()) RetAttrs.addAttribute(llvm::Attribute::SExt); else RetAttrs.addAttribute(llvm::Attribute::ZExt); LLVM_FALLTHROUGH; case ABIArgInfo::Direct: if (RetAI.getInReg()) RetAttrs.addAttribute(llvm::Attribute::InReg); break; case ABIArgInfo::Ignore: break; case ABIArgInfo::InAlloca: case ABIArgInfo::Indirect: { // inalloca and sret disable readnone and readonly FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) .removeAttribute(llvm::Attribute::ReadNone); break; } case ABIArgInfo::CoerceAndExpand: break; case ABIArgInfo::Expand: case ABIArgInfo::IndirectAliased: llvm_unreachable("Invalid ABI kind for return argument"); } if (!IsThunk) { // FIXME: fix this properly, https://reviews.llvm.org/D100388 if (const auto *RefTy = RetTy->getAs()) { QualType PTy = RefTy->getPointeeType(); if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) RetAttrs.addDereferenceableAttr( getMinimumObjectSize(PTy).getQuantity()); if (getContext().getTargetAddressSpace(PTy) == 0 && !CodeGenOpts.NullPointerIsValid) RetAttrs.addAttribute(llvm::Attribute::NonNull); if (PTy->isObjectType()) { llvm::Align Alignment = getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); RetAttrs.addAlignmentAttr(Alignment); } } } bool hasUsedSRet = false; SmallVector ArgAttrs(IRFunctionArgs.totalIRArgs()); // Attach attributes to sret. if (IRFunctionArgs.hasSRetArg()) { llvm::AttrBuilder SRETAttrs(getLLVMContext()); SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); hasUsedSRet = true; if (RetAI.getInReg()) SRETAttrs.addAttribute(llvm::Attribute::InReg); SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); ArgAttrs[IRFunctionArgs.getSRetArgNo()] = llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); } // Attach attributes to inalloca argument. if (IRFunctionArgs.hasInallocaArg()) { llvm::AttrBuilder Attrs(getLLVMContext()); Attrs.addInAllocaAttr(FI.getArgStruct()); ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = llvm::AttributeSet::get(getLLVMContext(), Attrs); } // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, // unless this is a thunk function. // FIXME: fix this properly, https://reviews.llvm.org/D100388 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { auto IRArgs = IRFunctionArgs.getIRArgs(0); assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); llvm::AttrBuilder Attrs(getLLVMContext()); QualType ThisTy = FI.arg_begin()->type.castAs()->getPointeeType(); if (!CodeGenOpts.NullPointerIsValid && getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { Attrs.addAttribute(llvm::Attribute::NonNull); Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); } else { // FIXME dereferenceable should be correct here, regardless of // NullPointerIsValid. However, dereferenceable currently does not always // respect NullPointerIsValid and may imply nonnull and break the program. // See https://reviews.llvm.org/D66618 for discussions. Attrs.addDereferenceableOrNullAttr( getMinimumObjectSize( FI.arg_begin()->type.castAs()->getPointeeType()) .getQuantity()); } llvm::Align Alignment = getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) .getAsAlign(); Attrs.addAlignmentAttr(Alignment); ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); } unsigned ArgNo = 0; for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), E = FI.arg_end(); I != E; ++I, ++ArgNo) { QualType ParamType = I->type; const ABIArgInfo &AI = I->info; llvm::AttrBuilder Attrs(getLLVMContext()); // Add attribute for padding argument, if necessary. if (IRFunctionArgs.hasPaddingArg(ArgNo)) { if (AI.getPaddingInReg()) { ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = llvm::AttributeSet::get( getLLVMContext(), llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); } } // Decide whether the argument we're handling could be partially undef if (!CodeGenOpts.DisableNoundefAttrs && DetermineNoUndef(ParamType, getTypes(), DL, AI)) { Attrs.addAttribute(llvm::Attribute::NoUndef); } // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we // have the corresponding parameter variable. It doesn't make // sense to do it here because parameters are so messed up. switch (AI.getKind()) { case ABIArgInfo::Extend: if (AI.isSignExt()) Attrs.addAttribute(llvm::Attribute::SExt); else Attrs.addAttribute(llvm::Attribute::ZExt); LLVM_FALLTHROUGH; case ABIArgInfo::Direct: if (ArgNo == 0 && FI.isChainCall()) Attrs.addAttribute(llvm::Attribute::Nest); else if (AI.getInReg()) Attrs.addAttribute(llvm::Attribute::InReg); Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); break; case ABIArgInfo::Indirect: { if (AI.getInReg()) Attrs.addAttribute(llvm::Attribute::InReg); if (AI.getIndirectByVal()) Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); auto *Decl = ParamType->getAsRecordDecl(); if (CodeGenOpts.PassByValueIsNoAlias && Decl && Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) // When calling the function, the pointer passed in will be the only // reference to the underlying object. Mark it accordingly. Attrs.addAttribute(llvm::Attribute::NoAlias); // TODO: We could add the byref attribute if not byval, but it would // require updating many testcases. CharUnits Align = AI.getIndirectAlign(); // In a byval argument, it is important that the required // alignment of the type is honored, as LLVM might be creating a // *new* stack object, and needs to know what alignment to give // it. (Sometimes it can deduce a sensible alignment on its own, // but not if clang decides it must emit a packed struct, or the // user specifies increased alignment requirements.) // // This is different from indirect *not* byval, where the object // exists already, and the align attribute is purely // informative. assert(!Align.isZero()); // For now, only add this when we have a byval argument. // TODO: be less lazy about updating test cases. if (AI.getIndirectByVal()) Attrs.addAlignmentAttr(Align.getQuantity()); // byval disables readnone and readonly. FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) .removeAttribute(llvm::Attribute::ReadNone); break; } case ABIArgInfo::IndirectAliased: { CharUnits Align = AI.getIndirectAlign(); Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); Attrs.addAlignmentAttr(Align.getQuantity()); break; } case ABIArgInfo::Ignore: case ABIArgInfo::Expand: case ABIArgInfo::CoerceAndExpand: break; case ABIArgInfo::InAlloca: // inalloca disables readnone and readonly. FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) .removeAttribute(llvm::Attribute::ReadNone); continue; } if (const auto *RefTy = ParamType->getAs()) { QualType PTy = RefTy->getPointeeType(); if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) Attrs.addDereferenceableAttr( getMinimumObjectSize(PTy).getQuantity()); if (getContext().getTargetAddressSpace(PTy) == 0 && !CodeGenOpts.NullPointerIsValid) Attrs.addAttribute(llvm::Attribute::NonNull); if (PTy->isObjectType()) { llvm::Align Alignment = getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); Attrs.addAlignmentAttr(Alignment); } } switch (FI.getExtParameterInfo(ArgNo).getABI()) { case ParameterABI::Ordinary: break; case ParameterABI::SwiftIndirectResult: { // Add 'sret' if we haven't already used it for something, but // only if the result is void. if (!hasUsedSRet && RetTy->isVoidType()) { Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); hasUsedSRet = true; } // Add 'noalias' in either case. Attrs.addAttribute(llvm::Attribute::NoAlias); // Add 'dereferenceable' and 'alignment'. auto PTy = ParamType->getPointeeType(); if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { auto info = getContext().getTypeInfoInChars(PTy); Attrs.addDereferenceableAttr(info.Width.getQuantity()); Attrs.addAlignmentAttr(info.Align.getAsAlign()); } break; } case ParameterABI::SwiftErrorResult: Attrs.addAttribute(llvm::Attribute::SwiftError); break; case ParameterABI::SwiftContext: Attrs.addAttribute(llvm::Attribute::SwiftSelf); break; case ParameterABI::SwiftAsyncContext: Attrs.addAttribute(llvm::Attribute::SwiftAsync); break; } if (FI.getExtParameterInfo(ArgNo).isNoEscape()) Attrs.addAttribute(llvm::Attribute::NoCapture); if (Attrs.hasAttributes()) { unsigned FirstIRArg, NumIRArgs; std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); for (unsigned i = 0; i < NumIRArgs; i++) ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); } } assert(ArgNo == FI.arg_size()); AttrList = llvm::AttributeList::get( getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); } /// An argument came in as a promoted argument; demote it back to its /// declared type. static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, const VarDecl *var, llvm::Value *value) { llvm::Type *varType = CGF.ConvertType(var->getType()); // This can happen with promotions that actually don't change the // underlying type, like the enum promotions. if (value->getType() == varType) return value; assert((varType->isIntegerTy() || varType->isFloatingPointTy()) && "unexpected promotion type"); if (isa(varType)) return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); } /// Returns the attribute (either parameter attribute, or function /// attribute), which declares argument ArgNo to be non-null. static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, QualType ArgType, unsigned ArgNo) { // FIXME: __attribute__((nonnull)) can also be applied to: // - references to pointers, where the pointee is known to be // nonnull (apparently a Clang extension) // - transparent unions containing pointers // In the former case, LLVM IR cannot represent the constraint. In // the latter case, we have no guarantee that the transparent union // is in fact passed as a pointer. if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) return nullptr; // First, check attribute on parameter itself. if (PVD) { if (auto ParmNNAttr = PVD->getAttr()) return ParmNNAttr; } // Check function attributes. if (!FD) return nullptr; for (const auto *NNAttr : FD->specific_attrs()) { if (NNAttr->isNonNull(ArgNo)) return NNAttr; } return nullptr; } namespace { struct CopyBackSwiftError final : EHScopeStack::Cleanup { Address Temp; Address Arg; CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} void Emit(CodeGenFunction &CGF, Flags flags) override { llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); CGF.Builder.CreateStore(errorValue, Arg); } }; } void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, llvm::Function *Fn, const FunctionArgList &Args) { if (CurCodeDecl && CurCodeDecl->hasAttr()) // Naked functions don't have prologues. return; // If this is an implicit-return-zero function, go ahead and // initialize the return value. TODO: it might be nice to have // a more general mechanism for this that didn't require synthesized // return statements. if (const FunctionDecl *FD = dyn_cast_or_null(CurCodeDecl)) { if (FD->hasImplicitReturnZero()) { QualType RetTy = FD->getReturnType().getUnqualifiedType(); llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); Builder.CreateStore(Zero, ReturnValue); } } // FIXME: We no longer need the types from FunctionArgList; lift up and // simplify. ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); // If we're using inalloca, all the memory arguments are GEPs off of the last // parameter, which is a pointer to the complete memory area. Address ArgStruct = Address::invalid(); if (IRFunctionArgs.hasInallocaArg()) { ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), FI.getArgStructAlignment()); assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); } // Name the struct return parameter. if (IRFunctionArgs.hasSRetArg()) { auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); AI->setName("agg.result"); AI->addAttr(llvm::Attribute::NoAlias); } // Track if we received the parameter as a pointer (indirect, byval, or // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it // into a local alloca for us. SmallVector ArgVals; ArgVals.reserve(Args.size()); // Create a pointer value for every parameter declaration. This usually // entails copying one or more LLVM IR arguments into an alloca. Don't push // any cleanups or do anything that might unwind. We do that separately, so // we can push the cleanups in the correct order for the ABI. assert(FI.arg_size() == Args.size() && "Mismatch between function signature & arguments."); unsigned ArgNo = 0; CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); i != e; ++i, ++info_it, ++ArgNo) { const VarDecl *Arg = *i; const ABIArgInfo &ArgI = info_it->info; bool isPromoted = isa(Arg) && cast(Arg)->isKNRPromoted(); // We are converting from ABIArgInfo type to VarDecl type directly, unless // the parameter is promoted. In this case we convert to // CGFunctionInfo::ArgInfo type with subsequent argument demotion. QualType Ty = isPromoted ? info_it->type : Arg->getType(); assert(hasScalarEvaluationKind(Ty) == hasScalarEvaluationKind(Arg->getType())); unsigned FirstIRArg, NumIRArgs; std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); switch (ArgI.getKind()) { case ABIArgInfo::InAlloca: { assert(NumIRArgs == 0); auto FieldIndex = ArgI.getInAllocaFieldIndex(); Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); if (ArgI.getInAllocaIndirect()) V = Address(Builder.CreateLoad(V), getContext().getTypeAlignInChars(Ty)); ArgVals.push_back(ParamValue::forIndirect(V)); break; } case ABIArgInfo::Indirect: case ABIArgInfo::IndirectAliased: { assert(NumIRArgs == 1); Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty), ArgI.getIndirectAlign()); if (!hasScalarEvaluationKind(Ty)) { // Aggregates and complex variables are accessed by reference. All we // need to do is realign the value, if requested. Also, if the address // may be aliased, copy it to ensure that the parameter variable is // mutable and has a unique adress, as C requires. Address V = ParamAddr; if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { Address AlignedTemp = CreateMemTemp(Ty, "coerce"); // Copy from the incoming argument pointer to the temporary with the // appropriate alignment. // // FIXME: We should have a common utility for generating an aggregate // copy. CharUnits Size = getContext().getTypeSizeInChars(Ty); Builder.CreateMemCpy( AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); V = AlignedTemp; } ArgVals.push_back(ParamValue::forIndirect(V)); } else { // Load scalar value from indirect argument. llvm::Value *V = EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); if (isPromoted) V = emitArgumentDemotion(*this, Arg, V); ArgVals.push_back(ParamValue::forDirect(V)); } break; } case ABIArgInfo::Extend: case ABIArgInfo::Direct: { auto AI = Fn->getArg(FirstIRArg); llvm::Type *LTy = ConvertType(Arg->getType()); // Prepare parameter attributes. So far, only attributes for pointer // parameters are prepared. See // http://llvm.org/docs/LangRef.html#paramattrs. if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && ArgI.getCoerceToType()->isPointerTy()) { assert(NumIRArgs == 1); if (const ParmVarDecl *PVD = dyn_cast(Arg)) { // Set `nonnull` attribute if any. if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), PVD->getFunctionScopeIndex()) && !CGM.getCodeGenOpts().NullPointerIsValid) AI->addAttr(llvm::Attribute::NonNull); QualType OTy = PVD->getOriginalType(); if (const auto *ArrTy = getContext().getAsConstantArrayType(OTy)) { // A C99 array parameter declaration with the static keyword also // indicates dereferenceability, and if the size is constant we can // use the dereferenceable attribute (which requires the size in // bytes). if (ArrTy->getSizeModifier() == ArrayType::Static) { QualType ETy = ArrTy->getElementType(); llvm::Align Alignment = CGM.getNaturalTypeAlignment(ETy).getAsAlign(); AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); uint64_t ArrSize = ArrTy->getSize().getZExtValue(); if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && ArrSize) { llvm::AttrBuilder Attrs(getLLVMContext()); Attrs.addDereferenceableAttr( getContext().getTypeSizeInChars(ETy).getQuantity() * ArrSize); AI->addAttrs(Attrs); } else if (getContext().getTargetInfo().getNullPointerValue( ETy.getAddressSpace()) == 0 && !CGM.getCodeGenOpts().NullPointerIsValid) { AI->addAttr(llvm::Attribute::NonNull); } } } else if (const auto *ArrTy = getContext().getAsVariableArrayType(OTy)) { // For C99 VLAs with the static keyword, we don't know the size so // we can't use the dereferenceable attribute, but in addrspace(0) // we know that it must be nonnull. if (ArrTy->getSizeModifier() == VariableArrayType::Static) { QualType ETy = ArrTy->getElementType(); llvm::Align Alignment = CGM.getNaturalTypeAlignment(ETy).getAsAlign(); AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); if (!getContext().getTargetAddressSpace(ETy) && !CGM.getCodeGenOpts().NullPointerIsValid) AI->addAttr(llvm::Attribute::NonNull); } } // Set `align` attribute if any. const auto *AVAttr = PVD->getAttr(); if (!AVAttr) if (const auto *TOTy = dyn_cast(OTy)) AVAttr = TOTy->getDecl()->getAttr(); if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { // If alignment-assumption sanitizer is enabled, we do *not* add // alignment attribute here, but emit normal alignment assumption, // so the UBSAN check could function. llvm::ConstantInt *AlignmentCI = cast(EmitScalarExpr(AVAttr->getAlignment())); uint64_t AlignmentInt = AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); if (AI->getParamAlign().valueOrOne() < AlignmentInt) { AI->removeAttr(llvm::Attribute::AttrKind::Alignment); AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( llvm::Align(AlignmentInt))); } } } // Set 'noalias' if an argument type has the `restrict` qualifier. if (Arg->getType().isRestrictQualified()) AI->addAttr(llvm::Attribute::NoAlias); } // Prepare the argument value. If we have the trivial case, handle it // with no muss and fuss. if (!isa(ArgI.getCoerceToType()) && ArgI.getCoerceToType() == ConvertType(Ty) && ArgI.getDirectOffset() == 0) { assert(NumIRArgs == 1); // LLVM expects swifterror parameters to be used in very restricted // ways. Copy the value into a less-restricted temporary. llvm::Value *V = AI; if (FI.getExtParameterInfo(ArgNo).getABI() == ParameterABI::SwiftErrorResult) { QualType pointeeTy = Ty->getPointeeType(); assert(pointeeTy->isPointerType()); Address temp = CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); Builder.CreateStore(incomingErrorValue, temp); V = temp.getPointer(); // Push a cleanup to copy the value back at the end of the function. // The convention does not guarantee that the value will be written // back if the function exits with an unwind exception. EHStack.pushCleanup(NormalCleanup, temp, arg); } // Ensure the argument is the correct type. if (V->getType() != ArgI.getCoerceToType()) V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); if (isPromoted) V = emitArgumentDemotion(*this, Arg, V); // Because of merging of function types from multiple decls it is // possible for the type of an argument to not match the corresponding // type in the function type. Since we are codegening the callee // in here, add a cast to the argument type. llvm::Type *LTy = ConvertType(Arg->getType()); if (V->getType() != LTy) V = Builder.CreateBitCast(V, LTy); ArgVals.push_back(ParamValue::forDirect(V)); break; } // VLST arguments are coerced to VLATs at the function boundary for // ABI consistency. If this is a VLST that was coerced to // a VLAT at the function boundary and the types match up, use // llvm.experimental.vector.extract to convert back to the original // VLST. if (auto *VecTyTo = dyn_cast(ConvertType(Ty))) { llvm::Value *Coerced = Fn->getArg(FirstIRArg); if (auto *VecTyFrom = dyn_cast(Coerced->getType())) { // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 // vector, bitcast the source and use a vector extract. auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); if (VecTyFrom == PredType && VecTyTo->getElementType() == Builder.getInt8Ty()) { VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); } if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); assert(NumIRArgs == 1); Coerced->setName(Arg->getName() + ".coerce"); ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( VecTyTo, Coerced, Zero, "castFixedSve"))); break; } } } Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), Arg->getName()); // Pointer to store into. Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); // Fast-isel and the optimizer generally like scalar values better than // FCAs, so we flatten them if this is safe to do for this argument. llvm::StructType *STy = dyn_cast(ArgI.getCoerceToType()); if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && STy->getNumElements() > 1) { uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); llvm::Type *DstTy = Ptr.getElementType(); uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); Address AddrToStoreInto = Address::invalid(); if (SrcSize <= DstSize) { AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); } else { AddrToStoreInto = CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); } assert(STy->getNumElements() == NumIRArgs); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { auto AI = Fn->getArg(FirstIRArg + i); AI->setName(Arg->getName() + ".coerce" + Twine(i)); Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); Builder.CreateStore(AI, EltPtr); } if (SrcSize > DstSize) { Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); } } else { // Simple case, just do a coerced store of the argument into the alloca. assert(NumIRArgs == 1); auto AI = Fn->getArg(FirstIRArg); AI->setName(Arg->getName() + ".coerce"); CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); } // Match to what EmitParmDecl is expecting for this type. if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { llvm::Value *V = EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); if (isPromoted) V = emitArgumentDemotion(*this, Arg, V); ArgVals.push_back(ParamValue::forDirect(V)); } else { ArgVals.push_back(ParamValue::forIndirect(Alloca)); } break; } case ABIArgInfo::CoerceAndExpand: { // Reconstruct into a temporary. Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); ArgVals.push_back(ParamValue::forIndirect(alloca)); auto coercionType = ArgI.getCoerceAndExpandType(); alloca = Builder.CreateElementBitCast(alloca, coercionType); unsigned argIndex = FirstIRArg; for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { llvm::Type *eltType = coercionType->getElementType(i); if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; auto eltAddr = Builder.CreateStructGEP(alloca, i); auto elt = Fn->getArg(argIndex++); Builder.CreateStore(elt, eltAddr); } assert(argIndex == FirstIRArg + NumIRArgs); break; } case ABIArgInfo::Expand: { // If this structure was expanded into multiple arguments then // we need to create a temporary and reconstruct it from the // arguments. Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); LValue LV = MakeAddrLValue(Alloca, Ty); ArgVals.push_back(ParamValue::forIndirect(Alloca)); auto FnArgIter = Fn->arg_begin() + FirstIRArg; ExpandTypeFromArgs(Ty, LV, FnArgIter); assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { auto AI = Fn->getArg(FirstIRArg + i); AI->setName(Arg->getName() + "." + Twine(i)); } break; } case ABIArgInfo::Ignore: assert(NumIRArgs == 0); // Initialize the local variable appropriately. if (!hasScalarEvaluationKind(Ty)) { ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); } else { llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); ArgVals.push_back(ParamValue::forDirect(U)); } break; } } if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { for (int I = Args.size() - 1; I >= 0; --I) EmitParmDecl(*Args[I], ArgVals[I], I + 1); } else { for (unsigned I = 0, E = Args.size(); I != E; ++I) EmitParmDecl(*Args[I], ArgVals[I], I + 1); } } static void eraseUnusedBitCasts(llvm::Instruction *insn) { while (insn->use_empty()) { llvm::BitCastInst *bitcast = dyn_cast(insn); if (!bitcast) return; // This is "safe" because we would have used a ConstantExpr otherwise. insn = cast(bitcast->getOperand(0)); bitcast->eraseFromParent(); } } /// Try to emit a fused autorelease of a return result. static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, llvm::Value *result) { // We must be immediately followed the cast. llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); if (BB->empty()) return nullptr; if (&BB->back() != result) return nullptr; llvm::Type *resultType = result->getType(); // result is in a BasicBlock and is therefore an Instruction. llvm::Instruction *generator = cast(result); SmallVector InstsToKill; // Look for: // %generator = bitcast %type1* %generator2 to %type2* while (llvm::BitCastInst *bitcast = dyn_cast(generator)) { // We would have emitted this as a constant if the operand weren't // an Instruction. generator = cast(bitcast->getOperand(0)); // Require the generator to be immediately followed by the cast. if (generator->getNextNode() != bitcast) return nullptr; InstsToKill.push_back(bitcast); } // Look for: // %generator = call i8* @objc_retain(i8* %originalResult) // or // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) llvm::CallInst *call = dyn_cast(generator); if (!call) return nullptr; bool doRetainAutorelease; if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { doRetainAutorelease = true; } else if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { doRetainAutorelease = false; // If we emitted an assembly marker for this call (and the // ARCEntrypoints field should have been set if so), go looking // for that call. If we can't find it, we can't do this // optimization. But it should always be the immediately previous // instruction, unless we needed bitcasts around the call. if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { llvm::Instruction *prev = call->getPrevNode(); assert(prev); if (isa(prev)) { prev = prev->getPrevNode(); assert(prev); } assert(isa(prev)); assert(cast(prev)->getCalledOperand() == CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); InstsToKill.push_back(prev); } } else { return nullptr; } result = call->getArgOperand(0); InstsToKill.push_back(call); // Keep killing bitcasts, for sanity. Note that we no longer care // about precise ordering as long as there's exactly one use. while (llvm::BitCastInst *bitcast = dyn_cast(result)) { if (!bitcast->hasOneUse()) break; InstsToKill.push_back(bitcast); result = bitcast->getOperand(0); } // Delete all the unnecessary instructions, from latest to earliest. for (auto *I : InstsToKill) I->eraseFromParent(); // Do the fused retain/autorelease if we were asked to. if (doRetainAutorelease) result = CGF.EmitARCRetainAutoreleaseReturnValue(result); // Cast back to the result type. return CGF.Builder.CreateBitCast(result, resultType); } /// If this is a +1 of the value of an immutable 'self', remove it. static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, llvm::Value *result) { // This is only applicable to a method with an immutable 'self'. const ObjCMethodDecl *method = dyn_cast_or_null(CGF.CurCodeDecl); if (!method) return nullptr; const VarDecl *self = method->getSelfDecl(); if (!self->getType().isConstQualified()) return nullptr; // Look for a retain call. llvm::CallInst *retainCall = dyn_cast(result->stripPointerCasts()); if (!retainCall || retainCall->getCalledOperand() != CGF.CGM.getObjCEntrypoints().objc_retain) return nullptr; // Look for an ordinary load of 'self'. llvm::Value *retainedValue = retainCall->getArgOperand(0); llvm::LoadInst *load = dyn_cast(retainedValue->stripPointerCasts()); if (!load || load->isAtomic() || load->isVolatile() || load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) return nullptr; // Okay! Burn it all down. This relies for correctness on the // assumption that the retain is emitted as part of the return and // that thereafter everything is used "linearly". llvm::Type *resultType = result->getType(); eraseUnusedBitCasts(cast(result)); assert(retainCall->use_empty()); retainCall->eraseFromParent(); eraseUnusedBitCasts(cast(retainedValue)); return CGF.Builder.CreateBitCast(load, resultType); } /// Emit an ARC autorelease of the result of a function. /// /// \return the value to actually return from the function static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, llvm::Value *result) { // If we're returning 'self', kill the initial retain. This is a // heuristic attempt to "encourage correctness" in the really unfortunate // case where we have a return of self during a dealloc and we desperately // need to avoid the possible autorelease. if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) return self; // At -O0, try to emit a fused retain/autorelease. if (CGF.shouldUseFusedARCCalls()) if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) return fused; return CGF.EmitARCAutoreleaseReturnValue(result); } /// Heuristically search for a dominating store to the return-value slot. static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { // Check if a User is a store which pointerOperand is the ReturnValue. // We are looking for stores to the ReturnValue, not for stores of the // ReturnValue to some other location. auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { auto *SI = dyn_cast(U); if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) return nullptr; // These aren't actually possible for non-coerced returns, and we // only care about non-coerced returns on this code path. assert(!SI->isAtomic() && !SI->isVolatile()); return SI; }; // If there are multiple uses of the return-value slot, just check // for something immediately preceding the IP. Sometimes this can // happen with how we generate implicit-returns; it can also happen // with noreturn cleanups. if (!CGF.ReturnValue.getPointer()->hasOneUse()) { llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); if (IP->empty()) return nullptr; llvm::Instruction *I = &IP->back(); // Skip lifetime markers for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), IE = IP->rend(); II != IE; ++II) { if (llvm::IntrinsicInst *Intrinsic = dyn_cast(&*II)) { if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); ++II; if (II == IE) break; if (isa(&*II) && (CastAddr == &*II)) continue; } } I = &*II; break; } return GetStoreIfValid(I); } llvm::StoreInst *store = GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); if (!store) return nullptr; // Now do a first-and-dirty dominance check: just walk up the // single-predecessors chain from the current insertion point. llvm::BasicBlock *StoreBB = store->getParent(); llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); while (IP != StoreBB) { if (!(IP = IP->getSinglePredecessor())) return nullptr; } // Okay, the store's basic block dominates the insertion point; we // can do our thing. return store; } // Helper functions for EmitCMSEClearRecord // Set the bits corresponding to a field having width `BitWidth` and located at // offset `BitOffset` (from the least significant bit) within a storage unit of // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. // Use little-endian layout, i.e.`Bits[0]` is the LSB. static void setBitRange(SmallVectorImpl &Bits, int BitOffset, int BitWidth, int CharWidth) { assert(CharWidth <= 64); assert(static_cast(BitWidth) <= Bits.size() * CharWidth); int Pos = 0; if (BitOffset >= CharWidth) { Pos += BitOffset / CharWidth; BitOffset = BitOffset % CharWidth; } const uint64_t Used = (uint64_t(1) << CharWidth) - 1; if (BitOffset + BitWidth >= CharWidth) { Bits[Pos++] |= (Used << BitOffset) & Used; BitWidth -= CharWidth - BitOffset; BitOffset = 0; } while (BitWidth >= CharWidth) { Bits[Pos++] = Used; BitWidth -= CharWidth; } if (BitWidth > 0) Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; } // Set the bits corresponding to a field having width `BitWidth` and located at // offset `BitOffset` (from the least significant bit) within a storage unit of // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of // `Bits` corresponds to one target byte. Use target endian layout. static void setBitRange(SmallVectorImpl &Bits, int StorageOffset, int StorageSize, int BitOffset, int BitWidth, int CharWidth, bool BigEndian) { SmallVector TmpBits(StorageSize); setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); if (BigEndian) std::reverse(TmpBits.begin(), TmpBits.end()); for (uint64_t V : TmpBits) Bits[StorageOffset++] |= V; } static void setUsedBits(CodeGenModule &, QualType, int, SmallVectorImpl &); // Set the bits in `Bits`, which correspond to the value representations of // the actual members of the record type `RTy`. Note that this function does // not handle base classes, virtual tables, etc, since they cannot happen in // CMSE function arguments or return. The bit mask corresponds to the target // memory layout, i.e. it's endian dependent. static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, SmallVectorImpl &Bits) { ASTContext &Context = CGM.getContext(); int CharWidth = Context.getCharWidth(); const RecordDecl *RD = RTy->getDecl()->getDefinition(); const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); int Idx = 0; for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { const FieldDecl *F = *I; if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || F->getType()->isIncompleteArrayType()) continue; if (F->isBitField()) { const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), BFI.StorageSize / CharWidth, BFI.Offset, BFI.Size, CharWidth, CGM.getDataLayout().isBigEndian()); continue; } setUsedBits(CGM, F->getType(), Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); } } // Set the bits in `Bits`, which correspond to the value representations of // the elements of an array type `ATy`. static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, int Offset, SmallVectorImpl &Bits) { const ASTContext &Context = CGM.getContext(); QualType ETy = Context.getBaseElementType(ATy); int Size = Context.getTypeSizeInChars(ETy).getQuantity(); SmallVector TmpBits(Size); setUsedBits(CGM, ETy, 0, TmpBits); for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { auto Src = TmpBits.begin(); auto Dst = Bits.begin() + Offset + I * Size; for (int J = 0; J < Size; ++J) *Dst++ |= *Src++; } } // Set the bits in `Bits`, which correspond to the value representations of // the type `QTy`. static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, SmallVectorImpl &Bits) { if (const auto *RTy = QTy->getAs()) return setUsedBits(CGM, RTy, Offset, Bits); ASTContext &Context = CGM.getContext(); if (const auto *ATy = Context.getAsConstantArrayType(QTy)) return setUsedBits(CGM, ATy, Offset, Bits); int Size = Context.getTypeSizeInChars(QTy).getQuantity(); if (Size <= 0) return; std::fill_n(Bits.begin() + Offset, Size, (uint64_t(1) << Context.getCharWidth()) - 1); } static uint64_t buildMultiCharMask(const SmallVectorImpl &Bits, int Pos, int Size, int CharWidth, bool BigEndian) { assert(Size > 0); uint64_t Mask = 0; if (BigEndian) { for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; ++P) Mask = (Mask << CharWidth) | *P; } else { auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; do Mask = (Mask << CharWidth) | *--P; while (P != End); } return Mask; } // Emit code to clear the bits in a record, which aren't a part of any user // declared member, when the record is a function return. llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, llvm::IntegerType *ITy, QualType QTy) { assert(Src->getType() == ITy); assert(ITy->getScalarSizeInBits() <= 64); const llvm::DataLayout &DataLayout = CGM.getDataLayout(); int Size = DataLayout.getTypeStoreSize(ITy); SmallVector Bits(Size); setUsedBits(CGM, QTy->castAs(), 0, Bits); int CharWidth = CGM.getContext().getCharWidth(); uint64_t Mask = buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); return Builder.CreateAnd(Src, Mask, "cmse.clear"); } // Emit code to clear the bits in a record, which aren't a part of any user // declared member, when the record is a function argument. llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, llvm::ArrayType *ATy, QualType QTy) { const llvm::DataLayout &DataLayout = CGM.getDataLayout(); int Size = DataLayout.getTypeStoreSize(ATy); SmallVector Bits(Size); setUsedBits(CGM, QTy->castAs(), 0, Bits); // Clear each element of the LLVM array. int CharWidth = CGM.getContext().getCharWidth(); int CharsPerElt = ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; int MaskIndex = 0; llvm::Value *R = llvm::UndefValue::get(ATy); for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, DataLayout.isBigEndian()); MaskIndex += CharsPerElt; llvm::Value *T0 = Builder.CreateExtractValue(Src, I); llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); R = Builder.CreateInsertValue(R, T1, I); } return R; } void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, SourceLocation EndLoc) { if (FI.isNoReturn()) { // Noreturn functions don't return. EmitUnreachable(EndLoc); return; } if (CurCodeDecl && CurCodeDecl->hasAttr()) { // Naked functions don't have epilogues. Builder.CreateUnreachable(); return; } // Functions with no result always return void. if (!ReturnValue.isValid()) { Builder.CreateRetVoid(); return; } llvm::DebugLoc RetDbgLoc; llvm::Value *RV = nullptr; QualType RetTy = FI.getReturnType(); const ABIArgInfo &RetAI = FI.getReturnInfo(); switch (RetAI.getKind()) { case ABIArgInfo::InAlloca: // Aggregrates get evaluated directly into the destination. Sometimes we // need to return the sret value in a register, though. assert(hasAggregateEvaluationKind(RetTy)); if (RetAI.getInAllocaSRet()) { llvm::Function::arg_iterator EI = CurFn->arg_end(); --EI; llvm::Value *ArgStruct = &*EI; llvm::Value *SRet = Builder.CreateStructGEP( EI->getType()->getPointerElementType(), ArgStruct, RetAI.getInAllocaFieldIndex()); llvm::Type *Ty = cast(SRet)->getResultElementType(); RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); } break; case ABIArgInfo::Indirect: { auto AI = CurFn->arg_begin(); if (RetAI.isSRetAfterThis()) ++AI; switch (getEvaluationKind(RetTy)) { case TEK_Complex: { ComplexPairTy RT = EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), /*isInit*/ true); break; } case TEK_Aggregate: // Do nothing; aggregrates get evaluated directly into the destination. break; case TEK_Scalar: { LValueBaseInfo BaseInfo; TBAAAccessInfo TBAAInfo; CharUnits Alignment = CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); LValue ArgVal = LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); EmitStoreOfScalar( Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true); break; } } break; } case ABIArgInfo::Extend: case ABIArgInfo::Direct: if (RetAI.getCoerceToType() == ConvertType(RetTy) && RetAI.getDirectOffset() == 0) { // The internal return value temp always will have pointer-to-return-type // type, just do a load. // If there is a dominating store to ReturnValue, we can elide // the load, zap the store, and usually zap the alloca. if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { // Reuse the debug location from the store unless there is // cleanup code to be emitted between the store and return // instruction. if (EmitRetDbgLoc && !AutoreleaseResult) RetDbgLoc = SI->getDebugLoc(); // Get the stored value and nuke the now-dead store. RV = SI->getValueOperand(); SI->eraseFromParent(); // Otherwise, we have to do a simple load. } else { RV = Builder.CreateLoad(ReturnValue); } } else { // If the value is offset in memory, apply the offset now. Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); } // In ARC, end functions that return a retainable type with a call // to objc_autoreleaseReturnValue. if (AutoreleaseResult) { #ifndef NDEBUG // Type::isObjCRetainabletype has to be called on a QualType that hasn't // been stripped of the typedefs, so we cannot use RetTy here. Get the // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from // CurCodeDecl or BlockInfo. QualType RT; if (auto *FD = dyn_cast(CurCodeDecl)) RT = FD->getReturnType(); else if (auto *MD = dyn_cast(CurCodeDecl)) RT = MD->getReturnType(); else if (isa(CurCodeDecl)) RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); else llvm_unreachable("Unexpected function/method type"); assert(getLangOpts().ObjCAutoRefCount && !FI.isReturnsRetained() && RT->isObjCRetainableType()); #endif RV = emitAutoreleaseOfResult(*this, RV); } break; case ABIArgInfo::Ignore: break; case ABIArgInfo::CoerceAndExpand: { auto coercionType = RetAI.getCoerceAndExpandType(); // Load all of the coerced elements out into results. llvm::SmallVector results; Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { auto coercedEltType = coercionType->getElementType(i); if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) continue; auto eltAddr = Builder.CreateStructGEP(addr, i); auto elt = Builder.CreateLoad(eltAddr); results.push_back(elt); } // If we have one result, it's the single direct result type. if (results.size() == 1) { RV = results[0]; // Otherwise, we need to make a first-class aggregate. } else { // Construct a return type that lacks padding elements. llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); RV = llvm::UndefValue::get(returnType); for (unsigned i = 0, e = results.size(); i != e; ++i) { RV = Builder.CreateInsertValue(RV, results[i], i); } } break; } case ABIArgInfo::Expand: case ABIArgInfo::IndirectAliased: llvm_unreachable("Invalid ABI kind for return argument"); } llvm::Instruction *Ret; if (RV) { if (CurFuncDecl && CurFuncDecl->hasAttr()) { // For certain return types, clear padding bits, as they may reveal // sensitive information. // Small struct/union types are passed as integers. auto *ITy = dyn_cast(RV->getType()); if (ITy != nullptr && isa(RetTy.getCanonicalType())) RV = EmitCMSEClearRecord(RV, ITy, RetTy); } EmitReturnValueCheck(RV); Ret = Builder.CreateRet(RV); } else { Ret = Builder.CreateRetVoid(); } if (RetDbgLoc) Ret->setDebugLoc(std::move(RetDbgLoc)); } void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { // A current decl may not be available when emitting vtable thunks. if (!CurCodeDecl) return; // If the return block isn't reachable, neither is this check, so don't emit // it. if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) return; ReturnsNonNullAttr *RetNNAttr = nullptr; if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) RetNNAttr = CurCodeDecl->getAttr(); if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) return; // Prefer the returns_nonnull attribute if it's present. SourceLocation AttrLoc; SanitizerMask CheckKind; SanitizerHandler Handler; if (RetNNAttr) { assert(!requiresReturnValueNullabilityCheck() && "Cannot check nullability and the nonnull attribute"); AttrLoc = RetNNAttr->getLocation(); CheckKind = SanitizerKind::ReturnsNonnullAttribute; Handler = SanitizerHandler::NonnullReturn; } else { if (auto *DD = dyn_cast(CurCodeDecl)) if (auto *TSI = DD->getTypeSourceInfo()) if (auto FTL = TSI->getTypeLoc().getAsAdjusted()) AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); CheckKind = SanitizerKind::NullabilityReturn; Handler = SanitizerHandler::NullabilityReturn; } SanitizerScope SanScope(this); // Make sure the "return" source location is valid. If we're checking a // nullability annotation, make sure the preconditions for the check are met. llvm::BasicBlock *Check = createBasicBlock("nullcheck"); llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); if (requiresReturnValueNullabilityCheck()) CanNullCheck = Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); Builder.CreateCondBr(CanNullCheck, Check, NoCheck); EmitBlock(Check); // Now do the null check. llvm::Value *Cond = Builder.CreateIsNotNull(RV); llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; llvm::Value *DynamicData[] = {SLocPtr}; EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); EmitBlock(NoCheck); #ifndef NDEBUG // The return location should not be used after the check has been emitted. ReturnLocation = Address::invalid(); #endif } static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; } static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) { // FIXME: Generate IR in one pass, rather than going back and fixing up these // placeholders. llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); llvm::Type *IRPtrTy = IRTy->getPointerTo(); llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); // FIXME: When we generate this IR in one pass, we shouldn't need // this win32-specific alignment hack. CharUnits Align = CharUnits::fromQuantity(4); Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); return AggValueSlot::forAddr(Address(Placeholder, Align), Ty.getQualifiers(), AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap); } void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, const VarDecl *param, SourceLocation loc) { // StartFunction converted the ABI-lowered parameter(s) into a // local alloca. We need to turn that into an r-value suitable // for EmitCall. Address local = GetAddrOfLocalVar(param); QualType type = param->getType(); if (isInAllocaArgument(CGM.getCXXABI(), type)) { CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); } // GetAddrOfLocalVar returns a pointer-to-pointer for references, // but the argument needs to be the original pointer. if (type->isReferenceType()) { args.add(RValue::get(Builder.CreateLoad(local)), type); // In ARC, move out of consumed arguments so that the release cleanup // entered by StartFunction doesn't cause an over-release. This isn't // optimal -O0 code generation, but it should get cleaned up when // optimization is enabled. This also assumes that delegate calls are // performed exactly once for a set of arguments, but that should be safe. } else if (getLangOpts().ObjCAutoRefCount && param->hasAttr() && type->isObjCRetainableType()) { llvm::Value *ptr = Builder.CreateLoad(local); auto null = llvm::ConstantPointerNull::get(cast(ptr->getType())); Builder.CreateStore(null, local); args.add(RValue::get(ptr), type); // For the most part, we just need to load the alloca, except that // aggregate r-values are actually pointers to temporaries. } else { args.add(convertTempToRValue(local, type, loc), type); } // Deactivate the cleanup for the callee-destructed param that was pushed. if (type->isRecordType() && !CurFuncIsThunk && type->castAs()->getDecl()->isParamDestroyedInCallee() && param->needsDestruction(getContext())) { EHScopeStack::stable_iterator cleanup = CalleeDestructedParamCleanups.lookup(cast(param)); assert(cleanup.isValid() && "cleanup for callee-destructed param not recorded"); // This unreachable is a temporary marker which will be removed later. llvm::Instruction *isActive = Builder.CreateUnreachable(); args.addArgCleanupDeactivation(cleanup, isActive); } } static bool isProvablyNull(llvm::Value *addr) { return isa(addr); } /// Emit the actual writing-back of a writeback. static void emitWriteback(CodeGenFunction &CGF, const CallArgList::Writeback &writeback) { const LValue &srcLV = writeback.Source; Address srcAddr = srcLV.getAddress(CGF); assert(!isProvablyNull(srcAddr.getPointer()) && "shouldn't have writeback for provably null argument"); llvm::BasicBlock *contBB = nullptr; // If the argument wasn't provably non-null, we need to null check // before doing the store. bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), CGF.CGM.getDataLayout()); if (!provablyNonNull) { llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); contBB = CGF.createBasicBlock("icr.done"); llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); CGF.EmitBlock(writebackBB); } // Load the value to writeback. llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); // Cast it back, in case we're writing an id to a Foo* or something. value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), "icr.writeback-cast"); // Perform the writeback. // If we have a "to use" value, it's something we need to emit a use // of. This has to be carefully threaded in: if it's done after the // release it's potentially undefined behavior (and the optimizer // will ignore it), and if it happens before the retain then the // optimizer could move the release there. if (writeback.ToUse) { assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); // Retain the new value. No need to block-copy here: the block's // being passed up the stack. value = CGF.EmitARCRetainNonBlock(value); // Emit the intrinsic use here. CGF.EmitARCIntrinsicUse(writeback.ToUse); // Load the old value (primitively). llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); // Put the new value in place (primitively). CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); // Release the old value. CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); // Otherwise, we can just do a normal lvalue store. } else { CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); } // Jump to the continuation block. if (!provablyNonNull) CGF.EmitBlock(contBB); } static void emitWritebacks(CodeGenFunction &CGF, const CallArgList &args) { for (const auto &I : args.writebacks()) emitWriteback(CGF, I); } static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, const CallArgList &CallArgs) { ArrayRef Cleanups = CallArgs.getCleanupsToDeactivate(); // Iterate in reverse to increase the likelihood of popping the cleanup. for (const auto &I : llvm::reverse(Cleanups)) { CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); I.IsActiveIP->eraseFromParent(); } } static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { if (const UnaryOperator *uop = dyn_cast(E->IgnoreParens())) if (uop->getOpcode() == UO_AddrOf) return uop->getSubExpr(); return nullptr; } /// Emit an argument that's being passed call-by-writeback. That is, /// we are passing the address of an __autoreleased temporary; it /// might be copy-initialized with the current value of the given /// address, but it will definitely be copied out of after the call. static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, const ObjCIndirectCopyRestoreExpr *CRE) { LValue srcLV; // Make an optimistic effort to emit the address as an l-value. // This can fail if the argument expression is more complicated. if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { srcLV = CGF.EmitLValue(lvExpr); // Otherwise, just emit it as a scalar. } else { Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); QualType srcAddrType = CRE->getSubExpr()->getType()->castAs()->getPointeeType(); srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); } Address srcAddr = srcLV.getAddress(CGF); // The dest and src types don't necessarily match in LLVM terms // because of the crazy ObjC compatibility rules. llvm::PointerType *destType = cast(CGF.ConvertType(CRE->getType())); // If the address is a constant null, just pass the appropriate null. if (isProvablyNull(srcAddr.getPointer())) { args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), CRE->getType()); return; } // Create the temporary. Address temp = CGF.CreateTempAlloca(destType->getPointerElementType(), CGF.getPointerAlign(), "icr.temp"); // Loading an l-value can introduce a cleanup if the l-value is __weak, // and that cleanup will be conditional if we can't prove that the l-value // isn't null, so we need to register a dominating point so that the cleanups // system will make valid IR. CodeGenFunction::ConditionalEvaluation condEval(CGF); // Zero-initialize it if we're not doing a copy-initialization. bool shouldCopy = CRE->shouldCopy(); if (!shouldCopy) { llvm::Value *null = llvm::ConstantPointerNull::get( cast(destType->getPointerElementType())); CGF.Builder.CreateStore(null, temp); } llvm::BasicBlock *contBB = nullptr; llvm::BasicBlock *originBB = nullptr; // If the address is *not* known to be non-null, we need to switch. llvm::Value *finalArgument; bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), CGF.CGM.getDataLayout()); if (provablyNonNull) { finalArgument = temp.getPointer(); } else { llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); finalArgument = CGF.Builder.CreateSelect(isNull, llvm::ConstantPointerNull::get(destType), temp.getPointer(), "icr.argument"); // If we need to copy, then the load has to be conditional, which // means we need control flow. if (shouldCopy) { originBB = CGF.Builder.GetInsertBlock(); contBB = CGF.createBasicBlock("icr.cont"); llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); CGF.Builder.CreateCondBr(isNull, contBB, copyBB); CGF.EmitBlock(copyBB); condEval.begin(CGF); } } llvm::Value *valueToUse = nullptr; // Perform a copy if necessary. if (shouldCopy) { RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); assert(srcRV.isScalar()); llvm::Value *src = srcRV.getScalarVal(); src = CGF.Builder.CreateBitCast(src, destType->getPointerElementType(), "icr.cast"); // Use an ordinary store, not a store-to-lvalue. CGF.Builder.CreateStore(src, temp); // If optimization is enabled, and the value was held in a // __strong variable, we need to tell the optimizer that this // value has to stay alive until we're doing the store back. // This is because the temporary is effectively unretained, // and so otherwise we can violate the high-level semantics. if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { valueToUse = src; } } // Finish the control flow if we needed it. if (shouldCopy && !provablyNonNull) { llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); CGF.EmitBlock(contBB); // Make a phi for the value to intrinsically use. if (valueToUse) { llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, "icr.to-use"); phiToUse->addIncoming(valueToUse, copyBB); phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), originBB); valueToUse = phiToUse; } condEval.end(CGF); } args.addWriteback(srcLV, temp, valueToUse); args.add(RValue::get(finalArgument), CRE->getType()); } void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { assert(!StackBase); // Save the stack. llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); } void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { if (StackBase) { // Restore the stack after the call. llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); CGF.Builder.CreateCall(F, StackBase); } } void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, AbstractCallee AC, unsigned ParmNum) { if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || SanOpts.has(SanitizerKind::NullabilityArg))) return; // The param decl may be missing in a variadic function. auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; // Prefer the nonnull attribute if it's present. const NonNullAttr *NNAttr = nullptr; if (SanOpts.has(SanitizerKind::NonnullAttribute)) NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); bool CanCheckNullability = false; if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { auto Nullability = PVD->getType()->getNullability(getContext()); CanCheckNullability = Nullability && *Nullability == NullabilityKind::NonNull && PVD->getTypeSourceInfo(); } if (!NNAttr && !CanCheckNullability) return; SourceLocation AttrLoc; SanitizerMask CheckKind; SanitizerHandler Handler; if (NNAttr) { AttrLoc = NNAttr->getLocation(); CheckKind = SanitizerKind::NonnullAttribute; Handler = SanitizerHandler::NonnullArg; } else { AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); CheckKind = SanitizerKind::NullabilityArg; Handler = SanitizerHandler::NullabilityArg; } SanitizerScope SanScope(this); llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); llvm::Constant *StaticData[] = { EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), llvm::ConstantInt::get(Int32Ty, ArgNo + 1), }; EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); } // Check if the call is going to use the inalloca convention. This needs to // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged // later, so we can't check it directly. static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, ArrayRef ArgTypes) { // The Swift calling conventions don't go through the target-specific // argument classification, they never use inalloca. // TODO: Consider limiting inalloca use to only calling conventions supported // by MSVC. if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) return false; if (!CGM.getTarget().getCXXABI().isMicrosoft()) return false; return llvm::any_of(ArgTypes, [&](QualType Ty) { return isInAllocaArgument(CGM.getCXXABI(), Ty); }); } #ifndef NDEBUG // Determine whether the given argument is an Objective-C method // that may have type parameters in its signature. static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { const DeclContext *dc = method->getDeclContext(); if (const ObjCInterfaceDecl *classDecl = dyn_cast(dc)) { return classDecl->getTypeParamListAsWritten(); } if (const ObjCCategoryDecl *catDecl = dyn_cast(dc)) { return catDecl->getTypeParamList(); } return false; } #endif /// EmitCallArgs - Emit call arguments for a function. void CodeGenFunction::EmitCallArgs( CallArgList &Args, PrototypeWrapper Prototype, llvm::iterator_range ArgRange, AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { SmallVector ArgTypes; assert((ParamsToSkip == 0 || Prototype.P) && "Can't skip parameters if type info is not provided"); // This variable only captures *explicitly* written conventions, not those // applied by default via command line flags or target defaults, such as // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would // require knowing if this is a C++ instance method or being able to see // unprototyped FunctionTypes. CallingConv ExplicitCC = CC_C; // First, if a prototype was provided, use those argument types. bool IsVariadic = false; if (Prototype.P) { const auto *MD = Prototype.P.dyn_cast(); if (MD) { IsVariadic = MD->isVariadic(); ExplicitCC = getCallingConventionForDecl( MD, CGM.getTarget().getTriple().isOSWindows()); ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, MD->param_type_end()); } else { const auto *FPT = Prototype.P.get(); IsVariadic = FPT->isVariadic(); ExplicitCC = FPT->getExtInfo().getCC(); ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, FPT->param_type_end()); } #ifndef NDEBUG // Check that the prototyped types match the argument expression types. bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); CallExpr::const_arg_iterator Arg = ArgRange.begin(); for (QualType Ty : ArgTypes) { assert(Arg != ArgRange.end() && "Running over edge of argument list!"); assert( (isGenericMethod || Ty->isVariablyModifiedType() || Ty.getNonReferenceType()->isObjCRetainableType() || getContext() .getCanonicalType(Ty.getNonReferenceType()) .getTypePtr() == getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && "type mismatch in call argument!"); ++Arg; } // Either we've emitted all the call args, or we have a call to variadic // function. assert((Arg == ArgRange.end() || IsVariadic) && "Extra arguments in non-variadic function!"); #endif } // If we still have any arguments, emit them using the type of the argument. for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); // We must evaluate arguments from right to left in the MS C++ ABI, // because arguments are destroyed left to right in the callee. As a special // case, there are certain language constructs that require left-to-right // evaluation, and in those cases we consider the evaluation order requirement // to trump the "destruction order is reverse construction order" guarantee. bool LeftToRight = CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() ? Order == EvaluationOrder::ForceLeftToRight : Order != EvaluationOrder::ForceRightToLeft; auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, RValue EmittedArg) { if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) return; auto *PS = AC.getParamDecl(I)->getAttr(); if (PS == nullptr) return; const auto &Context = getContext(); auto SizeTy = Context.getSizeType(); auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, EmittedArg.getScalarVal(), PS->isDynamic()); Args.add(RValue::get(V), SizeTy); // If we're emitting args in reverse, be sure to do so with // pass_object_size, as well. if (!LeftToRight) std::swap(Args.back(), *(&Args.back() - 1)); }; // Insert a stack save if we're going to need any inalloca args. if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && "inalloca only supported on x86"); Args.allocateArgumentMemory(*this); } // Evaluate each argument in the appropriate order. size_t CallArgsStart = Args.size(); for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { unsigned Idx = LeftToRight ? I : E - I - 1; CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; unsigned InitialArgSize = Args.size(); // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of // the argument and parameter match or the objc method is parameterized. assert((!isa(*Arg) || getContext().hasSameUnqualifiedType((*Arg)->getType(), ArgTypes[Idx]) || (isa(AC.getDecl()) && isObjCMethodWithTypeParams(cast(AC.getDecl())))) && "Argument and parameter types don't match"); EmitCallArg(Args, *Arg, ArgTypes[Idx]); // In particular, we depend on it being the last arg in Args, and the // objectsize bits depend on there only being one arg if !LeftToRight. assert(InitialArgSize + 1 == Args.size() && "The code below depends on only adding one arg per EmitCallArg"); (void)InitialArgSize; // Since pointer argument are never emitted as LValue, it is safe to emit // non-null argument check for r-value only. if (!Args.back().hasLValue()) { RValue RVArg = Args.back().getKnownRValue(); EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, ParamsToSkip + Idx); // @llvm.objectsize should never have side-effects and shouldn't need // destruction/cleanups, so we can safely "emit" it after its arg, // regardless of right-to-leftness MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); } } if (!LeftToRight) { // Un-reverse the arguments we just evaluated so they match up with the LLVM // IR function. std::reverse(Args.begin() + CallArgsStart, Args.end()); } } namespace { struct DestroyUnpassedArg final : EHScopeStack::Cleanup { DestroyUnpassedArg(Address Addr, QualType Ty) : Addr(Addr), Ty(Ty) {} Address Addr; QualType Ty; void Emit(CodeGenFunction &CGF, Flags flags) override { QualType::DestructionKind DtorKind = Ty.isDestructedType(); if (DtorKind == QualType::DK_cxx_destructor) { const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); assert(!Dtor->isTrivial()); CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, /*Delegating=*/false, Addr, Ty); } else { CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); } } }; struct DisableDebugLocationUpdates { CodeGenFunction &CGF; bool disabledDebugInfo; DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { if ((disabledDebugInfo = isa(E) && CGF.getDebugInfo())) CGF.disableDebugInfo(); } ~DisableDebugLocationUpdates() { if (disabledDebugInfo) CGF.enableDebugInfo(); } }; } // end anonymous namespace RValue CallArg::getRValue(CodeGenFunction &CGF) const { if (!HasLV) return RV; LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, LV.isVolatile()); IsUsed = true; return RValue::getAggregate(Copy.getAddress(CGF)); } void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { LValue Dst = CGF.MakeAddrLValue(Addr, Ty); if (!HasLV && RV.isScalar()) CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); else if (!HasLV && RV.isComplex()) CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); else { auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); // We assume that call args are never copied into subobjects. CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, HasLV ? LV.isVolatileQualified() : RV.isVolatileQualified()); } IsUsed = true; } void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, QualType type) { DisableDebugLocationUpdates Dis(*this, E); if (const ObjCIndirectCopyRestoreExpr *CRE = dyn_cast(E)) { assert(getLangOpts().ObjCAutoRefCount); return emitWritebackArg(*this, args, CRE); } assert(type->isReferenceType() == E->isGLValue() && "reference binding to unmaterialized r-value!"); if (E->isGLValue()) { assert(E->getObjectKind() == OK_Ordinary); return args.add(EmitReferenceBindingToExpr(E), type); } bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. // However, we still have to push an EH-only cleanup in case we unwind before // we make it to the call. if (type->isRecordType() && type->castAs()->getDecl()->isParamDestroyedInCallee()) { // If we're using inalloca, use the argument memory. Otherwise, use a // temporary. AggValueSlot Slot = args.isUsingInAlloca() ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); bool DestroyedInCallee = true, NeedsEHCleanup = true; if (const auto *RD = type->getAsCXXRecordDecl()) DestroyedInCallee = RD->hasNonTrivialDestructor(); else NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); if (DestroyedInCallee) Slot.setExternallyDestructed(); EmitAggExpr(E, Slot); RValue RV = Slot.asRValue(); args.add(RV, type); if (DestroyedInCallee && NeedsEHCleanup) { // Create a no-op GEP between the placeholder and the cleanup so we can // RAUW it successfully. It also serves as a marker of the first // instruction where the cleanup is active. pushFullExprCleanup(EHCleanup, Slot.getAddress(), type); // This unreachable is a temporary marker which will be removed later. llvm::Instruction *IsActive = Builder.CreateUnreachable(); args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); } return; } if (HasAggregateEvalKind && isa(E) && cast(E)->getCastKind() == CK_LValueToRValue) { LValue L = EmitLValue(cast(E)->getSubExpr()); assert(L.isSimple()); args.addUncopiedAggregate(L, type); return; } args.add(EmitAnyExprToTemp(E), type); } QualType CodeGenFunction::getVarArgType(const Expr *Arg) { // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC // implicitly widens null pointer constants that are arguments to varargs // functions to pointer-sized ints. if (!getTarget().getTriple().isOSWindows()) return Arg->getType(); if (Arg->getType()->isIntegerType() && getContext().getTypeSize(Arg->getType()) < getContext().getTargetInfo().getPointerWidth(0) && Arg->isNullPointerConstant(getContext(), Expr::NPC_ValueDependentIsNotNull)) { return getContext().getIntPtrType(); } return Arg->getType(); } // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC // optimizer it can aggressively ignore unwind edges. void CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { if (CGM.getCodeGenOpts().OptimizationLevel != 0 && !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) Inst->setMetadata("clang.arc.no_objc_arc_exceptions", CGM.getNoObjCARCExceptionsMetadata()); } /// Emits a call to the given no-arguments nounwind runtime function. llvm::CallInst * CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, const llvm::Twine &name) { return EmitNounwindRuntimeCall(callee, None, name); } /// Emits a call to the given nounwind runtime function. llvm::CallInst * CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, ArrayRef args, const llvm::Twine &name) { llvm::CallInst *call = EmitRuntimeCall(callee, args, name); call->setDoesNotThrow(); return call; } /// Emits a simple call (never an invoke) to the given no-arguments /// runtime function. llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, const llvm::Twine &name) { return EmitRuntimeCall(callee, None, name); } // Calls which may throw must have operand bundles indicating which funclet // they are nested within. SmallVector CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { SmallVector BundleList; // There is no need for a funclet operand bundle if we aren't inside a // funclet. if (!CurrentFuncletPad) return BundleList; // Skip intrinsics which cannot throw. auto *CalleeFn = dyn_cast(Callee->stripPointerCasts()); if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) return BundleList; BundleList.emplace_back("funclet", CurrentFuncletPad); return BundleList; } /// Emits a simple call (never an invoke) to the given runtime function. llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, ArrayRef args, const llvm::Twine &name) { llvm::CallInst *call = Builder.CreateCall( callee, args, getBundlesForFunclet(callee.getCallee()), name); call->setCallingConv(getRuntimeCC()); return call; } /// Emits a call or invoke to the given noreturn runtime function. void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( llvm::FunctionCallee callee, ArrayRef args) { SmallVector BundleList = getBundlesForFunclet(callee.getCallee()); if (getInvokeDest()) { llvm::InvokeInst *invoke = Builder.CreateInvoke(callee, getUnreachableBlock(), getInvokeDest(), args, BundleList); invoke->setDoesNotReturn(); invoke->setCallingConv(getRuntimeCC()); } else { llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); call->setDoesNotReturn(); call->setCallingConv(getRuntimeCC()); Builder.CreateUnreachable(); } } /// Emits a call or invoke instruction to the given nullary runtime function. llvm::CallBase * CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, const Twine &name) { return EmitRuntimeCallOrInvoke(callee, None, name); } /// Emits a call or invoke instruction to the given runtime function. llvm::CallBase * CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, ArrayRef args, const Twine &name) { llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); call->setCallingConv(getRuntimeCC()); return call; } /// Emits a call or invoke instruction to the given function, depending /// on the current state of the EH stack. llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, ArrayRef Args, const Twine &Name) { llvm::BasicBlock *InvokeDest = getInvokeDest(); SmallVector BundleList = getBundlesForFunclet(Callee.getCallee()); llvm::CallBase *Inst; if (!InvokeDest) Inst = Builder.CreateCall(Callee, Args, BundleList, Name); else { llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, Name); EmitBlock(ContBB); } // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC // optimizer it can aggressively ignore unwind edges. if (CGM.getLangOpts().ObjCAutoRefCount) AddObjCARCExceptionMetadata(Inst); return Inst; } void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New) { DeferredReplacements.push_back( std::make_pair(llvm::WeakTrackingVH(Old), New)); } namespace { /// Specify given \p NewAlign as the alignment of return value attribute. If /// such attribute already exists, re-set it to the maximal one of two options. LLVM_NODISCARD llvm::AttributeList maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, const llvm::AttributeList &Attrs, llvm::Align NewAlign) { llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); if (CurAlign >= NewAlign) return Attrs; llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) .addRetAttribute(Ctx, AlignAttr); } template class AbstractAssumeAlignedAttrEmitter { protected: CodeGenFunction &CGF; /// We do nothing if this is, or becomes, nullptr. const AlignedAttrTy *AA = nullptr; llvm::Value *Alignment = nullptr; // May or may not be a constant. llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) : CGF(CGF_) { if (!FuncDecl) return; AA = FuncDecl->getAttr(); } public: /// If we can, materialize the alignment as an attribute on return value. LLVM_NODISCARD llvm::AttributeList TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) return Attrs; const auto *AlignmentCI = dyn_cast(Alignment); if (!AlignmentCI) return Attrs; // We may legitimately have non-power-of-2 alignment here. // If so, this is UB land, emit it via `@llvm.assume` instead. if (!AlignmentCI->getValue().isPowerOf2()) return Attrs; llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( CGF.getLLVMContext(), Attrs, llvm::Align( AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); AA = nullptr; // We're done. Disallow doing anything else. return NewAttrs; } /// Emit alignment assumption. /// This is a general fallback that we take if either there is an offset, /// or the alignment is variable or we are sanitizing for alignment. void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { if (!AA) return; CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), Alignment, OffsetCI); AA = nullptr; // We're done. Disallow doing anything else. } }; /// Helper data structure to emit `AssumeAlignedAttr`. class AssumeAlignedAttrEmitter final : public AbstractAssumeAlignedAttrEmitter { public: AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { if (!AA) return; // It is guaranteed that the alignment/offset are constants. Alignment = cast(CGF.EmitScalarExpr(AA->getAlignment())); if (Expr *Offset = AA->getOffset()) { OffsetCI = cast(CGF.EmitScalarExpr(Offset)); if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. OffsetCI = nullptr; } } }; /// Helper data structure to emit `AllocAlignAttr`. class AllocAlignAttrEmitter final : public AbstractAssumeAlignedAttrEmitter { public: AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, const CallArgList &CallArgs) : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { if (!AA) return; // Alignment may or may not be a constant, and that is okay. Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] .getRValue(CGF) .getScalarVal(); } }; } // namespace RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee, ReturnValueSlot ReturnValue, const CallArgList &CallArgs, llvm::CallBase **callOrInvoke, bool IsMustTail, SourceLocation Loc) { // FIXME: We no longer need the types from CallArgs; lift up and simplify. assert(Callee.isOrdinary() || Callee.isVirtual()); // Handle struct-return functions by passing a pointer to the // location that we would like to return into. QualType RetTy = CallInfo.getReturnType(); const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); if (const FunctionDecl *FD = dyn_cast_or_null(TargetDecl)) { // We can only guarantee that a function is called from the correct // context/function based on the appropriate target attributes, // so only check in the case where we have both always_inline and target // since otherwise we could be making a conditional call after a check for // the proper cpu features (and it won't cause code generation issues due to // function based code generation). if (TargetDecl->hasAttr() && TargetDecl->hasAttr()) checkTargetFeatures(Loc, FD); // Some architectures (such as x86-64) have the ABI changed based on // attribute-target/features. Give them a chance to diagnose. CGM.getTargetCodeGenInfo().checkFunctionCallABI( CGM, Loc, dyn_cast_or_null(CurCodeDecl), FD, CallArgs); } #ifndef NDEBUG if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { // For an inalloca varargs function, we don't expect CallInfo to match the // function pointer's type, because the inalloca struct a will have extra // fields in it for the varargs parameters. Code later in this function // bitcasts the function pointer to the type derived from CallInfo. // // In other cases, we assert that the types match up (until pointers stop // having pointee types). if (Callee.isVirtual()) assert(IRFuncTy == Callee.getVirtualFunctionType()); else { llvm::PointerType *PtrTy = llvm::cast(Callee.getFunctionPointer()->getType()); assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy)); } } #endif // 1. Set up the arguments. // If we're using inalloca, insert the allocation after the stack save. // FIXME: Do this earlier rather than hacking it in here! Address ArgMemory = Address::invalid(); if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { const llvm::DataLayout &DL = CGM.getDataLayout(); llvm::Instruction *IP = CallArgs.getStackBase(); llvm::AllocaInst *AI; if (IP) { IP = IP->getNextNode(); AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), "argmem", IP); } else { AI = CreateTempAlloca(ArgStruct, "argmem"); } auto Align = CallInfo.getArgStructAlignment(); AI->setAlignment(Align.getAsAlign()); AI->setUsedWithInAlloca(true); assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); ArgMemory = Address(AI, Align); } ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); SmallVector IRCallArgs(IRFunctionArgs.totalIRArgs()); // If the call returns a temporary with struct return, create a temporary // alloca to hold the result, unless one is given to us. Address SRetPtr = Address::invalid(); Address SRetAlloca = Address::invalid(); llvm::Value *UnusedReturnSizePtr = nullptr; if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { if (!ReturnValue.isNull()) { SRetPtr = ReturnValue.getValue(); } else { SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); if (HaveInsertPoint() && ReturnValue.isUnused()) { llvm::TypeSize size = CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); } } if (IRFunctionArgs.hasSRetArg()) { IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); } else if (RetAI.isInAlloca()) { Address Addr = Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); Builder.CreateStore(SRetPtr.getPointer(), Addr); } } Address swiftErrorTemp = Address::invalid(); Address swiftErrorArg = Address::invalid(); // When passing arguments using temporary allocas, we need to add the // appropriate lifetime markers. This vector keeps track of all the lifetime // markers that need to be ended right after the call. SmallVector CallLifetimeEndAfterCall; // Translate all of the arguments as necessary to match the IR lowering. assert(CallInfo.arg_size() == CallArgs.size() && "Mismatch between function signature & arguments."); unsigned ArgNo = 0; CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); I != E; ++I, ++info_it, ++ArgNo) { const ABIArgInfo &ArgInfo = info_it->info; // Insert a padding argument to ensure proper alignment. if (IRFunctionArgs.hasPaddingArg(ArgNo)) IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = llvm::UndefValue::get(ArgInfo.getPaddingType()); unsigned FirstIRArg, NumIRArgs; std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); switch (ArgInfo.getKind()) { case ABIArgInfo::InAlloca: { assert(NumIRArgs == 0); assert(getTarget().getTriple().getArch() == llvm::Triple::x86); if (I->isAggregate()) { Address Addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) : I->getKnownRValue().getAggregateAddress(); llvm::Instruction *Placeholder = cast(Addr.getPointer()); if (!ArgInfo.getInAllocaIndirect()) { // Replace the placeholder with the appropriate argument slot GEP. CGBuilderTy::InsertPoint IP = Builder.saveIP(); Builder.SetInsertPoint(Placeholder); Addr = Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); Builder.restoreIP(IP); } else { // For indirect things such as overaligned structs, replace the // placeholder with a regular aggregate temporary alloca. Store the // address of this alloca into the struct. Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); Address ArgSlot = Builder.CreateStructGEP( ArgMemory, ArgInfo.getInAllocaFieldIndex()); Builder.CreateStore(Addr.getPointer(), ArgSlot); } deferPlaceholderReplacement(Placeholder, Addr.getPointer()); } else if (ArgInfo.getInAllocaIndirect()) { // Make a temporary alloca and store the address of it into the argument // struct. Address Addr = CreateMemTempWithoutCast( I->Ty, getContext().getTypeAlignInChars(I->Ty), "indirect-arg-temp"); I->copyInto(*this, Addr); Address ArgSlot = Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); Builder.CreateStore(Addr.getPointer(), ArgSlot); } else { // Store the RValue into the argument struct. Address Addr = Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); unsigned AS = Addr.getType()->getPointerAddressSpace(); llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); // There are some cases where a trivial bitcast is not avoidable. The // definition of a type later in a translation unit may change it's type // from {}* to (%struct.foo*)*. if (Addr.getType() != MemType) Addr = Builder.CreateBitCast(Addr, MemType); I->copyInto(*this, Addr); } break; } case ABIArgInfo::Indirect: case ABIArgInfo::IndirectAliased: { assert(NumIRArgs == 1); if (!I->isAggregate()) { // Make a temporary alloca to pass the argument. Address Addr = CreateMemTempWithoutCast( I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); IRCallArgs[FirstIRArg] = Addr.getPointer(); I->copyInto(*this, Addr); } else { // We want to avoid creating an unnecessary temporary+copy here; // however, we need one in three cases: // 1. If the argument is not byval, and we are required to copy the // source. (This case doesn't occur on any common architecture.) // 2. If the argument is byval, RV is not sufficiently aligned, and // we cannot force it to be sufficiently aligned. // 3. If the argument is byval, but RV is not located in default // or alloca address space. Address Addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) : I->getKnownRValue().getAggregateAddress(); llvm::Value *V = Addr.getPointer(); CharUnits Align = ArgInfo.getIndirectAlign(); const llvm::DataLayout *TD = &CGM.getDataLayout(); assert((FirstIRArg >= IRFuncTy->getNumParams() || IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == TD->getAllocaAddrSpace()) && "indirect argument must be in alloca address space"); bool NeedCopy = false; if (Addr.getAlignment() < Align && llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < Align.getAsAlign()) { NeedCopy = true; } else if (I->hasLValue()) { auto LV = I->getKnownLValue(); auto AS = LV.getAddressSpace(); if (!ArgInfo.getIndirectByVal() || (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { NeedCopy = true; } if (!getLangOpts().OpenCL) { if ((ArgInfo.getIndirectByVal() && (AS != LangAS::Default && AS != CGM.getASTAllocaAddressSpace()))) { NeedCopy = true; } } // For OpenCL even if RV is located in default or alloca address space // we don't want to perform address space cast for it. else if ((ArgInfo.getIndirectByVal() && Addr.getType()->getAddressSpace() != IRFuncTy-> getParamType(FirstIRArg)->getPointerAddressSpace())) { NeedCopy = true; } } if (NeedCopy) { // Create an aligned temporary, and copy to it. Address AI = CreateMemTempWithoutCast( I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); IRCallArgs[FirstIRArg] = AI.getPointer(); // Emit lifetime markers for the temporary alloca. llvm::TypeSize ByvalTempElementSize = CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); llvm::Value *LifetimeSize = EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); // Add cleanup code to emit the end lifetime marker after the call. if (LifetimeSize) // In case we disabled lifetime markers. CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); // Generate the copy. I->copyInto(*this, AI); } else { // Skip the extra memcpy call. auto *T = llvm::PointerType::getWithSamePointeeType( cast(V->getType()), CGM.getDataLayout().getAllocaAddrSpace()); IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, true); } } break; } case ABIArgInfo::Ignore: assert(NumIRArgs == 0); break; case ABIArgInfo::Extend: case ABIArgInfo::Direct: { if (!isa(ArgInfo.getCoerceToType()) && ArgInfo.getCoerceToType() == ConvertType(info_it->type) && ArgInfo.getDirectOffset() == 0) { assert(NumIRArgs == 1); llvm::Value *V; if (!I->isAggregate()) V = I->getKnownRValue().getScalarVal(); else V = Builder.CreateLoad( I->hasLValue() ? I->getKnownLValue().getAddress(*this) : I->getKnownRValue().getAggregateAddress()); // Implement swifterror by copying into a new swifterror argument. // We'll write back in the normal path out of the call. if (CallInfo.getExtParameterInfo(ArgNo).getABI() == ParameterABI::SwiftErrorResult) { assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); QualType pointeeTy = I->Ty->getPointeeType(); swiftErrorArg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); swiftErrorTemp = CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); V = swiftErrorTemp.getPointer(); cast(V)->setSwiftError(true); llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); Builder.CreateStore(errorValue, swiftErrorTemp); } // We might have to widen integers, but we should never truncate. if (ArgInfo.getCoerceToType() != V->getType() && V->getType()->isIntegerTy()) V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); // If the argument doesn't match, perform a bitcast to coerce it. This // can happen due to trivial type mismatches. if (FirstIRArg < IRFuncTy->getNumParams() && V->getType() != IRFuncTy->getParamType(FirstIRArg)) V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); IRCallArgs[FirstIRArg] = V; break; } // FIXME: Avoid the conversion through memory if possible. Address Src = Address::invalid(); if (!I->isAggregate()) { Src = CreateMemTemp(I->Ty, "coerce"); I->copyInto(*this, Src); } else { Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) : I->getKnownRValue().getAggregateAddress(); } // If the value is offset in memory, apply the offset now. Src = emitAddressAtOffset(*this, Src, ArgInfo); // Fast-isel and the optimizer generally like scalar values better than // FCAs, so we flatten them if this is safe to do for this argument. llvm::StructType *STy = dyn_cast(ArgInfo.getCoerceToType()); if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { llvm::Type *SrcTy = Src.getElementType(); uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); // If the source type is smaller than the destination type of the // coerce-to logic, copy the source value into a temp alloca the size // of the destination type to allow loading all of it. The bits past // the source value are left undef. if (SrcSize < DstSize) { Address TempAlloca = CreateTempAlloca(STy, Src.getAlignment(), Src.getName() + ".coerce"); Builder.CreateMemCpy(TempAlloca, Src, SrcSize); Src = TempAlloca; } else { Src = Builder.CreateElementBitCast(Src, STy); } assert(NumIRArgs == STy->getNumElements()); for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { Address EltPtr = Builder.CreateStructGEP(Src, i); llvm::Value *LI = Builder.CreateLoad(EltPtr); IRCallArgs[FirstIRArg + i] = LI; } } else { // In the simple case, just pass the coerced loaded value. assert(NumIRArgs == 1); llvm::Value *Load = CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); if (CallInfo.isCmseNSCall()) { // For certain parameter types, clear padding bits, as they may reveal // sensitive information. // Small struct/union types are passed as integer arrays. auto *ATy = dyn_cast(Load->getType()); if (ATy != nullptr && isa(I->Ty.getCanonicalType())) Load = EmitCMSEClearRecord(Load, ATy, I->Ty); } IRCallArgs[FirstIRArg] = Load; } break; } case ABIArgInfo::CoerceAndExpand: { auto coercionType = ArgInfo.getCoerceAndExpandType(); auto layout = CGM.getDataLayout().getStructLayout(coercionType); llvm::Value *tempSize = nullptr; Address addr = Address::invalid(); Address AllocaAddr = Address::invalid(); if (I->isAggregate()) { addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) : I->getKnownRValue().getAggregateAddress(); } else { RValue RV = I->getKnownRValue(); assert(RV.isScalar()); // complex should always just be direct llvm::Type *scalarType = RV.getScalarVal()->getType(); auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); // Materialize to a temporary. addr = CreateTempAlloca(RV.getScalarVal()->getType(), CharUnits::fromQuantity(std::max( layout->getAlignment().value(), scalarAlign)), "tmp", /*ArraySize=*/nullptr, &AllocaAddr); tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); Builder.CreateStore(RV.getScalarVal(), addr); } addr = Builder.CreateElementBitCast(addr, coercionType); unsigned IRArgPos = FirstIRArg; for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { llvm::Type *eltType = coercionType->getElementType(i); if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; Address eltAddr = Builder.CreateStructGEP(addr, i); llvm::Value *elt = Builder.CreateLoad(eltAddr); IRCallArgs[IRArgPos++] = elt; } assert(IRArgPos == FirstIRArg + NumIRArgs); if (tempSize) { EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); } break; } case ABIArgInfo::Expand: { unsigned IRArgPos = FirstIRArg; ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); assert(IRArgPos == FirstIRArg + NumIRArgs); break; } } } const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); // If we're using inalloca, set up that argument. if (ArgMemory.isValid()) { llvm::Value *Arg = ArgMemory.getPointer(); if (CallInfo.isVariadic()) { // When passing non-POD arguments by value to variadic functions, we will // end up with a variadic prototype and an inalloca call site. In such // cases, we can't do any parameter mismatch checks. Give up and bitcast // the callee. unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); CalleePtr = Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); } else { llvm::Type *LastParamTy = IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); if (Arg->getType() != LastParamTy) { #ifndef NDEBUG // Assert that these structs have equivalent element types. llvm::StructType *FullTy = CallInfo.getArgStruct(); llvm::StructType *DeclaredTy = cast(LastParamTy->getPointerElementType()); assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), DE = DeclaredTy->element_end(), FI = FullTy->element_begin(); DI != DE; ++DI, ++FI) assert(*DI == *FI); #endif Arg = Builder.CreateBitCast(Arg, LastParamTy); } } assert(IRFunctionArgs.hasInallocaArg()); IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; } // 2. Prepare the function pointer. // If the callee is a bitcast of a non-variadic function to have a // variadic function pointer type, check to see if we can remove the // bitcast. This comes up with unprototyped functions. // // This makes the IR nicer, but more importantly it ensures that we // can inline the function at -O0 if it is marked always_inline. auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, llvm::Value *Ptr) -> llvm::Function * { if (!CalleeFT->isVarArg()) return nullptr; // Get underlying value if it's a bitcast if (llvm::ConstantExpr *CE = dyn_cast(Ptr)) { if (CE->getOpcode() == llvm::Instruction::BitCast) Ptr = CE->getOperand(0); } llvm::Function *OrigFn = dyn_cast(Ptr); if (!OrigFn) return nullptr; llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); // If the original type is variadic, or if any of the component types // disagree, we cannot remove the cast. if (OrigFT->isVarArg() || OrigFT->getNumParams() != CalleeFT->getNumParams() || OrigFT->getReturnType() != CalleeFT->getReturnType()) return nullptr; for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) return nullptr; return OrigFn; }; if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { CalleePtr = OrigFn; IRFuncTy = OrigFn->getFunctionType(); } // 3. Perform the actual call. // Deactivate any cleanups that we're supposed to do immediately before // the call. if (!CallArgs.getCleanupsToDeactivate().empty()) deactivateArgCleanupsBeforeCall(*this, CallArgs); // Assert that the arguments we computed match up. The IR verifier // will catch this, but this is a common enough source of problems // during IRGen changes that it's way better for debugging to catch // it ourselves here. #ifndef NDEBUG assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); for (unsigned i = 0; i < IRCallArgs.size(); ++i) { // Inalloca argument can have different type. if (IRFunctionArgs.hasInallocaArg() && i == IRFunctionArgs.getInallocaArgNo()) continue; if (i < IRFuncTy->getNumParams()) assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); } #endif // Update the largest vector width if any arguments have vector types. for (unsigned i = 0; i < IRCallArgs.size(); ++i) { if (auto *VT = dyn_cast(IRCallArgs[i]->getType())) LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinSize()); } // Compute the calling convention and attributes. unsigned CallingConv; llvm::AttributeList Attrs; CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, Callee.getAbstractInfo(), Attrs, CallingConv, /*AttrOnCallSite=*/true, /*IsThunk=*/false); if (const FunctionDecl *FD = dyn_cast_or_null(CurFuncDecl)) if (FD->hasAttr()) // All calls within a strictfp function are marked strictfp Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); // Add call-site nomerge attribute if exists. if (InNoMergeAttributedStmt) Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); // Apply some call-site-specific attributes. // TODO: work this into building the attribute set. // Apply always_inline to all calls within flatten functions. // FIXME: should this really take priority over __try, below? if (CurCodeDecl && CurCodeDecl->hasAttr() && !(TargetDecl && TargetDecl->hasAttr())) { Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); } // Disable inlining inside SEH __try blocks. if (isSEHTryScope()) { Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); } // Decide whether to use a call or an invoke. bool CannotThrow; if (currentFunctionUsesSEHTry()) { // SEH cares about asynchronous exceptions, so everything can "throw." CannotThrow = false; } else if (isCleanupPadScope() && EHPersonality::get(*this).isMSVCXXPersonality()) { // The MSVC++ personality will implicitly terminate the program if an // exception is thrown during a cleanup outside of a try/catch. // We don't need to model anything in IR to get this behavior. CannotThrow = true; } else { // Otherwise, nounwind call sites will never throw. CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); if (auto *FPtr = dyn_cast(CalleePtr)) if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) CannotThrow = true; } // If we made a temporary, be sure to clean up after ourselves. Note that we // can't depend on being inside of an ExprWithCleanups, so we need to manually // pop this cleanup later on. Being eager about this is OK, since this // temporary is 'invisible' outside of the callee. if (UnusedReturnSizePtr) pushFullExprCleanup(NormalEHLifetimeMarker, SRetAlloca, UnusedReturnSizePtr); llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); SmallVector BundleList = getBundlesForFunclet(CalleePtr); if (const FunctionDecl *FD = dyn_cast_or_null(CurFuncDecl)) if (FD->hasAttr()) // All calls within a strictfp function are marked strictfp Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); // Emit the actual call/invoke instruction. llvm::CallBase *CI; if (!InvokeDest) { CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); } else { llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, BundleList); EmitBlock(Cont); } if (callOrInvoke) *callOrInvoke = CI; // If this is within a function that has the guard(nocf) attribute and is an // indirect call, add the "guard_nocf" attribute to this call to indicate that // Control Flow Guard checks should not be added, even if the call is inlined. if (const auto *FD = dyn_cast_or_null(CurFuncDecl)) { if (const auto *A = FD->getAttr()) { if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); } } // Apply the attributes and calling convention. CI->setAttributes(Attrs); CI->setCallingConv(static_cast(CallingConv)); // Apply various metadata. if (!CI->getType()->isVoidTy()) CI->setName("call"); // Update largest vector width from the return type. if (auto *VT = dyn_cast(CI->getType())) LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, VT->getPrimitiveSizeInBits().getKnownMinSize()); // Insert instrumentation or attach profile metadata at indirect call sites. // For more details, see the comment before the definition of // IPVK_IndirectCallTarget in InstrProfData.inc. if (!CI->getCalledFunction()) PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, CI, CalleePtr); // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC // optimizer it can aggressively ignore unwind edges. if (CGM.getLangOpts().ObjCAutoRefCount) AddObjCARCExceptionMetadata(CI); // Set tail call kind if necessary. if (llvm::CallInst *Call = dyn_cast(CI)) { if (TargetDecl && TargetDecl->hasAttr()) Call->setTailCallKind(llvm::CallInst::TCK_NoTail); else if (IsMustTail) Call->setTailCallKind(llvm::CallInst::TCK_MustTail); } // Add metadata for calls to MSAllocator functions if (getDebugInfo() && TargetDecl && TargetDecl->hasAttr()) getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); // Add metadata if calling an __attribute__((error(""))) or warning fn. if (TargetDecl && TargetDecl->hasAttr()) { llvm::ConstantInt *Line = llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); CI->setMetadata("srcloc", MDT); } // 4. Finish the call. // If the call doesn't return, finish the basic block and clear the // insertion point; this allows the rest of IRGen to discard // unreachable code. if (CI->doesNotReturn()) { if (UnusedReturnSizePtr) PopCleanupBlock(); // Strip away the noreturn attribute to better diagnose unreachable UB. if (SanOpts.has(SanitizerKind::Unreachable)) { // Also remove from function since CallBase::hasFnAttr additionally checks // attributes of the called function. if (auto *F = CI->getCalledFunction()) F->removeFnAttr(llvm::Attribute::NoReturn); CI->removeFnAttr(llvm::Attribute::NoReturn); // Avoid incompatibility with ASan which relies on the `noreturn` // attribute to insert handler calls. if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) { SanitizerScope SanScope(this); llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); Builder.SetInsertPoint(CI); auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); EmitNounwindRuntimeCall(Fn); } } EmitUnreachable(Loc); Builder.ClearInsertionPoint(); // FIXME: For now, emit a dummy basic block because expr emitters in // generally are not ready to handle emitting expressions at unreachable // points. EnsureInsertPoint(); // Return a reasonable RValue. return GetUndefRValue(RetTy); } // If this is a musttail call, return immediately. We do not branch to the // epilogue in this case. if (IsMustTail) { for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); ++it) { EHCleanupScope *Cleanup = dyn_cast(&*it); if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); } if (CI->getType()->isVoidTy()) Builder.CreateRetVoid(); else Builder.CreateRet(CI); Builder.ClearInsertionPoint(); EnsureInsertPoint(); return GetUndefRValue(RetTy); } // Perform the swifterror writeback. if (swiftErrorTemp.isValid()) { llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); Builder.CreateStore(errorResult, swiftErrorArg); } // Emit any call-associated writebacks immediately. Arguably this // should happen after any return-value munging. if (CallArgs.hasWritebacks()) emitWritebacks(*this, CallArgs); // The stack cleanup for inalloca arguments has to run out of the normal // lexical order, so deactivate it and run it manually here. CallArgs.freeArgumentMemory(*this); // Extract the return value. RValue Ret = [&] { switch (RetAI.getKind()) { case ABIArgInfo::CoerceAndExpand: { auto coercionType = RetAI.getCoerceAndExpandType(); Address addr = SRetPtr; addr = Builder.CreateElementBitCast(addr, coercionType); assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); bool requiresExtract = isa(CI->getType()); unsigned unpaddedIndex = 0; for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { llvm::Type *eltType = coercionType->getElementType(i); if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; Address eltAddr = Builder.CreateStructGEP(addr, i); llvm::Value *elt = CI; if (requiresExtract) elt = Builder.CreateExtractValue(elt, unpaddedIndex++); else assert(unpaddedIndex == 0); Builder.CreateStore(elt, eltAddr); } // FALLTHROUGH LLVM_FALLTHROUGH; } case ABIArgInfo::InAlloca: case ABIArgInfo::Indirect: { RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); if (UnusedReturnSizePtr) PopCleanupBlock(); return ret; } case ABIArgInfo::Ignore: // If we are ignoring an argument that had a result, make sure to // construct the appropriate return value for our caller. return GetUndefRValue(RetTy); case ABIArgInfo::Extend: case ABIArgInfo::Direct: { llvm::Type *RetIRTy = ConvertType(RetTy); if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { switch (getEvaluationKind(RetTy)) { case TEK_Complex: { llvm::Value *Real = Builder.CreateExtractValue(CI, 0); llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); return RValue::getComplex(std::make_pair(Real, Imag)); } case TEK_Aggregate: { Address DestPtr = ReturnValue.getValue(); bool DestIsVolatile = ReturnValue.isVolatile(); if (!DestPtr.isValid()) { DestPtr = CreateMemTemp(RetTy, "agg.tmp"); DestIsVolatile = false; } EmitAggregateStore(CI, DestPtr, DestIsVolatile); return RValue::getAggregate(DestPtr); } case TEK_Scalar: { // If the argument doesn't match, perform a bitcast to coerce it. This // can happen due to trivial type mismatches. llvm::Value *V = CI; if (V->getType() != RetIRTy) V = Builder.CreateBitCast(V, RetIRTy); return RValue::get(V); } } llvm_unreachable("bad evaluation kind"); } Address DestPtr = ReturnValue.getValue(); bool DestIsVolatile = ReturnValue.isVolatile(); if (!DestPtr.isValid()) { DestPtr = CreateMemTemp(RetTy, "coerce"); DestIsVolatile = false; } // If the value is offset in memory, apply the offset now. Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); return convertTempToRValue(DestPtr, RetTy, SourceLocation()); } case ABIArgInfo::Expand: case ABIArgInfo::IndirectAliased: llvm_unreachable("Invalid ABI kind for return argument"); } llvm_unreachable("Unhandled ABIArgInfo::Kind"); } (); // Emit the assume_aligned check on the return value. if (Ret.isScalar() && TargetDecl) { AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); } // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though // we can't use the full cleanup mechanism. for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) LifetimeEnd.Emit(*this, /*Flags=*/{}); if (!ReturnValue.isExternallyDestructed() && RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), RetTy); return Ret; } CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { if (isVirtual()) { const CallExpr *CE = getVirtualCallExpr(); return CGF.CGM.getCXXABI().getVirtualFunctionPointer( CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), CE ? CE->getBeginLoc() : SourceLocation()); } return *this; } /* VarArg handling */ Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { VAListAddr = VE->isMicrosoftABI() ? EmitMSVAListRef(VE->getSubExpr()) : EmitVAListRef(VE->getSubExpr()); QualType Ty = VE->getType(); if (VE->isMicrosoftABI()) return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); }