//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This contains code to emit Builtin calls as LLVM code. // //===----------------------------------------------------------------------===// #include "CGCXXABI.h" #include "CGObjCRuntime.h" #include "CGOpenCLRuntime.h" #include "CGRecordLayout.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "ConstantEmitter.h" #include "PatternInit.h" #include "TargetInfo.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/OSLog.h" #include "clang/Basic/TargetBuiltins.h" #include "clang/Basic/TargetInfo.h" #include "clang/CodeGen/CGFunctionInfo.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsAArch64.h" #include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/IntrinsicsARM.h" #include "llvm/IR/IntrinsicsBPF.h" #include "llvm/IR/IntrinsicsHexagon.h" #include "llvm/IR/IntrinsicsNVPTX.h" #include "llvm/IR/IntrinsicsPowerPC.h" #include "llvm/IR/IntrinsicsR600.h" #include "llvm/IR/IntrinsicsS390.h" #include "llvm/IR/IntrinsicsWebAssembly.h" #include "llvm/IR/IntrinsicsX86.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/MatrixBuilder.h" #include "llvm/Support/ConvertUTF.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/X86TargetParser.h" #include using namespace clang; using namespace CodeGen; using namespace llvm; static int64_t clamp(int64_t Value, int64_t Low, int64_t High) { return std::min(High, std::max(Low, Value)); } static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, Align AlignmentInBytes) { ConstantInt *Byte; switch (CGF.getLangOpts().getTrivialAutoVarInit()) { case LangOptions::TrivialAutoVarInitKind::Uninitialized: // Nothing to initialize. return; case LangOptions::TrivialAutoVarInitKind::Zero: Byte = CGF.Builder.getInt8(0x00); break; case LangOptions::TrivialAutoVarInitKind::Pattern: { llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); Byte = llvm::dyn_cast( initializationPatternFor(CGF.CGM, Int8)); break; } } if (CGF.CGM.stopAutoInit()) return; CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); } /// getBuiltinLibFunction - Given a builtin id for a function like /// "__builtin_fabsf", return a Function* for "fabsf". llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, unsigned BuiltinID) { assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); // Get the name, skip over the __builtin_ prefix (if necessary). StringRef Name; GlobalDecl D(FD); // If the builtin has been declared explicitly with an assembler label, // use the mangled name. This differs from the plain label on platforms // that prefix labels. if (FD->hasAttr()) Name = getMangledName(D); else Name = Context.BuiltinInfo.getName(BuiltinID) + 10; llvm::FunctionType *Ty = cast(getTypes().ConvertType(FD->getType())); return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); } /// Emit the conversions required to turn the given value into an /// integer of the given size. static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, QualType T, llvm::IntegerType *IntType) { V = CGF.EmitToMemory(V, T); if (V->getType()->isPointerTy()) return CGF.Builder.CreatePtrToInt(V, IntType); assert(V->getType() == IntType); return V; } static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, QualType T, llvm::Type *ResultType) { V = CGF.EmitFromMemory(V, T); if (ResultType->isPointerTy()) return CGF.Builder.CreateIntToPtr(V, ResultType); assert(V->getType() == ResultType); return V; } /// Utility to insert an atomic instruction based on Intrinsic::ID /// and the expression node. static Value *MakeBinaryAtomicValue( CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { QualType T = E->getType(); assert(E->getArg(0)->getType()->isPointerType()); assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())); assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); llvm::IntegerType *IntType = llvm::IntegerType::get(CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); llvm::Value *Args[2]; Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); Args[1] = CGF.EmitScalarExpr(E->getArg(1)); llvm::Type *ValueType = Args[1]->getType(); Args[1] = EmitToInt(CGF, Args[1], T, IntType); llvm::Value *Result = CGF.Builder.CreateAtomicRMW( Kind, Args[0], Args[1], Ordering); return EmitFromInt(CGF, Result, T, ValueType); } static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { Value *Val = CGF.EmitScalarExpr(E->getArg(0)); Value *Address = CGF.EmitScalarExpr(E->getArg(1)); // Convert the type of the pointer to a pointer to the stored type. Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); Value *BC = CGF.Builder.CreateBitCast( Address, llvm::PointerType::getUnqual(Val->getType()), "cast"); LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); LV.setNontemporal(true); CGF.EmitStoreOfScalar(Val, LV, false); return nullptr; } static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { Value *Address = CGF.EmitScalarExpr(E->getArg(0)); LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); LV.setNontemporal(true); return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); } static RValue EmitBinaryAtomic(CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E) { return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); } /// Utility to insert an atomic instruction based Intrinsic::ID and /// the expression node, where the return value is the result of the /// operation. static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, Instruction::BinaryOps Op, bool Invert = false) { QualType T = E->getType(); assert(E->getArg(0)->getType()->isPointerType()); assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())); assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); llvm::IntegerType *IntType = llvm::IntegerType::get(CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); llvm::Value *Args[2]; Args[1] = CGF.EmitScalarExpr(E->getArg(1)); llvm::Type *ValueType = Args[1]->getType(); Args[1] = EmitToInt(CGF, Args[1], T, IntType); Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); llvm::Value *Result = CGF.Builder.CreateAtomicRMW( Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); if (Invert) Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, llvm::ConstantInt::getAllOnesValue(IntType)); Result = EmitFromInt(CGF, Result, T, ValueType); return RValue::get(Result); } /// Utility to insert an atomic cmpxchg instruction. /// /// @param CGF The current codegen function. /// @param E Builtin call expression to convert to cmpxchg. /// arg0 - address to operate on /// arg1 - value to compare with /// arg2 - new value /// @param ReturnBool Specifies whether to return success flag of /// cmpxchg result or the old value. /// /// @returns result of cmpxchg, according to ReturnBool /// /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics /// invoke the function EmitAtomicCmpXchgForMSIntrin. static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, bool ReturnBool) { QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); llvm::IntegerType *IntType = llvm::IntegerType::get( CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); Value *Args[3]; Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); Args[1] = CGF.EmitScalarExpr(E->getArg(1)); llvm::Type *ValueType = Args[1]->getType(); Args[1] = EmitToInt(CGF, Args[1], T, IntType); Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); Value *Pair = CGF.Builder.CreateAtomicCmpXchg( Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, llvm::AtomicOrdering::SequentiallyConsistent); if (ReturnBool) // Extract boolean success flag and zext it to int. return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), CGF.ConvertType(E->getType())); else // Extract old value and emit it using the same type as compare value. return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, ValueType); } /// This function should be invoked to emit atomic cmpxchg for Microsoft's /// _InterlockedCompareExchange* intrinsics which have the following signature: /// T _InterlockedCompareExchange(T volatile *Destination, /// T Exchange, /// T Comparand); /// /// Whereas the llvm 'cmpxchg' instruction has the following syntax: /// cmpxchg *Destination, Comparand, Exchange. /// So we need to swap Comparand and Exchange when invoking /// CreateAtomicCmpXchg. That is the reason we could not use the above utility /// function MakeAtomicCmpXchgValue since it expects the arguments to be /// already swapped. static Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { assert(E->getArg(0)->getType()->isPointerType()); assert(CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())); assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())); assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())); auto *Destination = CGF.EmitScalarExpr(E->getArg(0)); auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); // For Release ordering, the failure ordering should be Monotonic. auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? AtomicOrdering::Monotonic : SuccessOrdering; auto *Result = CGF.Builder.CreateAtomicCmpXchg( Destination, Comparand, Exchange, SuccessOrdering, FailureOrdering); Result->setVolatile(true); return CGF.Builder.CreateExtractValue(Result, 0); } static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { assert(E->getArg(0)->getType()->isPointerType()); auto *IntTy = CGF.ConvertType(E->getType()); auto *Result = CGF.Builder.CreateAtomicRMW( AtomicRMWInst::Add, CGF.EmitScalarExpr(E->getArg(0)), ConstantInt::get(IntTy, 1), Ordering); return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); } static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E, AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { assert(E->getArg(0)->getType()->isPointerType()); auto *IntTy = CGF.ConvertType(E->getType()); auto *Result = CGF.Builder.CreateAtomicRMW( AtomicRMWInst::Sub, CGF.EmitScalarExpr(E->getArg(0)), ConstantInt::get(IntTy, 1), Ordering); return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); } // Build a plain volatile load. static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); QualType ElTy = E->getArg(0)->getType()->getPointeeType(); CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); llvm::Type *ITy = llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize); Load->setVolatile(true); return Load; } // Build a plain volatile store. static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); Value *Value = CGF.EmitScalarExpr(E->getArg(1)); QualType ElTy = E->getArg(0)->getType()->getPointeeType(); CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); llvm::Type *ITy = llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8); Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); llvm::StoreInst *Store = CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); Store->setVolatile(true); return Store; } // Emit a simple mangled intrinsic that has 1 argument and a return type // matching the argument type. Depending on mode, this may be a constrained // floating-point intrinsic. static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID, unsigned ConstrainedIntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); if (CGF.Builder.getIsFPConstrained()) { Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); return CGF.Builder.CreateConstrainedFPCall(F, { Src0 }); } else { Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, Src0); } } // Emit an intrinsic that has 2 operands of the same type as its result. // Depending on mode, this may be a constrained floating-point intrinsic. static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID, unsigned ConstrainedIntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); if (CGF.Builder.getIsFPConstrained()) { Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 }); } else { Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, { Src0, Src1 }); } } // Emit an intrinsic that has 3 operands of the same type as its result. // Depending on mode, this may be a constrained floating-point intrinsic. static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID, unsigned ConstrainedIntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); if (CGF.Builder.getIsFPConstrained()) { Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 }); } else { Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); } } // Emit an intrinsic where all operands are of the same type as the result. // Depending on mode, this may be a constrained floating-point intrinsic. static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, unsigned IntrinsicID, unsigned ConstrainedIntrinsicID, llvm::Type *Ty, ArrayRef Args) { Function *F; if (CGF.Builder.getIsFPConstrained()) F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty); else F = CGF.CGM.getIntrinsic(IntrinsicID, Ty); if (CGF.Builder.getIsFPConstrained()) return CGF.Builder.CreateConstrainedFPCall(F, Args); else return CGF.Builder.CreateCall(F, Args); } // Emit a simple mangled intrinsic that has 1 argument and a return type // matching the argument type. static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, Src0); } // Emit an intrinsic that has 2 operands of the same type as its result. static Value *emitBinaryBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, { Src0, Src1 }); } // Emit an intrinsic that has 3 operands of the same type as its result. static Value *emitTernaryBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); } // Emit an intrinsic that has 1 float or double operand, and 1 integer. static Value *emitFPIntBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID) { llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); return CGF.Builder.CreateCall(F, {Src0, Src1}); } // Emit an intrinsic that has overloaded integer result and fp operand. static Value * emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E, unsigned IntrinsicID, unsigned ConstrainedIntrinsicID) { llvm::Type *ResultType = CGF.ConvertType(E->getType()); llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); if (CGF.Builder.getIsFPConstrained()) { Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, {ResultType, Src0->getType()}); return CGF.Builder.CreateConstrainedFPCall(F, {Src0}); } else { Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()}); return CGF.Builder.CreateCall(F, Src0); } } /// EmitFAbs - Emit a call to @llvm.fabs(). static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); Call->setDoesNotAccessMemory(); return Call; } /// Emit the computation of the sign bit for a floating point value. Returns /// the i1 sign bit value. static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { LLVMContext &C = CGF.CGM.getLLVMContext(); llvm::Type *Ty = V->getType(); int Width = Ty->getPrimitiveSizeInBits(); llvm::Type *IntTy = llvm::IntegerType::get(C, Width); V = CGF.Builder.CreateBitCast(V, IntTy); if (Ty->isPPC_FP128Ty()) { // We want the sign bit of the higher-order double. The bitcast we just // did works as if the double-double was stored to memory and then // read as an i128. The "store" will put the higher-order double in the // lower address in both little- and big-Endian modes, but the "load" // will treat those bits as a different part of the i128: the low bits in // little-Endian, the high bits in big-Endian. Therefore, on big-Endian // we need to shift the high bits down to the low before truncating. Width >>= 1; if (CGF.getTarget().isBigEndian()) { Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); V = CGF.Builder.CreateLShr(V, ShiftCst); } // We are truncating value in order to extract the higher-order // double, which we will be using to extract the sign from. IntTy = llvm::IntegerType::get(C, Width); V = CGF.Builder.CreateTrunc(V, IntTy); } Value *Zero = llvm::Constant::getNullValue(IntTy); return CGF.Builder.CreateICmpSLT(V, Zero); } static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, const CallExpr *E, llvm::Constant *calleeValue) { CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); } /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* /// depending on IntrinsicID. /// /// \arg CGF The current codegen function. /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. /// \arg X The first argument to the llvm.*.with.overflow.*. /// \arg Y The second argument to the llvm.*.with.overflow.*. /// \arg Carry The carry returned by the llvm.*.with.overflow.*. /// \returns The result (i.e. sum/product) returned by the intrinsic. static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, const llvm::Intrinsic::ID IntrinsicID, llvm::Value *X, llvm::Value *Y, llvm::Value *&Carry) { // Make sure we have integers of the same width. assert(X->getType() == Y->getType() && "Arguments must be the same type. (Did you forget to make sure both " "arguments have the same integer width?)"); Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); Carry = CGF.Builder.CreateExtractValue(Tmp, 1); return CGF.Builder.CreateExtractValue(Tmp, 0); } static Value *emitRangedBuiltin(CodeGenFunction &CGF, unsigned IntrinsicID, int low, int high) { llvm::MDBuilder MDHelper(CGF.getLLVMContext()); llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); llvm::Instruction *Call = CGF.Builder.CreateCall(F); Call->setMetadata(llvm::LLVMContext::MD_range, RNode); return Call; } namespace { struct WidthAndSignedness { unsigned Width; bool Signed; }; } static WidthAndSignedness getIntegerWidthAndSignedness(const clang::ASTContext &context, const clang::QualType Type) { assert(Type->isIntegerType() && "Given type is not an integer."); unsigned Width = Type->isBooleanType() ? 1 : Type->isExtIntType() ? context.getIntWidth(Type) : context.getTypeInfo(Type).Width; bool Signed = Type->isSignedIntegerType(); return {Width, Signed}; } // Given one or more integer types, this function produces an integer type that // encompasses them: any value in one of the given types could be expressed in // the encompassing type. static struct WidthAndSignedness EncompassingIntegerType(ArrayRef Types) { assert(Types.size() > 0 && "Empty list of types."); // If any of the given types is signed, we must return a signed type. bool Signed = false; for (const auto &Type : Types) { Signed |= Type.Signed; } // The encompassing type must have a width greater than or equal to the width // of the specified types. Additionally, if the encompassing type is signed, // its width must be strictly greater than the width of any unsigned types // given. unsigned Width = 0; for (const auto &Type : Types) { unsigned MinWidth = Type.Width + (Signed && !Type.Signed); if (Width < MinWidth) { Width = MinWidth; } } return {Width, Signed}; } Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { llvm::Type *DestType = Int8PtrTy; if (ArgValue->getType() != DestType) ArgValue = Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); } /// Checks if using the result of __builtin_object_size(p, @p From) in place of /// __builtin_object_size(p, @p To) is correct static bool areBOSTypesCompatible(int From, int To) { // Note: Our __builtin_object_size implementation currently treats Type=0 and // Type=2 identically. Encoding this implementation detail here may make // improving __builtin_object_size difficult in the future, so it's omitted. return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); } static llvm::Value * getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); } llvm::Value * CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, llvm::IntegerType *ResType, llvm::Value *EmittedE, bool IsDynamic) { uint64_t ObjectSize; if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); } /// Returns a Value corresponding to the size of the given expression. /// This Value may be either of the following: /// - A llvm::Argument (if E is a param with the pass_object_size attribute on /// it) /// - A call to the @llvm.objectsize intrinsic /// /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null /// and we wouldn't otherwise try to reference a pass_object_size parameter, /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. llvm::Value * CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, llvm::IntegerType *ResType, llvm::Value *EmittedE, bool IsDynamic) { // We need to reference an argument if the pointer is a parameter with the // pass_object_size attribute. if (auto *D = dyn_cast(E->IgnoreParenImpCasts())) { auto *Param = dyn_cast(D->getDecl()); auto *PS = D->getDecl()->getAttr(); if (Param != nullptr && PS != nullptr && areBOSTypesCompatible(PS->getType(), Type)) { auto Iter = SizeArguments.find(Param); assert(Iter != SizeArguments.end()); const ImplicitParamDecl *D = Iter->second; auto DIter = LocalDeclMap.find(D); assert(DIter != LocalDeclMap.end()); return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, getContext().getSizeType(), E->getBeginLoc()); } } // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't // evaluate E for side-effects. In either case, we shouldn't lower to // @llvm.objectsize. if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) return getDefaultBuiltinObjectSizeResult(Type, ResType); Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); assert(Ptr->getType()->isPointerTy() && "Non-pointer passed to __builtin_object_size?"); Function *F = CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. Value *Min = Builder.getInt1((Type & 2) != 0); // For GCC compatibility, __builtin_object_size treat NULL as unknown size. Value *NullIsUnknown = Builder.getTrue(); Value *Dynamic = Builder.getInt1(IsDynamic); return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); } namespace { /// A struct to generically describe a bit test intrinsic. struct BitTest { enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; enum InterlockingKind : uint8_t { Unlocked, Sequential, Acquire, Release, NoFence }; ActionKind Action; InterlockingKind Interlocking; bool Is64Bit; static BitTest decodeBitTestBuiltin(unsigned BuiltinID); }; } // namespace BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { switch (BuiltinID) { // Main portable variants. case Builtin::BI_bittest: return {TestOnly, Unlocked, false}; case Builtin::BI_bittestandcomplement: return {Complement, Unlocked, false}; case Builtin::BI_bittestandreset: return {Reset, Unlocked, false}; case Builtin::BI_bittestandset: return {Set, Unlocked, false}; case Builtin::BI_interlockedbittestandreset: return {Reset, Sequential, false}; case Builtin::BI_interlockedbittestandset: return {Set, Sequential, false}; // X86-specific 64-bit variants. case Builtin::BI_bittest64: return {TestOnly, Unlocked, true}; case Builtin::BI_bittestandcomplement64: return {Complement, Unlocked, true}; case Builtin::BI_bittestandreset64: return {Reset, Unlocked, true}; case Builtin::BI_bittestandset64: return {Set, Unlocked, true}; case Builtin::BI_interlockedbittestandreset64: return {Reset, Sequential, true}; case Builtin::BI_interlockedbittestandset64: return {Set, Sequential, true}; // ARM/AArch64-specific ordering variants. case Builtin::BI_interlockedbittestandset_acq: return {Set, Acquire, false}; case Builtin::BI_interlockedbittestandset_rel: return {Set, Release, false}; case Builtin::BI_interlockedbittestandset_nf: return {Set, NoFence, false}; case Builtin::BI_interlockedbittestandreset_acq: return {Reset, Acquire, false}; case Builtin::BI_interlockedbittestandreset_rel: return {Reset, Release, false}; case Builtin::BI_interlockedbittestandreset_nf: return {Reset, NoFence, false}; } llvm_unreachable("expected only bittest intrinsics"); } static char bitActionToX86BTCode(BitTest::ActionKind A) { switch (A) { case BitTest::TestOnly: return '\0'; case BitTest::Complement: return 'c'; case BitTest::Reset: return 'r'; case BitTest::Set: return 's'; } llvm_unreachable("invalid action"); } static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, BitTest BT, const CallExpr *E, Value *BitBase, Value *BitPos) { char Action = bitActionToX86BTCode(BT.Action); char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; // Build the assembly. SmallString<64> Asm; raw_svector_ostream AsmOS(Asm); if (BT.Interlocking != BitTest::Unlocked) AsmOS << "lock "; AsmOS << "bt"; if (Action) AsmOS << Action; AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}"; // Build the constraints. FIXME: We should support immediates when possible. std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}"; llvm::IntegerType *IntType = llvm::IntegerType::get( CGF.getLLVMContext(), CGF.getContext().getTypeSize(E->getArg(1)->getType())); llvm::Type *IntPtrType = IntType->getPointerTo(); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); } static llvm::AtomicOrdering getBitTestAtomicOrdering(BitTest::InterlockingKind I) { switch (I) { case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; case BitTest::Release: return llvm::AtomicOrdering::Release; case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; } llvm_unreachable("invalid interlocking"); } /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of /// bits and a bit position and read and optionally modify the bit at that /// position. The position index can be arbitrarily large, i.e. it can be larger /// than 31 or 63, so we need an indexed load in the general case. static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, unsigned BuiltinID, const CallExpr *E) { Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); // X86 has special BT, BTC, BTR, and BTS instructions that handle the array // indexing operation internally. Use them if possible. if (CGF.getTarget().getTriple().isX86()) return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); // Otherwise, use generic code to load one byte and test the bit. Use all but // the bottom three bits as the array index, and the bottom three bits to form // a mask. // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; Value *ByteIndex = CGF.Builder.CreateAShr( BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, ByteIndex, "bittest.byteaddr"), CharUnits::One()); Value *PosLow = CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); // The updating instructions will need a mask. Value *Mask = nullptr; if (BT.Action != BitTest::TestOnly) { Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, "bittest.mask"); } // Check the action and ordering of the interlocked intrinsics. llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); Value *OldByte = nullptr; if (Ordering != llvm::AtomicOrdering::NotAtomic) { // Emit a combined atomicrmw load/store operation for the interlocked // intrinsics. llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; if (BT.Action == BitTest::Reset) { Mask = CGF.Builder.CreateNot(Mask); RMWOp = llvm::AtomicRMWInst::And; } OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, Ordering); } else { // Emit a plain load for the non-interlocked intrinsics. OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); Value *NewByte = nullptr; switch (BT.Action) { case BitTest::TestOnly: // Don't store anything. break; case BitTest::Complement: NewByte = CGF.Builder.CreateXor(OldByte, Mask); break; case BitTest::Reset: NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); break; case BitTest::Set: NewByte = CGF.Builder.CreateOr(OldByte, Mask); break; } if (NewByte) CGF.Builder.CreateStore(NewByte, ByteAddr); } // However we loaded the old byte, either by plain load or atomicrmw, shift // the bit into the low position and mask it to 0 or 1. Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); return CGF.Builder.CreateAnd( ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); } namespace { enum class MSVCSetJmpKind { _setjmpex, _setjmp3, _setjmp }; } /// MSVC handles setjmp a bit differently on different platforms. On every /// architecture except 32-bit x86, the frame address is passed. On x86, extra /// parameters can be passed as variadic arguments, but we always pass none. static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, const CallExpr *E) { llvm::Value *Arg1 = nullptr; llvm::Type *Arg1Ty = nullptr; StringRef Name; bool IsVarArg = false; if (SJKind == MSVCSetJmpKind::_setjmp3) { Name = "_setjmp3"; Arg1Ty = CGF.Int32Ty; Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); IsVarArg = true; } else { Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; Arg1Ty = CGF.Int8PtrTy; if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { Arg1 = CGF.Builder.CreateCall( CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); } else Arg1 = CGF.Builder.CreateCall( CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), llvm::ConstantInt::get(CGF.Int32Ty, 0)); } // Mark the call site and declaration with ReturnsTwice. llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::ReturnsTwice); llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, ReturnsTwiceAttr, /*Local=*/true); llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); llvm::Value *Args[] = {Buf, Arg1}; llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); CB->setAttributes(ReturnsTwiceAttr); return RValue::get(CB); } // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, // we handle them here. enum class CodeGenFunction::MSVCIntrin { _BitScanForward, _BitScanReverse, _InterlockedAnd, _InterlockedDecrement, _InterlockedExchange, _InterlockedExchangeAdd, _InterlockedExchangeSub, _InterlockedIncrement, _InterlockedOr, _InterlockedXor, _InterlockedExchangeAdd_acq, _InterlockedExchangeAdd_rel, _InterlockedExchangeAdd_nf, _InterlockedExchange_acq, _InterlockedExchange_rel, _InterlockedExchange_nf, _InterlockedCompareExchange_acq, _InterlockedCompareExchange_rel, _InterlockedCompareExchange_nf, _InterlockedOr_acq, _InterlockedOr_rel, _InterlockedOr_nf, _InterlockedXor_acq, _InterlockedXor_rel, _InterlockedXor_nf, _InterlockedAnd_acq, _InterlockedAnd_rel, _InterlockedAnd_nf, _InterlockedIncrement_acq, _InterlockedIncrement_rel, _InterlockedIncrement_nf, _InterlockedDecrement_acq, _InterlockedDecrement_rel, _InterlockedDecrement_nf, __fastfail, }; Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E) { switch (BuiltinID) { case MSVCIntrin::_BitScanForward: case MSVCIntrin::_BitScanReverse: { Value *ArgValue = EmitScalarExpr(E->getArg(1)); llvm::Type *ArgType = ArgValue->getType(); llvm::Type *IndexType = EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType(); llvm::Type *ResultType = ConvertType(E->getType()); Value *ArgZero = llvm::Constant::getNullValue(ArgType); Value *ResZero = llvm::Constant::getNullValue(ResultType); Value *ResOne = llvm::ConstantInt::get(ResultType, 1); BasicBlock *Begin = Builder.GetInsertBlock(); BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); Builder.SetInsertPoint(End); PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); Builder.SetInsertPoint(Begin); Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); Builder.CreateCondBr(IsZero, End, NotZero); Result->addIncoming(ResZero, Begin); Builder.SetInsertPoint(NotZero); Address IndexAddress = EmitPointerWithAlignment(E->getArg(0)); if (BuiltinID == MSVCIntrin::_BitScanForward) { Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); Builder.CreateStore(ZeroCount, IndexAddress, false); } else { unsigned ArgWidth = cast(ArgType)->getBitWidth(); Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); Builder.CreateStore(Index, IndexAddress, false); } Builder.CreateBr(End); Result->addIncoming(ResOne, NotZero); Builder.SetInsertPoint(End); return Result; } case MSVCIntrin::_InterlockedAnd: return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); case MSVCIntrin::_InterlockedExchange: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); case MSVCIntrin::_InterlockedExchangeAdd: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); case MSVCIntrin::_InterlockedExchangeSub: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); case MSVCIntrin::_InterlockedOr: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); case MSVCIntrin::_InterlockedXor: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); case MSVCIntrin::_InterlockedExchangeAdd_acq: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, AtomicOrdering::Acquire); case MSVCIntrin::_InterlockedExchangeAdd_rel: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, AtomicOrdering::Release); case MSVCIntrin::_InterlockedExchangeAdd_nf: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, AtomicOrdering::Monotonic); case MSVCIntrin::_InterlockedExchange_acq: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, AtomicOrdering::Acquire); case MSVCIntrin::_InterlockedExchange_rel: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, AtomicOrdering::Release); case MSVCIntrin::_InterlockedExchange_nf: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, AtomicOrdering::Monotonic); case MSVCIntrin::_InterlockedCompareExchange_acq: return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); case MSVCIntrin::_InterlockedCompareExchange_rel: return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); case MSVCIntrin::_InterlockedCompareExchange_nf: return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); case MSVCIntrin::_InterlockedOr_acq: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, AtomicOrdering::Acquire); case MSVCIntrin::_InterlockedOr_rel: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, AtomicOrdering::Release); case MSVCIntrin::_InterlockedOr_nf: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, AtomicOrdering::Monotonic); case MSVCIntrin::_InterlockedXor_acq: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, AtomicOrdering::Acquire); case MSVCIntrin::_InterlockedXor_rel: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, AtomicOrdering::Release); case MSVCIntrin::_InterlockedXor_nf: return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, AtomicOrdering::Monotonic); case MSVCIntrin::_InterlockedAnd_acq: return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, AtomicOrdering::Acquire); case MSVCIntrin::_InterlockedAnd_rel: return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, AtomicOrdering::Release); case MSVCIntrin::_InterlockedAnd_nf: return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, AtomicOrdering::Monotonic); case MSVCIntrin::_InterlockedIncrement_acq: return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); case MSVCIntrin::_InterlockedIncrement_rel: return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); case MSVCIntrin::_InterlockedIncrement_nf: return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); case MSVCIntrin::_InterlockedDecrement_acq: return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); case MSVCIntrin::_InterlockedDecrement_rel: return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); case MSVCIntrin::_InterlockedDecrement_nf: return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); case MSVCIntrin::_InterlockedDecrement: return EmitAtomicDecrementValue(*this, E); case MSVCIntrin::_InterlockedIncrement: return EmitAtomicIncrementValue(*this, E); case MSVCIntrin::__fastfail: { // Request immediate process termination from the kernel. The instruction // sequences to do this are documented on MSDN: // https://msdn.microsoft.com/en-us/library/dn774154.aspx llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); StringRef Asm, Constraints; switch (ISA) { default: ErrorUnsupported(E, "__fastfail call for this architecture"); break; case llvm::Triple::x86: case llvm::Triple::x86_64: Asm = "int $$0x29"; Constraints = "{cx}"; break; case llvm::Triple::thumb: Asm = "udf #251"; Constraints = "{r0}"; break; case llvm::Triple::aarch64: Asm = "brk #0xF003"; Constraints = "{w0}"; } llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoReturn); llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); CI->setAttributes(NoReturnAttr); return CI; } } llvm_unreachable("Incorrect MSVC intrinsic!"); } namespace { // ARC cleanup for __builtin_os_log_format struct CallObjCArcUse final : EHScopeStack::Cleanup { CallObjCArcUse(llvm::Value *object) : object(object) {} llvm::Value *object; void Emit(CodeGenFunction &CGF, Flags flags) override { CGF.EmitARCIntrinsicUse(object); } }; } Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind) { assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && "Unsupported builtin check kind"); Value *ArgValue = EmitScalarExpr(E); if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) return ArgValue; SanitizerScope SanScope(this); Value *Cond = Builder.CreateICmpNE( ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), SanitizerHandler::InvalidBuiltin, {EmitCheckSourceLocation(E->getExprLoc()), llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, None); return ArgValue; } /// Get the argument type for arguments to os_log_helper. static CanQualType getOSLogArgType(ASTContext &C, int Size) { QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); return C.getCanonicalType(UnsignedTy); } llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( const analyze_os_log::OSLogBufferLayout &Layout, CharUnits BufferAlignment) { ASTContext &Ctx = getContext(); llvm::SmallString<64> Name; { raw_svector_ostream OS(Name); OS << "__os_log_helper"; OS << "_" << BufferAlignment.getQuantity(); OS << "_" << int(Layout.getSummaryByte()); OS << "_" << int(Layout.getNumArgsByte()); for (const auto &Item : Layout.Items) OS << "_" << int(Item.getSizeByte()) << "_" << int(Item.getDescriptorByte()); } if (llvm::Function *F = CGM.getModule().getFunction(Name)) return F; llvm::SmallVector ArgTys; FunctionArgList Args; Args.push_back(ImplicitParamDecl::Create( Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, ImplicitParamDecl::Other)); ArgTys.emplace_back(Ctx.VoidPtrTy); for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { char Size = Layout.Items[I].getSizeByte(); if (!Size) continue; QualType ArgTy = getOSLogArgType(Ctx, Size); Args.push_back(ImplicitParamDecl::Create( Ctx, nullptr, SourceLocation(), &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, ImplicitParamDecl::Other)); ArgTys.emplace_back(ArgTy); } QualType ReturnTy = Ctx.VoidTy; QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {}); // The helper function has linkonce_odr linkage to enable the linker to merge // identical functions. To ensure the merging always happens, 'noinline' is // attached to the function when compiling with -Oz. const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *Fn = llvm::Function::Create( FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn); CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); Fn->setDoesNotThrow(); // Attach 'noinline' at -Oz. if (CGM.getCodeGenOpts().OptimizeSize == 2) Fn->addFnAttr(llvm::Attribute::NoInline); auto NL = ApplyDebugLocation::CreateEmpty(*this); IdentifierInfo *II = &Ctx.Idents.get(Name); FunctionDecl *FD = FunctionDecl::Create( Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II, FuncionTy, nullptr, SC_PrivateExtern, false, false); // Avoid generating debug location info for the function. FD->setImplicit(); StartFunction(FD, ReturnTy, Fn, FI, Args); // Create a scope with an artificial location for the body of this function. auto AL = ApplyDebugLocation::CreateArtificial(*this); CharUnits Offset; Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), BufferAlignment); Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); unsigned I = 1; for (const auto &Item : Layout.Items) { Builder.CreateStore( Builder.getInt8(Item.getDescriptorByte()), Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); Builder.CreateStore( Builder.getInt8(Item.getSizeByte()), Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); CharUnits Size = Item.size(); if (!Size.getQuantity()) continue; Address Arg = GetAddrOfLocalVar(Args[I]); Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), "argDataCast"); Builder.CreateStore(Builder.CreateLoad(Arg), Addr); Offset += Size; ++I; } FinishFunction(); return Fn; } RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { assert(E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"); ASTContext &Ctx = getContext(); analyze_os_log::OSLogBufferLayout Layout; analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); llvm::SmallVector RetainableOperands; // Ignore argument 1, the format string. It is not currently used. CallArgList Args; Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); for (const auto &Item : Layout.Items) { int Size = Item.getSizeByte(); if (!Size) continue; llvm::Value *ArgVal; if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { uint64_t Val = 0; for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); } else if (const Expr *TheExpr = Item.getExpr()) { ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); // If a temporary object that requires destruction after the full // expression is passed, push a lifetime-extended cleanup to extend its // lifetime to the end of the enclosing block scope. auto LifetimeExtendObject = [&](const Expr *E) { E = E->IgnoreParenCasts(); // Extend lifetimes of objects returned by function calls and message // sends. // FIXME: We should do this in other cases in which temporaries are // created including arguments of non-ARC types (e.g., C++ // temporaries). if (isa(E) || isa(E)) return true; return false; }; if (TheExpr->getType()->isObjCRetainableType() && getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) { assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"); if (!isa(ArgVal)) { CleanupKind Cleanup = getARCCleanupKind(); QualType Ty = TheExpr->getType(); Address Alloca = Address::invalid(); Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca); ArgVal = EmitARCRetain(Ty, ArgVal); Builder.CreateStore(ArgVal, Addr); pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty, CodeGenFunction::destroyARCStrongPrecise, Cleanup & EHCleanup); // Push a clang.arc.use call to ensure ARC optimizer knows that the // argument has to be alive. if (CGM.getCodeGenOpts().OptimizationLevel != 0) pushCleanupAfterFullExpr(Cleanup, ArgVal); } } } else { ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); } unsigned ArgValSize = CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), ArgValSize); ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); CanQualType ArgTy = getOSLogArgType(Ctx, Size); // If ArgVal has type x86_fp80, zero-extend ArgVal. ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); Args.add(RValue::get(ArgVal), ArgTy); } const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( Layout, BufAddr.getAlignment()); EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); return RValue::get(BufAddr.getPointer()); } /// Determine if a binop is a checked mixed-sign multiply we can specialize. static bool isSpecialMixedSignMultiply(unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info, WidthAndSignedness ResultInfo) { return BuiltinID == Builtin::BI__builtin_mul_overflow && std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width && Op1Info.Signed != Op2Info.Signed; } /// Emit a checked mixed-sign multiply. This is a cheaper specialization of /// the generic checked-binop irgen. static RValue EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info, const clang::Expr *Op2, WidthAndSignedness Op2Info, const clang::Expr *ResultArg, QualType ResultQTy, WidthAndSignedness ResultInfo) { assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && "Not a mixed-sign multipliction we can specialize"); // Emit the signed and unsigned operands. const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; // One of the operands may be smaller than the other. If so, [s|z]ext it. if (SignedOpWidth < UnsignedOpWidth) Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); if (UnsignedOpWidth < SignedOpWidth) Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); llvm::Type *OpTy = Signed->getType(); llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); llvm::Type *ResTy = ResultPtr.getElementType(); unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); // Take the absolute value of the signed operand. llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); llvm::Value *AbsSigned = CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); // Perform a checked unsigned multiplication. llvm::Value *UnsignedOverflow; llvm::Value *UnsignedResult = EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, Unsigned, UnsignedOverflow); llvm::Value *Overflow, *Result; if (ResultInfo.Signed) { // Signed overflow occurs if the result is greater than INT_MAX or lesser // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth); llvm::Value *MaxResult = CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), CGF.Builder.CreateZExt(IsNegative, OpTy)); llvm::Value *SignedOverflow = CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); // Prepare the signed result (possibly by negating it). llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); llvm::Value *SignedResult = CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); } else { // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. llvm::Value *Underflow = CGF.Builder.CreateAnd( IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); if (ResultInfo.Width < OpWidth) { auto IntMax = llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); } // Negate the product if it would be negative in infinite precision. Result = CGF.Builder.CreateSelect( IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); Result = CGF.Builder.CreateTrunc(Result, ResTy); } assert(Overflow && Result && "Missing overflow or result"); bool isVolatile = ResultArg->getType()->getPointeeType().isVolatileQualified(); CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); return RValue::get(Overflow); } static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType, Value *&RecordPtr, CharUnits Align, llvm::FunctionCallee Func, int Lvl) { ASTContext &Context = CGF.getContext(); RecordDecl *RD = RType->castAs()->getDecl()->getDefinition(); std::string Pad = std::string(Lvl * 4, ' '); Value *GString = CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n"); Value *Res = CGF.Builder.CreateCall(Func, {GString}); static llvm::DenseMap Types; if (Types.empty()) { Types[Context.CharTy] = "%c"; Types[Context.BoolTy] = "%d"; Types[Context.SignedCharTy] = "%hhd"; Types[Context.UnsignedCharTy] = "%hhu"; Types[Context.IntTy] = "%d"; Types[Context.UnsignedIntTy] = "%u"; Types[Context.LongTy] = "%ld"; Types[Context.UnsignedLongTy] = "%lu"; Types[Context.LongLongTy] = "%lld"; Types[Context.UnsignedLongLongTy] = "%llu"; Types[Context.ShortTy] = "%hd"; Types[Context.UnsignedShortTy] = "%hu"; Types[Context.VoidPtrTy] = "%p"; Types[Context.FloatTy] = "%f"; Types[Context.DoubleTy] = "%f"; Types[Context.LongDoubleTy] = "%Lf"; Types[Context.getPointerType(Context.CharTy)] = "%s"; Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s"; } for (const auto *FD : RD->fields()) { Value *FieldPtr = RecordPtr; if (RD->isUnion()) FieldPtr = CGF.Builder.CreatePointerCast( FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType()))); else FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr, FD->getFieldIndex()); GString = CGF.Builder.CreateGlobalStringPtr( llvm::Twine(Pad) .concat(FD->getType().getAsString()) .concat(llvm::Twine(' ')) .concat(FD->getNameAsString()) .concat(" : ") .str()); Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); Res = CGF.Builder.CreateAdd(Res, TmpRes); QualType CanonicalType = FD->getType().getUnqualifiedType().getCanonicalType(); // We check whether we are in a recursive type if (CanonicalType->isRecordType()) { TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1); Res = CGF.Builder.CreateAdd(TmpRes, Res); continue; } // We try to determine the best format to print the current field llvm::Twine Format = Types.find(CanonicalType) == Types.end() ? Types[Context.VoidPtrTy] : Types[CanonicalType]; Address FieldAddress = Address(FieldPtr, Align); FieldPtr = CGF.Builder.CreateLoad(FieldAddress); // FIXME Need to handle bitfield here GString = CGF.Builder.CreateGlobalStringPtr( Format.concat(llvm::Twine('\n')).str()); TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr}); Res = CGF.Builder.CreateAdd(Res, TmpRes); } GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n"); Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); Res = CGF.Builder.CreateAdd(Res, TmpRes); return Res; } static bool TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, llvm::SmallPtrSetImpl &Seen) { if (const auto *Arr = Ctx.getAsArrayType(Ty)) Ty = Ctx.getBaseElementType(Arr); const auto *Record = Ty->getAsCXXRecordDecl(); if (!Record) return false; // We've already checked this type, or are in the process of checking it. if (!Seen.insert(Record).second) return false; assert(Record->hasDefinition() && "Incomplete types should already be diagnosed"); if (Record->isDynamicClass()) return true; for (FieldDecl *F : Record->fields()) { if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) return true; } return false; } /// Determine if the specified type requires laundering by checking if it is a /// dynamic class type or contains a subobject which is a dynamic class type. static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { if (!CGM.getCodeGenOpts().StrictVTablePointers) return false; llvm::SmallPtrSet Seen; return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); } RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { llvm::Value *Src = EmitScalarExpr(E->getArg(0)); llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); // The builtin's shift arg may have a different type than the source arg and // result, but the LLVM intrinsic uses the same type for all values. llvm::Type *Ty = Src->getType(); ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; Function *F = CGM.getIntrinsic(IID, Ty); return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); } RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue) { const FunctionDecl *FD = GD.getDecl()->getAsFunction(); // See if we can constant fold this builtin. If so, don't emit it at all. Expr::EvalResult Result; if (E->EvaluateAsRValue(Result, CGM.getContext()) && !Result.hasSideEffects()) { if (Result.Val.isInt()) return RValue::get(llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt())); if (Result.Val.isFloat()) return RValue::get(llvm::ConstantFP::get(getLLVMContext(), Result.Val.getFloat())); } // There are LLVM math intrinsics/instructions corresponding to math library // functions except the LLVM op will never set errno while the math library // might. Also, math builtins have the same semantics as their math library // twins. Thus, we can transform math library and builtin calls to their // LLVM counterparts if the call is marked 'const' (known to never set errno). if (FD->hasAttr()) { switch (BuiltinID) { case Builtin::BIceil: case Builtin::BIceilf: case Builtin::BIceill: case Builtin::BI__builtin_ceil: case Builtin::BI__builtin_ceilf: case Builtin::BI__builtin_ceilf16: case Builtin::BI__builtin_ceill: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::ceil, Intrinsic::experimental_constrained_ceil)); case Builtin::BIcopysign: case Builtin::BIcopysignf: case Builtin::BIcopysignl: case Builtin::BI__builtin_copysign: case Builtin::BI__builtin_copysignf: case Builtin::BI__builtin_copysignf16: case Builtin::BI__builtin_copysignl: case Builtin::BI__builtin_copysignf128: return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); case Builtin::BIcos: case Builtin::BIcosf: case Builtin::BIcosl: case Builtin::BI__builtin_cos: case Builtin::BI__builtin_cosf: case Builtin::BI__builtin_cosf16: case Builtin::BI__builtin_cosl: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::cos, Intrinsic::experimental_constrained_cos)); case Builtin::BIexp: case Builtin::BIexpf: case Builtin::BIexpl: case Builtin::BI__builtin_exp: case Builtin::BI__builtin_expf: case Builtin::BI__builtin_expf16: case Builtin::BI__builtin_expl: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::exp, Intrinsic::experimental_constrained_exp)); case Builtin::BIexp2: case Builtin::BIexp2f: case Builtin::BIexp2l: case Builtin::BI__builtin_exp2: case Builtin::BI__builtin_exp2f: case Builtin::BI__builtin_exp2f16: case Builtin::BI__builtin_exp2l: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::exp2, Intrinsic::experimental_constrained_exp2)); case Builtin::BIfabs: case Builtin::BIfabsf: case Builtin::BIfabsl: case Builtin::BI__builtin_fabs: case Builtin::BI__builtin_fabsf: case Builtin::BI__builtin_fabsf16: case Builtin::BI__builtin_fabsl: case Builtin::BI__builtin_fabsf128: return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); case Builtin::BIfloor: case Builtin::BIfloorf: case Builtin::BIfloorl: case Builtin::BI__builtin_floor: case Builtin::BI__builtin_floorf: case Builtin::BI__builtin_floorf16: case Builtin::BI__builtin_floorl: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::floor, Intrinsic::experimental_constrained_floor)); case Builtin::BIfma: case Builtin::BIfmaf: case Builtin::BIfmal: case Builtin::BI__builtin_fma: case Builtin::BI__builtin_fmaf: case Builtin::BI__builtin_fmaf16: case Builtin::BI__builtin_fmal: return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::fma, Intrinsic::experimental_constrained_fma)); case Builtin::BIfmax: case Builtin::BIfmaxf: case Builtin::BIfmaxl: case Builtin::BI__builtin_fmax: case Builtin::BI__builtin_fmaxf: case Builtin::BI__builtin_fmaxf16: case Builtin::BI__builtin_fmaxl: return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::maxnum, Intrinsic::experimental_constrained_maxnum)); case Builtin::BIfmin: case Builtin::BIfminf: case Builtin::BIfminl: case Builtin::BI__builtin_fmin: case Builtin::BI__builtin_fminf: case Builtin::BI__builtin_fminf16: case Builtin::BI__builtin_fminl: return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::minnum, Intrinsic::experimental_constrained_minnum)); // fmod() is a special-case. It maps to the frem instruction rather than an // LLVM intrinsic. case Builtin::BIfmod: case Builtin::BIfmodf: case Builtin::BIfmodl: case Builtin::BI__builtin_fmod: case Builtin::BI__builtin_fmodf: case Builtin::BI__builtin_fmodf16: case Builtin::BI__builtin_fmodl: { Value *Arg1 = EmitScalarExpr(E->getArg(0)); Value *Arg2 = EmitScalarExpr(E->getArg(1)); return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); } case Builtin::BIlog: case Builtin::BIlogf: case Builtin::BIlogl: case Builtin::BI__builtin_log: case Builtin::BI__builtin_logf: case Builtin::BI__builtin_logf16: case Builtin::BI__builtin_logl: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::log, Intrinsic::experimental_constrained_log)); case Builtin::BIlog10: case Builtin::BIlog10f: case Builtin::BIlog10l: case Builtin::BI__builtin_log10: case Builtin::BI__builtin_log10f: case Builtin::BI__builtin_log10f16: case Builtin::BI__builtin_log10l: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::log10, Intrinsic::experimental_constrained_log10)); case Builtin::BIlog2: case Builtin::BIlog2f: case Builtin::BIlog2l: case Builtin::BI__builtin_log2: case Builtin::BI__builtin_log2f: case Builtin::BI__builtin_log2f16: case Builtin::BI__builtin_log2l: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::log2, Intrinsic::experimental_constrained_log2)); case Builtin::BInearbyint: case Builtin::BInearbyintf: case Builtin::BInearbyintl: case Builtin::BI__builtin_nearbyint: case Builtin::BI__builtin_nearbyintf: case Builtin::BI__builtin_nearbyintl: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::nearbyint, Intrinsic::experimental_constrained_nearbyint)); case Builtin::BIpow: case Builtin::BIpowf: case Builtin::BIpowl: case Builtin::BI__builtin_pow: case Builtin::BI__builtin_powf: case Builtin::BI__builtin_powf16: case Builtin::BI__builtin_powl: return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::pow, Intrinsic::experimental_constrained_pow)); case Builtin::BIrint: case Builtin::BIrintf: case Builtin::BIrintl: case Builtin::BI__builtin_rint: case Builtin::BI__builtin_rintf: case Builtin::BI__builtin_rintf16: case Builtin::BI__builtin_rintl: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::rint, Intrinsic::experimental_constrained_rint)); case Builtin::BIround: case Builtin::BIroundf: case Builtin::BIroundl: case Builtin::BI__builtin_round: case Builtin::BI__builtin_roundf: case Builtin::BI__builtin_roundf16: case Builtin::BI__builtin_roundl: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::round, Intrinsic::experimental_constrained_round)); case Builtin::BIsin: case Builtin::BIsinf: case Builtin::BIsinl: case Builtin::BI__builtin_sin: case Builtin::BI__builtin_sinf: case Builtin::BI__builtin_sinf16: case Builtin::BI__builtin_sinl: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::sin, Intrinsic::experimental_constrained_sin)); case Builtin::BIsqrt: case Builtin::BIsqrtf: case Builtin::BIsqrtl: case Builtin::BI__builtin_sqrt: case Builtin::BI__builtin_sqrtf: case Builtin::BI__builtin_sqrtf16: case Builtin::BI__builtin_sqrtl: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::sqrt, Intrinsic::experimental_constrained_sqrt)); case Builtin::BItrunc: case Builtin::BItruncf: case Builtin::BItruncl: case Builtin::BI__builtin_trunc: case Builtin::BI__builtin_truncf: case Builtin::BI__builtin_truncf16: case Builtin::BI__builtin_truncl: return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, Intrinsic::trunc, Intrinsic::experimental_constrained_trunc)); case Builtin::BIlround: case Builtin::BIlroundf: case Builtin::BIlroundl: case Builtin::BI__builtin_lround: case Builtin::BI__builtin_lroundf: case Builtin::BI__builtin_lroundl: return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( *this, E, Intrinsic::lround, Intrinsic::experimental_constrained_lround)); case Builtin::BIllround: case Builtin::BIllroundf: case Builtin::BIllroundl: case Builtin::BI__builtin_llround: case Builtin::BI__builtin_llroundf: case Builtin::BI__builtin_llroundl: return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( *this, E, Intrinsic::llround, Intrinsic::experimental_constrained_llround)); case Builtin::BIlrint: case Builtin::BIlrintf: case Builtin::BIlrintl: case Builtin::BI__builtin_lrint: case Builtin::BI__builtin_lrintf: case Builtin::BI__builtin_lrintl: return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( *this, E, Intrinsic::lrint, Intrinsic::experimental_constrained_lrint)); case Builtin::BIllrint: case Builtin::BIllrintf: case Builtin::BIllrintl: case Builtin::BI__builtin_llrint: case Builtin::BI__builtin_llrintf: case Builtin::BI__builtin_llrintl: return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( *this, E, Intrinsic::llrint, Intrinsic::experimental_constrained_llrint)); default: break; } } switch (BuiltinID) { default: break; case Builtin::BI__builtin___CFStringMakeConstantString: case Builtin::BI__builtin___NSStringMakeConstantString: return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); case Builtin::BI__builtin_stdarg_start: case Builtin::BI__builtin_va_start: case Builtin::BI__va_start: case Builtin::BI__builtin_va_end: return RValue::get( EmitVAStartEnd(BuiltinID == Builtin::BI__va_start ? EmitScalarExpr(E->getArg(0)) : EmitVAListRef(E->getArg(0)).getPointer(), BuiltinID != Builtin::BI__builtin_va_end)); case Builtin::BI__builtin_va_copy: { Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); llvm::Type *Type = Int8PtrTy; DstPtr = Builder.CreateBitCast(DstPtr, Type); SrcPtr = Builder.CreateBitCast(SrcPtr, Type); return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), {DstPtr, SrcPtr})); } case Builtin::BI__builtin_abs: case Builtin::BI__builtin_labs: case Builtin::BI__builtin_llabs: { // X < 0 ? -X : X // The negation has 'nsw' because abs of INT_MIN is undefined. Value *ArgValue = EmitScalarExpr(E->getArg(0)); Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); return RValue::get(Result); } case Builtin::BI__builtin_conj: case Builtin::BI__builtin_conjf: case Builtin::BI__builtin_conjl: case Builtin::BIconj: case Builtin::BIconjf: case Builtin::BIconjl: { ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); Value *Real = ComplexVal.first; Value *Imag = ComplexVal.second; Imag = Builder.CreateFNeg(Imag, "neg"); return RValue::getComplex(std::make_pair(Real, Imag)); } case Builtin::BI__builtin_creal: case Builtin::BI__builtin_crealf: case Builtin::BI__builtin_creall: case Builtin::BIcreal: case Builtin::BIcrealf: case Builtin::BIcreall: { ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); return RValue::get(ComplexVal.first); } case Builtin::BI__builtin_dump_struct: { llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy); llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get( LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true); Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts()); CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment(); const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts(); QualType Arg0Type = Arg0->getType()->getPointeeType(); Value *RecordPtr = EmitScalarExpr(Arg0); Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, {LLVMFuncType, Func}, 0); return RValue::get(Res); } case Builtin::BI__builtin_preserve_access_index: { // Only enabled preserved access index region when debuginfo // is available as debuginfo is needed to preserve user-level // access pattern. if (!getDebugInfo()) { CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); return RValue::get(EmitScalarExpr(E->getArg(0))); } // Nested builtin_preserve_access_index() not supported if (IsInPreservedAIRegion) { CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); return RValue::get(EmitScalarExpr(E->getArg(0))); } IsInPreservedAIRegion = true; Value *Res = EmitScalarExpr(E->getArg(0)); IsInPreservedAIRegion = false; return RValue::get(Res); } case Builtin::BI__builtin_cimag: case Builtin::BI__builtin_cimagf: case Builtin::BI__builtin_cimagl: case Builtin::BIcimag: case Builtin::BIcimagf: case Builtin::BIcimagl: { ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); return RValue::get(ComplexVal.second); } case Builtin::BI__builtin_clrsb: case Builtin::BI__builtin_clrsbl: case Builtin::BI__builtin_clrsbll: { // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *Zero = llvm::Constant::getNullValue(ArgType); Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); Value *Inverse = Builder.CreateNot(ArgValue, "not"); Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_ctzs: case Builtin::BI__builtin_ctz: case Builtin::BI__builtin_ctzl: case Builtin::BI__builtin_ctzll: { Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); llvm::Type *ArgType = ArgValue->getType(); Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_clzs: case Builtin::BI__builtin_clz: case Builtin::BI__builtin_clzl: case Builtin::BI__builtin_clzll: { Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); llvm::Type *ArgType = ArgValue->getType(); Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_ffs: case Builtin::BI__builtin_ffsl: case Builtin::BI__builtin_ffsll: { // ffs(x) -> x ? cttz(x) + 1 : 0 Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), llvm::ConstantInt::get(ArgType, 1)); Value *Zero = llvm::Constant::getNullValue(ArgType); Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_parity: case Builtin::BI__builtin_parityl: case Builtin::BI__builtin_parityll: { // parity(x) -> ctpop(x) & 1 Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *Tmp = Builder.CreateCall(F, ArgValue); Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__lzcnt16: case Builtin::BI__lzcnt: case Builtin::BI__lzcnt64: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__popcnt16: case Builtin::BI__popcnt: case Builtin::BI__popcnt64: case Builtin::BI__builtin_popcount: case Builtin::BI__builtin_popcountl: case Builtin::BI__builtin_popcountll: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); llvm::Type *ResultType = ConvertType(E->getType()); Value *Result = Builder.CreateCall(F, ArgValue); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_unpredictable: { // Always return the argument of __builtin_unpredictable. LLVM does not // handle this builtin. Metadata for this builtin should be added directly // to instructions such as branches or switches that use it. return RValue::get(EmitScalarExpr(E->getArg(0))); } case Builtin::BI__builtin_expect: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); // Don't generate llvm.expect on -O0 as the backend won't use it for // anything. // Note, we still IRGen ExpectedValue because it could have side-effects. if (CGM.getCodeGenOpts().OptimizationLevel == 0) return RValue::get(ArgValue); Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); Value *Result = Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); return RValue::get(Result); } case Builtin::BI__builtin_expect_with_probability: { Value *ArgValue = EmitScalarExpr(E->getArg(0)); llvm::Type *ArgType = ArgValue->getType(); Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); llvm::APFloat Probability(0.0); const Expr *ProbArg = E->getArg(2); bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext()); assert(EvalSucceed && "probability should be able to evaluate as float"); (void)EvalSucceed; bool LoseInfo = false; Probability.convert(llvm::APFloat::IEEEdouble(), llvm::RoundingMode::Dynamic, &LoseInfo); llvm::Type *Ty = ConvertType(ProbArg->getType()); Constant *Confidence = ConstantFP::get(Ty, Probability); // Don't generate llvm.expect.with.probability on -O0 as the backend // won't use it for anything. // Note, we still IRGen ExpectedValue because it could have side-effects. if (CGM.getCodeGenOpts().OptimizationLevel == 0) return RValue::get(ArgValue); Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType); Value *Result = Builder.CreateCall( FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval"); return RValue::get(Result); } case Builtin::BI__builtin_assume_aligned: { const Expr *Ptr = E->getArg(0); Value *PtrValue = EmitScalarExpr(Ptr); Value *OffsetValue = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); ConstantInt *AlignmentCI = cast(AlignmentValue); if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) AlignmentCI = ConstantInt::get(AlignmentCI->getType(), llvm::Value::MaximumAlignment); emitAlignmentAssumption(PtrValue, Ptr, /*The expr loc is sufficient.*/ SourceLocation(), AlignmentCI, OffsetValue); return RValue::get(PtrValue); } case Builtin::BI__assume: case Builtin::BI__builtin_assume: { if (E->getArg(0)->HasSideEffects(getContext())) return RValue::get(nullptr); Value *ArgValue = EmitScalarExpr(E->getArg(0)); Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); } case Builtin::BI__builtin_bswap16: case Builtin::BI__builtin_bswap32: case Builtin::BI__builtin_bswap64: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); } case Builtin::BI__builtin_bitreverse8: case Builtin::BI__builtin_bitreverse16: case Builtin::BI__builtin_bitreverse32: case Builtin::BI__builtin_bitreverse64: { return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); } case Builtin::BI__builtin_rotateleft8: case Builtin::BI__builtin_rotateleft16: case Builtin::BI__builtin_rotateleft32: case Builtin::BI__builtin_rotateleft64: case Builtin::BI_rotl8: // Microsoft variants of rotate left case Builtin::BI_rotl16: case Builtin::BI_rotl: case Builtin::BI_lrotl: case Builtin::BI_rotl64: return emitRotate(E, false); case Builtin::BI__builtin_rotateright8: case Builtin::BI__builtin_rotateright16: case Builtin::BI__builtin_rotateright32: case Builtin::BI__builtin_rotateright64: case Builtin::BI_rotr8: // Microsoft variants of rotate right case Builtin::BI_rotr16: case Builtin::BI_rotr: case Builtin::BI_lrotr: case Builtin::BI_rotr64: return emitRotate(E, true); case Builtin::BI__builtin_constant_p: { llvm::Type *ResultType = ConvertType(E->getType()); const Expr *Arg = E->getArg(0); QualType ArgType = Arg->getType(); // FIXME: The allowance for Obj-C pointers and block pointers is historical // and likely a mistake. if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) // Per the GCC documentation, only numeric constants are recognized after // inlining. return RValue::get(ConstantInt::get(ResultType, 0)); if (Arg->HasSideEffects(getContext())) // The argument is unevaluated, so be conservative if it might have // side-effects. return RValue::get(ConstantInt::get(ResultType, 0)); Value *ArgValue = EmitScalarExpr(Arg); if (ArgType->isObjCObjectPointerType()) { // Convert Objective-C objects to id because we cannot distinguish between // LLVM types for Obj-C classes as they are opaque. ArgType = CGM.getContext().getObjCIdType(); ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); } Function *F = CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); Value *Result = Builder.CreateCall(F, ArgValue); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); return RValue::get(Result); } case Builtin::BI__builtin_dynamic_object_size: case Builtin::BI__builtin_object_size: { unsigned Type = E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); auto *ResType = cast(ConvertType(E->getType())); // We pass this builtin onto the optimizer so that it can figure out the // object size in more complex cases. bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, /*EmittedE=*/nullptr, IsDynamic)); } case Builtin::BI__builtin_prefetch: { Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); // FIXME: Technically these constants should of type 'int', yes? RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : llvm::ConstantInt::get(Int32Ty, 0); Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : llvm::ConstantInt::get(Int32Ty, 3); Value *Data = llvm::ConstantInt::get(Int32Ty, 1); Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); } case Builtin::BI__builtin_readcyclecounter: { Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); return RValue::get(Builder.CreateCall(F)); } case Builtin::BI__builtin___clear_cache: { Value *Begin = EmitScalarExpr(E->getArg(0)); Value *End = EmitScalarExpr(E->getArg(1)); Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); return RValue::get(Builder.CreateCall(F, {Begin, End})); } case Builtin::BI__builtin_trap: return RValue::get(EmitTrapCall(Intrinsic::trap)); case Builtin::BI__debugbreak: return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); case Builtin::BI__builtin_unreachable: { EmitUnreachable(E->getExprLoc()); // We do need to preserve an insertion point. EmitBlock(createBasicBlock("unreachable.cont")); return RValue::get(nullptr); } case Builtin::BI__builtin_powi: case Builtin::BI__builtin_powif: case Builtin::BI__builtin_powil: return RValue::get(emitBinaryMaybeConstrainedFPBuiltin( *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi)); case Builtin::BI__builtin_isgreater: case Builtin::BI__builtin_isgreaterequal: case Builtin::BI__builtin_isless: case Builtin::BI__builtin_islessequal: case Builtin::BI__builtin_islessgreater: case Builtin::BI__builtin_isunordered: { // Ordered comparisons: we know the arguments to these are matching scalar // floating point values. Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); switch (BuiltinID) { default: llvm_unreachable("Unknown ordered comparison"); case Builtin::BI__builtin_isgreater: LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isgreaterequal: LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isless: LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_islessequal: LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_islessgreater: LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); break; case Builtin::BI__builtin_isunordered: LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); break; } // ZExt bool to int type. return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); } case Builtin::BI__builtin_isnan: { Value *V = EmitScalarExpr(E->getArg(0)); V = Builder.CreateFCmpUNO(V, V, "cmp"); return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); } case Builtin::BI__builtin_matrix_transpose: { const auto *MatrixTy = E->getArg(0)->getType()->getAs(); Value *MatValue = EmitScalarExpr(E->getArg(0)); MatrixBuilder MB(Builder); Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(), MatrixTy->getNumColumns()); return RValue::get(Result); } case Builtin::BI__builtin_matrix_column_major_load: { MatrixBuilder MB(Builder); // Emit everything that isn't dependent on the first parameter type Value *Stride = EmitScalarExpr(E->getArg(3)); const auto *ResultTy = E->getType()->getAs(); auto *PtrTy = E->getArg(0)->getType()->getAs(); assert(PtrTy && "arg0 must be of pointer type"); bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); Address Src = EmitPointerWithAlignment(E->getArg(0)); EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); Value *Result = MB.CreateColumnMajorLoad( Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride, IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(), "matrix"); return RValue::get(Result); } case Builtin::BI__builtin_matrix_column_major_store: { MatrixBuilder MB(Builder); Value *Matrix = EmitScalarExpr(E->getArg(0)); Address Dst = EmitPointerWithAlignment(E->getArg(1)); Value *Stride = EmitScalarExpr(E->getArg(2)); const auto *MatrixTy = E->getArg(0)->getType()->getAs(); auto *PtrTy = E->getArg(1)->getType()->getAs(); assert(PtrTy && "arg1 must be of pointer type"); bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD, 0); Value *Result = MB.CreateColumnMajorStore( Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()), Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns()); return RValue::get(Result); } case Builtin::BIfinite: case Builtin::BI__finite: case Builtin::BIfinitef: case Builtin::BI__finitef: case Builtin::BIfinitel: case Builtin::BI__finitel: case Builtin::BI__builtin_isinf: case Builtin::BI__builtin_isfinite: { // isinf(x) --> fabs(x) == infinity // isfinite(x) --> fabs(x) != infinity // x != NaN via the ordered compare in either case. Value *V = EmitScalarExpr(E->getArg(0)); Value *Fabs = EmitFAbs(*this, V); Constant *Infinity = ConstantFP::getInfinity(V->getType()); CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) ? CmpInst::FCMP_OEQ : CmpInst::FCMP_ONE; Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); } case Builtin::BI__builtin_isinf_sign: { // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 Value *Arg = EmitScalarExpr(E->getArg(0)); Value *AbsArg = EmitFAbs(*this, Arg); Value *IsInf = Builder.CreateFCmpOEQ( AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); Value *IsNeg = EmitSignBit(*this, Arg); llvm::Type *IntTy = ConvertType(E->getType()); Value *Zero = Constant::getNullValue(IntTy); Value *One = ConstantInt::get(IntTy, 1); Value *NegativeOne = ConstantInt::get(IntTy, -1); Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); return RValue::get(Result); } case Builtin::BI__builtin_isnormal: { // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min Value *V = EmitScalarExpr(E->getArg(0)); Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); Value *Abs = EmitFAbs(*this, V); Value *IsLessThanInf = Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); APFloat Smallest = APFloat::getSmallestNormalized( getContext().getFloatTypeSemantics(E->getArg(0)->getType())); Value *IsNormal = Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), "isnormal"); V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); V = Builder.CreateAnd(V, IsNormal, "and"); return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); } case Builtin::BI__builtin_flt_rounds: { Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds); llvm::Type *ResultType = ConvertType(E->getType()); Value *Result = Builder.CreateCall(F); if (Result->getType() != ResultType) Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, "cast"); return RValue::get(Result); } case Builtin::BI__builtin_fpclassify: { Value *V = EmitScalarExpr(E->getArg(5)); llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); // Create Result BasicBlock *Begin = Builder.GetInsertBlock(); BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); Builder.SetInsertPoint(End); PHINode *Result = Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, "fpclassify_result"); // if (V==0) return FP_ZERO Builder.SetInsertPoint(Begin); Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), "iszero"); Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); Builder.CreateCondBr(IsZero, End, NotZero); Result->addIncoming(ZeroLiteral, Begin); // if (V != V) return FP_NAN Builder.SetInsertPoint(NotZero); Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); Value *NanLiteral = EmitScalarExpr(E->getArg(0)); BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); Builder.CreateCondBr(IsNan, End, NotNan); Result->addIncoming(NanLiteral, NotZero); // if (fabs(V) == infinity) return FP_INFINITY Builder.SetInsertPoint(NotNan); Value *VAbs = EmitFAbs(*this, V); Value *IsInf = Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), "isinf"); Value *InfLiteral = EmitScalarExpr(E->getArg(1)); BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); Builder.CreateCondBr(IsInf, End, NotInf); Result->addIncoming(InfLiteral, NotNan); // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL Builder.SetInsertPoint(NotInf); APFloat Smallest = APFloat::getSmallestNormalized( getContext().getFloatTypeSemantics(E->getArg(5)->getType())); Value *IsNormal = Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), "isnormal"); Value *NormalResult = Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3))); Builder.CreateBr(End); Result->addIncoming(NormalResult, NotInf); // return Result Builder.SetInsertPoint(End); return RValue::get(Result); } case Builtin::BIalloca: case Builtin::BI_alloca: case Builtin::BI__builtin_alloca: { Value *Size = EmitScalarExpr(E->getArg(0)); const TargetInfo &TI = getContext().getTargetInfo(); // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. const Align SuitableAlignmentInBytes = CGM.getContext() .toCharUnitsFromBits(TI.getSuitableAlign()) .getAsAlign(); AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); AI->setAlignment(SuitableAlignmentInBytes); initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); return RValue::get(AI); } case Builtin::BI__builtin_alloca_with_align: { Value *Size = EmitScalarExpr(E->getArg(0)); Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); auto *AlignmentInBitsCI = cast(AlignmentInBitsValue); unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); const Align AlignmentInBytes = CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign(); AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); AI->setAlignment(AlignmentInBytes); initializeAlloca(*this, AI, Size, AlignmentInBytes); return RValue::get(AI); } case Builtin::BIbzero: case Builtin::BI__builtin_bzero: { Address Dest = EmitPointerWithAlignment(E->getArg(0)); Value *SizeVal = EmitScalarExpr(E->getArg(1)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); return RValue::get(nullptr); } case Builtin::BImemcpy: case Builtin::BI__builtin_memcpy: case Builtin::BImempcpy: case Builtin::BI__builtin_mempcpy: { Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); Value *SizeVal = EmitScalarExpr(E->getArg(2)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD, 1); Builder.CreateMemCpy(Dest, Src, SizeVal, false); if (BuiltinID == Builtin::BImempcpy || BuiltinID == Builtin::BI__builtin_mempcpy) return RValue::get(Builder.CreateInBoundsGEP(Dest.getPointer(), SizeVal)); else return RValue::get(Dest.getPointer()); } case Builtin::BI__builtin_memcpy_inline: { Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); uint64_t Size = E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD, 1); Builder.CreateMemCpyInline(Dest, Src, Size); return RValue::get(nullptr); } case Builtin::BI__builtin_char_memchr: BuiltinID = Builtin::BI__builtin_memchr; break; case Builtin::BI__builtin___memcpy_chk: { // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. Expr::EvalResult SizeResult, DstSizeResult; if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) break; llvm::APSInt Size = SizeResult.Val.getInt(); llvm::APSInt DstSize = DstSizeResult.Val.getInt(); if (Size.ugt(DstSize)) break; Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); Builder.CreateMemCpy(Dest, Src, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BI__builtin_objc_memmove_collectable: { Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); Value *SizeVal = EmitScalarExpr(E->getArg(2)); CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestAddr, SrcAddr, SizeVal); return RValue::get(DestAddr.getPointer()); } case Builtin::BI__builtin___memmove_chk: { // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. Expr::EvalResult SizeResult, DstSizeResult; if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) break; llvm::APSInt Size = SizeResult.Val.getInt(); llvm::APSInt DstSize = DstSizeResult.Val.getInt(); if (Size.ugt(DstSize)) break; Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); Builder.CreateMemMove(Dest, Src, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BImemmove: case Builtin::BI__builtin_memmove: { Address Dest = EmitPointerWithAlignment(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); Value *SizeVal = EmitScalarExpr(E->getArg(2)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), E->getArg(1)->getExprLoc(), FD, 1); Builder.CreateMemMove(Dest, Src, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BImemset: case Builtin::BI__builtin_memset: { Address Dest = EmitPointerWithAlignment(E->getArg(0)); Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty()); Value *SizeVal = EmitScalarExpr(E->getArg(2)); EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), E->getArg(0)->getExprLoc(), FD, 0); Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BI__builtin___memset_chk: { // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. Expr::EvalResult SizeResult, DstSizeResult; if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) break; llvm::APSInt Size = SizeResult.Val.getInt(); llvm::APSInt DstSize = DstSizeResult.Val.getInt(); if (Size.ugt(DstSize)) break; Address Dest = EmitPointerWithAlignment(E->getArg(0)); Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), Builder.getInt8Ty()); Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); return RValue::get(Dest.getPointer()); } case Builtin::BI__builtin_wmemcmp: { // The MSVC runtime library does not provide a definition of wmemcmp, so we // need an inline implementation. if (!getTarget().getTriple().isOSMSVCRT()) break; llvm::Type *WCharTy = ConvertType(getContext().WCharTy); Value *Dst = EmitScalarExpr(E->getArg(0)); Value *Src = EmitScalarExpr(E->getArg(1)); Value *Size = EmitScalarExpr(E->getArg(2)); BasicBlock *Entry = Builder.GetInsertBlock(); BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); BasicBlock *Next = createBasicBlock("wmemcmp.next"); BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); Builder.CreateCondBr(SizeEq0, Exit, CmpGT); EmitBlock(CmpGT); PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); DstPhi->addIncoming(Dst, Entry); PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); SrcPhi->addIncoming(Src, Entry); PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); SizePhi->addIncoming(Size, Entry); CharUnits WCharAlign = getContext().getTypeAlignInChars(getContext().WCharTy); Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); EmitBlock(CmpLT); Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); Builder.CreateCondBr(DstLtSrc, Exit, Next); EmitBlock(Next); Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); Value *NextSizeEq0 = Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); DstPhi->addIncoming(NextDst, Next); SrcPhi->addIncoming(NextSrc, Next); SizePhi->addIncoming(NextSize, Next); EmitBlock(Exit); PHINode *Ret = Builder.CreatePHI(IntTy, 4); Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); return RValue::get(Ret); } case Builtin::BI__builtin_dwarf_cfa: { // The offset in bytes from the first argument to the CFA. // // Why on earth is this in the frontend? Is there any reason at // all that the backend can't reasonably determine this while // lowering llvm.eh.dwarf.cfa()? // // TODO: If there's a satisfactory reason, add a target hook for // this instead of hard-coding 0, which is correct for most targets. int32_t Offset = 0; Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); return RValue::get(Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, Offset))); } case Builtin::BI__builtin_return_address: { Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), getContext().UnsignedIntTy); Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); return RValue::get(Builder.CreateCall(F, Depth)); } case Builtin::BI_ReturnAddress: { Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); } case Builtin::BI__builtin_frame_address: { Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), getContext().UnsignedIntTy); Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); return RValue::get(Builder.CreateCall(F, Depth)); } case Builtin::BI__builtin_extract_return_addr: { Value *Address = EmitScalarExpr(E->getArg(0)); Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); return RValue::get(Result); } case Builtin::BI__builtin_frob_return_addr: { Value *Address = EmitScalarExpr(E->getArg(0)); Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); return RValue::get(Result); } case Builtin::BI__builtin_dwarf_sp_column: { llvm::IntegerType *Ty = cast(ConvertType(E->getType())); int Column = getTargetHooks().getDwarfEHStackPointer(CGM); if (Column == -1) { CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); return RValue::get(llvm::UndefValue::get(Ty)); } return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); } case Builtin::BI__builtin_init_dwarf_reg_size_table: { Value *Address = EmitScalarExpr(E->getArg(0)); if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); } case Builtin::BI__builtin_eh_return: { Value *Int = EmitScalarExpr(E->getArg(0)); Value *Ptr = EmitScalarExpr(E->getArg(1)); llvm::IntegerType *IntTy = cast(Int->getType()); assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); Function *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 : Intrinsic::eh_return_i64); Builder.CreateCall(F, {Int, Ptr}); Builder.CreateUnreachable(); // We do need to preserve an insertion point. EmitBlock(createBasicBlock("builtin_eh_return.cont")); return RValue::get(nullptr); } case Builtin::BI__builtin_unwind_init: { Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); return RValue::get(Builder.CreateCall(F)); } case Builtin::BI__builtin_extend_pointer: { // Extends a pointer to the size of an _Unwind_Word, which is // uint64_t on all platforms. Generally this gets poked into a // register and eventually used as an address, so if the // addressing registers are wider than pointers and the platform // doesn't implicitly ignore high-order bits when doing // addressing, we need to make sure we zext / sext based on // the platform's expectations. // // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html // Cast the pointer to intptr_t. Value *Ptr = EmitScalarExpr(E->getArg(0)); Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); // If that's 64 bits, we're done. if (IntPtrTy->getBitWidth() == 64) return RValue::get(Result); // Otherwise, ask the codegen data what to do. if (getTargetHooks().extendPointerWithSExt()) return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); else return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); } case Builtin::BI__builtin_setjmp: { // Buffer is a void**. Address Buf = EmitPointerWithAlignment(E->getArg(0)); // Store the frame pointer to the setjmp buffer. Value *FrameAddr = Builder.CreateCall( CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), ConstantInt::get(Int32Ty, 0)); Builder.CreateStore(FrameAddr, Buf); // Store the stack pointer to the setjmp buffer. Value *StackAddr = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); Builder.CreateStore(StackAddr, StackSaveSlot); // Call LLVM's EH setjmp, which is lightweight. Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); Buf = Builder.CreateBitCast(Buf, Int8PtrTy); return RValue::get(Builder.CreateCall(F, Buf.getPointer())); } case Builtin::BI__builtin_longjmp: { Value *Buf = EmitScalarExpr(E->getArg(0)); Buf = Builder.CreateBitCast(Buf, Int8PtrTy); // Call LLVM's EH longjmp, which is lightweight. Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); // longjmp doesn't return; mark this as unreachable. Builder.CreateUnreachable(); // We do need to preserve an insertion point. EmitBlock(createBasicBlock("longjmp.cont")); return RValue::get(nullptr); } case Builtin::BI__builtin_launder: { const Expr *Arg = E->getArg(0); QualType ArgTy = Arg->getType()->getPointeeType(); Value *Ptr = EmitScalarExpr(Arg); if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) Ptr = Builder.CreateLaunderInvariantGroup(Ptr); return RValue::get(Ptr); } case Builtin::BI__sync_fetch_and_add: case Builtin::BI__sync_fetch_and_sub: case Builtin::BI__sync_fetch_and_or: case Builtin::BI__sync_fetch_and_and: case Builtin::BI__sync_fetch_and_xor: case Builtin::BI__sync_fetch_and_nand: case Builtin::BI__sync_add_and_fetch: case Builtin::BI__sync_sub_and_fetch: case Builtin::BI__sync_and_and_fetch: case Builtin::BI__sync_or_and_fetch: case Builtin::BI__sync_xor_and_fetch: case Builtin::BI__sync_nand_and_fetch: case Builtin::BI__sync_val_compare_and_swap: case Builtin::BI__sync_bool_compare_and_swap: case Builtin::BI__sync_lock_test_and_set: case Builtin::BI__sync_lock_release: case Builtin::BI__sync_swap: llvm_unreachable("Shouldn't make it through sema"); case Builtin::BI__sync_fetch_and_add_1: case Builtin::BI__sync_fetch_and_add_2: case Builtin::BI__sync_fetch_and_add_4: case Builtin::BI__sync_fetch_and_add_8: case Builtin::BI__sync_fetch_and_add_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); case Builtin::BI__sync_fetch_and_sub_1: case Builtin::BI__sync_fetch_and_sub_2: case Builtin::BI__sync_fetch_and_sub_4: case Builtin::BI__sync_fetch_and_sub_8: case Builtin::BI__sync_fetch_and_sub_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); case Builtin::BI__sync_fetch_and_or_1: case Builtin::BI__sync_fetch_and_or_2: case Builtin::BI__sync_fetch_and_or_4: case Builtin::BI__sync_fetch_and_or_8: case Builtin::BI__sync_fetch_and_or_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); case Builtin::BI__sync_fetch_and_and_1: case Builtin::BI__sync_fetch_and_and_2: case Builtin::BI__sync_fetch_and_and_4: case Builtin::BI__sync_fetch_and_and_8: case Builtin::BI__sync_fetch_and_and_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); case Builtin::BI__sync_fetch_and_xor_1: case Builtin::BI__sync_fetch_and_xor_2: case Builtin::BI__sync_fetch_and_xor_4: case Builtin::BI__sync_fetch_and_xor_8: case Builtin::BI__sync_fetch_and_xor_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); case Builtin::BI__sync_fetch_and_nand_1: case Builtin::BI__sync_fetch_and_nand_2: case Builtin::BI__sync_fetch_and_nand_4: case Builtin::BI__sync_fetch_and_nand_8: case Builtin::BI__sync_fetch_and_nand_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); // Clang extensions: not overloaded yet. case Builtin::BI__sync_fetch_and_min: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); case Builtin::BI__sync_fetch_and_max: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); case Builtin::BI__sync_fetch_and_umin: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); case Builtin::BI__sync_fetch_and_umax: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); case Builtin::BI__sync_add_and_fetch_1: case Builtin::BI__sync_add_and_fetch_2: case Builtin::BI__sync_add_and_fetch_4: case Builtin::BI__sync_add_and_fetch_8: case Builtin::BI__sync_add_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, llvm::Instruction::Add); case Builtin::BI__sync_sub_and_fetch_1: case Builtin::BI__sync_sub_and_fetch_2: case Builtin::BI__sync_sub_and_fetch_4: case Builtin::BI__sync_sub_and_fetch_8: case Builtin::BI__sync_sub_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, llvm::Instruction::Sub); case Builtin::BI__sync_and_and_fetch_1: case Builtin::BI__sync_and_and_fetch_2: case Builtin::BI__sync_and_and_fetch_4: case Builtin::BI__sync_and_and_fetch_8: case Builtin::BI__sync_and_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, llvm::Instruction::And); case Builtin::BI__sync_or_and_fetch_1: case Builtin::BI__sync_or_and_fetch_2: case Builtin::BI__sync_or_and_fetch_4: case Builtin::BI__sync_or_and_fetch_8: case Builtin::BI__sync_or_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, llvm::Instruction::Or); case Builtin::BI__sync_xor_and_fetch_1: case Builtin::BI__sync_xor_and_fetch_2: case Builtin::BI__sync_xor_and_fetch_4: case Builtin::BI__sync_xor_and_fetch_8: case Builtin::BI__sync_xor_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, llvm::Instruction::Xor); case Builtin::BI__sync_nand_and_fetch_1: case Builtin::BI__sync_nand_and_fetch_2: case Builtin::BI__sync_nand_and_fetch_4: case Builtin::BI__sync_nand_and_fetch_8: case Builtin::BI__sync_nand_and_fetch_16: return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, llvm::Instruction::And, true); case Builtin::BI__sync_val_compare_and_swap_1: case Builtin::BI__sync_val_compare_and_swap_2: case Builtin::BI__sync_val_compare_and_swap_4: case Builtin::BI__sync_val_compare_and_swap_8: case Builtin::BI__sync_val_compare_and_swap_16: return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); case Builtin::BI__sync_bool_compare_and_swap_1: case Builtin::BI__sync_bool_compare_and_swap_2: case Builtin::BI__sync_bool_compare_and_swap_4: case Builtin::BI__sync_bool_compare_and_swap_8: case Builtin::BI__sync_bool_compare_and_swap_16: return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); case Builtin::BI__sync_swap_1: case Builtin::BI__sync_swap_2: case Builtin::BI__sync_swap_4: case Builtin::BI__sync_swap_8: case Builtin::BI__sync_swap_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); case Builtin::BI__sync_lock_test_and_set_1: case Builtin::BI__sync_lock_test_and_set_2: case Builtin::BI__sync_lock_test_and_set_4: case Builtin::BI__sync_lock_test_and_set_8: case Builtin::BI__sync_lock_test_and_set_16: return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); case Builtin::BI__sync_lock_release_1: case Builtin::BI__sync_lock_release_2: case Builtin::BI__sync_lock_release_4: case Builtin::BI__sync_lock_release_8: case Builtin::BI__sync_lock_release_16: { Value *Ptr = EmitScalarExpr(E->getArg(0)); QualType ElTy = E->getArg(0)->getType()->getPointeeType(); CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), StoreSize.getQuantity() * 8); Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); llvm::StoreInst *Store = Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, StoreSize); Store->setAtomic(llvm::AtomicOrdering::Release); return RValue::get(nullptr); } case Builtin::BI__sync_synchronize: { // We assume this is supposed to correspond to a C++0x-style // sequentially-consistent fence (i.e. this is only usable for // synchronization, not device I/O or anything like that). This intrinsic // is really badly designed in the sense that in theory, there isn't // any way to safely use it... but in practice, it mostly works // to use it with non-atomic loads and stores to get acquire/release // semantics. Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); return RValue::get(nullptr); } case Builtin::BI__builtin_nontemporal_load: return RValue::get(EmitNontemporalLoad(*this, E)); case Builtin::BI__builtin_nontemporal_store: return RValue::get(EmitNontemporalStore(*this, E)); case Builtin::BI__c11_atomic_is_lock_free: case Builtin::BI__atomic_is_lock_free: { // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since // _Atomic(T) is always properly-aligned. const char *LibCallName = "__atomic_is_lock_free"; CallArgList Args; Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), getContext().getSizeType()); if (BuiltinID == Builtin::BI__atomic_is_lock_free) Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), getContext().VoidPtrTy); else Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), getContext().VoidPtrTy); const CGFunctionInfo &FuncInfo = CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); return EmitCall(FuncInfo, CGCallee::forDirect(Func), ReturnValueSlot(), Args); } case Builtin::BI__atomic_test_and_set: { // Look at the argument type to determine whether this is a volatile // operation. The parameter type is always volatile. QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); bool Volatile = PtrTy->castAs()->getPointeeType().isVolatileQualified(); Value *Ptr = EmitScalarExpr(E->getArg(0)); unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); Value *NewVal = Builder.getInt8(1); Value *Order = EmitScalarExpr(E->getArg(1)); if (isa(Order)) { int ord = cast(Order)->getZExtValue(); AtomicRMWInst *Result = nullptr; switch (ord) { case 0: // memory_order_relaxed default: // invalid order Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, llvm::AtomicOrdering::Monotonic); break; case 1: // memory_order_consume case 2: // memory_order_acquire Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, llvm::AtomicOrdering::Acquire); break; case 3: // memory_order_release Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, llvm::AtomicOrdering::Release); break; case 4: // memory_order_acq_rel Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, llvm::AtomicOrdering::AcquireRelease); break; case 5: // memory_order_seq_cst Result = Builder.CreateAtomicRMW( llvm::AtomicRMWInst::Xchg, Ptr, NewVal, llvm::AtomicOrdering::SequentiallyConsistent); break; } Result->setVolatile(Volatile); return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); } llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); llvm::BasicBlock *BBs[5] = { createBasicBlock("monotonic", CurFn), createBasicBlock("acquire", CurFn), createBasicBlock("release", CurFn), createBasicBlock("acqrel", CurFn), createBasicBlock("seqcst", CurFn) }; llvm::AtomicOrdering Orders[5] = { llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, llvm::AtomicOrdering::SequentiallyConsistent}; Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); Builder.SetInsertPoint(ContBB); PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); for (unsigned i = 0; i < 5; ++i) { Builder.SetInsertPoint(BBs[i]); AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, Orders[i]); RMW->setVolatile(Volatile); Result->addIncoming(RMW, BBs[i]); Builder.CreateBr(ContBB); } SI->addCase(Builder.getInt32(0), BBs[0]); SI->addCase(Builder.getInt32(1), BBs[1]); SI->addCase(Builder.getInt32(2), BBs[1]); SI->addCase(Builder.getInt32(3), BBs[2]); SI->addCase(Builder.getInt32(4), BBs[3]); SI->addCase(Builder.getInt32(5), BBs[4]); Builder.SetInsertPoint(ContBB); return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); } case Builtin::BI__atomic_clear: { QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); bool Volatile = PtrTy->castAs()->getPointeeType().isVolatileQualified(); Address Ptr = EmitPointerWithAlignment(E->getArg(0)); unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); Value *NewVal = Builder.getInt8(0); Value *Order = EmitScalarExpr(E->getArg(1)); if (isa(Order)) { int ord = cast(Order)->getZExtValue(); StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); switch (ord) { case 0: // memory_order_relaxed default: // invalid order Store->setOrdering(llvm::AtomicOrdering::Monotonic); break; case 3: // memory_order_release Store->setOrdering(llvm::AtomicOrdering::Release); break; case 5: // memory_order_seq_cst Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); break; } return RValue::get(nullptr); } llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); llvm::BasicBlock *BBs[3] = { createBasicBlock("monotonic", CurFn), createBasicBlock("release", CurFn), createBasicBlock("seqcst", CurFn) }; llvm::AtomicOrdering Orders[3] = { llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, llvm::AtomicOrdering::SequentiallyConsistent}; Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); for (unsigned i = 0; i < 3; ++i) { Builder.SetInsertPoint(BBs[i]); StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); Store->setOrdering(Orders[i]); Builder.CreateBr(ContBB); } SI->addCase(Builder.getInt32(0), BBs[0]); SI->addCase(Builder.getInt32(3), BBs[1]); SI->addCase(Builder.getInt32(5), BBs[2]); Builder.SetInsertPoint(ContBB); return RValue::get(nullptr); } case Builtin::BI__atomic_thread_fence: case Builtin::BI__atomic_signal_fence: case Builtin::BI__c11_atomic_thread_fence: case Builtin::BI__c11_atomic_signal_fence: { llvm::SyncScope::ID SSID; if (BuiltinID == Builtin::BI__atomic_signal_fence || BuiltinID == Builtin::BI__c11_atomic_signal_fence) SSID = llvm::SyncScope::SingleThread; else SSID = llvm::SyncScope::System; Value *Order = EmitScalarExpr(E->getArg(0)); if (isa(Order)) { int ord = cast(Order)->getZExtValue(); switch (ord) { case 0: // memory_order_relaxed default: // invalid order break; case 1: // memory_order_consume case 2: // memory_order_acquire Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); break; case 3: // memory_order_release Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); break; case 4: // memory_order_acq_rel Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); break; case 5: // memory_order_seq_cst Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); break; } return RValue::get(nullptr); } llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; AcquireBB = createBasicBlock("acquire", CurFn); ReleaseBB = createBasicBlock("release", CurFn); AcqRelBB = createBasicBlock("acqrel", CurFn); SeqCstBB = createBasicBlock("seqcst", CurFn); llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); Builder.SetInsertPoint(AcquireBB); Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); Builder.CreateBr(ContBB); SI->addCase(Builder.getInt32(1), AcquireBB); SI->addCase(Builder.getInt32(2), AcquireBB); Builder.SetInsertPoint(ReleaseBB); Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); Builder.CreateBr(ContBB); SI->addCase(Builder.getInt32(3), ReleaseBB); Builder.SetInsertPoint(AcqRelBB); Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); Builder.CreateBr(ContBB); SI->addCase(Builder.getInt32(4), AcqRelBB); Builder.SetInsertPoint(SeqCstBB); Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); Builder.CreateBr(ContBB); SI->addCase(Builder.getInt32(5), SeqCstBB); Builder.SetInsertPoint(ContBB); return RValue::get(nullptr); } case Builtin::BI__builtin_signbit: case Builtin::BI__builtin_signbitf: case Builtin::BI__builtin_signbitl: { return RValue::get( Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), ConvertType(E->getType()))); } case Builtin::BI__warn_memset_zero_len: return RValue::getIgnored(); case Builtin::BI__annotation: { // Re-encode each wide string to UTF8 and make an MDString. SmallVector Strings; for (const Expr *Arg : E->arguments()) { const auto *Str = cast(Arg->IgnoreParenCasts()); assert(Str->getCharByteWidth() == 2); StringRef WideBytes = Str->getBytes(); std::string StrUtf8; if (!convertUTF16ToUTF8String( makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); continue; } Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); } // Build and MDTuple of MDStrings and emit the intrinsic call. llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); return RValue::getIgnored(); } case Builtin::BI__builtin_annotation: { llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, AnnVal->getType()); // Get the annotation string, go through casts. Sema requires this to be a // non-wide string literal, potentially casted, so the cast<> is safe. const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); StringRef Str = cast(AnnotationStrExpr)->getString(); return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc())); } case Builtin::BI__builtin_addcb: case Builtin::BI__builtin_addcs: case Builtin::BI__builtin_addc: case Builtin::BI__builtin_addcl: case Builtin::BI__builtin_addcll: case Builtin::BI__builtin_subcb: case Builtin::BI__builtin_subcs: case Builtin::BI__builtin_subc: case Builtin::BI__builtin_subcl: case Builtin::BI__builtin_subcll: { // We translate all of these builtins from expressions of the form: // int x = ..., y = ..., carryin = ..., carryout, result; // result = __builtin_addc(x, y, carryin, &carryout); // // to LLVM IR of the form: // // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 // %carry1 = extractvalue {i32, i1} %tmp1, 1 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, // i32 %carryin) // %result = extractvalue {i32, i1} %tmp2, 0 // %carry2 = extractvalue {i32, i1} %tmp2, 1 // %tmp3 = or i1 %carry1, %carry2 // %tmp4 = zext i1 %tmp3 to i32 // store i32 %tmp4, i32* %carryout // Scalarize our inputs. llvm::Value *X = EmitScalarExpr(E->getArg(0)); llvm::Value *Y = EmitScalarExpr(E->getArg(1)); llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. llvm::Intrinsic::ID IntrinsicId; switch (BuiltinID) { default: llvm_unreachable("Unknown multiprecision builtin id."); case Builtin::BI__builtin_addcb: case Builtin::BI__builtin_addcs: case Builtin::BI__builtin_addc: case Builtin::BI__builtin_addcl: case Builtin::BI__builtin_addcll: IntrinsicId = llvm::Intrinsic::uadd_with_overflow; break; case Builtin::BI__builtin_subcb: case Builtin::BI__builtin_subcs: case Builtin::BI__builtin_subc: case Builtin::BI__builtin_subcl: case Builtin::BI__builtin_subcll: IntrinsicId = llvm::Intrinsic::usub_with_overflow; break; } // Construct our resulting LLVM IR expression. llvm::Value *Carry1; llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry1); llvm::Value *Carry2; llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, Sum1, Carryin, Carry2); llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), X->getType()); Builder.CreateStore(CarryOut, CarryOutPtr); return RValue::get(Sum2); } case Builtin::BI__builtin_add_overflow: case Builtin::BI__builtin_sub_overflow: case Builtin::BI__builtin_mul_overflow: { const clang::Expr *LeftArg = E->getArg(0); const clang::Expr *RightArg = E->getArg(1); const clang::Expr *ResultArg = E->getArg(2); clang::QualType ResultQTy = ResultArg->getType()->castAs()->getPointeeType(); WidthAndSignedness LeftInfo = getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); WidthAndSignedness RightInfo = getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); WidthAndSignedness ResultInfo = getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); // Handle mixed-sign multiplication as a special case, because adding // runtime or backend support for our generic irgen would be too expensive. if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy, ResultInfo); WidthAndSignedness EncompassingInfo = EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); llvm::Type *EncompassingLLVMTy = llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); llvm::Intrinsic::ID IntrinsicId; switch (BuiltinID) { default: llvm_unreachable("Unknown overflow builtin id."); case Builtin::BI__builtin_add_overflow: IntrinsicId = EncompassingInfo.Signed ? llvm::Intrinsic::sadd_with_overflow : llvm::Intrinsic::uadd_with_overflow; break; case Builtin::BI__builtin_sub_overflow: IntrinsicId = EncompassingInfo.Signed ? llvm::Intrinsic::ssub_with_overflow : llvm::Intrinsic::usub_with_overflow; break; case Builtin::BI__builtin_mul_overflow: IntrinsicId = EncompassingInfo.Signed ? llvm::Intrinsic::smul_with_overflow : llvm::Intrinsic::umul_with_overflow; break; } llvm::Value *Left = EmitScalarExpr(LeftArg); llvm::Value *Right = EmitScalarExpr(RightArg); Address ResultPtr = EmitPointerWithAlignment(ResultArg); // Extend each operand to the encompassing type. Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); // Perform the operation on the extended values. llvm::Value *Overflow, *Result; Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); if (EncompassingInfo.Width > ResultInfo.Width) { // The encompassing type is wider than the result type, so we need to // truncate it. llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); // To see if the truncation caused an overflow, we will extend // the result and then compare it to the original result. llvm::Value *ResultTruncExt = Builder.CreateIntCast( ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); llvm::Value *TruncationOverflow = Builder.CreateICmpNE(Result, ResultTruncExt); Overflow = Builder.CreateOr(Overflow, TruncationOverflow); Result = ResultTrunc; } // Finally, store the result using the pointer. bool isVolatile = ResultArg->getType()->getPointeeType().isVolatileQualified(); Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); return RValue::get(Overflow); } case Builtin::BI__builtin_uadd_overflow: case Builtin::BI__builtin_uaddl_overflow: case Builtin::BI__builtin_uaddll_overflow: case Builtin::BI__builtin_usub_overflow: case Builtin::BI__builtin_usubl_overflow: case Builtin::BI__builtin_usubll_overflow: case Builtin::BI__builtin_umul_overflow: case Builtin::BI__builtin_umull_overflow: case Builtin::BI__builtin_umulll_overflow: case Builtin::BI__builtin_sadd_overflow: case Builtin::BI__builtin_saddl_overflow: case Builtin::BI__builtin_saddll_overflow: case Builtin::BI__builtin_ssub_overflow: case Builtin::BI__builtin_ssubl_overflow: case Builtin::BI__builtin_ssubll_overflow: case Builtin::BI__builtin_smul_overflow: case Builtin::BI__builtin_smull_overflow: case Builtin::BI__builtin_smulll_overflow: { // We translate all of these builtins directly to the relevant llvm IR node. // Scalarize our inputs. llvm::Value *X = EmitScalarExpr(E->getArg(0)); llvm::Value *Y = EmitScalarExpr(E->getArg(1)); Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); // Decide which of the overflow intrinsics we are lowering to: llvm::Intrinsic::ID IntrinsicId; switch (BuiltinID) { default: llvm_unreachable("Unknown overflow builtin id."); case Builtin::BI__builtin_uadd_overflow: case Builtin::BI__builtin_uaddl_overflow: case Builtin::BI__builtin_uaddll_overflow: IntrinsicId = llvm::Intrinsic::uadd_with_overflow; break; case Builtin::BI__builtin_usub_overflow: case Builtin::BI__builtin_usubl_overflow: case Builtin::BI__builtin_usubll_overflow: IntrinsicId = llvm::Intrinsic::usub_with_overflow; break; case Builtin::BI__builtin_umul_overflow: case Builtin::BI__builtin_umull_overflow: case Builtin::BI__builtin_umulll_overflow: IntrinsicId = llvm::Intrinsic::umul_with_overflow; break; case Builtin::BI__builtin_sadd_overflow: case Builtin::BI__builtin_saddl_overflow: case Builtin::BI__builtin_saddll_overflow: IntrinsicId = llvm::Intrinsic::sadd_with_overflow; break; case Builtin::BI__builtin_ssub_overflow: case Builtin::BI__builtin_ssubl_overflow: case Builtin::BI__builtin_ssubll_overflow: IntrinsicId = llvm::Intrinsic::ssub_with_overflow; break; case Builtin::BI__builtin_smul_overflow: case Builtin::BI__builtin_smull_overflow: case Builtin::BI__builtin_smulll_overflow: IntrinsicId = llvm::Intrinsic::smul_with_overflow; break; } llvm::Value *Carry; llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); Builder.CreateStore(Sum, SumOutPtr); return RValue::get(Carry); } case Builtin::BI__builtin_addressof: return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); case Builtin::BI__builtin_operator_new: return EmitBuiltinNewDeleteCall( E->getCallee()->getType()->castAs(), E, false); case Builtin::BI__builtin_operator_delete: return EmitBuiltinNewDeleteCall( E->getCallee()->getType()->castAs(), E, true); case Builtin::BI__builtin_is_aligned: return EmitBuiltinIsAligned(E); case Builtin::BI__builtin_align_up: return EmitBuiltinAlignTo(E, true); case Builtin::BI__builtin_align_down: return EmitBuiltinAlignTo(E, false); case Builtin::BI__noop: // __noop always evaluates to an integer literal zero. return RValue::get(ConstantInt::get(IntTy, 0)); case Builtin::BI__builtin_call_with_static_chain: { const CallExpr *Call = cast(E->getArg(0)); const Expr *Chain = E->getArg(1); return EmitCall(Call->getCallee()->getType(), EmitCallee(Call->getCallee()), Call, ReturnValue, EmitScalarExpr(Chain)); } case Builtin::BI_InterlockedExchange8: case Builtin::BI_InterlockedExchange16: case Builtin::BI_InterlockedExchange: case Builtin::BI_InterlockedExchangePointer: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); case Builtin::BI_InterlockedCompareExchangePointer: case Builtin::BI_InterlockedCompareExchangePointer_nf: { llvm::Type *RTy; llvm::IntegerType *IntType = IntegerType::get(getLLVMContext(), getContext().getTypeSize(E->getType())); llvm::Type *IntPtrType = IntType->getPointerTo(); llvm::Value *Destination = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); RTy = Exchange->getType(); Exchange = Builder.CreatePtrToInt(Exchange, IntType); llvm::Value *Comparand = Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); auto Ordering = BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ? AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent; auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, Ordering, Ordering); Result->setVolatile(true); return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, 0), RTy)); } case Builtin::BI_InterlockedCompareExchange8: case Builtin::BI_InterlockedCompareExchange16: case Builtin::BI_InterlockedCompareExchange: case Builtin::BI_InterlockedCompareExchange64: return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); case Builtin::BI_InterlockedIncrement16: case Builtin::BI_InterlockedIncrement: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); case Builtin::BI_InterlockedDecrement16: case Builtin::BI_InterlockedDecrement: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); case Builtin::BI_InterlockedAnd8: case Builtin::BI_InterlockedAnd16: case Builtin::BI_InterlockedAnd: return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); case Builtin::BI_InterlockedExchangeAdd8: case Builtin::BI_InterlockedExchangeAdd16: case Builtin::BI_InterlockedExchangeAdd: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); case Builtin::BI_InterlockedExchangeSub8: case Builtin::BI_InterlockedExchangeSub16: case Builtin::BI_InterlockedExchangeSub: return RValue::get( EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); case Builtin::BI_InterlockedOr8: case Builtin::BI_InterlockedOr16: case Builtin::BI_InterlockedOr: return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); case Builtin::BI_InterlockedXor8: case Builtin::BI_InterlockedXor16: case Builtin::BI_InterlockedXor: return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); case Builtin::BI_bittest64: case Builtin::BI_bittest: case Builtin::BI_bittestandcomplement64: case Builtin::BI_bittestandcomplement: case Builtin::BI_bittestandreset64: case Builtin::BI_bittestandreset: case Builtin::BI_bittestandset64: case Builtin::BI_bittestandset: case Builtin::BI_interlockedbittestandreset: case Builtin::BI_interlockedbittestandreset64: case Builtin::BI_interlockedbittestandset64: case Builtin::BI_interlockedbittestandset: case Builtin::BI_interlockedbittestandset_acq: case Builtin::BI_interlockedbittestandset_rel: case Builtin::BI_interlockedbittestandset_nf: case Builtin::BI_interlockedbittestandreset_acq: case Builtin::BI_interlockedbittestandreset_rel: case Builtin::BI_interlockedbittestandreset_nf: return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); // These builtins exist to emit regular volatile loads and stores not // affected by the -fms-volatile setting. case Builtin::BI__iso_volatile_load8: case Builtin::BI__iso_volatile_load16: case Builtin::BI__iso_volatile_load32: case Builtin::BI__iso_volatile_load64: return RValue::get(EmitISOVolatileLoad(*this, E)); case Builtin::BI__iso_volatile_store8: case Builtin::BI__iso_volatile_store16: case Builtin::BI__iso_volatile_store32: case Builtin::BI__iso_volatile_store64: return RValue::get(EmitISOVolatileStore(*this, E)); case Builtin::BI__exception_code: case Builtin::BI_exception_code: return RValue::get(EmitSEHExceptionCode()); case Builtin::BI__exception_info: case Builtin::BI_exception_info: return RValue::get(EmitSEHExceptionInfo()); case Builtin::BI__abnormal_termination: case Builtin::BI_abnormal_termination: return RValue::get(EmitSEHAbnormalTermination()); case Builtin::BI_setjmpex: if (getTarget().getTriple().isOSMSVCRT()) return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); break; case Builtin::BI_setjmp: if (getTarget().getTriple().isOSMSVCRT()) { if (getTarget().getTriple().getArch() == llvm::Triple::x86) return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); } break; case Builtin::BI__GetExceptionInfo: { if (llvm::GlobalVariable *GV = CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); break; } case Builtin::BI__fastfail: return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); case Builtin::BI__builtin_coro_size: { auto & Context = getContext(); auto SizeTy = Context.getSizeType(); auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T); return RValue::get(Builder.CreateCall(F)); } case Builtin::BI__builtin_coro_id: return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); case Builtin::BI__builtin_coro_promise: return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); case Builtin::BI__builtin_coro_resume: return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); case Builtin::BI__builtin_coro_frame: return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); case Builtin::BI__builtin_coro_noop: return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); case Builtin::BI__builtin_coro_free: return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); case Builtin::BI__builtin_coro_destroy: return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); case Builtin::BI__builtin_coro_done: return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); case Builtin::BI__builtin_coro_alloc: return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); case Builtin::BI__builtin_coro_begin: return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); case Builtin::BI__builtin_coro_end: return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); case Builtin::BI__builtin_coro_suspend: return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); case Builtin::BI__builtin_coro_param: return EmitCoroutineIntrinsic(E, Intrinsic::coro_param); // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions case Builtin::BIread_pipe: case Builtin::BIwrite_pipe: { Value *Arg0 = EmitScalarExpr(E->getArg(0)), *Arg1 = EmitScalarExpr(E->getArg(1)); CGOpenCLRuntime OpenCLRT(CGM); Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); // Type of the generic packet parameter. unsigned GenericAS = getContext().getTargetAddressSpace(LangAS::opencl_generic); llvm::Type *I8PTy = llvm::PointerType::get( llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); // Testing which overloaded version we should generate the call for. if (2U == E->getNumArgs()) { const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" : "__write_pipe_2"; // Creating a generic function type to be able to call with any builtin or // user defined type. llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); return RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0, BCast, PacketSize, PacketAlign})); } else { assert(4 == E->getNumArgs() && "Illegal number of parameters to pipe function"); const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" : "__write_pipe_4"; llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, Int32Ty, Int32Ty}; Value *Arg2 = EmitScalarExpr(E->getArg(2)), *Arg3 = EmitScalarExpr(E->getArg(3)); llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); // We know the third argument is an integer type, but we may need to cast // it to i32. if (Arg2->getType() != Int32Ty) Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); return RValue::get(Builder.CreateCall( CGM.CreateRuntimeFunction(FTy, Name), {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); } } // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write // functions case Builtin::BIreserve_read_pipe: case Builtin::BIreserve_write_pipe: case Builtin::BIwork_group_reserve_read_pipe: case Builtin::BIwork_group_reserve_write_pipe: case Builtin::BIsub_group_reserve_read_pipe: case Builtin::BIsub_group_reserve_write_pipe: { // Composing the mangled name for the function. const char *Name; if (BuiltinID == Builtin::BIreserve_read_pipe) Name = "__reserve_read_pipe"; else if (BuiltinID == Builtin::BIreserve_write_pipe) Name = "__reserve_write_pipe"; else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) Name = "__work_group_reserve_read_pipe"; else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) Name = "__work_group_reserve_write_pipe"; else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) Name = "__sub_group_reserve_read_pipe"; else Name = "__sub_group_reserve_write_pipe"; Value *Arg0 = EmitScalarExpr(E->getArg(0)), *Arg1 = EmitScalarExpr(E->getArg(1)); llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); CGOpenCLRuntime OpenCLRT(CGM); Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); // Building the generic function prototype. llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; llvm::FunctionType *FTy = llvm::FunctionType::get( ReservedIDTy, llvm::ArrayRef(ArgTys), false); // We know the second argument is an integer type, but we may need to cast // it to i32. if (Arg1->getType() != Int32Ty) Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); return RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0, Arg1, PacketSize, PacketAlign})); } // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write // functions case Builtin::BIcommit_read_pipe: case Builtin::BIcommit_write_pipe: case Builtin::BIwork_group_commit_read_pipe: case Builtin::BIwork_group_commit_write_pipe: case Builtin::BIsub_group_commit_read_pipe: case Builtin::BIsub_group_commit_write_pipe: { const char *Name; if (BuiltinID == Builtin::BIcommit_read_pipe) Name = "__commit_read_pipe"; else if (BuiltinID == Builtin::BIcommit_write_pipe) Name = "__commit_write_pipe"; else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) Name = "__work_group_commit_read_pipe"; else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) Name = "__work_group_commit_write_pipe"; else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) Name = "__sub_group_commit_read_pipe"; else Name = "__sub_group_commit_write_pipe"; Value *Arg0 = EmitScalarExpr(E->getArg(0)), *Arg1 = EmitScalarExpr(E->getArg(1)); CGOpenCLRuntime OpenCLRT(CGM); Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); // Building the generic function prototype. llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; llvm::FunctionType *FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), llvm::ArrayRef(ArgTys), false); return RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0, Arg1, PacketSize, PacketAlign})); } // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions case Builtin::BIget_pipe_num_packets: case Builtin::BIget_pipe_max_packets: { const char *BaseName; const auto *PipeTy = E->getArg(0)->getType()->castAs(); if (BuiltinID == Builtin::BIget_pipe_num_packets) BaseName = "__get_pipe_num_packets"; else BaseName = "__get_pipe_max_packets"; std::string Name = std::string(BaseName) + std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); // Building the generic function prototype. Value *Arg0 = EmitScalarExpr(E->getArg(0)); CGOpenCLRuntime OpenCLRT(CGM); Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), {Arg0, PacketSize, PacketAlign})); } // OpenCL v2.0 s6.13.9 - Address space qualifier functions. case Builtin::BIto_global: case Builtin::BIto_local: case Builtin::BIto_private: { auto Arg0 = EmitScalarExpr(E->getArg(0)); auto NewArgT = llvm::PointerType::get(Int8Ty, CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); auto NewRetT = llvm::PointerType::get(Int8Ty, CGM.getContext().getTargetAddressSpace( E->getType()->getPointeeType().getAddressSpace())); auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); llvm::Value *NewArg; if (Arg0->getType()->getPointerAddressSpace() != NewArgT->getPointerAddressSpace()) NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); else NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); auto NewCall = Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); return RValue::get(Builder.CreateBitOrPointerCast(NewCall, ConvertType(E->getType()))); } // OpenCL v2.0, s6.13.17 - Enqueue kernel function. // It contains four different overload formats specified in Table 6.13.17.1. case Builtin::BIenqueue_kernel: { StringRef Name; // Generated function call name unsigned NumArgs = E->getNumArgs(); llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( getContext().getTargetAddressSpace(LangAS::opencl_generic)); llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); llvm::Value *Range = NDRangeL.getAddress(*this).getPointer(); llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType(); if (NumArgs == 4) { // The most basic form of the call with parameters: // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) Name = "__enqueue_kernel_basic"; llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, GenericVoidPtrTy}; llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); llvm::Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); llvm::Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); AttrBuilder B; B.addByValAttr(NDRangeL.getAddress(*this).getElementType()); llvm::AttributeList ByValAttrSet = llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); auto RTCall = Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), {Queue, Flags, Range, Kernel, Block}); RTCall->setAttributes(ByValAttrSet); return RValue::get(RTCall); } assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); // Create a temporary array to hold the sizes of local pointer arguments // for the block. \p First is the position of the first size argument. auto CreateArrayForSizeVar = [=](unsigned First) -> std::tuple { llvm::APInt ArraySize(32, NumArgs - First); QualType SizeArrayTy = getContext().getConstantArrayType( getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0); auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); llvm::Value *TmpPtr = Tmp.getPointer(); llvm::Value *TmpSize = EmitLifetimeStart( CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr); llvm::Value *ElemPtr; // Each of the following arguments specifies the size of the corresponding // argument passed to the enqueued block. auto *Zero = llvm::ConstantInt::get(IntTy, 0); for (unsigned I = First; I < NumArgs; ++I) { auto *Index = llvm::ConstantInt::get(IntTy, I - First); auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index}); if (I == First) ElemPtr = GEP; auto *V = Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); Builder.CreateAlignedStore( V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy)); } return std::tie(ElemPtr, TmpSize, TmpPtr); }; // Could have events and/or varargs. if (E->getArg(3)->getType()->isBlockPointerType()) { // No events passed, but has variadic arguments. Name = "__enqueue_kernel_varargs"; auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); llvm::Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); llvm::Value *ElemPtr, *TmpSize, *TmpPtr; std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); // Create a vector of the arguments, as well as a constant value to // express to the runtime the number of variadic arguments. llvm::Value *const Args[] = {Queue, Flags, Range, Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4), ElemPtr}; llvm::Type *const ArgTys[] = { QueueTy, IntTy, RangeTy, GenericVoidPtrTy, GenericVoidPtrTy, IntTy, ElemPtr->getType()}; llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false); auto Call = RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), Args)); if (TmpSize) EmitLifetimeEnd(TmpSize, TmpPtr); return Call; } // Any calls now have event arguments passed. if (NumArgs >= 7) { llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); llvm::PointerType *EventPtrTy = EventTy->getPointerTo( CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); llvm::Value *NumEvents = Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments // to be a null pointer constant (including `0` literal), we can take it // into account and emit null pointer directly. llvm::Value *EventWaitList = nullptr; if (E->getArg(4)->isNullPointerConstant( getContext(), Expr::NPC_ValueDependentIsNotNull)) { EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy); } else { EventWaitList = E->getArg(4)->getType()->isArrayType() ? EmitArrayToPointerDecay(E->getArg(4)).getPointer() : EmitScalarExpr(E->getArg(4)); // Convert to generic address space. EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy); } llvm::Value *EventRet = nullptr; if (E->getArg(5)->isNullPointerConstant( getContext(), Expr::NPC_ValueDependentIsNotNull)) { EventRet = llvm::ConstantPointerNull::get(EventPtrTy); } else { EventRet = Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy); } auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); llvm::Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); llvm::Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); std::vector ArgTys = { QueueTy, Int32Ty, RangeTy, Int32Ty, EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; std::vector Args = {Queue, Flags, Range, NumEvents, EventWaitList, EventRet, Kernel, Block}; if (NumArgs == 7) { // Has events but no variadics. Name = "__enqueue_kernel_basic_events"; llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); return RValue::get( Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), llvm::ArrayRef(Args))); } // Has event info and variadics // Pass the number of variadics to the runtime function too. Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); ArgTys.push_back(Int32Ty); Name = "__enqueue_kernel_events_varargs"; llvm::Value *ElemPtr, *TmpSize, *TmpPtr; std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); Args.push_back(ElemPtr); ArgTys.push_back(ElemPtr->getType()); llvm::FunctionType *FTy = llvm::FunctionType::get( Int32Ty, llvm::ArrayRef(ArgTys), false); auto Call = RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name), llvm::ArrayRef(Args))); if (TmpSize) EmitLifetimeEnd(TmpSize, TmpPtr); return Call; } LLVM_FALLTHROUGH; } // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block // parameter. case Builtin::BIget_kernel_work_group_size: { llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( getContext().getTargetAddressSpace(LangAS::opencl_generic)); auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); return RValue::get(Builder.CreateCall( CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, false), "__get_kernel_work_group_size_impl"), {Kernel, Arg})); } case Builtin::BIget_kernel_preferred_work_group_size_multiple: { llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( getContext().getTargetAddressSpace(LangAS::opencl_generic)); auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); return RValue::get(Builder.CreateCall( CGM.CreateRuntimeFunction( llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, false), "__get_kernel_preferred_work_group_size_multiple_impl"), {Kernel, Arg})); } case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: case Builtin::BIget_kernel_sub_group_count_for_ndrange: { llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( getContext().getTargetAddressSpace(LangAS::opencl_generic)); LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer(); auto Info = CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); const char *Name = BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange ? "__get_kernel_max_sub_group_size_for_ndrange_impl" : "__get_kernel_sub_group_count_for_ndrange_impl"; return RValue::get(Builder.CreateCall( CGM.CreateRuntimeFunction( llvm::FunctionType::get( IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, false), Name), {NDRange, Kernel, Block})); } case Builtin::BI__builtin_store_half: case Builtin::BI__builtin_store_halff: { Value *Val = EmitScalarExpr(E->getArg(0)); Address Address = EmitPointerWithAlignment(E->getArg(1)); Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); return RValue::get(Builder.CreateStore(HalfVal, Address)); } case Builtin::BI__builtin_load_half: { Address Address = EmitPointerWithAlignment(E->getArg(0)); Value *HalfVal = Builder.CreateLoad(Address); return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); } case Builtin::BI__builtin_load_halff: { Address Address = EmitPointerWithAlignment(E->getArg(0)); Value *HalfVal = Builder.CreateLoad(Address); return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); } case Builtin::BIprintf: if (getTarget().getTriple().isNVPTX()) return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue); if (getTarget().getTriple().getArch() == Triple::amdgcn && getLangOpts().HIP) return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue); break; case Builtin::BI__builtin_canonicalize: case Builtin::BI__builtin_canonicalizef: case Builtin::BI__builtin_canonicalizef16: case Builtin::BI__builtin_canonicalizel: return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); case Builtin::BI__builtin_thread_pointer: { if (!getContext().getTargetInfo().isTLSSupported()) CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); // Fall through - it's already mapped to the intrinsic by GCCBuiltin. break; } case Builtin::BI__builtin_os_log_format: return emitBuiltinOSLogFormat(*E); case Builtin::BI__xray_customevent: { if (!ShouldXRayInstrumentFunction()) return RValue::getIgnored(); if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( XRayInstrKind::Custom)) return RValue::getIgnored(); if (const auto *XRayAttr = CurFuncDecl->getAttr()) if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) return RValue::getIgnored(); Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); auto FTy = F->getFunctionType(); auto Arg0 = E->getArg(0); auto Arg0Val = EmitScalarExpr(Arg0); auto Arg0Ty = Arg0->getType(); auto PTy0 = FTy->getParamType(0); if (PTy0 != Arg0Val->getType()) { if (Arg0Ty->isArrayType()) Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); else Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); } auto Arg1 = EmitScalarExpr(E->getArg(1)); auto PTy1 = FTy->getParamType(1); if (PTy1 != Arg1->getType()) Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); } case Builtin::BI__xray_typedevent: { // TODO: There should be a way to always emit events even if the current // function is not instrumented. Losing events in a stream can cripple // a trace. if (!ShouldXRayInstrumentFunction()) return RValue::getIgnored(); if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( XRayInstrKind::Typed)) return RValue::getIgnored(); if (const auto *XRayAttr = CurFuncDecl->getAttr()) if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) return RValue::getIgnored(); Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); auto FTy = F->getFunctionType(); auto Arg0 = EmitScalarExpr(E->getArg(0)); auto PTy0 = FTy->getParamType(0); if (PTy0 != Arg0->getType()) Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); auto Arg1 = E->getArg(1); auto Arg1Val = EmitScalarExpr(Arg1); auto Arg1Ty = Arg1->getType(); auto PTy1 = FTy->getParamType(1); if (PTy1 != Arg1Val->getType()) { if (Arg1Ty->isArrayType()) Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer(); else Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); } auto Arg2 = EmitScalarExpr(E->getArg(2)); auto PTy2 = FTy->getParamType(2); if (PTy2 != Arg2->getType()) Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); } case Builtin::BI__builtin_ms_va_start: case Builtin::BI__builtin_ms_va_end: return RValue::get( EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), BuiltinID == Builtin::BI__builtin_ms_va_start)); case Builtin::BI__builtin_ms_va_copy: { // Lower this manually. We can't reliably determine whether or not any // given va_copy() is for a Win64 va_list from the calling convention // alone, because it's legal to do this from a System V ABI function. // With opaque pointer types, we won't have enough information in LLVM // IR to determine this from the argument types, either. Best to do it // now, while we have enough information. Address DestAddr = EmitMSVAListRef(E->getArg(0)); Address SrcAddr = EmitMSVAListRef(E->getArg(1)); llvm::Type *BPP = Int8PtrPtrTy; DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), DestAddr.getAlignment()); SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), SrcAddr.getAlignment()); Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); } } // If this is an alias for a lib function (e.g. __builtin_sin), emit // the call using the normal call path, but using the unmangled // version of the function name. if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) return emitLibraryCall(*this, FD, E, CGM.getBuiltinLibFunction(FD, BuiltinID)); // If this is a predefined lib function (e.g. malloc), emit the call // using exactly the normal call path. if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return emitLibraryCall(*this, FD, E, cast(EmitScalarExpr(E->getCallee()))); // Check that a call to a target specific builtin has the correct target // features. // This is down here to avoid non-target specific builtins, however, if // generic builtins start to require generic target features then we // can move this up to the beginning of the function. checkTargetFeatures(E, FD); if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); // See if we have a target specific intrinsic. const char *Name = getContext().BuiltinInfo.getName(BuiltinID); Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; StringRef Prefix = llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); if (!Prefix.empty()) { IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); // NOTE we don't need to perform a compatibility flag check here since the // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. if (IntrinsicID == Intrinsic::not_intrinsic) IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); } if (IntrinsicID != Intrinsic::not_intrinsic) { SmallVector Args; // Find out if any arguments are required to be integer constant // expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); assert(Error == ASTContext::GE_None && "Should not codegen an error"); Function *F = CGM.getIntrinsic(IntrinsicID); llvm::FunctionType *FTy = F->getFunctionType(); for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { Value *ArgValue; // If this is a normal argument, just emit it as a scalar. if ((ICEArguments & (1 << i)) == 0) { ArgValue = EmitScalarExpr(E->getArg(i)); } else { // If this is required to be a constant, constant fold it so that we // know that the generated intrinsic gets a ConstantInt. llvm::APSInt Result; bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext()); assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result); } // If the intrinsic arg type is different from the builtin arg type // we need to do a bit cast. llvm::Type *PTy = FTy->getParamType(i); if (PTy != ArgValue->getType()) { // XXX - vector of pointers? if (auto *PtrTy = dyn_cast(PTy)) { if (PtrTy->getAddressSpace() != ArgValue->getType()->getPointerAddressSpace()) { ArgValue = Builder.CreateAddrSpaceCast( ArgValue, ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace())); } } assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && "Must be able to losslessly bit cast to param"); ArgValue = Builder.CreateBitCast(ArgValue, PTy); } Args.push_back(ArgValue); } Value *V = Builder.CreateCall(F, Args); QualType BuiltinRetType = E->getType(); llvm::Type *RetTy = VoidTy; if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType); if (RetTy != V->getType()) { // XXX - vector of pointers? if (auto *PtrTy = dyn_cast(RetTy)) { if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { V = Builder.CreateAddrSpaceCast( V, V->getType()->getPointerTo(PtrTy->getAddressSpace())); } } assert(V->getType()->canLosslesslyBitCastTo(RetTy) && "Must be able to losslessly bit cast result type"); V = Builder.CreateBitCast(V, RetTy); } return RValue::get(V); } // Some target-specific builtins can have aggregate return values, e.g. // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force // ReturnValue to be non-null, so that the target-specific emission code can // always just emit into it. TypeEvaluationKind EvalKind = getEvaluationKind(E->getType()); if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) { Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp"); ReturnValue = ReturnValueSlot(DestPtr, false); } // Now see if we can emit a target-specific builtin. if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) { switch (EvalKind) { case TEK_Scalar: return RValue::get(V); case TEK_Aggregate: return RValue::getAggregate(ReturnValue.getValue(), ReturnValue.isVolatile()); case TEK_Complex: llvm_unreachable("No current target builtin returns complex"); } llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr"); } ErrorUnsupported(E, "builtin function"); // Unknown builtin, for now just dump it out and return undef. return GetUndefRValue(E->getType()); } static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue, llvm::Triple::ArchType Arch) { switch (Arch) { case llvm::Triple::arm: case llvm::Triple::armeb: case llvm::Triple::thumb: case llvm::Triple::thumbeb: return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); case llvm::Triple::aarch64: case llvm::Triple::aarch64_32: case llvm::Triple::aarch64_be: return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); case llvm::Triple::bpfeb: case llvm::Triple::bpfel: return CGF->EmitBPFBuiltinExpr(BuiltinID, E); case llvm::Triple::x86: case llvm::Triple::x86_64: return CGF->EmitX86BuiltinExpr(BuiltinID, E); case llvm::Triple::ppc: case llvm::Triple::ppc64: case llvm::Triple::ppc64le: return CGF->EmitPPCBuiltinExpr(BuiltinID, E); case llvm::Triple::r600: case llvm::Triple::amdgcn: return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); case llvm::Triple::systemz: return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); case llvm::Triple::nvptx: case llvm::Triple::nvptx64: return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); case llvm::Triple::wasm32: case llvm::Triple::wasm64: return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); case llvm::Triple::hexagon: return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); default: return nullptr; } } Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue) { if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { assert(getContext().getAuxTargetInfo() && "Missing aux target info"); return EmitTargetArchBuiltinExpr( this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch()); } return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue, getTarget().getTriple().getArch()); } static llvm::VectorType *GetNeonType(CodeGenFunction *CGF, NeonTypeFlags TypeFlags, bool HasLegalHalfType = true, bool V1Ty = false, bool AllowBFloatArgsAndRet = true) { int IsQuad = TypeFlags.isQuad(); switch (TypeFlags.getEltType()) { case NeonTypeFlags::Int8: case NeonTypeFlags::Poly8: return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); case NeonTypeFlags::Int16: case NeonTypeFlags::Poly16: return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); case NeonTypeFlags::BFloat16: if (AllowBFloatArgsAndRet) return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad)); else return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); case NeonTypeFlags::Float16: if (HasLegalHalfType) return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); else return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); case NeonTypeFlags::Int32: return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); case NeonTypeFlags::Int64: case NeonTypeFlags::Poly64: return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); case NeonTypeFlags::Poly128: // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. // There is a lot of i128 and f128 API missing. // so we use v16i8 to represent poly128 and get pattern matched. return llvm::FixedVectorType::get(CGF->Int8Ty, 16); case NeonTypeFlags::Float32: return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); case NeonTypeFlags::Float64: return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); } llvm_unreachable("Unknown vector element type!"); } static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, NeonTypeFlags IntTypeFlags) { int IsQuad = IntTypeFlags.isQuad(); switch (IntTypeFlags.getEltType()) { case NeonTypeFlags::Int16: return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad)); case NeonTypeFlags::Int32: return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad)); case NeonTypeFlags::Int64: return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad)); default: llvm_unreachable("Type can't be converted to floating-point!"); } } Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C, const ElementCount &Count) { Value *SV = llvm::ConstantVector::getSplat(Count, C); return Builder.CreateShuffleVector(V, V, SV, "lane"); } Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { ElementCount EC = cast(V->getType())->getElementCount(); return EmitNeonSplat(V, C, EC); } Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl &Ops, const char *name, unsigned shift, bool rightshift) { unsigned j = 0; for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); ai != ae; ++ai, ++j) { if (F->isConstrainedFPIntrinsic()) if (ai->getType()->isMetadataTy()) continue; if (shift > 0 && shift == j) Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); else Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); } if (F->isConstrainedFPIntrinsic()) return Builder.CreateConstrainedFPCall(F, Ops, name); else return Builder.CreateCall(F, Ops, name); } Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, bool neg) { int SV = cast(V)->getSExtValue(); return ConstantInt::get(Ty, neg ? -SV : SV); } // Right-shift a vector by a constant. Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, llvm::Type *Ty, bool usgn, const char *name) { llvm::VectorType *VTy = cast(Ty); int ShiftAmt = cast(Shift)->getSExtValue(); int EltSize = VTy->getScalarSizeInBits(); Vec = Builder.CreateBitCast(Vec, Ty); // lshr/ashr are undefined when the shift amount is equal to the vector // element size. if (ShiftAmt == EltSize) { if (usgn) { // Right-shifting an unsigned value by its size yields 0. return llvm::ConstantAggregateZero::get(VTy); } else { // Right-shifting a signed value by its size is equivalent // to a shift of size-1. --ShiftAmt; Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); } } Shift = EmitNeonShiftVector(Shift, Ty, false); if (usgn) return Builder.CreateLShr(Vec, Shift, name); else return Builder.CreateAShr(Vec, Shift, name); } enum { AddRetType = (1 << 0), Add1ArgType = (1 << 1), Add2ArgTypes = (1 << 2), VectorizeRetType = (1 << 3), VectorizeArgTypes = (1 << 4), InventFloatType = (1 << 5), UnsignedAlts = (1 << 6), Use64BitVectors = (1 << 7), Use128BitVectors = (1 << 8), Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, VectorRet = AddRetType | VectorizeRetType, VectorRetGetArgs01 = AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, FpCmpzModifiers = AddRetType | VectorizeRetType | Add1ArgType | InventFloatType }; namespace { struct ARMVectorIntrinsicInfo { const char *NameHint; unsigned BuiltinID; unsigned LLVMIntrinsic; unsigned AltLLVMIntrinsic; uint64_t TypeModifier; bool operator<(unsigned RHSBuiltinID) const { return BuiltinID < RHSBuiltinID; } bool operator<(const ARMVectorIntrinsicInfo &TE) const { return BuiltinID < TE.BuiltinID; } }; } // end anonymous namespace #define NEONMAP0(NameBase) \ { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ Intrinsic::LLVMIntrinsic, 0, TypeModifier } #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ TypeModifier } static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = { NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0), NEONMAP0(splat_lane_v), NEONMAP0(splat_laneq_v), NEONMAP0(splatq_lane_v), NEONMAP0(splatq_laneq_v), NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), NEONMAP1(vabs_v, arm_neon_vabs, 0), NEONMAP1(vabsq_v, arm_neon_vabs, 0), NEONMAP0(vaddhn_v), NEONMAP1(vaesdq_v, arm_neon_aesd, 0), NEONMAP1(vaeseq_v, arm_neon_aese, 0), NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), NEONMAP1(vbfdot_v, arm_neon_bfdot, 0), NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0), NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0), NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0), NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0), NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), NEONMAP1(vcage_v, arm_neon_vacge, 0), NEONMAP1(vcageq_v, arm_neon_vacge, 0), NEONMAP1(vcagt_v, arm_neon_vacgt, 0), NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), NEONMAP1(vcale_v, arm_neon_vacge, 0), NEONMAP1(vcaleq_v, arm_neon_vacge, 0), NEONMAP1(vcalt_v, arm_neon_vacgt, 0), NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), NEONMAP0(vceqz_v), NEONMAP0(vceqzq_v), NEONMAP0(vcgez_v), NEONMAP0(vcgezq_v), NEONMAP0(vcgtz_v), NEONMAP0(vcgtzq_v), NEONMAP0(vclez_v), NEONMAP0(vclezq_v), NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), NEONMAP0(vcltz_v), NEONMAP0(vcltzq_v), NEONMAP1(vclz_v, ctlz, Add1ArgType), NEONMAP1(vclzq_v, ctlz, Add1ArgType), NEONMAP1(vcnt_v, ctpop, Add1ArgType), NEONMAP1(vcntq_v, ctpop, Add1ArgType), NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), NEONMAP0(vcvt_f16_v), NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), NEONMAP0(vcvt_f32_v), NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0), NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0), NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), NEONMAP0(vcvt_s16_v), NEONMAP0(vcvt_s32_v), NEONMAP0(vcvt_s64_v), NEONMAP0(vcvt_u16_v), NEONMAP0(vcvt_u32_v), NEONMAP0(vcvt_u64_v), NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0), NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0), NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0), NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0), NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0), NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0), NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0), NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0), NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0), NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0), NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0), NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0), NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0), NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0), NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0), NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0), NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0), NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), NEONMAP0(vcvtq_f16_v), NEONMAP0(vcvtq_f32_v), NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0), NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0), NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), NEONMAP0(vcvtq_s16_v), NEONMAP0(vcvtq_s32_v), NEONMAP0(vcvtq_s64_v), NEONMAP0(vcvtq_u16_v), NEONMAP0(vcvtq_u32_v), NEONMAP0(vcvtq_u64_v), NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0), NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0), NEONMAP0(vext_v), NEONMAP0(vextq_v), NEONMAP0(vfma_v), NEONMAP0(vfmaq_v), NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), NEONMAP0(vld1_dup_v), NEONMAP1(vld1_v, arm_neon_vld1, 0), NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), NEONMAP0(vld1q_dup_v), NEONMAP1(vld1q_v, arm_neon_vld1, 0), NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), NEONMAP1(vld2_v, arm_neon_vld2, 0), NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), NEONMAP1(vld2q_v, arm_neon_vld2, 0), NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), NEONMAP1(vld3_v, arm_neon_vld3, 0), NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), NEONMAP1(vld3q_v, arm_neon_vld3, 0), NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), NEONMAP1(vld4_v, arm_neon_vld4, 0), NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), NEONMAP1(vld4q_v, arm_neon_vld4, 0), NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0), NEONMAP0(vmovl_v), NEONMAP0(vmovn_v), NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), NEONMAP0(vmull_v), NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0), NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0), NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), NEONMAP0(vrndi_v), NEONMAP0(vrndiq_v), NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), NEONMAP0(vshl_n_v), NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), NEONMAP0(vshll_n_v), NEONMAP0(vshlq_n_v), NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), NEONMAP0(vshr_n_v), NEONMAP0(vshrn_n_v), NEONMAP0(vshrq_n_v), NEONMAP1(vst1_v, arm_neon_vst1, 0), NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), NEONMAP1(vst1q_v, arm_neon_vst1, 0), NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), NEONMAP1(vst2_v, arm_neon_vst2, 0), NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), NEONMAP1(vst2q_v, arm_neon_vst2, 0), NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), NEONMAP1(vst3_v, arm_neon_vst3, 0), NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), NEONMAP1(vst3q_v, arm_neon_vst3, 0), NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), NEONMAP1(vst4_v, arm_neon_vst4, 0), NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), NEONMAP1(vst4q_v, arm_neon_vst4, 0), NEONMAP0(vsubhn_v), NEONMAP0(vtrn_v), NEONMAP0(vtrnq_v), NEONMAP0(vtst_v), NEONMAP0(vtstq_v), NEONMAP1(vusdot_v, arm_neon_usdot, 0), NEONMAP1(vusdotq_v, arm_neon_usdot, 0), NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0), NEONMAP0(vuzp_v), NEONMAP0(vuzpq_v), NEONMAP0(vzip_v), NEONMAP0(vzipq_v) }; static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = { NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0), NEONMAP0(splat_lane_v), NEONMAP0(splat_laneq_v), NEONMAP0(splatq_lane_v), NEONMAP0(splatq_laneq_v), NEONMAP1(vabs_v, aarch64_neon_abs, 0), NEONMAP1(vabsq_v, aarch64_neon_abs, 0), NEONMAP0(vaddhn_v), NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0), NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0), NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0), NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0), NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0), NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), NEONMAP1(vcage_v, aarch64_neon_facge, 0), NEONMAP1(vcageq_v, aarch64_neon_facge, 0), NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), NEONMAP1(vcale_v, aarch64_neon_facge, 0), NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), NEONMAP0(vceqz_v), NEONMAP0(vceqzq_v), NEONMAP0(vcgez_v), NEONMAP0(vcgezq_v), NEONMAP0(vcgtz_v), NEONMAP0(vcgtzq_v), NEONMAP0(vclez_v), NEONMAP0(vclezq_v), NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), NEONMAP0(vcltz_v), NEONMAP0(vcltzq_v), NEONMAP1(vclz_v, ctlz, Add1ArgType), NEONMAP1(vclzq_v, ctlz, Add1ArgType), NEONMAP1(vcnt_v, ctpop, Add1ArgType), NEONMAP1(vcntq_v, ctpop, Add1ArgType), NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), NEONMAP0(vcvt_f16_v), NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), NEONMAP0(vcvt_f32_v), NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), NEONMAP0(vcvtq_f16_v), NEONMAP0(vcvtq_f32_v), NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0), NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0), NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0), NEONMAP0(vext_v), NEONMAP0(vextq_v), NEONMAP0(vfma_v), NEONMAP0(vfmaq_v), NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0), NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0), NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0), NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0), NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0), NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0), NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0), NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0), NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0), NEONMAP0(vmovl_v), NEONMAP0(vmovn_v), NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0), NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0), NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0), NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0), NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0), NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0), NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), NEONMAP0(vrndi_v), NEONMAP0(vrndiq_v), NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), NEONMAP0(vshl_n_v), NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), NEONMAP0(vshll_n_v), NEONMAP0(vshlq_n_v), NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), NEONMAP0(vshr_n_v), NEONMAP0(vshrn_n_v), NEONMAP0(vshrq_n_v), NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), NEONMAP0(vsubhn_v), NEONMAP0(vtst_v), NEONMAP0(vtstq_v), NEONMAP1(vusdot_v, aarch64_neon_usdot, 0), NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0), NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0), }; static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = { NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0), NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), // FP16 scalar intrinisics go here. NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType), NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType), NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType), NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType), NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType), NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType), }; #undef NEONMAP0 #undef NEONMAP1 #undef NEONMAP2 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ { \ #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \ TypeModifier \ } #define SVEMAP2(NameBase, TypeModifier) \ { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier } static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = { #define GET_SVE_LLVM_INTRINSIC_MAP #include "clang/Basic/arm_sve_builtin_cg.inc" #undef GET_SVE_LLVM_INTRINSIC_MAP }; #undef SVEMAP1 #undef SVEMAP2 static bool NEONSIMDIntrinsicsProvenSorted = false; static bool AArch64SIMDIntrinsicsProvenSorted = false; static bool AArch64SISDIntrinsicsProvenSorted = false; static bool AArch64SVEIntrinsicsProvenSorted = false; static const ARMVectorIntrinsicInfo * findARMVectorIntrinsicInMap(ArrayRef IntrinsicMap, unsigned BuiltinID, bool &MapProvenSorted) { #ifndef NDEBUG if (!MapProvenSorted) { assert(llvm::is_sorted(IntrinsicMap)); MapProvenSorted = true; } #endif const ARMVectorIntrinsicInfo *Builtin = llvm::lower_bound(IntrinsicMap, BuiltinID); if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) return Builtin; return nullptr; } Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, unsigned Modifier, llvm::Type *ArgType, const CallExpr *E) { int VectorSize = 0; if (Modifier & Use64BitVectors) VectorSize = 64; else if (Modifier & Use128BitVectors) VectorSize = 128; // Return type. SmallVector Tys; if (Modifier & AddRetType) { llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); if (Modifier & VectorizeRetType) Ty = llvm::FixedVectorType::get( Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); Tys.push_back(Ty); } // Arguments. if (Modifier & VectorizeArgTypes) { int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; ArgType = llvm::FixedVectorType::get(ArgType, Elts); } if (Modifier & (Add1ArgType | Add2ArgTypes)) Tys.push_back(ArgType); if (Modifier & Add2ArgTypes) Tys.push_back(ArgType); if (Modifier & InventFloatType) Tys.push_back(FloatTy); return CGM.getIntrinsic(IntrinsicID, Tys); } static Value *EmitCommonNeonSISDBuiltinExpr( CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo, SmallVectorImpl &Ops, const CallExpr *E) { unsigned BuiltinID = SISDInfo.BuiltinID; unsigned int Int = SISDInfo.LLVMIntrinsic; unsigned Modifier = SISDInfo.TypeModifier; const char *s = SISDInfo.NameHint; switch (BuiltinID) { case NEON::BI__builtin_neon_vcled_s64: case NEON::BI__builtin_neon_vcled_u64: case NEON::BI__builtin_neon_vcles_f32: case NEON::BI__builtin_neon_vcled_f64: case NEON::BI__builtin_neon_vcltd_s64: case NEON::BI__builtin_neon_vcltd_u64: case NEON::BI__builtin_neon_vclts_f32: case NEON::BI__builtin_neon_vcltd_f64: case NEON::BI__builtin_neon_vcales_f32: case NEON::BI__builtin_neon_vcaled_f64: case NEON::BI__builtin_neon_vcalts_f32: case NEON::BI__builtin_neon_vcaltd_f64: // Only one direction of comparisons actually exist, cmle is actually a cmge // with swapped operands. The table gives us the right intrinsic but we // still need to do the swap. std::swap(Ops[0], Ops[1]); break; } assert(Int && "Generic code assumes a valid intrinsic"); // Determine the type(s) of this overloaded AArch64 intrinsic. const Expr *Arg = E->getArg(0); llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); int j = 0; ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); ai != ae; ++ai, ++j) { llvm::Type *ArgTy = ai->getType(); if (Ops[j]->getType()->getPrimitiveSizeInBits() == ArgTy->getPrimitiveSizeInBits()) continue; assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate // it before inserting. Ops[j] = CGF.Builder.CreateTruncOrBitCast( Ops[j], cast(ArgTy)->getElementType()); Ops[j] = CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); } Value *Result = CGF.EmitNeonCall(F, Ops, s); llvm::Type *ResultType = CGF.ConvertType(E->getType()); if (ResultType->getPrimitiveSizeInBits() < Result->getType()->getPrimitiveSizeInBits()) return CGF.Builder.CreateExtractElement(Result, C0); return CGF.Builder.CreateBitCast(Result, ResultType, s); } Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, const char *NameHint, unsigned Modifier, const CallExpr *E, SmallVectorImpl &Ops, Address PtrOp0, Address PtrOp1, llvm::Triple::ArchType Arch) { // Get the last argument, which specifies the vector type. llvm::APSInt NeonTypeConst; const Expr *Arg = E->getArg(E->getNumArgs() - 1); if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext())) return nullptr; // Determine the type of this overloaded NEON intrinsic. NeonTypeFlags Type(NeonTypeConst.getZExtValue()); bool Usgn = Type.isUnsigned(); bool Quad = Type.isQuad(); const bool HasLegalHalfType = getTarget().hasLegalHalfType(); const bool AllowBFloatArgsAndRet = getTargetHooks().getABIInfo().allowBFloatArgsAndRet(); llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet); llvm::Type *Ty = VTy; if (!Ty) return nullptr; auto getAlignmentValue32 = [&](Address addr) -> Value* { return Builder.getInt32(addr.getAlignment().getQuantity()); }; unsigned Int = LLVMIntrinsic; if ((Modifier & UnsignedAlts) && !Usgn) Int = AltLLVMIntrinsic; switch (BuiltinID) { default: break; case NEON::BI__builtin_neon_splat_lane_v: case NEON::BI__builtin_neon_splat_laneq_v: case NEON::BI__builtin_neon_splatq_lane_v: case NEON::BI__builtin_neon_splatq_laneq_v: { auto NumElements = VTy->getElementCount(); if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v) NumElements = NumElements * 2; if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v) NumElements = NumElements / 2; Ops[0] = Builder.CreateBitCast(Ops[0], VTy); return EmitNeonSplat(Ops[0], cast(Ops[1]), NumElements); } case NEON::BI__builtin_neon_vpadd_v: case NEON::BI__builtin_neon_vpaddq_v: // We don't allow fp/int overloading of intrinsics. if (VTy->getElementType()->isFloatingPointTy() && Int == Intrinsic::aarch64_neon_addp) Int = Intrinsic::aarch64_neon_faddp; break; case NEON::BI__builtin_neon_vabs_v: case NEON::BI__builtin_neon_vabsq_v: if (VTy->getElementType()->isFloatingPointTy()) return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); case NEON::BI__builtin_neon_vaddhn_v: { llvm::VectorType *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy); // %sum = add <4 x i32> %lhs, %rhs Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); // %high = lshr <4 x i32> %sum, Constant *ShiftAmt = ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); // %res = trunc <4 x i32> %high to <4 x i16> return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); } case NEON::BI__builtin_neon_vcale_v: case NEON::BI__builtin_neon_vcaleq_v: case NEON::BI__builtin_neon_vcalt_v: case NEON::BI__builtin_neon_vcaltq_v: std::swap(Ops[0], Ops[1]); LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vcage_v: case NEON::BI__builtin_neon_vcageq_v: case NEON::BI__builtin_neon_vcagt_v: case NEON::BI__builtin_neon_vcagtq_v: { llvm::Type *Ty; switch (VTy->getScalarSizeInBits()) { default: llvm_unreachable("unexpected type"); case 32: Ty = FloatTy; break; case 64: Ty = DoubleTy; break; case 16: Ty = HalfTy; break; } auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements()); llvm::Type *Tys[] = { VTy, VecFlt }; Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); return EmitNeonCall(F, Ops, NameHint); } case NEON::BI__builtin_neon_vceqz_v: case NEON::BI__builtin_neon_vceqzq_v: return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); case NEON::BI__builtin_neon_vcgez_v: case NEON::BI__builtin_neon_vcgezq_v: return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); case NEON::BI__builtin_neon_vclez_v: case NEON::BI__builtin_neon_vclezq_v: return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); case NEON::BI__builtin_neon_vcgtz_v: case NEON::BI__builtin_neon_vcgtzq_v: return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); case NEON::BI__builtin_neon_vcltz_v: case NEON::BI__builtin_neon_vcltzq_v: return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); case NEON::BI__builtin_neon_vclz_v: case NEON::BI__builtin_neon_vclzq_v: // We generate target-independent intrinsic, which needs a second argument // for whether or not clz of zero is undefined; on ARM it isn't. Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); break; case NEON::BI__builtin_neon_vcvt_f32_v: case NEON::BI__builtin_neon_vcvtq_f32_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), HasLegalHalfType); return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); case NEON::BI__builtin_neon_vcvt_f16_v: case NEON::BI__builtin_neon_vcvtq_f16_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), HasLegalHalfType); return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); case NEON::BI__builtin_neon_vcvt_n_f16_v: case NEON::BI__builtin_neon_vcvt_n_f32_v: case NEON::BI__builtin_neon_vcvt_n_f64_v: case NEON::BI__builtin_neon_vcvtq_n_f16_v: case NEON::BI__builtin_neon_vcvtq_n_f32_v: case NEON::BI__builtin_neon_vcvtq_n_f64_v: { llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; Function *F = CGM.getIntrinsic(Int, Tys); return EmitNeonCall(F, Ops, "vcvt_n"); } case NEON::BI__builtin_neon_vcvt_n_s16_v: case NEON::BI__builtin_neon_vcvt_n_s32_v: case NEON::BI__builtin_neon_vcvt_n_u16_v: case NEON::BI__builtin_neon_vcvt_n_u32_v: case NEON::BI__builtin_neon_vcvt_n_s64_v: case NEON::BI__builtin_neon_vcvt_n_u64_v: case NEON::BI__builtin_neon_vcvtq_n_s16_v: case NEON::BI__builtin_neon_vcvtq_n_s32_v: case NEON::BI__builtin_neon_vcvtq_n_u16_v: case NEON::BI__builtin_neon_vcvtq_n_u32_v: case NEON::BI__builtin_neon_vcvtq_n_s64_v: case NEON::BI__builtin_neon_vcvtq_n_u64_v: { llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); return EmitNeonCall(F, Ops, "vcvt_n"); } case NEON::BI__builtin_neon_vcvt_s32_v: case NEON::BI__builtin_neon_vcvt_u32_v: case NEON::BI__builtin_neon_vcvt_s64_v: case NEON::BI__builtin_neon_vcvt_u64_v: case NEON::BI__builtin_neon_vcvt_s16_v: case NEON::BI__builtin_neon_vcvt_u16_v: case NEON::BI__builtin_neon_vcvtq_s32_v: case NEON::BI__builtin_neon_vcvtq_u32_v: case NEON::BI__builtin_neon_vcvtq_s64_v: case NEON::BI__builtin_neon_vcvtq_u64_v: case NEON::BI__builtin_neon_vcvtq_s16_v: case NEON::BI__builtin_neon_vcvtq_u16_v: { Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); } case NEON::BI__builtin_neon_vcvta_s16_v: case NEON::BI__builtin_neon_vcvta_s32_v: case NEON::BI__builtin_neon_vcvta_s64_v: case NEON::BI__builtin_neon_vcvta_u16_v: case NEON::BI__builtin_neon_vcvta_u32_v: case NEON::BI__builtin_neon_vcvta_u64_v: case NEON::BI__builtin_neon_vcvtaq_s16_v: case NEON::BI__builtin_neon_vcvtaq_s32_v: case NEON::BI__builtin_neon_vcvtaq_s64_v: case NEON::BI__builtin_neon_vcvtaq_u16_v: case NEON::BI__builtin_neon_vcvtaq_u32_v: case NEON::BI__builtin_neon_vcvtaq_u64_v: case NEON::BI__builtin_neon_vcvtn_s16_v: case NEON::BI__builtin_neon_vcvtn_s32_v: case NEON::BI__builtin_neon_vcvtn_s64_v: case NEON::BI__builtin_neon_vcvtn_u16_v: case NEON::BI__builtin_neon_vcvtn_u32_v: case NEON::BI__builtin_neon_vcvtn_u64_v: case NEON::BI__builtin_neon_vcvtnq_s16_v: case NEON::BI__builtin_neon_vcvtnq_s32_v: case NEON::BI__builtin_neon_vcvtnq_s64_v: case NEON::BI__builtin_neon_vcvtnq_u16_v: case NEON::BI__builtin_neon_vcvtnq_u32_v: case NEON::BI__builtin_neon_vcvtnq_u64_v: case NEON::BI__builtin_neon_vcvtp_s16_v: case NEON::BI__builtin_neon_vcvtp_s32_v: case NEON::BI__builtin_neon_vcvtp_s64_v: case NEON::BI__builtin_neon_vcvtp_u16_v: case NEON::BI__builtin_neon_vcvtp_u32_v: case NEON::BI__builtin_neon_vcvtp_u64_v: case NEON::BI__builtin_neon_vcvtpq_s16_v: case NEON::BI__builtin_neon_vcvtpq_s32_v: case NEON::BI__builtin_neon_vcvtpq_s64_v: case NEON::BI__builtin_neon_vcvtpq_u16_v: case NEON::BI__builtin_neon_vcvtpq_u32_v: case NEON::BI__builtin_neon_vcvtpq_u64_v: case NEON::BI__builtin_neon_vcvtm_s16_v: case NEON::BI__builtin_neon_vcvtm_s32_v: case NEON::BI__builtin_neon_vcvtm_s64_v: case NEON::BI__builtin_neon_vcvtm_u16_v: case NEON::BI__builtin_neon_vcvtm_u32_v: case NEON::BI__builtin_neon_vcvtm_u64_v: case NEON::BI__builtin_neon_vcvtmq_s16_v: case NEON::BI__builtin_neon_vcvtmq_s32_v: case NEON::BI__builtin_neon_vcvtmq_s64_v: case NEON::BI__builtin_neon_vcvtmq_u16_v: case NEON::BI__builtin_neon_vcvtmq_u32_v: case NEON::BI__builtin_neon_vcvtmq_u64_v: { llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); } case NEON::BI__builtin_neon_vcvtx_f32_v: { llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty}; return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); } case NEON::BI__builtin_neon_vext_v: case NEON::BI__builtin_neon_vextq_v: { int CV = cast(Ops[2])->getSExtValue(); SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) Indices.push_back(i+CV); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); } case NEON::BI__builtin_neon_vfma_v: case NEON::BI__builtin_neon_vfmaq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); // NEON intrinsic puts accumulator first, unlike the LLVM fma. return emitCallMaybeConstrainedFPBuiltin( *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, {Ops[1], Ops[2], Ops[0]}); } case NEON::BI__builtin_neon_vld1_v: case NEON::BI__builtin_neon_vld1q_v: { llvm::Type *Tys[] = {Ty, Int8PtrTy}; Ops.push_back(getAlignmentValue32(PtrOp0)); return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); } case NEON::BI__builtin_neon_vld1_x2_v: case NEON::BI__builtin_neon_vld1q_x2_v: case NEON::BI__builtin_neon_vld1_x3_v: case NEON::BI__builtin_neon_vld1q_x3_v: case NEON::BI__builtin_neon_vld1_x4_v: case NEON::BI__builtin_neon_vld1q_x4_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld2_v: case NEON::BI__builtin_neon_vld2q_v: case NEON::BI__builtin_neon_vld3_v: case NEON::BI__builtin_neon_vld3q_v: case NEON::BI__builtin_neon_vld4_v: case NEON::BI__builtin_neon_vld4q_v: case NEON::BI__builtin_neon_vld2_dup_v: case NEON::BI__builtin_neon_vld2q_dup_v: case NEON::BI__builtin_neon_vld3_dup_v: case NEON::BI__builtin_neon_vld3q_dup_v: case NEON::BI__builtin_neon_vld4_dup_v: case NEON::BI__builtin_neon_vld4q_dup_v: { llvm::Type *Tys[] = {Ty, Int8PtrTy}; Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); Value *Align = getAlignmentValue32(PtrOp1); Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld1_dup_v: case NEON::BI__builtin_neon_vld1q_dup_v: { Value *V = UndefValue::get(Ty); Ty = llvm::PointerType::getUnqual(VTy->getElementType()); PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty); LoadInst *Ld = Builder.CreateLoad(PtrOp0); llvm::Constant *CI = ConstantInt::get(SizeTy, 0); Ops[0] = Builder.CreateInsertElement(V, Ld, CI); return EmitNeonSplat(Ops[0], CI); } case NEON::BI__builtin_neon_vld2_lane_v: case NEON::BI__builtin_neon_vld2q_lane_v: case NEON::BI__builtin_neon_vld3_lane_v: case NEON::BI__builtin_neon_vld3q_lane_v: case NEON::BI__builtin_neon_vld4_lane_v: case NEON::BI__builtin_neon_vld4q_lane_v: { llvm::Type *Tys[] = {Ty, Int8PtrTy}; Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); for (unsigned I = 2; I < Ops.size() - 1; ++I) Ops[I] = Builder.CreateBitCast(Ops[I], Ty); Ops.push_back(getAlignmentValue32(PtrOp1)); Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vmovl_v: { llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy); Ops[0] = Builder.CreateBitCast(Ops[0], DTy); if (Usgn) return Builder.CreateZExt(Ops[0], Ty, "vmovl"); return Builder.CreateSExt(Ops[0], Ty, "vmovl"); } case NEON::BI__builtin_neon_vmovn_v: { llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy); Ops[0] = Builder.CreateBitCast(Ops[0], QTy); return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); } case NEON::BI__builtin_neon_vmull_v: // FIXME: the integer vmull operations could be emitted in terms of pure // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of // hoisting the exts outside loops. Until global ISel comes along that can // see through such movement this leads to bad CodeGen. So we need an // intrinsic for now. Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); case NEON::BI__builtin_neon_vpadal_v: case NEON::BI__builtin_neon_vpadalq_v: { // The source operand type has twice as many elements of half the size. unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); auto *NarrowTy = llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); llvm::Type *Tys[2] = { Ty, NarrowTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); } case NEON::BI__builtin_neon_vpaddl_v: case NEON::BI__builtin_neon_vpaddlq_v: { // The source operand type has twice as many elements of half the size. unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); auto *NarrowTy = llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); llvm::Type *Tys[2] = { Ty, NarrowTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); } case NEON::BI__builtin_neon_vqdmlal_v: case NEON::BI__builtin_neon_vqdmlsl_v: { SmallVector MulOps(Ops.begin() + 1, Ops.end()); Ops[1] = EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); Ops.resize(2); return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); } case NEON::BI__builtin_neon_vqdmulhq_lane_v: case NEON::BI__builtin_neon_vqdmulh_lane_v: case NEON::BI__builtin_neon_vqrdmulhq_lane_v: case NEON::BI__builtin_neon_vqrdmulh_lane_v: { auto *RTy = cast(Ty); if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v || BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v) RTy = llvm::FixedVectorType::get(RTy->getElementType(), RTy->getNumElements() * 2); llvm::Type *Tys[2] = { RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, /*isQuad*/ false))}; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); } case NEON::BI__builtin_neon_vqdmulhq_laneq_v: case NEON::BI__builtin_neon_vqdmulh_laneq_v: case NEON::BI__builtin_neon_vqrdmulhq_laneq_v: case NEON::BI__builtin_neon_vqrdmulh_laneq_v: { llvm::Type *Tys[2] = { Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, /*isQuad*/ true))}; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); } case NEON::BI__builtin_neon_vqshl_n_v: case NEON::BI__builtin_neon_vqshlq_n_v: return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", 1, false); case NEON::BI__builtin_neon_vqshlu_n_v: case NEON::BI__builtin_neon_vqshluq_n_v: return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", 1, false); case NEON::BI__builtin_neon_vrecpe_v: case NEON::BI__builtin_neon_vrecpeq_v: case NEON::BI__builtin_neon_vrsqrte_v: case NEON::BI__builtin_neon_vrsqrteq_v: Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); case NEON::BI__builtin_neon_vrndi_v: case NEON::BI__builtin_neon_vrndiq_v: Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_nearbyint : Intrinsic::nearbyint; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); case NEON::BI__builtin_neon_vrshr_n_v: case NEON::BI__builtin_neon_vrshrq_n_v: return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 1, true); case NEON::BI__builtin_neon_vshl_n_v: case NEON::BI__builtin_neon_vshlq_n_v: Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], "vshl_n"); case NEON::BI__builtin_neon_vshll_n_v: { llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy); Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); if (Usgn) Ops[0] = Builder.CreateZExt(Ops[0], VTy); else Ops[0] = Builder.CreateSExt(Ops[0], VTy); Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); } case NEON::BI__builtin_neon_vshrn_n_v: { llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy); Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); if (Usgn) Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); else Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); } case NEON::BI__builtin_neon_vshr_n_v: case NEON::BI__builtin_neon_vshrq_n_v: return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); case NEON::BI__builtin_neon_vst1_v: case NEON::BI__builtin_neon_vst1q_v: case NEON::BI__builtin_neon_vst2_v: case NEON::BI__builtin_neon_vst2q_v: case NEON::BI__builtin_neon_vst3_v: case NEON::BI__builtin_neon_vst3q_v: case NEON::BI__builtin_neon_vst4_v: case NEON::BI__builtin_neon_vst4q_v: case NEON::BI__builtin_neon_vst2_lane_v: case NEON::BI__builtin_neon_vst2q_lane_v: case NEON::BI__builtin_neon_vst3_lane_v: case NEON::BI__builtin_neon_vst3q_lane_v: case NEON::BI__builtin_neon_vst4_lane_v: case NEON::BI__builtin_neon_vst4q_lane_v: { llvm::Type *Tys[] = {Int8PtrTy, Ty}; Ops.push_back(getAlignmentValue32(PtrOp0)); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst1_x2_v: case NEON::BI__builtin_neon_vst1q_x2_v: case NEON::BI__builtin_neon_vst1_x3_v: case NEON::BI__builtin_neon_vst1q_x3_v: case NEON::BI__builtin_neon_vst1_x4_v: case NEON::BI__builtin_neon_vst1q_x4_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); // TODO: Currently in AArch32 mode the pointer operand comes first, whereas // in AArch64 it comes last. We may want to stick to one or another. if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be || Arch == llvm::Triple::aarch64_32) { llvm::Type *Tys[2] = { VTy, PTy }; std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); } llvm::Type *Tys[2] = { PTy, VTy }; return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); } case NEON::BI__builtin_neon_vsubhn_v: { llvm::VectorType *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy); // %sum = add <4 x i32> %lhs, %rhs Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); // %high = lshr <4 x i32> %sum, Constant *ShiftAmt = ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); // %res = trunc <4 x i32> %high to <4 x i16> return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); } case NEON::BI__builtin_neon_vtrn_v: case NEON::BI__builtin_neon_vtrnq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { Indices.push_back(i+vi); Indices.push_back(i+e+vi); } Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vtst_v: case NEON::BI__builtin_neon_vtstq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], ConstantAggregateZero::get(Ty)); return Builder.CreateSExt(Ops[0], Ty, "vtst"); } case NEON::BI__builtin_neon_vuzp_v: case NEON::BI__builtin_neon_vuzpq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) Indices.push_back(2*i+vi); Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vzip_v: case NEON::BI__builtin_neon_vzipq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { Indices.push_back((i + vi*e) >> 1); Indices.push_back(((i + vi*e) >> 1)+e); } Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vdot_v: case NEON::BI__builtin_neon_vdotq_v: { auto *InputTy = llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); llvm::Type *Tys[2] = { Ty, InputTy }; Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot"); } case NEON::BI__builtin_neon_vfmlal_low_v: case NEON::BI__builtin_neon_vfmlalq_low_v: { auto *InputTy = llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); llvm::Type *Tys[2] = { Ty, InputTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low"); } case NEON::BI__builtin_neon_vfmlsl_low_v: case NEON::BI__builtin_neon_vfmlslq_low_v: { auto *InputTy = llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); llvm::Type *Tys[2] = { Ty, InputTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low"); } case NEON::BI__builtin_neon_vfmlal_high_v: case NEON::BI__builtin_neon_vfmlalq_high_v: { auto *InputTy = llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); llvm::Type *Tys[2] = { Ty, InputTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high"); } case NEON::BI__builtin_neon_vfmlsl_high_v: case NEON::BI__builtin_neon_vfmlslq_high_v: { auto *InputTy = llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); llvm::Type *Tys[2] = { Ty, InputTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high"); } case NEON::BI__builtin_neon_vmmlaq_v: { auto *InputTy = llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); llvm::Type *Tys[2] = { Ty, InputTy }; Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla"); } case NEON::BI__builtin_neon_vusmmlaq_v: { auto *InputTy = llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); llvm::Type *Tys[2] = { Ty, InputTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla"); } case NEON::BI__builtin_neon_vusdot_v: case NEON::BI__builtin_neon_vusdotq_v: { auto *InputTy = llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); llvm::Type *Tys[2] = { Ty, InputTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot"); } case NEON::BI__builtin_neon_vbfdot_v: case NEON::BI__builtin_neon_vbfdotq_v: { llvm::Type *InputTy = llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); llvm::Type *Tys[2] = { Ty, InputTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot"); } case NEON::BI__builtin_neon_vbfmmlaq_v: { llvm::Type *InputTy = llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); llvm::Type *Tys[2] = { Ty, InputTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfmmla"); } case NEON::BI__builtin_neon_vbfmlalbq_v: { llvm::Type *InputTy = llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); llvm::Type *Tys[2] = { Ty, InputTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfmlalb"); } case NEON::BI__builtin_neon_vbfmlaltq_v: { llvm::Type *InputTy = llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); llvm::Type *Tys[2] = { Ty, InputTy }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfmlalt"); } case NEON::BI__builtin_neon___a32_vcvt_bf16_v: { llvm::Type *Tys[1] = { Ty }; Function *F = CGM.getIntrinsic(Int, Tys); return EmitNeonCall(F, Ops, "vcvtfp2bf"); } } assert(Int && "Expected valid intrinsic number"); // Determine the type(s) of this overloaded AArch64 intrinsic. Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); Value *Result = EmitNeonCall(F, Ops, NameHint); llvm::Type *ResultType = ConvertType(E->getType()); // AArch64 intrinsic one-element vector type cast to // scalar type expected by the builtin return Builder.CreateBitCast(Result, ResultType, NameHint); } Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, const CmpInst::Predicate Ip, const Twine &Name) { llvm::Type *OTy = Op->getType(); // FIXME: this is utterly horrific. We should not be looking at previous // codegen context to find out what needs doing. Unfortunately TableGen // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 // (etc). if (BitCastInst *BI = dyn_cast(Op)) OTy = BI->getOperand(0)->getType(); Op = Builder.CreateBitCast(Op, OTy); if (OTy->getScalarType()->isFloatingPointTy()) { Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); } else { Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); } return Builder.CreateSExt(Op, Ty, Name); } static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef Ops, Value *ExtOp, Value *IndexOp, llvm::Type *ResTy, unsigned IntID, const char *Name) { SmallVector TblOps; if (ExtOp) TblOps.push_back(ExtOp); // Build a vector containing sequential number like (0, 1, 2, ..., 15) SmallVector Indices; llvm::VectorType *TblTy = cast(Ops[0]->getType()); for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { Indices.push_back(2*i); Indices.push_back(2*i+1); } int PairPos = 0, End = Ops.size() - 1; while (PairPos < End) { TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], Ops[PairPos+1], Indices, Name)); PairPos += 2; } // If there's an odd number of 64-bit lookup table, fill the high 64-bit // of the 128-bit lookup table with zero. if (PairPos == End) { Value *ZeroTbl = ConstantAggregateZero::get(TblTy); TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], ZeroTbl, Indices, Name)); } Function *TblF; TblOps.push_back(IndexOp); TblF = CGF.CGM.getIntrinsic(IntID, ResTy); return CGF.EmitNeonCall(TblF, TblOps, Name); } Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { unsigned Value; switch (BuiltinID) { default: return nullptr; case ARM::BI__builtin_arm_nop: Value = 0; break; case ARM::BI__builtin_arm_yield: case ARM::BI__yield: Value = 1; break; case ARM::BI__builtin_arm_wfe: case ARM::BI__wfe: Value = 2; break; case ARM::BI__builtin_arm_wfi: case ARM::BI__wfi: Value = 3; break; case ARM::BI__builtin_arm_sev: case ARM::BI__sev: Value = 4; break; case ARM::BI__builtin_arm_sevl: case ARM::BI__sevl: Value = 5; break; } return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), llvm::ConstantInt::get(Int32Ty, Value)); } enum SpecialRegisterAccessKind { NormalRead, VolatileRead, Write, }; // Generates the IR for the read/write special register builtin, // ValueType is the type of the value that is to be written or read, // RegisterType is the type of the register being written to or read from. static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, const CallExpr *E, llvm::Type *RegisterType, llvm::Type *ValueType, SpecialRegisterAccessKind AccessKind, StringRef SysReg = "") { // write and register intrinsics only support 32 and 64 bit operations. assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && "Unsupported size for register."); CodeGen::CGBuilderTy &Builder = CGF.Builder; CodeGen::CodeGenModule &CGM = CGF.CGM; LLVMContext &Context = CGM.getLLVMContext(); if (SysReg.empty()) { const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); SysReg = cast(SysRegStrExpr)->getString(); } llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); llvm::Type *Types[] = { RegisterType }; bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"); if (AccessKind != Write) { assert(AccessKind == NormalRead || AccessKind == VolatileRead); llvm::Function *F = CGM.getIntrinsic( AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register : llvm::Intrinsic::read_register, Types); llvm::Value *Call = Builder.CreateCall(F, Metadata); if (MixedTypes) // Read into 64 bit register and then truncate result to 32 bit. return Builder.CreateTrunc(Call, ValueType); if (ValueType->isPointerTy()) // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). return Builder.CreateIntToPtr(Call, ValueType); return Call; } llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); if (MixedTypes) { // Extend 32 bit write value to 64 bit to pass to write. ArgValue = Builder.CreateZExt(ArgValue, RegisterType); return Builder.CreateCall(F, { Metadata, ArgValue }); } if (ValueType->isPointerTy()) { // Have VoidPtrTy ArgValue but want to return an i32/i64. ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); return Builder.CreateCall(F, { Metadata, ArgValue }); } return Builder.CreateCall(F, { Metadata, ArgValue }); } /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra /// argument that specifies the vector type. static bool HasExtraNeonArgument(unsigned BuiltinID) { switch (BuiltinID) { default: break; case NEON::BI__builtin_neon_vget_lane_i8: case NEON::BI__builtin_neon_vget_lane_i16: case NEON::BI__builtin_neon_vget_lane_bf16: case NEON::BI__builtin_neon_vget_lane_i32: case NEON::BI__builtin_neon_vget_lane_i64: case NEON::BI__builtin_neon_vget_lane_f32: case NEON::BI__builtin_neon_vgetq_lane_i8: case NEON::BI__builtin_neon_vgetq_lane_i16: case NEON::BI__builtin_neon_vgetq_lane_bf16: case NEON::BI__builtin_neon_vgetq_lane_i32: case NEON::BI__builtin_neon_vgetq_lane_i64: case NEON::BI__builtin_neon_vgetq_lane_f32: case NEON::BI__builtin_neon_vduph_lane_bf16: case NEON::BI__builtin_neon_vduph_laneq_bf16: case NEON::BI__builtin_neon_vset_lane_i8: case NEON::BI__builtin_neon_vset_lane_i16: case NEON::BI__builtin_neon_vset_lane_bf16: case NEON::BI__builtin_neon_vset_lane_i32: case NEON::BI__builtin_neon_vset_lane_i64: case NEON::BI__builtin_neon_vset_lane_f32: case NEON::BI__builtin_neon_vsetq_lane_i8: case NEON::BI__builtin_neon_vsetq_lane_i16: case NEON::BI__builtin_neon_vsetq_lane_bf16: case NEON::BI__builtin_neon_vsetq_lane_i32: case NEON::BI__builtin_neon_vsetq_lane_i64: case NEON::BI__builtin_neon_vsetq_lane_f32: case NEON::BI__builtin_neon_vsha1h_u32: case NEON::BI__builtin_neon_vsha1cq_u32: case NEON::BI__builtin_neon_vsha1pq_u32: case NEON::BI__builtin_neon_vsha1mq_u32: case NEON::BI__builtin_neon_vcvth_bf16_f32: case clang::ARM::BI_MoveToCoprocessor: case clang::ARM::BI_MoveToCoprocessor2: return false; } return true; } Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue, llvm::Triple::ArchType Arch) { if (auto Hint = GetValueForARMHint(BuiltinID)) return Hint; if (BuiltinID == ARM::BI__emit) { bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, /*Variadic=*/false); Expr::EvalResult Result; if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) llvm_unreachable("Sema will ensure that the parameter is constant"); llvm::APSInt Value = Result.Val.getInt(); uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); llvm::InlineAsm *Emit = IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", /*hasSideEffects=*/true) : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", /*hasSideEffects=*/true); return Builder.CreateCall(Emit); } if (BuiltinID == ARM::BI__builtin_arm_dbg) { Value *Option = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); } if (BuiltinID == ARM::BI__builtin_arm_prefetch) { Value *Address = EmitScalarExpr(E->getArg(0)); Value *RW = EmitScalarExpr(E->getArg(1)); Value *IsData = EmitScalarExpr(E->getArg(2)); // Locality is not supported on ARM target Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); return Builder.CreateCall(F, {Address, RW, Locality, IsData}); } if (BuiltinID == ARM::BI__builtin_arm_rbit) { llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); } if (BuiltinID == ARM::BI__builtin_arm_cls) { llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls"); } if (BuiltinID == ARM::BI__builtin_arm_cls64) { llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg, "cls"); } if (BuiltinID == ARM::BI__clear_cache) { assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); const FunctionDecl *FD = E->getDirectCallee(); Value *Ops[2]; for (unsigned i = 0; i < 2; i++) Ops[i] = EmitScalarExpr(E->getArg(i)); llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); llvm::FunctionType *FTy = cast(Ty); StringRef Name = FD->getName(); return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); } if (BuiltinID == ARM::BI__builtin_arm_mcrr || BuiltinID == ARM::BI__builtin_arm_mcrr2) { Function *F; switch (BuiltinID) { default: llvm_unreachable("unexpected builtin"); case ARM::BI__builtin_arm_mcrr: F = CGM.getIntrinsic(Intrinsic::arm_mcrr); break; case ARM::BI__builtin_arm_mcrr2: F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); break; } // MCRR{2} instruction has 5 operands but // the intrinsic has 4 because Rt and Rt2 // are represented as a single unsigned 64 // bit integer in the intrinsic definition // but internally it's represented as 2 32 // bit integers. Value *Coproc = EmitScalarExpr(E->getArg(0)); Value *Opc1 = EmitScalarExpr(E->getArg(1)); Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); Value *CRm = EmitScalarExpr(E->getArg(3)); Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); } if (BuiltinID == ARM::BI__builtin_arm_mrrc || BuiltinID == ARM::BI__builtin_arm_mrrc2) { Function *F; switch (BuiltinID) { default: llvm_unreachable("unexpected builtin"); case ARM::BI__builtin_arm_mrrc: F = CGM.getIntrinsic(Intrinsic::arm_mrrc); break; case ARM::BI__builtin_arm_mrrc2: F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); break; } Value *Coproc = EmitScalarExpr(E->getArg(0)); Value *Opc1 = EmitScalarExpr(E->getArg(1)); Value *CRm = EmitScalarExpr(E->getArg(2)); Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); // Returns an unsigned 64 bit integer, represented // as two 32 bit integers. Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); Rt = Builder.CreateZExt(Rt, Int64Ty); Rt1 = Builder.CreateZExt(Rt1, Int64Ty); Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); } if (BuiltinID == ARM::BI__builtin_arm_ldrexd || ((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex) && getContext().getTypeSize(E->getType()) == 64) || BuiltinID == ARM::BI__ldrexd) { Function *F; switch (BuiltinID) { default: llvm_unreachable("unexpected builtin"); case ARM::BI__builtin_arm_ldaex: F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); break; case ARM::BI__builtin_arm_ldrexd: case ARM::BI__builtin_arm_ldrex: case ARM::BI__ldrexd: F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); break; } Value *LdPtr = EmitScalarExpr(E->getArg(0)); Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), "ldrexd"); Value *Val0 = Builder.CreateExtractValue(Val, 1); Value *Val1 = Builder.CreateExtractValue(Val, 0); Val0 = Builder.CreateZExt(Val0, Int64Ty); Val1 = Builder.CreateZExt(Val1, Int64Ty); Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); Val = Builder.CreateOr(Val, Val1); return Builder.CreateBitCast(Val, ConvertType(E->getType())); } if (BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex) { Value *LoadAddr = EmitScalarExpr(E->getArg(0)); QualType Ty = E->getType(); llvm::Type *RealResTy = ConvertType(Ty); llvm::Type *PtrTy = llvm::IntegerType::get( getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex, PtrTy); Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); if (RealResTy->isPointerTy()) return Builder.CreateIntToPtr(Val, RealResTy); else { llvm::Type *IntResTy = llvm::IntegerType::get( getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); Val = Builder.CreateTruncOrBitCast(Val, IntResTy); return Builder.CreateBitCast(Val, RealResTy); } } if (BuiltinID == ARM::BI__builtin_arm_strexd || ((BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == ARM::BI__builtin_arm_strex) && getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd); llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); Address Tmp = CreateMemTemp(E->getArg(0)->getType()); Value *Val = EmitScalarExpr(E->getArg(0)); Builder.CreateStore(Val, Tmp); Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); Val = Builder.CreateLoad(LdPtr); Value *Arg0 = Builder.CreateExtractValue(Val, 0); Value *Arg1 = Builder.CreateExtractValue(Val, 1); Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); } if (BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex) { Value *StoreVal = EmitScalarExpr(E->getArg(0)); Value *StoreAddr = EmitScalarExpr(E->getArg(1)); QualType Ty = E->getArg(0)->getType(); llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty)); StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); if (StoreVal->getType()->isPointerTy()) StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); else { llvm::Type *IntTy = llvm::IntegerType::get( getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); StoreVal = Builder.CreateBitCast(StoreVal, IntTy); StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); } Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex ? Intrinsic::arm_stlex : Intrinsic::arm_strex, StoreAddr->getType()); return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); } if (BuiltinID == ARM::BI__builtin_arm_clrex) { Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); return Builder.CreateCall(F); } // CRC32 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; switch (BuiltinID) { case ARM::BI__builtin_arm_crc32b: CRCIntrinsicID = Intrinsic::arm_crc32b; break; case ARM::BI__builtin_arm_crc32cb: CRCIntrinsicID = Intrinsic::arm_crc32cb; break; case ARM::BI__builtin_arm_crc32h: CRCIntrinsicID = Intrinsic::arm_crc32h; break; case ARM::BI__builtin_arm_crc32ch: CRCIntrinsicID = Intrinsic::arm_crc32ch; break; case ARM::BI__builtin_arm_crc32w: case ARM::BI__builtin_arm_crc32d: CRCIntrinsicID = Intrinsic::arm_crc32w; break; case ARM::BI__builtin_arm_crc32cw: case ARM::BI__builtin_arm_crc32cd: CRCIntrinsicID = Intrinsic::arm_crc32cw; break; } if (CRCIntrinsicID != Intrinsic::not_intrinsic) { Value *Arg0 = EmitScalarExpr(E->getArg(0)); Value *Arg1 = EmitScalarExpr(E->getArg(1)); // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w // intrinsics, hence we need different codegen for these cases. if (BuiltinID == ARM::BI__builtin_arm_crc32d || BuiltinID == ARM::BI__builtin_arm_crc32cd) { Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); Value *Arg1b = Builder.CreateLShr(Arg1, C1); Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); Function *F = CGM.getIntrinsic(CRCIntrinsicID); Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); return Builder.CreateCall(F, {Res, Arg1b}); } else { Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); Function *F = CGM.getIntrinsic(CRCIntrinsicID); return Builder.CreateCall(F, {Arg0, Arg1}); } } if (BuiltinID == ARM::BI__builtin_arm_rsr || BuiltinID == ARM::BI__builtin_arm_rsr64 || BuiltinID == ARM::BI__builtin_arm_rsrp || BuiltinID == ARM::BI__builtin_arm_wsr || BuiltinID == ARM::BI__builtin_arm_wsr64 || BuiltinID == ARM::BI__builtin_arm_wsrp) { SpecialRegisterAccessKind AccessKind = Write; if (BuiltinID == ARM::BI__builtin_arm_rsr || BuiltinID == ARM::BI__builtin_arm_rsr64 || BuiltinID == ARM::BI__builtin_arm_rsrp) AccessKind = VolatileRead; bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp || BuiltinID == ARM::BI__builtin_arm_wsrp; bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 || BuiltinID == ARM::BI__builtin_arm_wsr64; llvm::Type *ValueType; llvm::Type *RegisterType; if (IsPointerBuiltin) { ValueType = VoidPtrTy; RegisterType = Int32Ty; } else if (Is64Bit) { ValueType = RegisterType = Int64Ty; } else { ValueType = RegisterType = Int32Ty; } return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, AccessKind); } // Deal with MVE builtins if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) return Result; // Handle CDE builtins if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) return Result; // Find out if any arguments are required to be integer constant // expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); assert(Error == ASTContext::GE_None && "Should not codegen an error"); auto getAlignmentValue32 = [&](Address addr) -> Value* { return Builder.getInt32(addr.getAlignment().getQuantity()); }; Address PtrOp0 = Address::invalid(); Address PtrOp1 = Address::invalid(); SmallVector Ops; bool HasExtraArg = HasExtraNeonArgument(BuiltinID); unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); for (unsigned i = 0, e = NumArgs; i != e; i++) { if (i == 0) { switch (BuiltinID) { case NEON::BI__builtin_neon_vld1_v: case NEON::BI__builtin_neon_vld1q_v: case NEON::BI__builtin_neon_vld1q_lane_v: case NEON::BI__builtin_neon_vld1_lane_v: case NEON::BI__builtin_neon_vld1_dup_v: case NEON::BI__builtin_neon_vld1q_dup_v: case NEON::BI__builtin_neon_vst1_v: case NEON::BI__builtin_neon_vst1q_v: case NEON::BI__builtin_neon_vst1q_lane_v: case NEON::BI__builtin_neon_vst1_lane_v: case NEON::BI__builtin_neon_vst2_v: case NEON::BI__builtin_neon_vst2q_v: case NEON::BI__builtin_neon_vst2_lane_v: case NEON::BI__builtin_neon_vst2q_lane_v: case NEON::BI__builtin_neon_vst3_v: case NEON::BI__builtin_neon_vst3q_v: case NEON::BI__builtin_neon_vst3_lane_v: case NEON::BI__builtin_neon_vst3q_lane_v: case NEON::BI__builtin_neon_vst4_v: case NEON::BI__builtin_neon_vst4q_v: case NEON::BI__builtin_neon_vst4_lane_v: case NEON::BI__builtin_neon_vst4q_lane_v: // Get the alignment for the argument in addition to the value; // we'll use it later. PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); Ops.push_back(PtrOp0.getPointer()); continue; } } if (i == 1) { switch (BuiltinID) { case NEON::BI__builtin_neon_vld2_v: case NEON::BI__builtin_neon_vld2q_v: case NEON::BI__builtin_neon_vld3_v: case NEON::BI__builtin_neon_vld3q_v: case NEON::BI__builtin_neon_vld4_v: case NEON::BI__builtin_neon_vld4q_v: case NEON::BI__builtin_neon_vld2_lane_v: case NEON::BI__builtin_neon_vld2q_lane_v: case NEON::BI__builtin_neon_vld3_lane_v: case NEON::BI__builtin_neon_vld3q_lane_v: case NEON::BI__builtin_neon_vld4_lane_v: case NEON::BI__builtin_neon_vld4q_lane_v: case NEON::BI__builtin_neon_vld2_dup_v: case NEON::BI__builtin_neon_vld2q_dup_v: case NEON::BI__builtin_neon_vld3_dup_v: case NEON::BI__builtin_neon_vld3q_dup_v: case NEON::BI__builtin_neon_vld4_dup_v: case NEON::BI__builtin_neon_vld4q_dup_v: // Get the alignment for the argument in addition to the value; // we'll use it later. PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); Ops.push_back(PtrOp1.getPointer()); continue; } } if ((ICEArguments & (1 << i)) == 0) { Ops.push_back(EmitScalarExpr(E->getArg(i))); } else { // If this is required to be a constant, constant fold it so that we know // that the generated intrinsic gets a ConstantInt. llvm::APSInt Result; bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); } } switch (BuiltinID) { default: break; case NEON::BI__builtin_neon_vget_lane_i8: case NEON::BI__builtin_neon_vget_lane_i16: case NEON::BI__builtin_neon_vget_lane_i32: case NEON::BI__builtin_neon_vget_lane_i64: case NEON::BI__builtin_neon_vget_lane_bf16: case NEON::BI__builtin_neon_vget_lane_f32: case NEON::BI__builtin_neon_vgetq_lane_i8: case NEON::BI__builtin_neon_vgetq_lane_i16: case NEON::BI__builtin_neon_vgetq_lane_i32: case NEON::BI__builtin_neon_vgetq_lane_i64: case NEON::BI__builtin_neon_vgetq_lane_bf16: case NEON::BI__builtin_neon_vgetq_lane_f32: case NEON::BI__builtin_neon_vduph_lane_bf16: case NEON::BI__builtin_neon_vduph_laneq_bf16: return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); case NEON::BI__builtin_neon_vrndns_f32: { Value *Arg = EmitScalarExpr(E->getArg(0)); llvm::Type *Tys[] = {Arg->getType()}; Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys); return Builder.CreateCall(F, {Arg}, "vrndn"); } case NEON::BI__builtin_neon_vset_lane_i8: case NEON::BI__builtin_neon_vset_lane_i16: case NEON::BI__builtin_neon_vset_lane_i32: case NEON::BI__builtin_neon_vset_lane_i64: case NEON::BI__builtin_neon_vset_lane_bf16: case NEON::BI__builtin_neon_vset_lane_f32: case NEON::BI__builtin_neon_vsetq_lane_i8: case NEON::BI__builtin_neon_vsetq_lane_i16: case NEON::BI__builtin_neon_vsetq_lane_i32: case NEON::BI__builtin_neon_vsetq_lane_i64: case NEON::BI__builtin_neon_vsetq_lane_bf16: case NEON::BI__builtin_neon_vsetq_lane_f32: return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); case NEON::BI__builtin_neon_vsha1h_u32: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, "vsha1h"); case NEON::BI__builtin_neon_vsha1cq_u32: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, "vsha1h"); case NEON::BI__builtin_neon_vsha1pq_u32: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, "vsha1h"); case NEON::BI__builtin_neon_vsha1mq_u32: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, "vsha1h"); case NEON::BI__builtin_neon_vcvth_bf16_f32: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops, "vcvtbfp2bf"); } // The ARM _MoveToCoprocessor builtins put the input register value as // the first argument, but the LLVM intrinsic expects it as the third one. case ARM::BI_MoveToCoprocessor: case ARM::BI_MoveToCoprocessor2: { Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? Intrinsic::arm_mcr : Intrinsic::arm_mcr2); return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], Ops[3], Ops[4], Ops[5]}); } case ARM::BI_BitScanForward: case ARM::BI_BitScanForward64: return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); case ARM::BI_BitScanReverse: case ARM::BI_BitScanReverse64: return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); case ARM::BI_InterlockedAnd64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); case ARM::BI_InterlockedExchange64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); case ARM::BI_InterlockedExchangeAdd64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); case ARM::BI_InterlockedExchangeSub64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); case ARM::BI_InterlockedOr64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); case ARM::BI_InterlockedXor64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); case ARM::BI_InterlockedDecrement64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); case ARM::BI_InterlockedIncrement64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); case ARM::BI_InterlockedExchangeAdd8_acq: case ARM::BI_InterlockedExchangeAdd16_acq: case ARM::BI_InterlockedExchangeAdd_acq: case ARM::BI_InterlockedExchangeAdd64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E); case ARM::BI_InterlockedExchangeAdd8_rel: case ARM::BI_InterlockedExchangeAdd16_rel: case ARM::BI_InterlockedExchangeAdd_rel: case ARM::BI_InterlockedExchangeAdd64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E); case ARM::BI_InterlockedExchangeAdd8_nf: case ARM::BI_InterlockedExchangeAdd16_nf: case ARM::BI_InterlockedExchangeAdd_nf: case ARM::BI_InterlockedExchangeAdd64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E); case ARM::BI_InterlockedExchange8_acq: case ARM::BI_InterlockedExchange16_acq: case ARM::BI_InterlockedExchange_acq: case ARM::BI_InterlockedExchange64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E); case ARM::BI_InterlockedExchange8_rel: case ARM::BI_InterlockedExchange16_rel: case ARM::BI_InterlockedExchange_rel: case ARM::BI_InterlockedExchange64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E); case ARM::BI_InterlockedExchange8_nf: case ARM::BI_InterlockedExchange16_nf: case ARM::BI_InterlockedExchange_nf: case ARM::BI_InterlockedExchange64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E); case ARM::BI_InterlockedCompareExchange8_acq: case ARM::BI_InterlockedCompareExchange16_acq: case ARM::BI_InterlockedCompareExchange_acq: case ARM::BI_InterlockedCompareExchange64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E); case ARM::BI_InterlockedCompareExchange8_rel: case ARM::BI_InterlockedCompareExchange16_rel: case ARM::BI_InterlockedCompareExchange_rel: case ARM::BI_InterlockedCompareExchange64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E); case ARM::BI_InterlockedCompareExchange8_nf: case ARM::BI_InterlockedCompareExchange16_nf: case ARM::BI_InterlockedCompareExchange_nf: case ARM::BI_InterlockedCompareExchange64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E); case ARM::BI_InterlockedOr8_acq: case ARM::BI_InterlockedOr16_acq: case ARM::BI_InterlockedOr_acq: case ARM::BI_InterlockedOr64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E); case ARM::BI_InterlockedOr8_rel: case ARM::BI_InterlockedOr16_rel: case ARM::BI_InterlockedOr_rel: case ARM::BI_InterlockedOr64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E); case ARM::BI_InterlockedOr8_nf: case ARM::BI_InterlockedOr16_nf: case ARM::BI_InterlockedOr_nf: case ARM::BI_InterlockedOr64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E); case ARM::BI_InterlockedXor8_acq: case ARM::BI_InterlockedXor16_acq: case ARM::BI_InterlockedXor_acq: case ARM::BI_InterlockedXor64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E); case ARM::BI_InterlockedXor8_rel: case ARM::BI_InterlockedXor16_rel: case ARM::BI_InterlockedXor_rel: case ARM::BI_InterlockedXor64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E); case ARM::BI_InterlockedXor8_nf: case ARM::BI_InterlockedXor16_nf: case ARM::BI_InterlockedXor_nf: case ARM::BI_InterlockedXor64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E); case ARM::BI_InterlockedAnd8_acq: case ARM::BI_InterlockedAnd16_acq: case ARM::BI_InterlockedAnd_acq: case ARM::BI_InterlockedAnd64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E); case ARM::BI_InterlockedAnd8_rel: case ARM::BI_InterlockedAnd16_rel: case ARM::BI_InterlockedAnd_rel: case ARM::BI_InterlockedAnd64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E); case ARM::BI_InterlockedAnd8_nf: case ARM::BI_InterlockedAnd16_nf: case ARM::BI_InterlockedAnd_nf: case ARM::BI_InterlockedAnd64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E); case ARM::BI_InterlockedIncrement16_acq: case ARM::BI_InterlockedIncrement_acq: case ARM::BI_InterlockedIncrement64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E); case ARM::BI_InterlockedIncrement16_rel: case ARM::BI_InterlockedIncrement_rel: case ARM::BI_InterlockedIncrement64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E); case ARM::BI_InterlockedIncrement16_nf: case ARM::BI_InterlockedIncrement_nf: case ARM::BI_InterlockedIncrement64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E); case ARM::BI_InterlockedDecrement16_acq: case ARM::BI_InterlockedDecrement_acq: case ARM::BI_InterlockedDecrement64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E); case ARM::BI_InterlockedDecrement16_rel: case ARM::BI_InterlockedDecrement_rel: case ARM::BI_InterlockedDecrement64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E); case ARM::BI_InterlockedDecrement16_nf: case ARM::BI_InterlockedDecrement_nf: case ARM::BI_InterlockedDecrement64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E); } // Get the last argument, which specifies the vector type. assert(HasExtraArg); llvm::APSInt Result; const Expr *Arg = E->getArg(E->getNumArgs()-1); if (!Arg->isIntegerConstantExpr(Result, getContext())) return nullptr; if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { // Determine the overloaded type of this builtin. llvm::Type *Ty; if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) Ty = FloatTy; else Ty = DoubleTy; // Determine whether this is an unsigned conversion or not. bool usgn = Result.getZExtValue() == 1; unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; // Call the appropriate intrinsic. Function *F = CGM.getIntrinsic(Int, Ty); return Builder.CreateCall(F, Ops, "vcvtr"); } // Determine the type of this overloaded NEON intrinsic. NeonTypeFlags Type(Result.getZExtValue()); bool usgn = Type.isUnsigned(); bool rightShift = false; llvm::VectorType *VTy = GetNeonType(this, Type, getTarget().hasLegalHalfType(), false, getTarget().hasBFloat16Type()); llvm::Type *Ty = VTy; if (!Ty) return nullptr; // Many NEON builtins have identical semantics and uses in ARM and // AArch64. Emit these in a single function. auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap); const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); if (Builtin) return EmitCommonNeonBuiltinExpr( Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch); unsigned Int; switch (BuiltinID) { default: return nullptr; case NEON::BI__builtin_neon_vld1q_lane_v: // Handle 64-bit integer elements as a special case. Use shuffles of // one-element vectors to avoid poor code for i64 in the backend. if (VTy->getElementType()->isIntegerTy(64)) { // Extract the other lane. Ops[1] = Builder.CreateBitCast(Ops[1], Ty); int Lane = cast(Ops[2])->getZExtValue(); Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); // Load the value as a one-element vector. Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1); llvm::Type *Tys[] = {Ty, Int8PtrTy}; Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); Value *Align = getAlignmentValue32(PtrOp0); Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); // Combine them. int Indices[] = {1 - Lane, Lane}; return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane"); } LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vld1_lane_v: { Ops[1] = Builder.CreateBitCast(Ops[1], Ty); PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType()); Value *Ld = Builder.CreateLoad(PtrOp0); return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); } case NEON::BI__builtin_neon_vqrshrn_n_v: Int = usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", 1, true); case NEON::BI__builtin_neon_vqrshrun_n_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), Ops, "vqrshrun_n", 1, true); case NEON::BI__builtin_neon_vqshrn_n_v: Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", 1, true); case NEON::BI__builtin_neon_vqshrun_n_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), Ops, "vqshrun_n", 1, true); case NEON::BI__builtin_neon_vrecpe_v: case NEON::BI__builtin_neon_vrecpeq_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), Ops, "vrecpe"); case NEON::BI__builtin_neon_vrshrn_n_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), Ops, "vrshrn_n", 1, true); case NEON::BI__builtin_neon_vrsra_n_v: case NEON::BI__builtin_neon_vrsraq_n_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); case NEON::BI__builtin_neon_vsri_n_v: case NEON::BI__builtin_neon_vsriq_n_v: rightShift = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vsli_n_v: case NEON::BI__builtin_neon_vsliq_n_v: Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), Ops, "vsli_n"); case NEON::BI__builtin_neon_vsra_n_v: case NEON::BI__builtin_neon_vsraq_n_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); return Builder.CreateAdd(Ops[0], Ops[1]); case NEON::BI__builtin_neon_vst1q_lane_v: // Handle 64-bit integer elements as a special case. Use a shuffle to get // a one-element vector and avoid poor code for i64 in the backend. if (VTy->getElementType()->isIntegerTy(64)) { Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Value *SV = llvm::ConstantVector::get(cast(Ops[2])); Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); Ops[2] = getAlignmentValue32(PtrOp0); llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, Tys), Ops); } LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vst1_lane_v: { Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty)); return St; } case NEON::BI__builtin_neon_vtbl1_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), Ops, "vtbl1"); case NEON::BI__builtin_neon_vtbl2_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), Ops, "vtbl2"); case NEON::BI__builtin_neon_vtbl3_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), Ops, "vtbl3"); case NEON::BI__builtin_neon_vtbl4_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), Ops, "vtbl4"); case NEON::BI__builtin_neon_vtbx1_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), Ops, "vtbx1"); case NEON::BI__builtin_neon_vtbx2_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), Ops, "vtbx2"); case NEON::BI__builtin_neon_vtbx3_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), Ops, "vtbx3"); case NEON::BI__builtin_neon_vtbx4_v: return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), Ops, "vtbx4"); } } template static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) { llvm::APSInt IntVal; bool IsConst = E->isIntegerConstantExpr(IntVal, Context); assert(IsConst && "Sema should have checked this was a constant"); (void)IsConst; return IntVal.getExtValue(); } static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V, llvm::Type *T, bool Unsigned) { // Helper function called by Tablegen-constructed ARM MVE builtin codegen, // which finds it convenient to specify signed/unsigned as a boolean flag. return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T); } static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V, uint32_t Shift, bool Unsigned) { // MVE helper function for integer shift right. This must handle signed vs // unsigned, and also deal specially with the case where the shift count is // equal to the lane size. In LLVM IR, an LShr with that parameter would be // undefined behavior, but in MVE it's legal, so we must convert it to code // that is not undefined in IR. unsigned LaneBits = cast(V->getType()) ->getElementType() ->getPrimitiveSizeInBits(); if (Shift == LaneBits) { // An unsigned shift of the full lane size always generates zero, so we can // simply emit a zero vector. A signed shift of the full lane size does the // same thing as shifting by one bit fewer. if (Unsigned) return llvm::Constant::getNullValue(V->getType()); else --Shift; } return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift); } static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) { // MVE-specific helper function for a vector splat, which infers the element // count of the output vector by knowing that MVE vectors are all 128 bits // wide. unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits(); return Builder.CreateVectorSplat(Elements, V); } static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder, CodeGenFunction *CGF, llvm::Value *V, llvm::Type *DestType) { // Convert one MVE vector type into another by reinterpreting its in-register // format. // // Little-endian, this is identical to a bitcast (which reinterprets the // memory format). But big-endian, they're not necessarily the same, because // the register and memory formats map to each other differently depending on // the lane size. // // We generate a bitcast whenever we can (if we're little-endian, or if the // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic // that performs the different kind of reinterpretation. if (CGF->getTarget().isBigEndian() && V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) { return Builder.CreateCall( CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq, {DestType, V->getType()}), V); } else { return Builder.CreateBitCast(V, DestType); } } static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) { // Make a shufflevector that extracts every other element of a vector (evens // or odds, as desired). SmallVector Indices; unsigned InputElements = cast(V->getType())->getNumElements(); for (unsigned i = 0; i < InputElements; i += 2) Indices.push_back(i + Odd); return Builder.CreateShuffleVector(V, llvm::UndefValue::get(V->getType()), Indices); } static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0, llvm::Value *V1) { // Make a shufflevector that interleaves two vectors element by element. assert(V0->getType() == V1->getType() && "Can't zip different vector types"); SmallVector Indices; unsigned InputElements = cast(V0->getType())->getNumElements(); for (unsigned i = 0; i < InputElements; i++) { Indices.push_back(i); Indices.push_back(i + InputElements); } return Builder.CreateShuffleVector(V0, V1, Indices); } template static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) { // MVE-specific helper function to make a vector splat of a constant such as // UINT_MAX or INT_MIN, in which all bits below the highest one are equal. llvm::Type *T = cast(VT)->getElementType(); unsigned LaneBits = T->getPrimitiveSizeInBits(); uint32_t Value = HighBit << (LaneBits - 1); if (OtherBits) Value |= (1UL << (LaneBits - 1)) - 1; llvm::Value *Lane = llvm::ConstantInt::get(T, Value); return ARMMVEVectorSplat(Builder, Lane); } static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder, llvm::Value *V, unsigned ReverseWidth) { // MVE-specific helper function which reverses the elements of a // vector within every (ReverseWidth)-bit collection of lanes. SmallVector Indices; unsigned LaneSize = V->getType()->getScalarSizeInBits(); unsigned Elements = 128 / LaneSize; unsigned Mask = ReverseWidth / LaneSize - 1; for (unsigned i = 0; i < Elements; i++) Indices.push_back(i ^ Mask); return Builder.CreateShuffleVector(V, llvm::UndefValue::get(V->getType()), Indices); } Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue, llvm::Triple::ArchType Arch) { enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType; Intrinsic::ID IRIntr; unsigned NumVectors; // Code autogenerated by Tablegen will handle all the simple builtins. switch (BuiltinID) { #include "clang/Basic/arm_mve_builtin_cg.inc" // If we didn't match an MVE builtin id at all, go back to the // main EmitARMBuiltinExpr. default: return nullptr; } // Anything that breaks from that switch is an MVE builtin that // needs handwritten code to generate. switch (CustomCodeGenType) { case CustomCodeGen::VLD24: { llvm::SmallVector Ops; llvm::SmallVector Tys; auto MvecCType = E->getType(); auto MvecLType = ConvertType(MvecCType); assert(MvecLType->isStructTy() && "Return type for vld[24]q should be a struct"); assert(MvecLType->getStructNumElements() == 1 && "Return-type struct for vld[24]q should have one element"); auto MvecLTypeInner = MvecLType->getStructElementType(0); assert(MvecLTypeInner->isArrayTy() && "Return-type struct for vld[24]q should contain an array"); assert(MvecLTypeInner->getArrayNumElements() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"); auto VecLType = MvecLTypeInner->getArrayElementType(); Tys.push_back(VecLType); auto Addr = E->getArg(0); Ops.push_back(EmitScalarExpr(Addr)); Tys.push_back(ConvertType(Addr->getType())); Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); Value *LoadResult = Builder.CreateCall(F, Ops); Value *MvecOut = UndefValue::get(MvecLType); for (unsigned i = 0; i < NumVectors; ++i) { Value *Vec = Builder.CreateExtractValue(LoadResult, i); MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i}); } if (ReturnValue.isNull()) return MvecOut; else return Builder.CreateStore(MvecOut, ReturnValue.getValue()); } case CustomCodeGen::VST24: { llvm::SmallVector Ops; llvm::SmallVector Tys; auto Addr = E->getArg(0); Ops.push_back(EmitScalarExpr(Addr)); Tys.push_back(ConvertType(Addr->getType())); auto MvecCType = E->getArg(1)->getType(); auto MvecLType = ConvertType(MvecCType); assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct"); assert(MvecLType->getStructNumElements() == 1 && "Data-type struct for vst2q should have one element"); auto MvecLTypeInner = MvecLType->getStructElementType(0); assert(MvecLTypeInner->isArrayTy() && "Data-type struct for vst2q should contain an array"); assert(MvecLTypeInner->getArrayNumElements() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"); auto VecLType = MvecLTypeInner->getArrayElementType(); Tys.push_back(VecLType); AggValueSlot MvecSlot = CreateAggTemp(MvecCType); EmitAggExpr(E->getArg(1), MvecSlot); auto Mvec = Builder.CreateLoad(MvecSlot.getAddress()); for (unsigned i = 0; i < NumVectors; i++) Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i})); Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); Value *ToReturn = nullptr; for (unsigned i = 0; i < NumVectors; i++) { Ops.push_back(llvm::ConstantInt::get(Int32Ty, i)); ToReturn = Builder.CreateCall(F, Ops); Ops.pop_back(); } return ToReturn; } } llvm_unreachable("unknown custom codegen type."); } Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E, ReturnValueSlot ReturnValue, llvm::Triple::ArchType Arch) { switch (BuiltinID) { default: return nullptr; #include "clang/Basic/arm_cde_builtin_cg.inc" } } static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, const CallExpr *E, SmallVectorImpl &Ops, llvm::Triple::ArchType Arch) { unsigned int Int = 0; const char *s = nullptr; switch (BuiltinID) { default: return nullptr; case NEON::BI__builtin_neon_vtbl1_v: case NEON::BI__builtin_neon_vqtbl1_v: case NEON::BI__builtin_neon_vqtbl1q_v: case NEON::BI__builtin_neon_vtbl2_v: case NEON::BI__builtin_neon_vqtbl2_v: case NEON::BI__builtin_neon_vqtbl2q_v: case NEON::BI__builtin_neon_vtbl3_v: case NEON::BI__builtin_neon_vqtbl3_v: case NEON::BI__builtin_neon_vqtbl3q_v: case NEON::BI__builtin_neon_vtbl4_v: case NEON::BI__builtin_neon_vqtbl4_v: case NEON::BI__builtin_neon_vqtbl4q_v: break; case NEON::BI__builtin_neon_vtbx1_v: case NEON::BI__builtin_neon_vqtbx1_v: case NEON::BI__builtin_neon_vqtbx1q_v: case NEON::BI__builtin_neon_vtbx2_v: case NEON::BI__builtin_neon_vqtbx2_v: case NEON::BI__builtin_neon_vqtbx2q_v: case NEON::BI__builtin_neon_vtbx3_v: case NEON::BI__builtin_neon_vqtbx3_v: case NEON::BI__builtin_neon_vqtbx3q_v: case NEON::BI__builtin_neon_vtbx4_v: case NEON::BI__builtin_neon_vqtbx4_v: case NEON::BI__builtin_neon_vqtbx4q_v: break; } assert(E->getNumArgs() >= 3); // Get the last argument, which specifies the vector type. llvm::APSInt Result; const Expr *Arg = E->getArg(E->getNumArgs() - 1); if (!Arg->isIntegerConstantExpr(Result, CGF.getContext())) return nullptr; // Determine the type of this overloaded NEON intrinsic. NeonTypeFlags Type(Result.getZExtValue()); llvm::VectorType *Ty = GetNeonType(&CGF, Type); if (!Ty) return nullptr; CodeGen::CGBuilderTy &Builder = CGF.Builder; // AArch64 scalar builtins are not overloaded, they do not have an extra // argument that specifies the vector type, need to handle each case. switch (BuiltinID) { case NEON::BI__builtin_neon_vtbl1_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr, Ops[1], Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); } case NEON::BI__builtin_neon_vtbl2_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr, Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); } case NEON::BI__builtin_neon_vtbl3_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr, Ops[3], Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); } case NEON::BI__builtin_neon_vtbl4_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr, Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); } case NEON::BI__builtin_neon_vtbx1_v: { Value *TblRes = packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); llvm::Constant *EightV = ConstantInt::get(Ty, 8); Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); CmpRes = Builder.CreateSExt(CmpRes, Ty); Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); } case NEON::BI__builtin_neon_vtbx2_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0], Ops[3], Ty, Intrinsic::aarch64_neon_tbx1, "vtbx1"); } case NEON::BI__builtin_neon_vtbx3_v: { Value *TblRes = packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], TwentyFourV); CmpRes = Builder.CreateSExt(CmpRes, Ty); Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); } case NEON::BI__builtin_neon_vtbx4_v: { return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0], Ops[5], Ty, Intrinsic::aarch64_neon_tbx2, "vtbx2"); } case NEON::BI__builtin_neon_vqtbl1_v: case NEON::BI__builtin_neon_vqtbl1q_v: Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; case NEON::BI__builtin_neon_vqtbl2_v: case NEON::BI__builtin_neon_vqtbl2q_v: { Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; case NEON::BI__builtin_neon_vqtbl3_v: case NEON::BI__builtin_neon_vqtbl3q_v: Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; case NEON::BI__builtin_neon_vqtbl4_v: case NEON::BI__builtin_neon_vqtbl4q_v: Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; case NEON::BI__builtin_neon_vqtbx1_v: case NEON::BI__builtin_neon_vqtbx1q_v: Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; case NEON::BI__builtin_neon_vqtbx2_v: case NEON::BI__builtin_neon_vqtbx2q_v: Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; case NEON::BI__builtin_neon_vqtbx3_v: case NEON::BI__builtin_neon_vqtbx3q_v: Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; case NEON::BI__builtin_neon_vqtbx4_v: case NEON::BI__builtin_neon_vqtbx4q_v: Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; } } if (!Int) return nullptr; Function *F = CGF.CGM.getIntrinsic(Int, Ty); return CGF.EmitNeonCall(F, Ops, s); } Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4); Op = Builder.CreateBitCast(Op, Int16Ty); Value *V = UndefValue::get(VTy); llvm::Constant *CI = ConstantInt::get(SizeTy, 0); Op = Builder.CreateInsertElement(V, Op, CI); return Op; } /// SVEBuiltinMemEltTy - Returns the memory element type for this memory /// access builtin. Only required if it can't be inferred from the base pointer /// operand. llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) { switch (TypeFlags.getMemEltType()) { case SVETypeFlags::MemEltTyDefault: return getEltType(TypeFlags); case SVETypeFlags::MemEltTyInt8: return Builder.getInt8Ty(); case SVETypeFlags::MemEltTyInt16: return Builder.getInt16Ty(); case SVETypeFlags::MemEltTyInt32: return Builder.getInt32Ty(); case SVETypeFlags::MemEltTyInt64: return Builder.getInt64Ty(); } llvm_unreachable("Unknown MemEltType"); } llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) { switch (TypeFlags.getEltType()) { default: llvm_unreachable("Invalid SVETypeFlag!"); case SVETypeFlags::EltTyInt8: return Builder.getInt8Ty(); case SVETypeFlags::EltTyInt16: return Builder.getInt16Ty(); case SVETypeFlags::EltTyInt32: return Builder.getInt32Ty(); case SVETypeFlags::EltTyInt64: return Builder.getInt64Ty(); case SVETypeFlags::EltTyFloat16: return Builder.getHalfTy(); case SVETypeFlags::EltTyFloat32: return Builder.getFloatTy(); case SVETypeFlags::EltTyFloat64: return Builder.getDoubleTy(); case SVETypeFlags::EltTyBFloat16: return Builder.getBFloatTy(); case SVETypeFlags::EltTyBool8: case SVETypeFlags::EltTyBool16: case SVETypeFlags::EltTyBool32: case SVETypeFlags::EltTyBool64: return Builder.getInt1Ty(); } } // Return the llvm predicate vector type corresponding to the specified element // TypeFlags. llvm::ScalableVectorType * CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) { switch (TypeFlags.getEltType()) { default: llvm_unreachable("Unhandled SVETypeFlag!"); case SVETypeFlags::EltTyInt8: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); case SVETypeFlags::EltTyInt16: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); case SVETypeFlags::EltTyInt32: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); case SVETypeFlags::EltTyInt64: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); case SVETypeFlags::EltTyBFloat16: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); case SVETypeFlags::EltTyFloat16: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); case SVETypeFlags::EltTyFloat32: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); case SVETypeFlags::EltTyFloat64: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); case SVETypeFlags::EltTyBool8: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); case SVETypeFlags::EltTyBool16: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); case SVETypeFlags::EltTyBool32: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); case SVETypeFlags::EltTyBool64: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); } } // Return the llvm vector type corresponding to the specified element TypeFlags. llvm::ScalableVectorType * CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) { switch (TypeFlags.getEltType()) { default: llvm_unreachable("Invalid SVETypeFlag!"); case SVETypeFlags::EltTyInt8: return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16); case SVETypeFlags::EltTyInt16: return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8); case SVETypeFlags::EltTyInt32: return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4); case SVETypeFlags::EltTyInt64: return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2); case SVETypeFlags::EltTyFloat16: return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8); case SVETypeFlags::EltTyBFloat16: return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8); case SVETypeFlags::EltTyFloat32: return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4); case SVETypeFlags::EltTyFloat64: return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2); case SVETypeFlags::EltTyBool8: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); case SVETypeFlags::EltTyBool16: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); case SVETypeFlags::EltTyBool32: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); case SVETypeFlags::EltTyBool64: return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); } } llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) { Function *Ptrue = CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags)); return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)}); } constexpr unsigned SVEBitsPerBlock = 128; static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) { unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits(); return llvm::ScalableVectorType::get(EltTy, NumElts); } // Reinterpret the input predicate so that it can be used to correctly isolate // the elements of the specified datatype. Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred, llvm::ScalableVectorType *VTy) { auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy); if (Pred->getType() == RTy) return Pred; unsigned IntID; llvm::Type *IntrinsicTy; switch (VTy->getMinNumElements()) { default: llvm_unreachable("unsupported element count!"); case 2: case 4: case 8: IntID = Intrinsic::aarch64_sve_convert_from_svbool; IntrinsicTy = RTy; break; case 16: IntID = Intrinsic::aarch64_sve_convert_to_svbool; IntrinsicTy = Pred->getType(); break; } Function *F = CGM.getIntrinsic(IntID, IntrinsicTy); Value *C = Builder.CreateCall(F, Pred); assert(C->getType() == RTy && "Unexpected return type!"); return C; } Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags, SmallVectorImpl &Ops, unsigned IntID) { auto *ResultTy = getSVEType(TypeFlags); auto *OverloadedTy = llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy); // At the ACLE level there's only one predicate type, svbool_t, which is // mapped to . However, this might be incompatible with the // actual type being loaded. For example, when loading doubles (i64) the // predicated should be instead. At the IR level the type of // the predicate and the data being loaded must match. Cast accordingly. Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); Function *F = nullptr; if (Ops[1]->getType()->isVectorTy()) // This is the "vector base, scalar offset" case. In order to uniquely // map this built-in to an LLVM IR intrinsic, we need both the return type // and the type of the vector base. F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()}); else // This is the "scalar base, vector offset case". The type of the offset // is encoded in the name of the intrinsic. We only need to specify the // return type in order to uniquely map this built-in to an LLVM IR // intrinsic. F = CGM.getIntrinsic(IntID, OverloadedTy); // Pass 0 when the offset is missing. This can only be applied when using // the "vector base" addressing mode for which ACLE allows no offset. The // corresponding LLVM IR always requires an offset. if (Ops.size() == 2) { assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); Ops.push_back(ConstantInt::get(Int64Ty, 0)); } // For "vector base, scalar index" scale the index so that it becomes a // scalar offset. if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) { unsigned BytesPerElt = OverloadedTy->getElementType()->getScalarSizeInBits() / 8; Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); Ops[2] = Builder.CreateMul(Ops[2], Scale); } Value *Call = Builder.CreateCall(F, Ops); // The following sext/zext is only needed when ResultTy != OverloadedTy. In // other cases it's folded into a nop. return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy) : Builder.CreateSExt(Call, ResultTy); } Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags, SmallVectorImpl &Ops, unsigned IntID) { auto *SrcDataTy = getSVEType(TypeFlags); auto *OverloadedTy = llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy); // In ACLE the source data is passed in the last argument, whereas in LLVM IR // it's the first argument. Move it accordingly. Ops.insert(Ops.begin(), Ops.pop_back_val()); Function *F = nullptr; if (Ops[2]->getType()->isVectorTy()) // This is the "vector base, scalar offset" case. In order to uniquely // map this built-in to an LLVM IR intrinsic, we need both the return type // and the type of the vector base. F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()}); else // This is the "scalar base, vector offset case". The type of the offset // is encoded in the name of the intrinsic. We only need to specify the // return type in order to uniquely map this built-in to an LLVM IR // intrinsic. F = CGM.getIntrinsic(IntID, OverloadedTy); // Pass 0 when the offset is missing. This can only be applied when using // the "vector base" addressing mode for which ACLE allows no offset. The // corresponding LLVM IR always requires an offset. if (Ops.size() == 3) { assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); Ops.push_back(ConstantInt::get(Int64Ty, 0)); } // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's // folded into a nop. Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy); // At the ACLE level there's only one predicate type, svbool_t, which is // mapped to . However, this might be incompatible with the // actual type being stored. For example, when storing doubles (i64) the // predicated should be instead. At the IR level the type of // the predicate and the data being stored must match. Cast accordingly. Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy); // For "vector base, scalar index" scale the index so that it becomes a // scalar offset. if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) { unsigned BytesPerElt = OverloadedTy->getElementType()->getScalarSizeInBits() / 8; Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); Ops[3] = Builder.CreateMul(Ops[3], Scale); } return Builder.CreateCall(F, Ops); } Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags, SmallVectorImpl &Ops, unsigned IntID) { // The gather prefetches are overloaded on the vector input - this can either // be the vector of base addresses or vector of offsets. auto *OverloadedTy = dyn_cast(Ops[1]->getType()); if (!OverloadedTy) OverloadedTy = cast(Ops[2]->getType()); // Cast the predicate from svbool_t to the right number of elements. Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); // vector + imm addressing modes if (Ops[1]->getType()->isVectorTy()) { if (Ops.size() == 3) { // Pass 0 for 'vector+imm' when the index is omitted. Ops.push_back(ConstantInt::get(Int64Ty, 0)); // The sv_prfop is the last operand in the builtin and IR intrinsic. std::swap(Ops[2], Ops[3]); } else { // Index needs to be passed as scaled offset. llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8; Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); Ops[2] = Builder.CreateMul(Ops[2], Scale); } } Function *F = CGM.getIntrinsic(IntID, OverloadedTy); return Builder.CreateCall(F, Ops); } Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags, SmallVectorImpl &Ops, unsigned IntID) { llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); auto VecPtrTy = llvm::PointerType::getUnqual(VTy); auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); unsigned N; switch (IntID) { case Intrinsic::aarch64_sve_ld2: N = 2; break; case Intrinsic::aarch64_sve_ld3: N = 3; break; case Intrinsic::aarch64_sve_ld4: N = 4; break; default: llvm_unreachable("unknown intrinsic!"); } auto RetTy = llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N); Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy); Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()}); return Builder.CreateCall(F, { Predicate, BasePtr }); } Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags, SmallVectorImpl &Ops, unsigned IntID) { llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); auto VecPtrTy = llvm::PointerType::getUnqual(VTy); auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); unsigned N; switch (IntID) { case Intrinsic::aarch64_sve_st2: N = 2; break; case Intrinsic::aarch64_sve_st3: N = 3; break; case Intrinsic::aarch64_sve_st4: N = 4; break; default: llvm_unreachable("unknown intrinsic!"); } auto TupleTy = llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N); Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy); Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0); Value *Val = Ops.back(); BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we // need to break up the tuple vector. SmallVector Operands; Function *FExtr = CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); for (unsigned I = 0; I < N; ++I) Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)})); Operands.append({Predicate, BasePtr}); Function *F = CGM.getIntrinsic(IntID, { VTy }); return Builder.CreateCall(F, Operands); } // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and // svpmullt_pair intrinsics, with the exception that their results are bitcast // to a wider type. Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags, SmallVectorImpl &Ops, unsigned BuiltinID) { // Splat scalar operand to vector (intrinsics with _n infix) if (TypeFlags.hasSplatOperand()) { unsigned OpNo = TypeFlags.getSplatOperand(); Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); } // The pair-wise function has a narrower overloaded type. Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType()); Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]}); // Now bitcast to the wider result type. llvm::ScalableVectorType *Ty = getSVEType(TypeFlags); return EmitSVEReinterpret(Call, Ty); } Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags, ArrayRef Ops, unsigned BuiltinID) { llvm::Type *OverloadedTy = getSVEType(TypeFlags); Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy); return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)}); } Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags, SmallVectorImpl &Ops, unsigned BuiltinID) { auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); auto *VectorTy = getSVEVectorForElementType(MemEltTy); auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); Value *BasePtr = Ops[1]; // Implement the index operand if not omitted. if (Ops.size() > 3) { BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo()); BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]); } // Prefetch intriniscs always expect an i8* BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty)); Value *PrfOp = Ops.back(); Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType()); return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp}); } Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E, llvm::Type *ReturnTy, SmallVectorImpl &Ops, unsigned BuiltinID, bool IsZExtReturn) { QualType LangPTy = E->getArg(1)->getType(); llvm::Type *MemEltTy = CGM.getTypes().ConvertType( LangPTy->getAs()->getPointeeType()); // The vector type that is returned may be different from the // eventual type loaded from memory. auto VectorTy = cast(ReturnTy); auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); Value *Load = Builder.CreateCall(F, {Predicate, BasePtr}); return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy) : Builder.CreateSExt(Load, VectorTy); } Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E, SmallVectorImpl &Ops, unsigned BuiltinID) { QualType LangPTy = E->getArg(1)->getType(); llvm::Type *MemEltTy = CGM.getTypes().ConvertType( LangPTy->getAs()->getPointeeType()); // The vector type that is stored may be different from the // eventual type stored to memory. auto VectorTy = cast(Ops.back()->getType()); auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0); BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); // Last value is always the data llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy); BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); return Builder.CreateCall(F, {Val, Predicate, BasePtr}); } // Limit the usage of scalable llvm IR generated by the ACLE by using the // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat. Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) { auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty); return Builder.CreateCall(F, Scalar); } Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) { return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType())); } Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) { // FIXME: For big endian this needs an additional REV, or needs a separate // intrinsic that is code-generated as a no-op, because the LLVM bitcast // instruction is defined as 'bitwise' equivalent from memory point of // view (when storing/reloading), whereas the svreinterpret builtin // implements bitwise equivalent cast from register point of view. // LLVM CodeGen for a bitcast must add an explicit REV for big-endian. return Builder.CreateBitCast(Val, Ty); } static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty, SmallVectorImpl &Ops) { auto *SplatZero = Constant::getNullValue(Ty); Ops.insert(Ops.begin(), SplatZero); } static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty, SmallVectorImpl &Ops) { auto *SplatUndef = UndefValue::get(Ty); Ops.insert(Ops.begin(), SplatUndef); } SmallVector CodeGenFunction::getSVEOverloadTypes( SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef Ops) { if (TypeFlags.isOverloadNone()) return {}; llvm::Type *DefaultType = getSVEType(TypeFlags); if (TypeFlags.isOverloadWhile()) return {DefaultType, Ops[1]->getType()}; if (TypeFlags.isOverloadWhileRW()) return {getSVEPredType(TypeFlags), Ops[0]->getType()}; if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet()) return {Ops[0]->getType(), Ops.back()->getType()}; if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet()) return {ResultType, Ops[0]->getType()}; assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads"); return {DefaultType}; } Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { // Find out if any arguments are required to be integer constant expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); assert(Error == ASTContext::GE_None && "Should not codegen an error"); llvm::Type *Ty = ConvertType(E->getType()); if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 && BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) { Value *Val = EmitScalarExpr(E->getArg(0)); return EmitSVEReinterpret(Val, Ty); } llvm::SmallVector Ops; for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { if ((ICEArguments & (1 << i)) == 0) Ops.push_back(EmitScalarExpr(E->getArg(i))); else { // If this is required to be a constant, constant fold it so that we know // that the generated intrinsic gets a ConstantInt. llvm::APSInt Result; if (!E->getArg(i)->isIntegerConstantExpr(Result, getContext())) llvm_unreachable("Expected argument to be a constant"); // Immediates for SVE llvm intrinsics are always 32bit. We can safely // truncate because the immediate has been range checked and no valid // immediate requires more than a handful of bits. Result = Result.extOrTrunc(32); Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); } } auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID, AArch64SVEIntrinsicsProvenSorted); SVETypeFlags TypeFlags(Builtin->TypeModifier); if (TypeFlags.isLoad()) return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic, TypeFlags.isZExtReturn()); else if (TypeFlags.isStore()) return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic); else if (TypeFlags.isGatherLoad()) return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); else if (TypeFlags.isScatterStore()) return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); else if (TypeFlags.isPrefetch()) return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); else if (TypeFlags.isGatherPrefetch()) return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic); else if (TypeFlags.isStructLoad()) return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); else if (TypeFlags.isStructStore()) return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); else if (TypeFlags.isUndef()) return UndefValue::get(Ty); else if (Builtin->LLVMIntrinsic != 0) { if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp) InsertExplicitZeroOperand(Builder, Ty, Ops); if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp) InsertExplicitUndefOperand(Builder, Ty, Ops); // Some ACLE builtins leave out the argument to specify the predicate // pattern, which is expected to be expanded to an SV_ALL pattern. if (TypeFlags.isAppendSVALL()) Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31)); if (TypeFlags.isInsertOp1SVALL()) Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31)); // Predicates must match the main datatype. for (unsigned i = 0, e = Ops.size(); i != e; ++i) if (auto PredTy = dyn_cast(Ops[i]->getType())) if (PredTy->getElementType()->isIntegerTy(1)) Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags)); // Splat scalar operand to vector (intrinsics with _n infix) if (TypeFlags.hasSplatOperand()) { unsigned OpNo = TypeFlags.getSplatOperand(); Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); } if (TypeFlags.isReverseCompare()) std::swap(Ops[1], Ops[2]); if (TypeFlags.isReverseUSDOT()) std::swap(Ops[1], Ops[2]); // Predicated intrinsics with _z suffix need a select w/ zeroinitializer. if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) { llvm::Type *OpndTy = Ops[1]->getType(); auto *SplatZero = Constant::getNullValue(OpndTy); Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy); Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero}); } Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic, getSVEOverloadTypes(TypeFlags, Ty, Ops)); Value *Call = Builder.CreateCall(F, Ops); // Predicate results must be converted to svbool_t. if (auto PredTy = dyn_cast(Call->getType())) if (PredTy->getScalarType()->isIntegerTy(1)) Call = EmitSVEPredicateCast(Call, cast(Ty)); return Call; } switch (BuiltinID) { default: return nullptr; case SVE::BI__builtin_sve_svmov_b_z: { // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op) SVETypeFlags TypeFlags(Builtin->TypeModifier); llvm::Type* OverloadedTy = getSVEType(TypeFlags); Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy); return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]}); } case SVE::BI__builtin_sve_svnot_b_z: { // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg) SVETypeFlags TypeFlags(Builtin->TypeModifier); llvm::Type* OverloadedTy = getSVEType(TypeFlags); Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy); return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]}); } case SVE::BI__builtin_sve_svmovlb_u16: case SVE::BI__builtin_sve_svmovlb_u32: case SVE::BI__builtin_sve_svmovlb_u64: return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb); case SVE::BI__builtin_sve_svmovlb_s16: case SVE::BI__builtin_sve_svmovlb_s32: case SVE::BI__builtin_sve_svmovlb_s64: return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb); case SVE::BI__builtin_sve_svmovlt_u16: case SVE::BI__builtin_sve_svmovlt_u32: case SVE::BI__builtin_sve_svmovlt_u64: return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt); case SVE::BI__builtin_sve_svmovlt_s16: case SVE::BI__builtin_sve_svmovlt_s32: case SVE::BI__builtin_sve_svmovlt_s64: return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt); case SVE::BI__builtin_sve_svpmullt_u16: case SVE::BI__builtin_sve_svpmullt_u64: case SVE::BI__builtin_sve_svpmullt_n_u16: case SVE::BI__builtin_sve_svpmullt_n_u64: return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair); case SVE::BI__builtin_sve_svpmullb_u16: case SVE::BI__builtin_sve_svpmullb_u64: case SVE::BI__builtin_sve_svpmullb_n_u16: case SVE::BI__builtin_sve_svpmullb_n_u64: return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair); case SVE::BI__builtin_sve_svdup_n_b8: case SVE::BI__builtin_sve_svdup_n_b16: case SVE::BI__builtin_sve_svdup_n_b32: case SVE::BI__builtin_sve_svdup_n_b64: { Value *CmpNE = Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType())); llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags); Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy); return EmitSVEPredicateCast(Dup, cast(Ty)); } case SVE::BI__builtin_sve_svdupq_n_b8: case SVE::BI__builtin_sve_svdupq_n_b16: case SVE::BI__builtin_sve_svdupq_n_b32: case SVE::BI__builtin_sve_svdupq_n_b64: case SVE::BI__builtin_sve_svdupq_n_u8: case SVE::BI__builtin_sve_svdupq_n_s8: case SVE::BI__builtin_sve_svdupq_n_u64: case SVE::BI__builtin_sve_svdupq_n_f64: case SVE::BI__builtin_sve_svdupq_n_s64: case SVE::BI__builtin_sve_svdupq_n_u16: case SVE::BI__builtin_sve_svdupq_n_f16: case SVE::BI__builtin_sve_svdupq_n_bf16: case SVE::BI__builtin_sve_svdupq_n_s16: case SVE::BI__builtin_sve_svdupq_n_u32: case SVE::BI__builtin_sve_svdupq_n_f32: case SVE::BI__builtin_sve_svdupq_n_s32: { // These builtins are implemented by storing each element to an array and using // ld1rq to materialize a vector. unsigned NumOpnds = Ops.size(); bool IsBoolTy = cast(Ty)->getElementType()->isIntegerTy(1); // For svdupq_n_b* the element type of is an integer of type 128/numelts, // so that the compare can use the width that is natural for the expected // number of predicate lanes. llvm::Type *EltTy = Ops[0]->getType(); if (IsBoolTy) EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds); Address Alloca = CreateTempAlloca(llvm::ArrayType::get(EltTy, NumOpnds), CharUnits::fromQuantity(16)); for (unsigned I = 0; I < NumOpnds; ++I) Builder.CreateDefaultAlignedStore( IsBoolTy ? Builder.CreateZExt(Ops[I], EltTy) : Ops[I], Builder.CreateGEP(Alloca.getPointer(), {Builder.getInt64(0), Builder.getInt64(I)})); SVETypeFlags TypeFlags(Builtin->TypeModifier); Value *Pred = EmitSVEAllTruePred(TypeFlags); llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy); Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_ld1rq, OverloadedTy); Value *Alloca0 = Builder.CreateGEP( Alloca.getPointer(), {Builder.getInt64(0), Builder.getInt64(0)}); Value *LD1RQ = Builder.CreateCall(F, {Pred, Alloca0}); if (!IsBoolTy) return LD1RQ; // For svdupq_n_b* we need to add an additional 'cmpne' with '0'. F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne : Intrinsic::aarch64_sve_cmpne_wide, OverloadedTy); Value *Call = Builder.CreateCall(F, {Pred, LD1RQ, EmitSVEDupX(Builder.getInt64(0))}); return EmitSVEPredicateCast(Call, cast(Ty)); } case SVE::BI__builtin_sve_svpfalse_b: return ConstantInt::getFalse(Ty); case SVE::BI__builtin_sve_svlen_bf16: case SVE::BI__builtin_sve_svlen_f16: case SVE::BI__builtin_sve_svlen_f32: case SVE::BI__builtin_sve_svlen_f64: case SVE::BI__builtin_sve_svlen_s8: case SVE::BI__builtin_sve_svlen_s16: case SVE::BI__builtin_sve_svlen_s32: case SVE::BI__builtin_sve_svlen_s64: case SVE::BI__builtin_sve_svlen_u8: case SVE::BI__builtin_sve_svlen_u16: case SVE::BI__builtin_sve_svlen_u32: case SVE::BI__builtin_sve_svlen_u64: { SVETypeFlags TF(Builtin->TypeModifier); auto VTy = cast(getSVEType(TF)); auto NumEls = llvm::ConstantInt::get(Ty, VTy->getElementCount().Min); Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty); return Builder.CreateMul(NumEls, Builder.CreateCall(F)); } case SVE::BI__builtin_sve_svtbl2_u8: case SVE::BI__builtin_sve_svtbl2_s8: case SVE::BI__builtin_sve_svtbl2_u16: case SVE::BI__builtin_sve_svtbl2_s16: case SVE::BI__builtin_sve_svtbl2_u32: case SVE::BI__builtin_sve_svtbl2_s32: case SVE::BI__builtin_sve_svtbl2_u64: case SVE::BI__builtin_sve_svtbl2_s64: case SVE::BI__builtin_sve_svtbl2_f16: case SVE::BI__builtin_sve_svtbl2_bf16: case SVE::BI__builtin_sve_svtbl2_f32: case SVE::BI__builtin_sve_svtbl2_f64: { SVETypeFlags TF(Builtin->TypeModifier); auto VTy = cast(getSVEType(TF)); auto TupleTy = llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * 2); Function *FExtr = CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)}); Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)}); Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy); return Builder.CreateCall(F, {V0, V1, Ops[1]}); } } /// Should not happen return nullptr; } Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E, llvm::Triple::ArchType Arch) { if (BuiltinID >= AArch64::FirstSVEBuiltin && BuiltinID <= AArch64::LastSVEBuiltin) return EmitAArch64SVEBuiltinExpr(BuiltinID, E); unsigned HintID = static_cast(-1); switch (BuiltinID) { default: break; case AArch64::BI__builtin_arm_nop: HintID = 0; break; case AArch64::BI__builtin_arm_yield: case AArch64::BI__yield: HintID = 1; break; case AArch64::BI__builtin_arm_wfe: case AArch64::BI__wfe: HintID = 2; break; case AArch64::BI__builtin_arm_wfi: case AArch64::BI__wfi: HintID = 3; break; case AArch64::BI__builtin_arm_sev: case AArch64::BI__sev: HintID = 4; break; case AArch64::BI__builtin_arm_sevl: case AArch64::BI__sevl: HintID = 5; break; } if (HintID != static_cast(-1)) { Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); } if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { Value *Address = EmitScalarExpr(E->getArg(0)); Value *RW = EmitScalarExpr(E->getArg(1)); Value *CacheLevel = EmitScalarExpr(E->getArg(2)); Value *RetentionPolicy = EmitScalarExpr(E->getArg(3)); Value *IsData = EmitScalarExpr(E->getArg(4)); Value *Locality = nullptr; if (cast(RetentionPolicy)->isZero()) { // Temporal fetch, needs to convert cache level to locality. Locality = llvm::ConstantInt::get(Int32Ty, -cast(CacheLevel)->getValue() + 3); } else { // Streaming fetch. Locality = llvm::ConstantInt::get(Int32Ty, 0); } // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify // PLDL3STRM or PLDL2STRM. Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); return Builder.CreateCall(F, {Address, RW, Locality, IsData}); } if (BuiltinID == AArch64::BI__builtin_arm_rbit) { assert((getContext().getTypeSize(E->getType()) == 32) && "rbit of unusual size!"); llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); } if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { assert((getContext().getTypeSize(E->getType()) == 64) && "rbit of unusual size!"); llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); } if (BuiltinID == AArch64::BI__builtin_arm_cls) { llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg, "cls"); } if (BuiltinID == AArch64::BI__builtin_arm_cls64) { llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg, "cls"); } if (BuiltinID == AArch64::BI__builtin_arm_jcvt) { assert((getContext().getTypeSize(E->getType()) == 32) && "__jcvt of unusual size!"); llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg); } if (BuiltinID == AArch64::BI__clear_cache) { assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); const FunctionDecl *FD = E->getDirectCallee(); Value *Ops[2]; for (unsigned i = 0; i < 2; i++) Ops[i] = EmitScalarExpr(E->getArg(i)); llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); llvm::FunctionType *FTy = cast(Ty); StringRef Name = FD->getName(); return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); } if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex) && getContext().getTypeSize(E->getType()) == 128) { Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp); Value *LdPtr = EmitScalarExpr(E->getArg(0)); Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), "ldxp"); Value *Val0 = Builder.CreateExtractValue(Val, 1); Value *Val1 = Builder.CreateExtractValue(Val, 0); llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); Val0 = Builder.CreateZExt(Val0, Int128Ty); Val1 = Builder.CreateZExt(Val1, Int128Ty); Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); Val = Builder.CreateOr(Val, Val1); return Builder.CreateBitCast(Val, ConvertType(E->getType())); } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex) { Value *LoadAddr = EmitScalarExpr(E->getArg(0)); QualType Ty = E->getType(); llvm::Type *RealResTy = ConvertType(Ty); llvm::Type *PtrTy = llvm::IntegerType::get( getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr, PtrTy); Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); if (RealResTy->isPointerTy()) return Builder.CreateIntToPtr(Val, RealResTy); llvm::Type *IntResTy = llvm::IntegerType::get( getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); Val = Builder.CreateTruncOrBitCast(Val, IntResTy); return Builder.CreateBitCast(Val, RealResTy); } if ((BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && getContext().getTypeSize(E->getArg(0)->getType()) == 128) { Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp); llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); Address Tmp = CreateMemTemp(E->getArg(0)->getType()); EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy)); llvm::Value *Val = Builder.CreateLoad(Tmp); Value *Arg0 = Builder.CreateExtractValue(Val, 0); Value *Arg1 = Builder.CreateExtractValue(Val, 1); Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); } if (BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) { Value *StoreVal = EmitScalarExpr(E->getArg(0)); Value *StoreAddr = EmitScalarExpr(E->getArg(1)); QualType Ty = E->getArg(0)->getType(); llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), getContext().getTypeSize(Ty)); StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); if (StoreVal->getType()->isPointerTy()) StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); else { llvm::Type *IntTy = llvm::IntegerType::get( getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); StoreVal = Builder.CreateBitCast(StoreVal, IntTy); StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); } Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr, StoreAddr->getType()); return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); } if (BuiltinID == AArch64::BI__getReg) { Expr::EvalResult Result; if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) llvm_unreachable("Sema will ensure that the parameter is constant"); llvm::APSInt Value = Result.Val.getInt(); LLVMContext &Context = CGM.getLLVMContext(); std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10); llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)}; llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty}); return Builder.CreateCall(F, Metadata); } if (BuiltinID == AArch64::BI__builtin_arm_clrex) { Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); return Builder.CreateCall(F); } if (BuiltinID == AArch64::BI_ReadWriteBarrier) return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, llvm::SyncScope::SingleThread); // CRC32 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; switch (BuiltinID) { case AArch64::BI__builtin_arm_crc32b: CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; case AArch64::BI__builtin_arm_crc32cb: CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; case AArch64::BI__builtin_arm_crc32h: CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; case AArch64::BI__builtin_arm_crc32ch: CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; case AArch64::BI__builtin_arm_crc32w: CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; case AArch64::BI__builtin_arm_crc32cw: CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; case AArch64::BI__builtin_arm_crc32d: CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; case AArch64::BI__builtin_arm_crc32cd: CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; } if (CRCIntrinsicID != Intrinsic::not_intrinsic) { Value *Arg0 = EmitScalarExpr(E->getArg(0)); Value *Arg1 = EmitScalarExpr(E->getArg(1)); Function *F = CGM.getIntrinsic(CRCIntrinsicID); llvm::Type *DataTy = F->getFunctionType()->getParamType(1); Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); return Builder.CreateCall(F, {Arg0, Arg1}); } // Memory Tagging Extensions (MTE) Intrinsics Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic; switch (BuiltinID) { case AArch64::BI__builtin_arm_irg: MTEIntrinsicID = Intrinsic::aarch64_irg; break; case AArch64::BI__builtin_arm_addg: MTEIntrinsicID = Intrinsic::aarch64_addg; break; case AArch64::BI__builtin_arm_gmi: MTEIntrinsicID = Intrinsic::aarch64_gmi; break; case AArch64::BI__builtin_arm_ldg: MTEIntrinsicID = Intrinsic::aarch64_ldg; break; case AArch64::BI__builtin_arm_stg: MTEIntrinsicID = Intrinsic::aarch64_stg; break; case AArch64::BI__builtin_arm_subp: MTEIntrinsicID = Intrinsic::aarch64_subp; break; } if (MTEIntrinsicID != Intrinsic::not_intrinsic) { llvm::Type *T = ConvertType(E->getType()); if (MTEIntrinsicID == Intrinsic::aarch64_irg) { Value *Pointer = EmitScalarExpr(E->getArg(0)); Value *Mask = EmitScalarExpr(E->getArg(1)); Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); Mask = Builder.CreateZExt(Mask, Int64Ty); Value *RV = Builder.CreateCall( CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask}); return Builder.CreatePointerCast(RV, T); } if (MTEIntrinsicID == Intrinsic::aarch64_addg) { Value *Pointer = EmitScalarExpr(E->getArg(0)); Value *TagOffset = EmitScalarExpr(E->getArg(1)); Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); TagOffset = Builder.CreateZExt(TagOffset, Int64Ty); Value *RV = Builder.CreateCall( CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset}); return Builder.CreatePointerCast(RV, T); } if (MTEIntrinsicID == Intrinsic::aarch64_gmi) { Value *Pointer = EmitScalarExpr(E->getArg(0)); Value *ExcludedMask = EmitScalarExpr(E->getArg(1)); ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty); Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); return Builder.CreateCall( CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask}); } // Although it is possible to supply a different return // address (first arg) to this intrinsic, for now we set // return address same as input address. if (MTEIntrinsicID == Intrinsic::aarch64_ldg) { Value *TagAddress = EmitScalarExpr(E->getArg(0)); TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); Value *RV = Builder.CreateCall( CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); return Builder.CreatePointerCast(RV, T); } // Although it is possible to supply a different tag (to set) // to this intrinsic (as first arg), for now we supply // the tag that is in input address arg (common use case). if (MTEIntrinsicID == Intrinsic::aarch64_stg) { Value *TagAddress = EmitScalarExpr(E->getArg(0)); TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); return Builder.CreateCall( CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); } if (MTEIntrinsicID == Intrinsic::aarch64_subp) { Value *PointerA = EmitScalarExpr(E->getArg(0)); Value *PointerB = EmitScalarExpr(E->getArg(1)); PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy); PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy); return Builder.CreateCall( CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB}); } } if (BuiltinID == AArch64::BI__builtin_arm_rsr || BuiltinID == AArch64::BI__builtin_arm_rsr64 || BuiltinID == AArch64::BI__builtin_arm_rsrp || BuiltinID == AArch64::BI__builtin_arm_wsr || BuiltinID == AArch64::BI__builtin_arm_wsr64 || BuiltinID == AArch64::BI__builtin_arm_wsrp) { SpecialRegisterAccessKind AccessKind = Write; if (BuiltinID == AArch64::BI__builtin_arm_rsr || BuiltinID == AArch64::BI__builtin_arm_rsr64 || BuiltinID == AArch64::BI__builtin_arm_rsrp) AccessKind = VolatileRead; bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp || BuiltinID == AArch64::BI__builtin_arm_wsrp; bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr && BuiltinID != AArch64::BI__builtin_arm_wsr; llvm::Type *ValueType; llvm::Type *RegisterType = Int64Ty; if (IsPointerBuiltin) { ValueType = VoidPtrTy; } else if (Is64Bit) { ValueType = Int64Ty; } else { ValueType = Int32Ty; } return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, AccessKind); } if (BuiltinID == AArch64::BI_ReadStatusReg || BuiltinID == AArch64::BI_WriteStatusReg) { LLVMContext &Context = CGM.getLLVMContext(); unsigned SysReg = E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue(); std::string SysRegStr; llvm::raw_string_ostream(SysRegStr) << ((1 << 1) | ((SysReg >> 14) & 1)) << ":" << ((SysReg >> 11) & 7) << ":" << ((SysReg >> 7) & 15) << ":" << ((SysReg >> 3) & 15) << ":" << ( SysReg & 7); llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) }; llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); llvm::Type *RegisterType = Int64Ty; llvm::Type *Types[] = { RegisterType }; if (BuiltinID == AArch64::BI_ReadStatusReg) { llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); return Builder.CreateCall(F, Metadata); } llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1)); return Builder.CreateCall(F, { Metadata, ArgValue }); } if (BuiltinID == AArch64::BI_AddressOfReturnAddress) { llvm::Function *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); return Builder.CreateCall(F); } if (BuiltinID == AArch64::BI__builtin_sponentry) { llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy); return Builder.CreateCall(F); } // Find out if any arguments are required to be integer constant // expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); assert(Error == ASTContext::GE_None && "Should not codegen an error"); llvm::SmallVector Ops; Address PtrOp0 = Address::invalid(); for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { if (i == 0) { switch (BuiltinID) { case NEON::BI__builtin_neon_vld1_v: case NEON::BI__builtin_neon_vld1q_v: case NEON::BI__builtin_neon_vld1_dup_v: case NEON::BI__builtin_neon_vld1q_dup_v: case NEON::BI__builtin_neon_vld1_lane_v: case NEON::BI__builtin_neon_vld1q_lane_v: case NEON::BI__builtin_neon_vst1_v: case NEON::BI__builtin_neon_vst1q_v: case NEON::BI__builtin_neon_vst1_lane_v: case NEON::BI__builtin_neon_vst1q_lane_v: // Get the alignment for the argument in addition to the value; // we'll use it later. PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); Ops.push_back(PtrOp0.getPointer()); continue; } } if ((ICEArguments & (1 << i)) == 0) { Ops.push_back(EmitScalarExpr(E->getArg(i))); } else { // If this is required to be a constant, constant fold it so that we know // that the generated intrinsic gets a ConstantInt. llvm::APSInt Result; bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); } } auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap); const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); if (Builtin) { Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); assert(Result && "SISD intrinsic should have been handled"); return Result; } llvm::APSInt Result; const Expr *Arg = E->getArg(E->getNumArgs()-1); NeonTypeFlags Type(0); if (Arg->isIntegerConstantExpr(Result, getContext())) // Determine the type of this overloaded NEON intrinsic. Type = NeonTypeFlags(Result.getZExtValue()); bool usgn = Type.isUnsigned(); bool quad = Type.isQuad(); // Handle non-overloaded intrinsics first. switch (BuiltinID) { default: break; case NEON::BI__builtin_neon_vabsh_f16: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs"); case NEON::BI__builtin_neon_vldrq_p128: { llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0); Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); return Builder.CreateAlignedLoad(Int128Ty, Ptr, CharUnits::fromQuantity(16)); } case NEON::BI__builtin_neon_vstrq_p128: { llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); } case NEON::BI__builtin_neon_vcvts_u32_f32: case NEON::BI__builtin_neon_vcvtd_u64_f64: usgn = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vcvts_s32_f32: case NEON::BI__builtin_neon_vcvtd_s64_f64: { Ops.push_back(EmitScalarExpr(E->getArg(0))); bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; Ops[0] = Builder.CreateBitCast(Ops[0], FTy); if (usgn) return Builder.CreateFPToUI(Ops[0], InTy); return Builder.CreateFPToSI(Ops[0], InTy); } case NEON::BI__builtin_neon_vcvts_f32_u32: case NEON::BI__builtin_neon_vcvtd_f64_u64: usgn = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vcvts_f32_s32: case NEON::BI__builtin_neon_vcvtd_f64_s64: { Ops.push_back(EmitScalarExpr(E->getArg(0))); bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; Ops[0] = Builder.CreateBitCast(Ops[0], InTy); if (usgn) return Builder.CreateUIToFP(Ops[0], FTy); return Builder.CreateSIToFP(Ops[0], FTy); } case NEON::BI__builtin_neon_vcvth_f16_u16: case NEON::BI__builtin_neon_vcvth_f16_u32: case NEON::BI__builtin_neon_vcvth_f16_u64: usgn = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vcvth_f16_s16: case NEON::BI__builtin_neon_vcvth_f16_s32: case NEON::BI__builtin_neon_vcvth_f16_s64: { Ops.push_back(EmitScalarExpr(E->getArg(0))); llvm::Type *FTy = HalfTy; llvm::Type *InTy; if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64) InTy = Int64Ty; else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32) InTy = Int32Ty; else InTy = Int16Ty; Ops[0] = Builder.CreateBitCast(Ops[0], InTy); if (usgn) return Builder.CreateUIToFP(Ops[0], FTy); return Builder.CreateSIToFP(Ops[0], FTy); } case NEON::BI__builtin_neon_vcvth_u16_f16: usgn = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vcvth_s16_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); if (usgn) return Builder.CreateFPToUI(Ops[0], Int16Ty); return Builder.CreateFPToSI(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vcvth_u32_f16: usgn = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vcvth_s32_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); if (usgn) return Builder.CreateFPToUI(Ops[0], Int32Ty); return Builder.CreateFPToSI(Ops[0], Int32Ty); } case NEON::BI__builtin_neon_vcvth_u64_f16: usgn = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vcvth_s64_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); if (usgn) return Builder.CreateFPToUI(Ops[0], Int64Ty); return Builder.CreateFPToSI(Ops[0], Int64Ty); } case NEON::BI__builtin_neon_vcvtah_u16_f16: case NEON::BI__builtin_neon_vcvtmh_u16_f16: case NEON::BI__builtin_neon_vcvtnh_u16_f16: case NEON::BI__builtin_neon_vcvtph_u16_f16: case NEON::BI__builtin_neon_vcvtah_s16_f16: case NEON::BI__builtin_neon_vcvtmh_s16_f16: case NEON::BI__builtin_neon_vcvtnh_s16_f16: case NEON::BI__builtin_neon_vcvtph_s16_f16: { unsigned Int; llvm::Type* InTy = Int32Ty; llvm::Type* FTy = HalfTy; llvm::Type *Tys[2] = {InTy, FTy}; Ops.push_back(EmitScalarExpr(E->getArg(0))); switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vcvtah_u16_f16: Int = Intrinsic::aarch64_neon_fcvtau; break; case NEON::BI__builtin_neon_vcvtmh_u16_f16: Int = Intrinsic::aarch64_neon_fcvtmu; break; case NEON::BI__builtin_neon_vcvtnh_u16_f16: Int = Intrinsic::aarch64_neon_fcvtnu; break; case NEON::BI__builtin_neon_vcvtph_u16_f16: Int = Intrinsic::aarch64_neon_fcvtpu; break; case NEON::BI__builtin_neon_vcvtah_s16_f16: Int = Intrinsic::aarch64_neon_fcvtas; break; case NEON::BI__builtin_neon_vcvtmh_s16_f16: Int = Intrinsic::aarch64_neon_fcvtms; break; case NEON::BI__builtin_neon_vcvtnh_s16_f16: Int = Intrinsic::aarch64_neon_fcvtns; break; case NEON::BI__builtin_neon_vcvtph_s16_f16: Int = Intrinsic::aarch64_neon_fcvtps; break; } Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vcaleh_f16: case NEON::BI__builtin_neon_vcalth_f16: case NEON::BI__builtin_neon_vcageh_f16: case NEON::BI__builtin_neon_vcagth_f16: { unsigned Int; llvm::Type* InTy = Int32Ty; llvm::Type* FTy = HalfTy; llvm::Type *Tys[2] = {InTy, FTy}; Ops.push_back(EmitScalarExpr(E->getArg(1))); switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vcageh_f16: Int = Intrinsic::aarch64_neon_facge; break; case NEON::BI__builtin_neon_vcagth_f16: Int = Intrinsic::aarch64_neon_facgt; break; case NEON::BI__builtin_neon_vcaleh_f16: Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break; case NEON::BI__builtin_neon_vcalth_f16: Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break; } Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vcvth_n_s16_f16: case NEON::BI__builtin_neon_vcvth_n_u16_f16: { unsigned Int; llvm::Type* InTy = Int32Ty; llvm::Type* FTy = HalfTy; llvm::Type *Tys[2] = {InTy, FTy}; Ops.push_back(EmitScalarExpr(E->getArg(1))); switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vcvth_n_s16_f16: Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break; case NEON::BI__builtin_neon_vcvth_n_u16_f16: Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break; } Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vcvth_n_f16_s16: case NEON::BI__builtin_neon_vcvth_n_f16_u16: { unsigned Int; llvm::Type* FTy = HalfTy; llvm::Type* InTy = Int32Ty; llvm::Type *Tys[2] = {FTy, InTy}; Ops.push_back(EmitScalarExpr(E->getArg(1))); switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vcvth_n_f16_s16: Int = Intrinsic::aarch64_neon_vcvtfxs2fp; Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext"); break; case NEON::BI__builtin_neon_vcvth_n_f16_u16: Int = Intrinsic::aarch64_neon_vcvtfxu2fp; Ops[0] = Builder.CreateZExt(Ops[0], InTy); break; } return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); } case NEON::BI__builtin_neon_vpaddd_s64: { auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2); Value *Vec = EmitScalarExpr(E->getArg(0)); // The vector is v2f64, so make sure it's bitcast to that. Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); // Pairwise addition of a v2f64 into a scalar f64. return Builder.CreateAdd(Op0, Op1, "vpaddd"); } case NEON::BI__builtin_neon_vpaddd_f64: { auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2); Value *Vec = EmitScalarExpr(E->getArg(0)); // The vector is v2f64, so make sure it's bitcast to that. Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); // Pairwise addition of a v2f64 into a scalar f64. return Builder.CreateFAdd(Op0, Op1, "vpaddd"); } case NEON::BI__builtin_neon_vpadds_f32: { auto *Ty = llvm::FixedVectorType::get(FloatTy, 2); Value *Vec = EmitScalarExpr(E->getArg(0)); // The vector is v2f32, so make sure it's bitcast to that. Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); // Pairwise addition of a v2f32 into a scalar f32. return Builder.CreateFAdd(Op0, Op1, "vpaddd"); } case NEON::BI__builtin_neon_vceqzd_s64: case NEON::BI__builtin_neon_vceqzd_f64: case NEON::BI__builtin_neon_vceqzs_f32: case NEON::BI__builtin_neon_vceqzh_f16: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitAArch64CompareBuiltinExpr( Ops[0], ConvertType(E->getCallReturnType(getContext())), ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); case NEON::BI__builtin_neon_vcgezd_s64: case NEON::BI__builtin_neon_vcgezd_f64: case NEON::BI__builtin_neon_vcgezs_f32: case NEON::BI__builtin_neon_vcgezh_f16: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitAArch64CompareBuiltinExpr( Ops[0], ConvertType(E->getCallReturnType(getContext())), ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); case NEON::BI__builtin_neon_vclezd_s64: case NEON::BI__builtin_neon_vclezd_f64: case NEON::BI__builtin_neon_vclezs_f32: case NEON::BI__builtin_neon_vclezh_f16: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitAArch64CompareBuiltinExpr( Ops[0], ConvertType(E->getCallReturnType(getContext())), ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); case NEON::BI__builtin_neon_vcgtzd_s64: case NEON::BI__builtin_neon_vcgtzd_f64: case NEON::BI__builtin_neon_vcgtzs_f32: case NEON::BI__builtin_neon_vcgtzh_f16: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitAArch64CompareBuiltinExpr( Ops[0], ConvertType(E->getCallReturnType(getContext())), ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); case NEON::BI__builtin_neon_vcltzd_s64: case NEON::BI__builtin_neon_vcltzd_f64: case NEON::BI__builtin_neon_vcltzs_f32: case NEON::BI__builtin_neon_vcltzh_f16: Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitAArch64CompareBuiltinExpr( Ops[0], ConvertType(E->getCallReturnType(getContext())), ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); case NEON::BI__builtin_neon_vceqzd_u64: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); Ops[0] = Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); } case NEON::BI__builtin_neon_vceqd_f64: case NEON::BI__builtin_neon_vcled_f64: case NEON::BI__builtin_neon_vcltd_f64: case NEON::BI__builtin_neon_vcged_f64: case NEON::BI__builtin_neon_vcgtd_f64: { llvm::CmpInst::Predicate P; switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; } Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); } case NEON::BI__builtin_neon_vceqs_f32: case NEON::BI__builtin_neon_vcles_f32: case NEON::BI__builtin_neon_vclts_f32: case NEON::BI__builtin_neon_vcges_f32: case NEON::BI__builtin_neon_vcgts_f32: { llvm::CmpInst::Predicate P; switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; } Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); } case NEON::BI__builtin_neon_vceqh_f16: case NEON::BI__builtin_neon_vcleh_f16: case NEON::BI__builtin_neon_vclth_f16: case NEON::BI__builtin_neon_vcgeh_f16: case NEON::BI__builtin_neon_vcgth_f16: { llvm::CmpInst::Predicate P; switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break; case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break; case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break; case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break; case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break; } Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy); Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd"); } case NEON::BI__builtin_neon_vceqd_s64: case NEON::BI__builtin_neon_vceqd_u64: case NEON::BI__builtin_neon_vcgtd_s64: case NEON::BI__builtin_neon_vcgtd_u64: case NEON::BI__builtin_neon_vcltd_s64: case NEON::BI__builtin_neon_vcltd_u64: case NEON::BI__builtin_neon_vcged_u64: case NEON::BI__builtin_neon_vcged_s64: case NEON::BI__builtin_neon_vcled_u64: case NEON::BI__builtin_neon_vcled_s64: { llvm::CmpInst::Predicate P; switch (BuiltinID) { default: llvm_unreachable("missing builtin ID in switch!"); case NEON::BI__builtin_neon_vceqd_s64: case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; } Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); } case NEON::BI__builtin_neon_vtstd_s64: case NEON::BI__builtin_neon_vtstd_u64: { Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], llvm::Constant::getNullValue(Int64Ty)); return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); } case NEON::BI__builtin_neon_vset_lane_i8: case NEON::BI__builtin_neon_vset_lane_i16: case NEON::BI__builtin_neon_vset_lane_i32: case NEON::BI__builtin_neon_vset_lane_i64: case NEON::BI__builtin_neon_vset_lane_bf16: case NEON::BI__builtin_neon_vset_lane_f32: case NEON::BI__builtin_neon_vsetq_lane_i8: case NEON::BI__builtin_neon_vsetq_lane_i16: case NEON::BI__builtin_neon_vsetq_lane_i32: case NEON::BI__builtin_neon_vsetq_lane_i64: case NEON::BI__builtin_neon_vsetq_lane_bf16: case NEON::BI__builtin_neon_vsetq_lane_f32: Ops.push_back(EmitScalarExpr(E->getArg(2))); return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); case NEON::BI__builtin_neon_vset_lane_f64: // The vector type needs a cast for the v1f64 variant. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1)); Ops.push_back(EmitScalarExpr(E->getArg(2))); return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); case NEON::BI__builtin_neon_vsetq_lane_f64: // The vector type needs a cast for the v2f64 variant. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2)); Ops.push_back(EmitScalarExpr(E->getArg(2))); return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); case NEON::BI__builtin_neon_vget_lane_i8: case NEON::BI__builtin_neon_vdupb_lane_i8: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vgetq_lane_i8: case NEON::BI__builtin_neon_vdupb_laneq_i8: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vget_lane_i16: case NEON::BI__builtin_neon_vduph_lane_i16: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vgetq_lane_i16: case NEON::BI__builtin_neon_vduph_laneq_i16: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vget_lane_i32: case NEON::BI__builtin_neon_vdups_lane_i32: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vdups_lane_f32: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vdups_lane"); case NEON::BI__builtin_neon_vgetq_lane_i32: case NEON::BI__builtin_neon_vdups_laneq_i32: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vget_lane_i64: case NEON::BI__builtin_neon_vdupd_lane_i64: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vdupd_lane_f64: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vdupd_lane"); case NEON::BI__builtin_neon_vgetq_lane_i64: case NEON::BI__builtin_neon_vdupd_laneq_i64: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vget_lane_f32: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vget_lane_f64: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); case NEON::BI__builtin_neon_vgetq_lane_f32: case NEON::BI__builtin_neon_vdups_laneq_f32: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vgetq_lane_f64: case NEON::BI__builtin_neon_vdupd_laneq_f64: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2)); return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); case NEON::BI__builtin_neon_vaddh_f16: Ops.push_back(EmitScalarExpr(E->getArg(1))); return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh"); case NEON::BI__builtin_neon_vsubh_f16: Ops.push_back(EmitScalarExpr(E->getArg(1))); return Builder.CreateFSub(Ops[0], Ops[1], "vsubh"); case NEON::BI__builtin_neon_vmulh_f16: Ops.push_back(EmitScalarExpr(E->getArg(1))); return Builder.CreateFMul(Ops[0], Ops[1], "vmulh"); case NEON::BI__builtin_neon_vdivh_f16: Ops.push_back(EmitScalarExpr(E->getArg(1))); return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh"); case NEON::BI__builtin_neon_vfmah_f16: // NEON intrinsic puts accumulator first, unlike the LLVM fma. return emitCallMaybeConstrainedFPBuiltin( *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]}); case NEON::BI__builtin_neon_vfmsh_f16: { // FIXME: This should be an fneg instruction: Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy); Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh"); // NEON intrinsic puts accumulator first, unlike the LLVM fma. return emitCallMaybeConstrainedFPBuiltin( *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]}); } case NEON::BI__builtin_neon_vaddd_s64: case NEON::BI__builtin_neon_vaddd_u64: return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); case NEON::BI__builtin_neon_vsubd_s64: case NEON::BI__builtin_neon_vsubd_u64: return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); case NEON::BI__builtin_neon_vqdmlalh_s16: case NEON::BI__builtin_neon_vqdmlslh_s16: { SmallVector ProductOps; ProductOps.push_back(vectorWrapScalar16(Ops[1])); ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), ProductOps, "vqdmlXl"); Constant *CI = ConstantInt::get(SizeTy, 0); Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 ? Intrinsic::aarch64_neon_sqadd : Intrinsic::aarch64_neon_sqsub; return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); } case NEON::BI__builtin_neon_vqshlud_n_s64: { Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), Ops, "vqshlu_n"); } case NEON::BI__builtin_neon_vqshld_n_u64: case NEON::BI__builtin_neon_vqshld_n_s64: { unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 ? Intrinsic::aarch64_neon_uqshl : Intrinsic::aarch64_neon_sqshl; Ops.push_back(EmitScalarExpr(E->getArg(1))); Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); } case NEON::BI__builtin_neon_vrshrd_n_u64: case NEON::BI__builtin_neon_vrshrd_n_s64: { unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; Ops.push_back(EmitScalarExpr(E->getArg(1))); int SV = cast(Ops[1])->getSExtValue(); Ops[1] = ConstantInt::get(Int64Ty, -SV); return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); } case NEON::BI__builtin_neon_vrsrad_n_u64: case NEON::BI__builtin_neon_vrsrad_n_s64: { unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); } case NEON::BI__builtin_neon_vshld_n_s64: case NEON::BI__builtin_neon_vshld_n_u64: { llvm::ConstantInt *Amt = cast(EmitScalarExpr(E->getArg(1))); return Builder.CreateShl( Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); } case NEON::BI__builtin_neon_vshrd_n_s64: { llvm::ConstantInt *Amt = cast(EmitScalarExpr(E->getArg(1))); return Builder.CreateAShr( Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast(63), Amt->getZExtValue())), "shrd_n"); } case NEON::BI__builtin_neon_vshrd_n_u64: { llvm::ConstantInt *Amt = cast(EmitScalarExpr(E->getArg(1))); uint64_t ShiftAmt = Amt->getZExtValue(); // Right-shifting an unsigned value by its size yields 0. if (ShiftAmt == 64) return ConstantInt::get(Int64Ty, 0); return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), "shrd_n"); } case NEON::BI__builtin_neon_vsrad_n_s64: { llvm::ConstantInt *Amt = cast(EmitScalarExpr(E->getArg(2))); Ops[1] = Builder.CreateAShr( Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast(63), Amt->getZExtValue())), "shrd_n"); return Builder.CreateAdd(Ops[0], Ops[1]); } case NEON::BI__builtin_neon_vsrad_n_u64: { llvm::ConstantInt *Amt = cast(EmitScalarExpr(E->getArg(2))); uint64_t ShiftAmt = Amt->getZExtValue(); // Right-shifting an unsigned value by its size yields 0. // As Op + 0 = Op, return Ops[0] directly. if (ShiftAmt == 64) return Ops[0]; Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), "shrd_n"); return Builder.CreateAdd(Ops[0], Ops[1]); } case NEON::BI__builtin_neon_vqdmlalh_lane_s16: case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: case NEON::BI__builtin_neon_vqdmlslh_lane_s16: case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), "lane"); SmallVector ProductOps; ProductOps.push_back(vectorWrapScalar16(Ops[1])); ProductOps.push_back(vectorWrapScalar16(Ops[2])); auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), ProductOps, "vqdmlXl"); Constant *CI = ConstantInt::get(SizeTy, 0); Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); Ops.pop_back(); unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) ? Intrinsic::aarch64_neon_sqadd : Intrinsic::aarch64_neon_sqsub; return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); } case NEON::BI__builtin_neon_vqdmlals_s32: case NEON::BI__builtin_neon_vqdmlsls_s32: { SmallVector ProductOps; ProductOps.push_back(Ops[1]); ProductOps.push_back(EmitScalarExpr(E->getArg(2))); Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), ProductOps, "vqdmlXl"); unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 ? Intrinsic::aarch64_neon_sqadd : Intrinsic::aarch64_neon_sqsub; return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); } case NEON::BI__builtin_neon_vqdmlals_lane_s32: case NEON::BI__builtin_neon_vqdmlals_laneq_s32: case NEON::BI__builtin_neon_vqdmlsls_lane_s32: case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), "lane"); SmallVector ProductOps; ProductOps.push_back(Ops[1]); ProductOps.push_back(Ops[2]); Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), ProductOps, "vqdmlXl"); Ops.pop_back(); unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) ? Intrinsic::aarch64_neon_sqadd : Intrinsic::aarch64_neon_sqsub; return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); } case NEON::BI__builtin_neon_vget_lane_bf16: case NEON::BI__builtin_neon_vduph_lane_bf16: case NEON::BI__builtin_neon_vduph_lane_f16: { return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vget_lane"); } case NEON::BI__builtin_neon_vgetq_lane_bf16: case NEON::BI__builtin_neon_vduph_laneq_bf16: case NEON::BI__builtin_neon_vduph_laneq_f16: { return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), "vgetq_lane"); } case AArch64::BI_BitScanForward: case AArch64::BI_BitScanForward64: return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); case AArch64::BI_BitScanReverse: case AArch64::BI_BitScanReverse64: return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); case AArch64::BI_InterlockedAnd64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); case AArch64::BI_InterlockedExchange64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); case AArch64::BI_InterlockedExchangeAdd64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); case AArch64::BI_InterlockedExchangeSub64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); case AArch64::BI_InterlockedOr64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); case AArch64::BI_InterlockedXor64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); case AArch64::BI_InterlockedDecrement64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); case AArch64::BI_InterlockedIncrement64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); case AArch64::BI_InterlockedExchangeAdd8_acq: case AArch64::BI_InterlockedExchangeAdd16_acq: case AArch64::BI_InterlockedExchangeAdd_acq: case AArch64::BI_InterlockedExchangeAdd64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E); case AArch64::BI_InterlockedExchangeAdd8_rel: case AArch64::BI_InterlockedExchangeAdd16_rel: case AArch64::BI_InterlockedExchangeAdd_rel: case AArch64::BI_InterlockedExchangeAdd64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E); case AArch64::BI_InterlockedExchangeAdd8_nf: case AArch64::BI_InterlockedExchangeAdd16_nf: case AArch64::BI_InterlockedExchangeAdd_nf: case AArch64::BI_InterlockedExchangeAdd64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E); case AArch64::BI_InterlockedExchange8_acq: case AArch64::BI_InterlockedExchange16_acq: case AArch64::BI_InterlockedExchange_acq: case AArch64::BI_InterlockedExchange64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E); case AArch64::BI_InterlockedExchange8_rel: case AArch64::BI_InterlockedExchange16_rel: case AArch64::BI_InterlockedExchange_rel: case AArch64::BI_InterlockedExchange64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E); case AArch64::BI_InterlockedExchange8_nf: case AArch64::BI_InterlockedExchange16_nf: case AArch64::BI_InterlockedExchange_nf: case AArch64::BI_InterlockedExchange64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E); case AArch64::BI_InterlockedCompareExchange8_acq: case AArch64::BI_InterlockedCompareExchange16_acq: case AArch64::BI_InterlockedCompareExchange_acq: case AArch64::BI_InterlockedCompareExchange64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E); case AArch64::BI_InterlockedCompareExchange8_rel: case AArch64::BI_InterlockedCompareExchange16_rel: case AArch64::BI_InterlockedCompareExchange_rel: case AArch64::BI_InterlockedCompareExchange64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E); case AArch64::BI_InterlockedCompareExchange8_nf: case AArch64::BI_InterlockedCompareExchange16_nf: case AArch64::BI_InterlockedCompareExchange_nf: case AArch64::BI_InterlockedCompareExchange64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E); case AArch64::BI_InterlockedOr8_acq: case AArch64::BI_InterlockedOr16_acq: case AArch64::BI_InterlockedOr_acq: case AArch64::BI_InterlockedOr64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E); case AArch64::BI_InterlockedOr8_rel: case AArch64::BI_InterlockedOr16_rel: case AArch64::BI_InterlockedOr_rel: case AArch64::BI_InterlockedOr64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E); case AArch64::BI_InterlockedOr8_nf: case AArch64::BI_InterlockedOr16_nf: case AArch64::BI_InterlockedOr_nf: case AArch64::BI_InterlockedOr64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E); case AArch64::BI_InterlockedXor8_acq: case AArch64::BI_InterlockedXor16_acq: case AArch64::BI_InterlockedXor_acq: case AArch64::BI_InterlockedXor64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E); case AArch64::BI_InterlockedXor8_rel: case AArch64::BI_InterlockedXor16_rel: case AArch64::BI_InterlockedXor_rel: case AArch64::BI_InterlockedXor64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E); case AArch64::BI_InterlockedXor8_nf: case AArch64::BI_InterlockedXor16_nf: case AArch64::BI_InterlockedXor_nf: case AArch64::BI_InterlockedXor64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E); case AArch64::BI_InterlockedAnd8_acq: case AArch64::BI_InterlockedAnd16_acq: case AArch64::BI_InterlockedAnd_acq: case AArch64::BI_InterlockedAnd64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E); case AArch64::BI_InterlockedAnd8_rel: case AArch64::BI_InterlockedAnd16_rel: case AArch64::BI_InterlockedAnd_rel: case AArch64::BI_InterlockedAnd64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E); case AArch64::BI_InterlockedAnd8_nf: case AArch64::BI_InterlockedAnd16_nf: case AArch64::BI_InterlockedAnd_nf: case AArch64::BI_InterlockedAnd64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E); case AArch64::BI_InterlockedIncrement16_acq: case AArch64::BI_InterlockedIncrement_acq: case AArch64::BI_InterlockedIncrement64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E); case AArch64::BI_InterlockedIncrement16_rel: case AArch64::BI_InterlockedIncrement_rel: case AArch64::BI_InterlockedIncrement64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E); case AArch64::BI_InterlockedIncrement16_nf: case AArch64::BI_InterlockedIncrement_nf: case AArch64::BI_InterlockedIncrement64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E); case AArch64::BI_InterlockedDecrement16_acq: case AArch64::BI_InterlockedDecrement_acq: case AArch64::BI_InterlockedDecrement64_acq: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E); case AArch64::BI_InterlockedDecrement16_rel: case AArch64::BI_InterlockedDecrement_rel: case AArch64::BI_InterlockedDecrement64_rel: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E); case AArch64::BI_InterlockedDecrement16_nf: case AArch64::BI_InterlockedDecrement_nf: case AArch64::BI_InterlockedDecrement64_nf: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E); case AArch64::BI_InterlockedAdd: { Value *Arg0 = EmitScalarExpr(E->getArg(0)); Value *Arg1 = EmitScalarExpr(E->getArg(1)); AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( AtomicRMWInst::Add, Arg0, Arg1, llvm::AtomicOrdering::SequentiallyConsistent); return Builder.CreateAdd(RMWI, Arg1); } } llvm::VectorType *VTy = GetNeonType(this, Type); llvm::Type *Ty = VTy; if (!Ty) return nullptr; // Not all intrinsics handled by the common case work for AArch64 yet, so only // defer to common code if it's been added to our special map. Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, AArch64SIMDIntrinsicsProvenSorted); if (Builtin) return EmitCommonNeonBuiltinExpr( Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, Builtin->NameHint, Builtin->TypeModifier, E, Ops, /*never use addresses*/ Address::invalid(), Address::invalid(), Arch); if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch)) return V; unsigned Int; switch (BuiltinID) { default: return nullptr; case NEON::BI__builtin_neon_vbsl_v: case NEON::BI__builtin_neon_vbslq_v: { llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); return Builder.CreateBitCast(Ops[0], Ty); } case NEON::BI__builtin_neon_vfma_lane_v: case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types // The ARM builtins (and instructions) have the addend as the first // operand, but the 'fma' intrinsics have it last. Swap it around here. Value *Addend = Ops[0]; Value *Multiplicand = Ops[1]; Value *LaneSource = Ops[2]; Ops[0] = Multiplicand; Ops[1] = LaneSource; Ops[2] = Addend; // Now adjust things to handle the lane access. auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ? llvm::FixedVectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) : VTy; llvm::Constant *cst = cast(Ops[3]); Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst); Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); Ops.pop_back(); Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma : Intrinsic::fma; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); } case NEON::BI__builtin_neon_vfma_laneq_v: { llvm::VectorType *VTy = cast(Ty); // v1f64 fma should be mapped to Neon scalar f64 fma if (VTy && VTy->getElementType() == DoubleTy) { Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); llvm::Type *VTy = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true)); Ops[2] = Builder.CreateBitCast(Ops[2], VTy); Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); Value *Result; Result = emitCallMaybeConstrainedFPBuiltin( *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, DoubleTy, {Ops[1], Ops[2], Ops[0]}); return Builder.CreateBitCast(Result, Ty); } Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); auto *STy = llvm::FixedVectorType::get(VTy->getElementType(), VTy->getNumElements() * 2); Ops[2] = Builder.CreateBitCast(Ops[2], STy); Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cast(Ops[3])); Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); return emitCallMaybeConstrainedFPBuiltin( *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, {Ops[2], Ops[1], Ops[0]}); } case NEON::BI__builtin_neon_vfmaq_laneq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Ops[2] = EmitNeonSplat(Ops[2], cast(Ops[3])); return emitCallMaybeConstrainedFPBuiltin( *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, {Ops[2], Ops[1], Ops[0]}); } case NEON::BI__builtin_neon_vfmah_lane_f16: case NEON::BI__builtin_neon_vfmas_lane_f32: case NEON::BI__builtin_neon_vfmah_laneq_f16: case NEON::BI__builtin_neon_vfmas_laneq_f32: case NEON::BI__builtin_neon_vfmad_lane_f64: case NEON::BI__builtin_neon_vfmad_laneq_f64: { Ops.push_back(EmitScalarExpr(E->getArg(3))); llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); return emitCallMaybeConstrainedFPBuiltin( *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, {Ops[1], Ops[2], Ops[0]}); } case NEON::BI__builtin_neon_vmull_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); case NEON::BI__builtin_neon_vmax_v: case NEON::BI__builtin_neon_vmaxq_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); case NEON::BI__builtin_neon_vmaxh_f16: { Ops.push_back(EmitScalarExpr(E->getArg(1))); Int = Intrinsic::aarch64_neon_fmax; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax"); } case NEON::BI__builtin_neon_vmin_v: case NEON::BI__builtin_neon_vminq_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); case NEON::BI__builtin_neon_vminh_f16: { Ops.push_back(EmitScalarExpr(E->getArg(1))); Int = Intrinsic::aarch64_neon_fmin; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin"); } case NEON::BI__builtin_neon_vabd_v: case NEON::BI__builtin_neon_vabdq_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); case NEON::BI__builtin_neon_vpadal_v: case NEON::BI__builtin_neon_vpadalq_v: { unsigned ArgElts = VTy->getNumElements(); llvm::IntegerType *EltTy = cast(VTy->getElementType()); unsigned BitWidth = EltTy->getBitWidth(); auto *ArgTy = llvm::FixedVectorType::get( llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts); llvm::Type* Tys[2] = { VTy, ArgTy }; Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; SmallVector TmpOps; TmpOps.push_back(Ops[1]); Function *F = CGM.getIntrinsic(Int, Tys); llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); return Builder.CreateAdd(tmp, addend); } case NEON::BI__builtin_neon_vpmin_v: case NEON::BI__builtin_neon_vpminq_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); case NEON::BI__builtin_neon_vpmax_v: case NEON::BI__builtin_neon_vpmaxq_v: // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); case NEON::BI__builtin_neon_vminnm_v: case NEON::BI__builtin_neon_vminnmq_v: Int = Intrinsic::aarch64_neon_fminnm; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); case NEON::BI__builtin_neon_vminnmh_f16: Ops.push_back(EmitScalarExpr(E->getArg(1))); Int = Intrinsic::aarch64_neon_fminnm; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm"); case NEON::BI__builtin_neon_vmaxnm_v: case NEON::BI__builtin_neon_vmaxnmq_v: Int = Intrinsic::aarch64_neon_fmaxnm; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); case NEON::BI__builtin_neon_vmaxnmh_f16: Ops.push_back(EmitScalarExpr(E->getArg(1))); Int = Intrinsic::aarch64_neon_fmaxnm; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm"); case NEON::BI__builtin_neon_vrecpss_f32: { Ops.push_back(EmitScalarExpr(E->getArg(1))); return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), Ops, "vrecps"); } case NEON::BI__builtin_neon_vrecpsd_f64: Ops.push_back(EmitScalarExpr(E->getArg(1))); return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), Ops, "vrecps"); case NEON::BI__builtin_neon_vrecpsh_f16: Ops.push_back(EmitScalarExpr(E->getArg(1))); return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy), Ops, "vrecps"); case NEON::BI__builtin_neon_vqshrun_n_v: Int = Intrinsic::aarch64_neon_sqshrun; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); case NEON::BI__builtin_neon_vqrshrun_n_v: Int = Intrinsic::aarch64_neon_sqrshrun; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); case NEON::BI__builtin_neon_vqshrn_n_v: Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); case NEON::BI__builtin_neon_vrshrn_n_v: Int = Intrinsic::aarch64_neon_rshrn; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); case NEON::BI__builtin_neon_vqrshrn_n_v: Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); case NEON::BI__builtin_neon_vrndah_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_round : Intrinsic::round; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda"); } case NEON::BI__builtin_neon_vrnda_v: case NEON::BI__builtin_neon_vrndaq_v: { Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_round : Intrinsic::round; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); } case NEON::BI__builtin_neon_vrndih_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_nearbyint : Intrinsic::nearbyint; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi"); } case NEON::BI__builtin_neon_vrndmh_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_floor : Intrinsic::floor; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm"); } case NEON::BI__builtin_neon_vrndm_v: case NEON::BI__builtin_neon_vrndmq_v: { Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_floor : Intrinsic::floor; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); } case NEON::BI__builtin_neon_vrndnh_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Int = Intrinsic::aarch64_neon_frintn; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn"); } case NEON::BI__builtin_neon_vrndn_v: case NEON::BI__builtin_neon_vrndnq_v: { Int = Intrinsic::aarch64_neon_frintn; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); } case NEON::BI__builtin_neon_vrndns_f32: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Int = Intrinsic::aarch64_neon_frintn; return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn"); } case NEON::BI__builtin_neon_vrndph_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_ceil : Intrinsic::ceil; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp"); } case NEON::BI__builtin_neon_vrndp_v: case NEON::BI__builtin_neon_vrndpq_v: { Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_ceil : Intrinsic::ceil; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); } case NEON::BI__builtin_neon_vrndxh_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_rint : Intrinsic::rint; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx"); } case NEON::BI__builtin_neon_vrndx_v: case NEON::BI__builtin_neon_vrndxq_v: { Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_rint : Intrinsic::rint; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); } case NEON::BI__builtin_neon_vrndh_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_trunc : Intrinsic::trunc; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz"); } case NEON::BI__builtin_neon_vrnd_v: case NEON::BI__builtin_neon_vrndq_v: { Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_trunc : Intrinsic::trunc; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); } case NEON::BI__builtin_neon_vcvt_f64_v: case NEON::BI__builtin_neon_vcvtq_f64_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); case NEON::BI__builtin_neon_vcvt_f64_f32: { assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && "unexpected vcvt_f64_f32 builtin"); NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); } case NEON::BI__builtin_neon_vcvt_f32_f64: { assert(Type.getEltType() == NeonTypeFlags::Float32 && "unexpected vcvt_f32_f64 builtin"); NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); } case NEON::BI__builtin_neon_vcvt_s32_v: case NEON::BI__builtin_neon_vcvt_u32_v: case NEON::BI__builtin_neon_vcvt_s64_v: case NEON::BI__builtin_neon_vcvt_u64_v: case NEON::BI__builtin_neon_vcvt_s16_v: case NEON::BI__builtin_neon_vcvt_u16_v: case NEON::BI__builtin_neon_vcvtq_s32_v: case NEON::BI__builtin_neon_vcvtq_u32_v: case NEON::BI__builtin_neon_vcvtq_s64_v: case NEON::BI__builtin_neon_vcvtq_u64_v: case NEON::BI__builtin_neon_vcvtq_s16_v: case NEON::BI__builtin_neon_vcvtq_u16_v: { Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); if (usgn) return Builder.CreateFPToUI(Ops[0], Ty); return Builder.CreateFPToSI(Ops[0], Ty); } case NEON::BI__builtin_neon_vcvta_s16_v: case NEON::BI__builtin_neon_vcvta_u16_v: case NEON::BI__builtin_neon_vcvta_s32_v: case NEON::BI__builtin_neon_vcvtaq_s16_v: case NEON::BI__builtin_neon_vcvtaq_s32_v: case NEON::BI__builtin_neon_vcvta_u32_v: case NEON::BI__builtin_neon_vcvtaq_u16_v: case NEON::BI__builtin_neon_vcvtaq_u32_v: case NEON::BI__builtin_neon_vcvta_s64_v: case NEON::BI__builtin_neon_vcvtaq_s64_v: case NEON::BI__builtin_neon_vcvta_u64_v: case NEON::BI__builtin_neon_vcvtaq_u64_v: { Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); } case NEON::BI__builtin_neon_vcvtm_s16_v: case NEON::BI__builtin_neon_vcvtm_s32_v: case NEON::BI__builtin_neon_vcvtmq_s16_v: case NEON::BI__builtin_neon_vcvtmq_s32_v: case NEON::BI__builtin_neon_vcvtm_u16_v: case NEON::BI__builtin_neon_vcvtm_u32_v: case NEON::BI__builtin_neon_vcvtmq_u16_v: case NEON::BI__builtin_neon_vcvtmq_u32_v: case NEON::BI__builtin_neon_vcvtm_s64_v: case NEON::BI__builtin_neon_vcvtmq_s64_v: case NEON::BI__builtin_neon_vcvtm_u64_v: case NEON::BI__builtin_neon_vcvtmq_u64_v: { Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); } case NEON::BI__builtin_neon_vcvtn_s16_v: case NEON::BI__builtin_neon_vcvtn_s32_v: case NEON::BI__builtin_neon_vcvtnq_s16_v: case NEON::BI__builtin_neon_vcvtnq_s32_v: case NEON::BI__builtin_neon_vcvtn_u16_v: case NEON::BI__builtin_neon_vcvtn_u32_v: case NEON::BI__builtin_neon_vcvtnq_u16_v: case NEON::BI__builtin_neon_vcvtnq_u32_v: case NEON::BI__builtin_neon_vcvtn_s64_v: case NEON::BI__builtin_neon_vcvtnq_s64_v: case NEON::BI__builtin_neon_vcvtn_u64_v: case NEON::BI__builtin_neon_vcvtnq_u64_v: { Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); } case NEON::BI__builtin_neon_vcvtp_s16_v: case NEON::BI__builtin_neon_vcvtp_s32_v: case NEON::BI__builtin_neon_vcvtpq_s16_v: case NEON::BI__builtin_neon_vcvtpq_s32_v: case NEON::BI__builtin_neon_vcvtp_u16_v: case NEON::BI__builtin_neon_vcvtp_u32_v: case NEON::BI__builtin_neon_vcvtpq_u16_v: case NEON::BI__builtin_neon_vcvtpq_u32_v: case NEON::BI__builtin_neon_vcvtp_s64_v: case NEON::BI__builtin_neon_vcvtpq_s64_v: case NEON::BI__builtin_neon_vcvtp_u64_v: case NEON::BI__builtin_neon_vcvtpq_u64_v: { Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); } case NEON::BI__builtin_neon_vmulx_v: case NEON::BI__builtin_neon_vmulxq_v: { Int = Intrinsic::aarch64_neon_fmulx; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); } case NEON::BI__builtin_neon_vmulxh_lane_f16: case NEON::BI__builtin_neon_vmulxh_laneq_f16: { // vmulx_lane should be mapped to Neon scalar mulx after // extracting the scalar element Ops.push_back(EmitScalarExpr(E->getArg(2))); Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); Ops.pop_back(); Int = Intrinsic::aarch64_neon_fmulx; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx"); } case NEON::BI__builtin_neon_vmul_lane_v: case NEON::BI__builtin_neon_vmul_laneq_v: { // v1f64 vmul_lane should be mapped to Neon scalar mul lane bool Quad = false; if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) Quad = true; Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); llvm::Type *VTy = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); Ops[1] = Builder.CreateBitCast(Ops[1], VTy); Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); return Builder.CreateBitCast(Result, Ty); } case NEON::BI__builtin_neon_vnegd_s64: return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); case NEON::BI__builtin_neon_vnegh_f16: return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh"); case NEON::BI__builtin_neon_vpmaxnm_v: case NEON::BI__builtin_neon_vpmaxnmq_v: { Int = Intrinsic::aarch64_neon_fmaxnmp; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); } case NEON::BI__builtin_neon_vpminnm_v: case NEON::BI__builtin_neon_vpminnmq_v: { Int = Intrinsic::aarch64_neon_fminnmp; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); } case NEON::BI__builtin_neon_vsqrth_f16: { Ops.push_back(EmitScalarExpr(E->getArg(0))); Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_sqrt : Intrinsic::sqrt; return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt"); } case NEON::BI__builtin_neon_vsqrt_v: case NEON::BI__builtin_neon_vsqrtq_v: { Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_sqrt : Intrinsic::sqrt; Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); } case NEON::BI__builtin_neon_vrbit_v: case NEON::BI__builtin_neon_vrbitq_v: { Int = Intrinsic::aarch64_neon_rbit; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); } case NEON::BI__builtin_neon_vaddv_u8: // FIXME: These are handled by the AArch64 scalar code. usgn = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vaddv_s8: { Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vaddv_u16: usgn = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vaddv_s16: { Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vaddvq_u8: usgn = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vaddvq_s8: { Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vaddvq_u16: usgn = true; LLVM_FALLTHROUGH; case NEON::BI__builtin_neon_vaddvq_s16: { Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vmaxv_u8: { Int = Intrinsic::aarch64_neon_umaxv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vmaxv_u16: { Int = Intrinsic::aarch64_neon_umaxv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vmaxvq_u8: { Int = Intrinsic::aarch64_neon_umaxv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vmaxvq_u16: { Int = Intrinsic::aarch64_neon_umaxv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vmaxv_s8: { Int = Intrinsic::aarch64_neon_smaxv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vmaxv_s16: { Int = Intrinsic::aarch64_neon_smaxv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vmaxvq_s8: { Int = Intrinsic::aarch64_neon_smaxv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vmaxvq_s16: { Int = Intrinsic::aarch64_neon_smaxv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vmaxv_f16: { Int = Intrinsic::aarch64_neon_fmaxv; Ty = HalfTy; VTy = llvm::FixedVectorType::get(HalfTy, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], HalfTy); } case NEON::BI__builtin_neon_vmaxvq_f16: { Int = Intrinsic::aarch64_neon_fmaxv; Ty = HalfTy; VTy = llvm::FixedVectorType::get(HalfTy, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); return Builder.CreateTrunc(Ops[0], HalfTy); } case NEON::BI__builtin_neon_vminv_u8: { Int = Intrinsic::aarch64_neon_uminv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vminv_u16: { Int = Intrinsic::aarch64_neon_uminv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vminvq_u8: { Int = Intrinsic::aarch64_neon_uminv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vminvq_u16: { Int = Intrinsic::aarch64_neon_uminv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vminv_s8: { Int = Intrinsic::aarch64_neon_sminv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vminv_s16: { Int = Intrinsic::aarch64_neon_sminv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vminvq_s8: { Int = Intrinsic::aarch64_neon_sminv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int8Ty); } case NEON::BI__builtin_neon_vminvq_s16: { Int = Intrinsic::aarch64_neon_sminv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vminv_f16: { Int = Intrinsic::aarch64_neon_fminv; Ty = HalfTy; VTy = llvm::FixedVectorType::get(HalfTy, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], HalfTy); } case NEON::BI__builtin_neon_vminvq_f16: { Int = Intrinsic::aarch64_neon_fminv; Ty = HalfTy; VTy = llvm::FixedVectorType::get(HalfTy, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); return Builder.CreateTrunc(Ops[0], HalfTy); } case NEON::BI__builtin_neon_vmaxnmv_f16: { Int = Intrinsic::aarch64_neon_fmaxnmv; Ty = HalfTy; VTy = llvm::FixedVectorType::get(HalfTy, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); return Builder.CreateTrunc(Ops[0], HalfTy); } case NEON::BI__builtin_neon_vmaxnmvq_f16: { Int = Intrinsic::aarch64_neon_fmaxnmv; Ty = HalfTy; VTy = llvm::FixedVectorType::get(HalfTy, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); return Builder.CreateTrunc(Ops[0], HalfTy); } case NEON::BI__builtin_neon_vminnmv_f16: { Int = Intrinsic::aarch64_neon_fminnmv; Ty = HalfTy; VTy = llvm::FixedVectorType::get(HalfTy, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); return Builder.CreateTrunc(Ops[0], HalfTy); } case NEON::BI__builtin_neon_vminnmvq_f16: { Int = Intrinsic::aarch64_neon_fminnmv; Ty = HalfTy; VTy = llvm::FixedVectorType::get(HalfTy, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); return Builder.CreateTrunc(Ops[0], HalfTy); } case NEON::BI__builtin_neon_vmul_n_f64: { Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); return Builder.CreateFMul(Ops[0], RHS); } case NEON::BI__builtin_neon_vaddlv_u8: { Int = Intrinsic::aarch64_neon_uaddlv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vaddlv_u16: { Int = Intrinsic::aarch64_neon_uaddlv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); } case NEON::BI__builtin_neon_vaddlvq_u8: { Int = Intrinsic::aarch64_neon_uaddlv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vaddlvq_u16: { Int = Intrinsic::aarch64_neon_uaddlv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); } case NEON::BI__builtin_neon_vaddlv_s8: { Int = Intrinsic::aarch64_neon_saddlv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vaddlv_s16: { Int = Intrinsic::aarch64_neon_saddlv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 4); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); } case NEON::BI__builtin_neon_vaddlvq_s8: { Int = Intrinsic::aarch64_neon_saddlv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int8Ty, 16); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); return Builder.CreateTrunc(Ops[0], Int16Ty); } case NEON::BI__builtin_neon_vaddlvq_s16: { Int = Intrinsic::aarch64_neon_saddlv; Ty = Int32Ty; VTy = llvm::FixedVectorType::get(Int16Ty, 8); llvm::Type *Tys[2] = { Ty, VTy }; Ops.push_back(EmitScalarExpr(E->getArg(0))); return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); } case NEON::BI__builtin_neon_vsri_n_v: case NEON::BI__builtin_neon_vsriq_n_v: { Int = Intrinsic::aarch64_neon_vsri; llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); return EmitNeonCall(Intrin, Ops, "vsri_n"); } case NEON::BI__builtin_neon_vsli_n_v: case NEON::BI__builtin_neon_vsliq_n_v: { Int = Intrinsic::aarch64_neon_vsli; llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); return EmitNeonCall(Intrin, Ops, "vsli_n"); } case NEON::BI__builtin_neon_vsra_n_v: case NEON::BI__builtin_neon_vsraq_n_v: Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); return Builder.CreateAdd(Ops[0], Ops[1]); case NEON::BI__builtin_neon_vrsra_n_v: case NEON::BI__builtin_neon_vrsraq_n_v: { Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; SmallVector TmpOps; TmpOps.push_back(Ops[1]); TmpOps.push_back(Ops[2]); Function* F = CGM.getIntrinsic(Int, Ty); llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); Ops[0] = Builder.CreateBitCast(Ops[0], VTy); return Builder.CreateAdd(Ops[0], tmp); } case NEON::BI__builtin_neon_vld1_v: case NEON::BI__builtin_neon_vld1q_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment()); } case NEON::BI__builtin_neon_vst1_v: case NEON::BI__builtin_neon_vst1q_v: Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); Ops[1] = Builder.CreateBitCast(Ops[1], VTy); return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment()); case NEON::BI__builtin_neon_vld1_lane_v: case NEON::BI__builtin_neon_vld1q_lane_v: { Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ty = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], PtrOp0.getAlignment()); return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); } case NEON::BI__builtin_neon_vld1_dup_v: case NEON::BI__builtin_neon_vld1q_dup_v: { Value *V = UndefValue::get(Ty); Ty = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], PtrOp0.getAlignment()); llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); return EmitNeonSplat(Ops[0], CI); } case NEON::BI__builtin_neon_vst1_lane_v: case NEON::BI__builtin_neon_vst1q_lane_v: Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty), PtrOp0.getAlignment()); case NEON::BI__builtin_neon_vld2_v: case NEON::BI__builtin_neon_vld2q_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld3_v: case NEON::BI__builtin_neon_vld3q_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld4_v: case NEON::BI__builtin_neon_vld4q_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld2_dup_v: case NEON::BI__builtin_neon_vld2q_dup_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld3_dup_v: case NEON::BI__builtin_neon_vld3q_dup_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld4_dup_v: case NEON::BI__builtin_neon_vld4q_dup_v: { llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); Ops[1] = Builder.CreateBitCast(Ops[1], PTy); llvm::Type *Tys[2] = { VTy, PTy }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld2_lane_v: case NEON::BI__builtin_neon_vld2q_lane_v: { llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); Ops.push_back(Ops[1]); Ops.erase(Ops.begin()+1); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld3_lane_v: case NEON::BI__builtin_neon_vld3q_lane_v: { llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); Ops.push_back(Ops[1]); Ops.erase(Ops.begin()+1); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Ops[3] = Builder.CreateBitCast(Ops[3], Ty); Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vld4_lane_v: case NEON::BI__builtin_neon_vld4q_lane_v: { llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); Ops.push_back(Ops[1]); Ops.erase(Ops.begin()+1); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Ops[3] = Builder.CreateBitCast(Ops[3], Ty); Ops[4] = Builder.CreateBitCast(Ops[4], Ty); Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty); Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane"); Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); Ops[0] = Builder.CreateBitCast(Ops[0], Ty); return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); } case NEON::BI__builtin_neon_vst2_v: case NEON::BI__builtin_neon_vst2q_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst2_lane_v: case NEON::BI__builtin_neon_vst2q_lane_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst3_v: case NEON::BI__builtin_neon_vst3q_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst3_lane_v: case NEON::BI__builtin_neon_vst3q_lane_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst4_v: case NEON::BI__builtin_neon_vst4q_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), Ops, ""); } case NEON::BI__builtin_neon_vst4_lane_v: case NEON::BI__builtin_neon_vst4q_lane_v: { Ops.push_back(Ops[0]); Ops.erase(Ops.begin()); Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), Ops, ""); } case NEON::BI__builtin_neon_vtrn_v: case NEON::BI__builtin_neon_vtrnq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { Indices.push_back(i+vi); Indices.push_back(i+e+vi); } Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vuzp_v: case NEON::BI__builtin_neon_vuzpq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) Indices.push_back(2*i+vi); Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vzip_v: case NEON::BI__builtin_neon_vzipq_v: { Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); Ops[1] = Builder.CreateBitCast(Ops[1], Ty); Ops[2] = Builder.CreateBitCast(Ops[2], Ty); Value *SV = nullptr; for (unsigned vi = 0; vi != 2; ++vi) { SmallVector Indices; for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { Indices.push_back((i + vi*e) >> 1); Indices.push_back(((i + vi*e) >> 1)+e); } Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); SV = Builder.CreateDefaultAlignedStore(SV, Addr); } return SV; } case NEON::BI__builtin_neon_vqtbl1q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), Ops, "vtbl1"); } case NEON::BI__builtin_neon_vqtbl2q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), Ops, "vtbl2"); } case NEON::BI__builtin_neon_vqtbl3q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), Ops, "vtbl3"); } case NEON::BI__builtin_neon_vqtbl4q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), Ops, "vtbl4"); } case NEON::BI__builtin_neon_vqtbx1q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), Ops, "vtbx1"); } case NEON::BI__builtin_neon_vqtbx2q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), Ops, "vtbx2"); } case NEON::BI__builtin_neon_vqtbx3q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), Ops, "vtbx3"); } case NEON::BI__builtin_neon_vqtbx4q_v: { return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), Ops, "vtbx4"); } case NEON::BI__builtin_neon_vsqadd_v: case NEON::BI__builtin_neon_vsqaddq_v: { Int = Intrinsic::aarch64_neon_usqadd; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); } case NEON::BI__builtin_neon_vuqadd_v: case NEON::BI__builtin_neon_vuqaddq_v: { Int = Intrinsic::aarch64_neon_suqadd; return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); } } } Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { assert((BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id) && "unexpected BPF builtin"); switch (BuiltinID) { default: llvm_unreachable("Unexpected BPF builtin"); case BPF::BI__builtin_preserve_field_info: { const Expr *Arg = E->getArg(0); bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField; if (!getDebugInfo()) { CGM.Error(E->getExprLoc(), "using __builtin_preserve_field_info() without -g"); return IsBitField ? EmitLValue(Arg).getBitFieldPointer() : EmitLValue(Arg).getPointer(*this); } // Enable underlying preserve_*_access_index() generation. bool OldIsInPreservedAIRegion = IsInPreservedAIRegion; IsInPreservedAIRegion = true; Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer() : EmitLValue(Arg).getPointer(*this); IsInPreservedAIRegion = OldIsInPreservedAIRegion; ConstantInt *C = cast(EmitScalarExpr(E->getArg(1))); Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue()); // Built the IR for the preserve_field_info intrinsic. llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration( &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info, {FieldAddr->getType()}); return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind}); } case BPF::BI__builtin_btf_type_id: { Value *FieldVal = nullptr; // The LValue cannot be converted Value in order to be used as the function // parameter. If it is a structure, it is the "alloca" result of the LValue // (a pointer) is used in the parameter. If it is a simple type, // the value will be loaded from its corresponding "alloca" and used as // the parameter. In our case, let us just get a pointer of the LValue // since we do not really use the parameter. The purpose of parameter // is to prevent the generated IR llvm.bpf.btf.type.id intrinsic call, // which carries metadata, from being changed. bool IsLValue = E->getArg(0)->isLValue(); if (IsLValue) FieldVal = EmitLValue(E->getArg(0)).getPointer(*this); else FieldVal = EmitScalarExpr(E->getArg(0)); if (!getDebugInfo()) { CGM.Error(E->getExprLoc(), "using __builtin_btf_type_id() without -g"); return nullptr; } // Generate debuginfo type for the first argument. llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(E->getArg(0)->getType(), E->getArg(0)->getExprLoc()); ConstantInt *Flag = cast(EmitScalarExpr(E->getArg(1))); Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); // Built the IR for the btf_type_id intrinsic. // // In the above, we converted LValue argument to a pointer to LValue. // For example, the following // int v; // C1: __builtin_btf_type_id(v, flag); // will be converted to // L1: llvm.bpf.btf.type.id(&v, flag) // This makes it hard to differentiate from // C2: __builtin_btf_type_id(&v, flag); // to // L2: llvm.bpf.btf.type.id(&v, flag) // // If both C1 and C2 are present in the code, the llvm may later // on do CSE on L1 and L2, which will result in incorrect tagged types. // // The C1->L1 transformation only happens if the argument of // __builtin_btf_type_id() is a LValue. So Let us put whether // the argument is an LValue or not into generated IR. This should // prevent potential CSE from causing debuginfo type loss. // // The generated IR intrinsics will hence look like // L1: llvm.bpf.btf.type.id(&v, 1, flag) !di_type_for_{v}; // L2: llvm.bpf.btf.type.id(&v, 0, flag) !di_type_for_{&v}; Constant *CV = ConstantInt::get(IntTy, IsLValue); llvm::Function *FnBtfTypeId = llvm::Intrinsic::getDeclaration( &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {FieldVal->getType(), CV->getType()}); CallInst *Fn = Builder.CreateCall(FnBtfTypeId, {FieldVal, CV, FlagValue}); Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); return Fn; } } } llvm::Value *CodeGenFunction:: BuildVector(ArrayRef Ops) { assert((Ops.size() & (Ops.size() - 1)) == 0 && "Not a power-of-two sized vector!"); bool AllConstants = true; for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) AllConstants &= isa(Ops[i]); // If this is a constant vector, create a ConstantVector. if (AllConstants) { SmallVector CstOps; for (unsigned i = 0, e = Ops.size(); i != e; ++i) CstOps.push_back(cast(Ops[i])); return llvm::ConstantVector::get(CstOps); } // Otherwise, insertelement the values to build the vector. Value *Result = llvm::UndefValue::get( llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size())); for (unsigned i = 0, e = Ops.size(); i != e; ++i) Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); return Result; } // Convert the mask from an integer type to a vector of i1. static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask, unsigned NumElts) { auto *MaskTy = llvm::FixedVectorType::get( CGF.Builder.getInt1Ty(), cast(Mask->getType())->getBitWidth()); Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy); // If we have less than 8 elements, then the starting mask was an i8 and // we need to extract down to the right number of elements. if (NumElts < 8) { int Indices[4]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i; MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec, makeArrayRef(Indices, NumElts), "extract"); } return MaskVec; } static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef Ops, Align Alignment) { // Cast the pointer to right type. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); Value *MaskVec = getMaskVecValue( CGF, Ops[2], cast(Ops[1]->getType())->getNumElements()); return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec); } static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef Ops, Align Alignment) { // Cast the pointer to right type. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ops[1]->getType())); Value *MaskVec = getMaskVecValue( CGF, Ops[2], cast(Ops[1]->getType())->getNumElements()); return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]); } static Value *EmitX86ExpandLoad(CodeGenFunction &CGF, ArrayRef Ops) { auto *ResultTy = cast(Ops[1]->getType()); llvm::Type *PtrTy = ResultTy->getElementType(); // Cast the pointer to element type. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(PtrTy)); Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload, ResultTy); return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] }); } static Value *EmitX86CompressExpand(CodeGenFunction &CGF, ArrayRef Ops, bool IsCompress) { auto *ResultTy = cast(Ops[1]->getType()); Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress : Intrinsic::x86_avx512_mask_expand; llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy); return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec }); } static Value *EmitX86CompressStore(CodeGenFunction &CGF, ArrayRef Ops) { auto *ResultTy = cast(Ops[1]->getType()); llvm::Type *PtrTy = ResultTy->getElementType(); // Cast the pointer to element type. Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(PtrTy)); Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore, ResultTy); return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec }); } static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc, ArrayRef Ops, bool InvertLHS = false) { unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts); Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts); if (InvertLHS) LHS = CGF.Builder.CreateNot(LHS); return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS), Ops[0]->getType()); } static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1, Value *Amt, bool IsRight) { llvm::Type *Ty = Op0->getType(); // Amount may be scalar immediate, in which case create a splat vector. // Funnel shifts amounts are treated as modulo and types are all power-of-2 so // we only care about the lowest log2 bits anyway. if (Amt->getType() != Ty) { unsigned NumElts = cast(Ty)->getNumElements(); Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false); Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt); } unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl; Function *F = CGF.CGM.getIntrinsic(IID, Ty); return CGF.Builder.CreateCall(F, {Op0, Op1, Amt}); } static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef Ops, bool IsSigned) { Value *Op0 = Ops[0]; Value *Op1 = Ops[1]; llvm::Type *Ty = Op0->getType(); uint64_t Imm = cast(Ops[2])->getZExtValue() & 0x7; CmpInst::Predicate Pred; switch (Imm) { case 0x0: Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; case 0x1: Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; case 0x2: Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; case 0x3: Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; case 0x4: Pred = ICmpInst::ICMP_EQ; break; case 0x5: Pred = ICmpInst::ICMP_NE; break; case 0x6: return llvm::Constant::getNullValue(Ty); // FALSE case 0x7: return llvm::Constant::getAllOnesValue(Ty); // TRUE default: llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate"); } Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1); Value *Res = CGF.Builder.CreateSExt(Cmp, Ty); return Res; } static Value *EmitX86Select(CodeGenFunction &CGF, Value *Mask, Value *Op0, Value *Op1) { // If the mask is all ones just return first argument. if (const auto *C = dyn_cast(Mask)) if (C->isAllOnesValue()) return Op0; Mask = getMaskVecValue( CGF, Mask, cast(Op0->getType())->getNumElements()); return CGF.Builder.CreateSelect(Mask, Op0, Op1); } static Value *EmitX86ScalarSelect(CodeGenFunction &CGF, Value *Mask, Value *Op0, Value *Op1) { // If the mask is all ones just return first argument. if (const auto *C = dyn_cast(Mask)) if (C->isAllOnesValue()) return Op0; auto *MaskTy = llvm::FixedVectorType::get( CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth()); Mask = CGF.Builder.CreateBitCast(Mask, MaskTy); Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0); return CGF.Builder.CreateSelect(Mask, Op0, Op1); } static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp, unsigned NumElts, Value *MaskIn) { if (MaskIn) { const auto *C = dyn_cast(MaskIn); if (!C || !C->isAllOnesValue()) Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts)); } if (NumElts < 8) { int Indices[8]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i; for (unsigned i = NumElts; i != 8; ++i) Indices[i] = i % NumElts + NumElts; Cmp = CGF.Builder.CreateShuffleVector( Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices); } return CGF.Builder.CreateBitCast(Cmp, IntegerType::get(CGF.getLLVMContext(), std::max(NumElts, 8U))); } static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC, bool Signed, ArrayRef Ops) { assert((Ops.size() == 2 || Ops.size() == 4) && "Unexpected number of arguments"); unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); Value *Cmp; if (CC == 3) { Cmp = Constant::getNullValue( llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); } else if (CC == 7) { Cmp = Constant::getAllOnesValue( llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); } else { ICmpInst::Predicate Pred; switch (CC) { default: llvm_unreachable("Unknown condition code"); case 0: Pred = ICmpInst::ICMP_EQ; break; case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; case 4: Pred = ICmpInst::ICMP_NE; break; case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; } Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); } Value *MaskIn = nullptr; if (Ops.size() == 4) MaskIn = Ops[3]; return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn); } static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) { Value *Zero = Constant::getNullValue(In->getType()); return EmitX86MaskedCompare(CGF, 1, true, { In, Zero }); } static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, ArrayRef Ops, bool IsSigned) { unsigned Rnd = cast(Ops[3])->getZExtValue(); llvm::Type *Ty = Ops[1]->getType(); Value *Res; if (Rnd != 4) { Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round : Intrinsic::x86_avx512_uitofp_round; Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() }); Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] }); } else { Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty) : CGF.Builder.CreateUIToFP(Ops[0], Ty); } return EmitX86Select(CGF, Ops[2], Res, Ops[1]); } static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef Ops) { llvm::Type *Ty = Ops[0]->getType(); Value *Zero = llvm::Constant::getNullValue(Ty); Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]); Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero); Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub); return Res; } static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred, ArrayRef Ops) { Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]); assert(Ops.size() == 2); return Res; } // Lowers X86 FMA intrinsics to IR. static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef Ops, unsigned BuiltinID, bool IsAddSub) { bool Subtract = false; Intrinsic::ID IID = Intrinsic::not_intrinsic; switch (BuiltinID) { default: break; case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: Subtract = true; LLVM_FALLTHROUGH; case clang::X86::BI__builtin_ia32_vfmaddps512_mask: case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break; case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: Subtract = true; LLVM_FALLTHROUGH; case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break; case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: Subtract = true; LLVM_FALLTHROUGH; case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512; break; case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: Subtract = true; LLVM_FALLTHROUGH; case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512; break; } Value *A = Ops[0]; Value *B = Ops[1]; Value *C = Ops[2]; if (Subtract) C = CGF.Builder.CreateFNeg(C); Value *Res; // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding). if (IID != Intrinsic::not_intrinsic && (cast(Ops.back())->getZExtValue() != (uint64_t)4 || IsAddSub)) { Function *Intr = CGF.CGM.getIntrinsic(IID); Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() }); } else { llvm::Type *Ty = A->getType(); Function *FMA; if (CGF.Builder.getIsFPConstrained()) { FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty); Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C}); } else { FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty); Res = CGF.Builder.CreateCall(FMA, {A, B, C}); } } // Handle any required masking. Value *MaskFalseVal = nullptr; switch (BuiltinID) { case clang::X86::BI__builtin_ia32_vfmaddps512_mask: case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: MaskFalseVal = Ops[0]; break; case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: MaskFalseVal = Constant::getNullValue(Ops[0]->getType()); break; case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: MaskFalseVal = Ops[2]; break; } if (MaskFalseVal) return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal); return Res; } static Value * EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef Ops, Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0, bool NegAcc = false) { unsigned Rnd = 4; if (Ops.size() > 4) Rnd = cast(Ops[4])->getZExtValue(); if (NegAcc) Ops[2] = CGF.Builder.CreateFNeg(Ops[2]); Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0); Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0); Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0); Value *Res; if (Rnd != 4) { Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ? Intrinsic::x86_avx512_vfmadd_f32 : Intrinsic::x86_avx512_vfmadd_f64; Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2], Ops[4]}); } else if (CGF.Builder.getIsFPConstrained()) { Function *FMA = CGF.CGM.getIntrinsic( Intrinsic::experimental_constrained_fma, Ops[0]->getType()); Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3)); } else { Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType()); Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3)); } // If we have more than 3 arguments, we need to do masking. if (Ops.size() > 3) { Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType()) : Ops[PTIdx]; // If we negated the accumulator and the its the PassThru value we need to // bypass the negate. Conveniently Upper should be the same thing in this // case. if (NegAcc && PTIdx == 2) PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0); Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru); } return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0); } static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned, ArrayRef Ops) { llvm::Type *Ty = Ops[0]->getType(); // Arguments have a vXi32 type so cast to vXi64. Ty = llvm::FixedVectorType::get(CGF.Int64Ty, Ty->getPrimitiveSizeInBits() / 64); Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty); Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty); if (IsSigned) { // Shift left then arithmetic shift right. Constant *ShiftAmt = ConstantInt::get(Ty, 32); LHS = CGF.Builder.CreateShl(LHS, ShiftAmt); LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt); RHS = CGF.Builder.CreateShl(RHS, ShiftAmt); RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt); } else { // Clear the upper bits. Constant *Mask = ConstantInt::get(Ty, 0xffffffff); LHS = CGF.Builder.CreateAnd(LHS, Mask); RHS = CGF.Builder.CreateAnd(RHS, Mask); } return CGF.Builder.CreateMul(LHS, RHS); } // Emit a masked pternlog intrinsic. This only exists because the header has to // use a macro and we aren't able to pass the input argument to a pternlog // builtin and a select builtin without evaluating it twice. static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask, ArrayRef Ops) { llvm::Type *Ty = Ops[0]->getType(); unsigned VecWidth = Ty->getPrimitiveSizeInBits(); unsigned EltWidth = Ty->getScalarSizeInBits(); Intrinsic::ID IID; if (VecWidth == 128 && EltWidth == 32) IID = Intrinsic::x86_avx512_pternlog_d_128; else if (VecWidth == 256 && EltWidth == 32) IID = Intrinsic::x86_avx512_pternlog_d_256; else if (VecWidth == 512 && EltWidth == 32) IID = Intrinsic::x86_avx512_pternlog_d_512; else if (VecWidth == 128 && EltWidth == 64) IID = Intrinsic::x86_avx512_pternlog_q_128; else if (VecWidth == 256 && EltWidth == 64) IID = Intrinsic::x86_avx512_pternlog_q_256; else if (VecWidth == 512 && EltWidth == 64) IID = Intrinsic::x86_avx512_pternlog_q_512; else llvm_unreachable("Unexpected intrinsic"); Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), Ops.drop_back()); Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0]; return EmitX86Select(CGF, Ops[4], Ternlog, PassThru); } static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op, llvm::Type *DstTy) { unsigned NumberOfElements = cast(DstTy)->getNumElements(); Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements); return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2"); } // Emit addition or subtraction with signed/unsigned saturation. static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF, ArrayRef Ops, bool IsSigned, bool IsAddition) { Intrinsic::ID IID = IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat) : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat); llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType()); return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]}); } Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) { const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); StringRef CPUStr = cast(CPUExpr)->getString(); return EmitX86CpuIs(CPUStr); } // Convert F16 halfs to floats. static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF, ArrayRef Ops, llvm::Type *DstTy) { assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && "Unknown cvtph2ps intrinsic"); // If the SAE intrinsic doesn't use default rounding then we can't upgrade. if (Ops.size() == 4 && cast(Ops[3])->getZExtValue() != 4) { Function *F = CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512); return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]}); } unsigned NumDstElts = cast(DstTy)->getNumElements(); Value *Src = Ops[0]; // Extract the subvector. if (NumDstElts != cast(Src->getType())->getNumElements()) { assert(NumDstElts == 4 && "Unexpected vector size"); Src = CGF.Builder.CreateShuffleVector(Src, UndefValue::get(Src->getType()), ArrayRef{0, 1, 2, 3}); } // Bitcast from vXi16 to vXf16. auto *HalfTy = llvm::FixedVectorType::get( llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts); Src = CGF.Builder.CreateBitCast(Src, HalfTy); // Perform the fp-extension. Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps"); if (Ops.size() >= 3) Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]); return Res; } // Convert a BF16 to a float. static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF, const CallExpr *E, ArrayRef Ops) { llvm::Type *Int32Ty = CGF.Builder.getInt32Ty(); Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty); Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16); llvm::Type *ResultType = CGF.ConvertType(E->getType()); Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType); return BitCast; } Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) { llvm::Type *Int32Ty = Builder.getInt32Ty(); // Matching the struct layout from the compiler-rt/libgcc structure that is // filled in: // unsigned int __cpu_vendor; // unsigned int __cpu_type; // unsigned int __cpu_subtype; // unsigned int __cpu_features[1]; llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, llvm::ArrayType::get(Int32Ty, 1)); // Grab the global __cpu_model. llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); cast(CpuModel)->setDSOLocal(true); // Calculate the index needed to access the correct field based on the // range. Also adjust the expected value. unsigned Index; unsigned Value; std::tie(Index, Value) = StringSwitch>(CPUStr) #define X86_VENDOR(ENUM, STRING) \ .Case(STRING, {0u, static_cast(llvm::X86::ENUM)}) #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \ .Case(ALIAS, {1u, static_cast(llvm::X86::ENUM)}) #define X86_CPU_TYPE(ENUM, STR) \ .Case(STR, {1u, static_cast(llvm::X86::ENUM)}) #define X86_CPU_SUBTYPE(ENUM, STR) \ .Case(STR, {2u, static_cast(llvm::X86::ENUM)}) #include "llvm/Support/X86TargetParser.def" .Default({0, 0}); assert(Value != 0 && "Invalid CPUStr passed to CpuIs"); // Grab the appropriate field from __cpu_model. llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, Index)}; llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs); CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4)); // Check the value of the field against the requested value. return Builder.CreateICmpEQ(CpuValue, llvm::ConstantInt::get(Int32Ty, Value)); } Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) { const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); StringRef FeatureStr = cast(FeatureExpr)->getString(); return EmitX86CpuSupports(FeatureStr); } uint64_t CodeGenFunction::GetX86CpuSupportsMask(ArrayRef FeatureStrs) { // Processor features and mapping to processor feature value. uint64_t FeaturesMask = 0; for (const StringRef &FeatureStr : FeatureStrs) { unsigned Feature = StringSwitch(FeatureStr) #define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM) #include "llvm/Support/X86TargetParser.def" ; FeaturesMask |= (1ULL << Feature); } return FeaturesMask; } Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef FeatureStrs) { return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs)); } llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) { uint32_t Features1 = Lo_32(FeaturesMask); uint32_t Features2 = Hi_32(FeaturesMask); Value *Result = Builder.getTrue(); if (Features1 != 0) { // Matching the struct layout from the compiler-rt/libgcc structure that is // filled in: // unsigned int __cpu_vendor; // unsigned int __cpu_type; // unsigned int __cpu_subtype; // unsigned int __cpu_features[1]; llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, llvm::ArrayType::get(Int32Ty, 1)); // Grab the global __cpu_model. llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); cast(CpuModel)->setDSOLocal(true); // Grab the first (0th) element from the field __cpu_features off of the // global in the struct STy. Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3), Builder.getInt32(0)}; Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs); Value *Features = Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4)); // Check the value of the bit corresponding to the feature requested. Value *Mask = Builder.getInt32(Features1); Value *Bitset = Builder.CreateAnd(Features, Mask); Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); Result = Builder.CreateAnd(Result, Cmp); } if (Features2 != 0) { llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty, "__cpu_features2"); cast(CpuFeatures2)->setDSOLocal(true); Value *Features = Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4)); // Check the value of the bit corresponding to the feature requested. Value *Mask = Builder.getInt32(Features2); Value *Bitset = Builder.CreateAnd(Features, Mask); Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); Result = Builder.CreateAnd(Result, Cmp); } return Result; } Value *CodeGenFunction::EmitX86CpuInit() { llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, /*Variadic*/ false); llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init"); cast(Func.getCallee())->setDSOLocal(true); cast(Func.getCallee()) ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); return Builder.CreateCall(Func); } Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E) { if (BuiltinID == X86::BI__builtin_cpu_is) return EmitX86CpuIs(E); if (BuiltinID == X86::BI__builtin_cpu_supports) return EmitX86CpuSupports(E); if (BuiltinID == X86::BI__builtin_cpu_init) return EmitX86CpuInit(); SmallVector Ops; // Find out if any arguments are required to be integer constant expressions. unsigned ICEArguments = 0; ASTContext::GetBuiltinTypeError Error; getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); assert(Error == ASTContext::GE_None && "Should not codegen an error"); for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { // If this is a normal argument, just emit it as a scalar. if ((ICEArguments & (1 << i)) == 0) { Ops.push_back(EmitScalarExpr(E->getArg(i))); continue; } // If this is required to be a constant, constant fold it so that we know // that the generated intrinsic gets a ConstantInt. llvm::APSInt Result; bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext()); assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst; Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result)); } // These exist so that the builtin that takes an immediate can be bounds // checked by clang to avoid passing bad immediates to the backend. Since // AVX has a larger immediate than SSE we would need separate builtins to // do the different bounds checking. Rather than create a clang specific // SSE only builtin, this implements eight separate builtins to match gcc // implementation. auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) { Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm)); llvm::Function *F = CGM.getIntrinsic(ID); return Builder.CreateCall(F, Ops); }; // For the vector forms of FP comparisons, translate the builtins directly to // IR. // TODO: The builtins could be removed if the SSE header files used vector // extension comparisons directly (vector ordered/unordered may need // additional support via __builtin_isnan()). auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred, bool IsSignaling) { Value *Cmp; if (IsSignaling) Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); else Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); llvm::VectorType *FPVecTy = cast(Ops[0]->getType()); llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy); Value *Sext = Builder.CreateSExt(Cmp, IntVecTy); return Builder.CreateBitCast(Sext, FPVecTy); }; switch (BuiltinID) { default: return nullptr; case X86::BI_mm_prefetch: { Value *Address = Ops[0]; ConstantInt *C = cast(Ops[1]); Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1); Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3); Value *Data = ConstantInt::get(Int32Ty, 1); Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); return Builder.CreateCall(F, {Address, RW, Locality, Data}); } case X86::BI_mm_clflush: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush), Ops[0]); } case X86::BI_mm_lfence: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence)); } case X86::BI_mm_mfence: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence)); } case X86::BI_mm_sfence: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence)); } case X86::BI_mm_pause: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause)); } case X86::BI__rdtsc: { return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc)); } case X86::BI__builtin_ia32_rdtscp: { Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp)); Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), Ops[0]); return Builder.CreateExtractValue(Call, 0); } case X86::BI__builtin_ia32_lzcnt_u16: case X86::BI__builtin_ia32_lzcnt_u32: case X86::BI__builtin_ia32_lzcnt_u64: { Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); } case X86::BI__builtin_ia32_tzcnt_u16: case X86::BI__builtin_ia32_tzcnt_u32: case X86::BI__builtin_ia32_tzcnt_u64: { Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType()); return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); } case X86::BI__builtin_ia32_undef128: case X86::BI__builtin_ia32_undef256: case X86::BI__builtin_ia32_undef512: // The x86 definition of "undef" is not the same as the LLVM definition // (PR32176). We leave optimizing away an unnecessary zero constant to the // IR optimizer and backend. // TODO: If we had a "freeze" IR instruction to generate a fixed undef // value, we should use that here instead of a zero. return llvm::Constant::getNullValue(ConvertType(E->getType())); case X86::BI__builtin_ia32_vec_init_v8qi: case X86::BI__builtin_ia32_vec_init_v4hi: case X86::BI__builtin_ia32_vec_init_v2si: return Builder.CreateBitCast(BuildVector(Ops), llvm::Type::getX86_MMXTy(getLLVMContext())); case X86::BI__builtin_ia32_vec_ext_v2si: case X86::BI__builtin_ia32_vec_ext_v16qi: case X86::BI__builtin_ia32_vec_ext_v8hi: case X86::BI__builtin_ia32_vec_ext_v4si: case X86::BI__builtin_ia32_vec_ext_v4sf: case X86::BI__builtin_ia32_vec_ext_v2di: case X86::BI__builtin_ia32_vec_ext_v32qi: case X86::BI__builtin_ia32_vec_ext_v16hi: case X86::BI__builtin_ia32_vec_ext_v8si: case X86::BI__builtin_ia32_vec_ext_v4di: { unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); uint64_t Index = cast(Ops[1])->getZExtValue(); Index &= NumElts - 1; // These builtins exist so we can ensure the index is an ICE and in range. // Otherwise we could just do this in the header file. return Builder.CreateExtractElement(Ops[0], Index); } case X86::BI__builtin_ia32_vec_set_v16qi: case X86::BI__builtin_ia32_vec_set_v8hi: case X86::BI__builtin_ia32_vec_set_v4si: case X86::BI__builtin_ia32_vec_set_v2di: case X86::BI__builtin_ia32_vec_set_v32qi: case X86::BI__builtin_ia32_vec_set_v16hi: case X86::BI__builtin_ia32_vec_set_v8si: case X86::BI__builtin_ia32_vec_set_v4di: { unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); unsigned Index = cast(Ops[2])->getZExtValue(); Index &= NumElts - 1; // These builtins exist so we can ensure the index is an ICE and in range. // Otherwise we could just do this in the header file. return Builder.CreateInsertElement(Ops[0], Ops[1], Index); } case X86::BI_mm_setcsr: case X86::BI__builtin_ia32_ldmxcsr: { Address Tmp = CreateMemTemp(E->getArg(0)->getType()); Builder.CreateStore(Ops[0], Tmp); return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); } case X86::BI_mm_getcsr: case X86::BI__builtin_ia32_stmxcsr: { Address Tmp = CreateMemTemp(E->getType()); Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); return Builder.CreateLoad(Tmp, "stmxcsr"); } case X86::BI__builtin_ia32_xsave: case X86::BI__builtin_ia32_xsave64: case X86::BI__builtin_ia32_xrstor: case X86::BI__builtin_ia32_xrstor64: case X86::BI__builtin_ia32_xsaveopt: case X86::BI__builtin_ia32_xsaveopt64: case X86::BI__builtin_ia32_xrstors: case X86::BI__builtin_ia32_xrstors64: case X86::BI__builtin_ia32_xsavec: case X86::BI__builtin_ia32_xsavec64: case X86::BI__builtin_ia32_xsaves: case X86::BI__builtin_ia32_xsaves64: case X86::BI__builtin_ia32_xsetbv: case X86::BI_xsetbv: { Intrinsic::ID ID; #define INTRINSIC_X86_XSAVE_ID(NAME) \ case X86::BI__builtin_ia32_##NAME: \ ID = Intrinsic::x86_##NAME; \ break switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); INTRINSIC_X86_XSAVE_ID(xsave); INTRINSIC_X86_XSAVE_ID(xsave64); INTRINSIC_X86_XSAVE_ID(xrstor); INTRINSIC_X86_XSAVE_ID(xrstor64); INTRINSIC_X86_XSAVE_ID(xsaveopt); INTRINSIC_X86_XSAVE_ID(xsaveopt64); INTRINSIC_X86_XSAVE_ID(xrstors); INTRINSIC_X86_XSAVE_ID(xrstors64); INTRINSIC_X86_XSAVE_ID(xsavec); INTRINSIC_X86_XSAVE_ID(xsavec64); INTRINSIC_X86_XSAVE_ID(xsaves); INTRINSIC_X86_XSAVE_ID(xsaves64); INTRINSIC_X86_XSAVE_ID(xsetbv); case X86::BI_xsetbv: ID = Intrinsic::x86_xsetbv; break; } #undef INTRINSIC_X86_XSAVE_ID Value *Mhi = Builder.CreateTrunc( Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty); Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty); Ops[1] = Mhi; Ops.push_back(Mlo); return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); } case X86::BI__builtin_ia32_xgetbv: case X86::BI_xgetbv: return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops); case X86::BI__builtin_ia32_storedqudi128_mask: case X86::BI__builtin_ia32_storedqusi128_mask: case X86::BI__builtin_ia32_storedquhi128_mask: case X86::BI__builtin_ia32_storedquqi128_mask: case X86::BI__builtin_ia32_storeupd128_mask: case X86::BI__builtin_ia32_storeups128_mask: case X86::BI__builtin_ia32_storedqudi256_mask: case X86::BI__builtin_ia32_storedqusi256_mask: case X86::BI__builtin_ia32_storedquhi256_mask: case X86::BI__builtin_ia32_storedquqi256_mask: case X86::BI__builtin_ia32_storeupd256_mask: case X86::BI__builtin_ia32_storeups256_mask: case X86::BI__builtin_ia32_storedqudi512_mask: case X86::BI__builtin_ia32_storedqusi512_mask: case X86::BI__builtin_ia32_storedquhi512_mask: case X86::BI__builtin_ia32_storedquqi512_mask: case X86::BI__builtin_ia32_storeupd512_mask: case X86::BI__builtin_ia32_storeups512_mask: return EmitX86MaskedStore(*this, Ops, Align(1)); case X86::BI__builtin_ia32_storess128_mask: case X86::BI__builtin_ia32_storesd128_mask: return EmitX86MaskedStore(*this, Ops, Align(1)); case X86::BI__builtin_ia32_vpopcntb_128: case X86::BI__builtin_ia32_vpopcntd_128: case X86::BI__builtin_ia32_vpopcntq_128: case X86::BI__builtin_ia32_vpopcntw_128: case X86::BI__builtin_ia32_vpopcntb_256: case X86::BI__builtin_ia32_vpopcntd_256: case X86::BI__builtin_ia32_vpopcntq_256: case X86::BI__builtin_ia32_vpopcntw_256: case X86::BI__builtin_ia32_vpopcntb_512: case X86::BI__builtin_ia32_vpopcntd_512: case X86::BI__builtin_ia32_vpopcntq_512: case X86::BI__builtin_ia32_vpopcntw_512: { llvm::Type *ResultType = ConvertType(E->getType()); llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); return Builder.CreateCall(F, Ops); } case X86::BI__builtin_ia32_cvtmask2b128: case X86::BI__builtin_ia32_cvtmask2b256: case X86::BI__builtin_ia32_cvtmask2b512: case X86::BI__builtin_ia32_cvtmask2w128: case X86::BI__builtin_ia32_cvtmask2w256: case X86::BI__builtin_ia32_cvtmask2w512: case X86::BI__builtin_ia32_cvtmask2d128: case X86::BI__builtin_ia32_cvtmask2d256: case X86::BI__builtin_ia32_cvtmask2d512: case X86::BI__builtin_ia32_cvtmask2q128: case X86::BI__builtin_ia32_cvtmask2q256: case X86::BI__builtin_ia32_cvtmask2q512: return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType())); case X86::BI__builtin_ia32_cvtb2mask128: case X86::BI__builtin_ia32_cvtb2mask256: case X86::BI__builtin_ia32_cvtb2mask512: case X86::BI__builtin_ia32_cvtw2mask128: case X86::BI__builtin_ia32_cvtw2mask256: case X86::BI__builtin_ia32_cvtw2mask512: case X86::BI__builtin_ia32_cvtd2mask128: case X86::BI__builtin_ia32_cvtd2mask256: case X86::BI__builtin_ia32_cvtd2mask512: case X86::BI__builtin_ia32_cvtq2mask128: case X86::BI__builtin_ia32_cvtq2mask256: case X86::BI__builtin_ia32_cvtq2mask512: return EmitX86ConvertToMask(*this, Ops[0]); case X86::BI__builtin_ia32_cvtdq2ps512_mask: case X86::BI__builtin_ia32_cvtqq2ps512_mask: case X86::BI__builtin_ia32_cvtqq2pd512_mask: return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true); case X86::BI__builtin_ia32_cvtudq2ps512_mask: case X86::BI__builtin_ia32_cvtuqq2ps512_mask: case X86::BI__builtin_ia32_cvtuqq2pd512_mask: return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false); case X86::BI__builtin_ia32_vfmaddss3: case X86::BI__builtin_ia32_vfmaddsd3: case X86::BI__builtin_ia32_vfmaddss3_mask: case X86::BI__builtin_ia32_vfmaddsd3_mask: return EmitScalarFMAExpr(*this, Ops, Ops[0]); case X86::BI__builtin_ia32_vfmaddss: case X86::BI__builtin_ia32_vfmaddsd: return EmitScalarFMAExpr(*this, Ops, Constant::getNullValue(Ops[0]->getType())); case X86::BI__builtin_ia32_vfmaddss3_maskz: case X86::BI__builtin_ia32_vfmaddsd3_maskz: return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true); case X86::BI__builtin_ia32_vfmaddss3_mask3: case X86::BI__builtin_ia32_vfmaddsd3_mask3: return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2); case X86::BI__builtin_ia32_vfmsubss3_mask3: case X86::BI__builtin_ia32_vfmsubsd3_mask3: return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2, /*NegAcc*/true); case X86::BI__builtin_ia32_vfmaddps: case X86::BI__builtin_ia32_vfmaddpd: case X86::BI__builtin_ia32_vfmaddps256: case X86::BI__builtin_ia32_vfmaddpd256: case X86::BI__builtin_ia32_vfmaddps512_mask: case X86::BI__builtin_ia32_vfmaddps512_maskz: case X86::BI__builtin_ia32_vfmaddps512_mask3: case X86::BI__builtin_ia32_vfmsubps512_mask3: case X86::BI__builtin_ia32_vfmaddpd512_mask: case X86::BI__builtin_ia32_vfmaddpd512_maskz: case X86::BI__builtin_ia32_vfmaddpd512_mask3: case X86::BI__builtin_ia32_vfmsubpd512_mask3: return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false); case X86::BI__builtin_ia32_vfmaddsubps512_mask: case X86::BI__builtin_ia32_vfmaddsubps512_maskz: case X86::BI__builtin_ia32_vfmaddsubps512_mask3: case X86::BI__builtin_ia32_vfmsubaddps512_mask3: case X86::BI__builtin_ia32_vfmaddsubpd512_mask: case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true); case X86::BI__builtin_ia32_movdqa32store128_mask: case X86::BI__builtin_ia32_movdqa64store128_mask: case X86::BI__builtin_ia32_storeaps128_mask: case X86::BI__builtin_ia32_storeapd128_mask: case X86::BI__builtin_ia32_movdqa32store256_mask: case X86::BI__builtin_ia32_movdqa64store256_mask: case X86::BI__builtin_ia32_storeaps256_mask: case X86::BI__builtin_ia32_storeapd256_mask: case X86::BI__builtin_ia32_movdqa32store512_mask: case X86::BI__builtin_ia32_movdqa64store512_mask: case X86::BI__builtin_ia32_storeaps512_mask: case X86::BI__builtin_ia32_storeapd512_mask: return EmitX86MaskedStore( *this, Ops, getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); case X86::BI__builtin_ia32_loadups128_mask: case X86::BI__builtin_ia32_loadups256_mask: case X86::BI__builtin_ia32_loadups512_mask: case X86::BI__builtin_ia32_loadupd128_mask: case X86::BI__builtin_ia32_loadupd256_mask: case X86::BI__builtin_ia32_loadupd512_mask: case X86::BI__builtin_ia32_loaddquqi128_mask: case X86::BI__builtin_ia32_loaddquqi256_mask: case X86::BI__builtin_ia32_loaddquqi512_mask: case X86::BI__builtin_ia32_loaddquhi128_mask: case X86::BI__builtin_ia32_loaddquhi256_mask: case X86::BI__builtin_ia32_loaddquhi512_mask: case X86::BI__builtin_ia32_loaddqusi128_mask: case X86::BI__builtin_ia32_loaddqusi256_mask: case X86::BI__builtin_ia32_loaddqusi512_mask: case X86::BI__builtin_ia32_loaddqudi128_mask: case X86::BI__builtin_ia32_loaddqudi256_mask: case X86::BI__builtin_ia32_loaddqudi512_mask: return EmitX86MaskedLoad(*this, Ops, Align(1)); case X86::BI__builtin_ia32_loadss128_mask: case X86::BI__builtin_ia32_loadsd128_mask: return EmitX86MaskedLoad(*this, Ops, Align(1)); case X86::BI__builtin_ia32_loadaps128_mask: case X86::BI__builtin_ia32_loadaps256_mask: case X86::BI__builtin_ia32_loadaps512_mask: case X86::BI__builtin_ia32_loadapd128_mask: case X86::BI__builtin_ia32_loadapd256_mask: case X86::BI__builtin_ia32_loadapd512_mask: case X86::BI__builtin_ia32_movdqa32load128_mask: case X86::BI__builtin_ia32_movdqa32load256_mask: case X86::BI__builtin_ia32_movdqa32load512_mask: case X86::BI__builtin_ia32_movdqa64load128_mask: case X86::BI__builtin_ia32_movdqa64load256_mask: case X86::BI__builtin_ia32_movdqa64load512_mask: return EmitX86MaskedLoad( *this, Ops, getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); case X86::BI__builtin_ia32_expandloaddf128_mask: case X86::BI__builtin_ia32_expandloaddf256_mask: case X86::BI__builtin_ia32_expandloaddf512_mask: case X86::BI__builtin_ia32_expandloadsf128_mask: case X86::BI__builtin_ia32_expandloadsf256_mask: case X86::BI__builtin_ia32_expandloadsf512_mask: case X86::BI__builtin_ia32_expandloaddi128_mask: case X86::BI__builtin_ia32_expandloaddi256_mask: case X86::BI__builtin_ia32_expandloaddi512_mask: case X86::BI__builtin_ia32_expandloadsi128_mask: case X86::BI__builtin_ia32_expandloadsi256_mask: case X86::BI__builtin_ia32_expandloadsi512_mask: case X86::BI__builtin_ia32_expandloadhi128_mask: case X86::BI__builtin_ia32_expandloadhi256_mask: case X86::BI__builtin_ia32_expandloadhi512_mask: case X86::BI__builtin_ia32_expandloadqi128_mask: case X86::BI__builtin_ia32_expandloadqi256_mask: case X86::BI__builtin_ia32_expandloadqi512_mask: return EmitX86ExpandLoad(*this, Ops); case X86::BI__builtin_ia32_compressstoredf128_mask: case X86::BI__builtin_ia32_compressstoredf256_mask: case X86::BI__builtin_ia32_compressstoredf512_mask: case X86::BI__builtin_ia32_compressstoresf128_mask: case X86::BI__builtin_ia32_compressstoresf256_mask: case X86::BI__builtin_ia32_compressstoresf512_mask: case X86::BI__builtin_ia32_compressstoredi128_mask: case X86::BI__builtin_ia32_compressstoredi256_mask: case X86::BI__builtin_ia32_compressstoredi512_mask: case X86::BI__builtin_ia32_compressstoresi128_mask: case X86::BI__builtin_ia32_compressstoresi256_mask: case X86::BI__builtin_ia32_compressstoresi512_mask: case X86::BI__builtin_ia32_compressstorehi128_mask: case X86::BI__builtin_ia32_compressstorehi256_mask: case X86::BI__builtin_ia32_compressstorehi512_mask: case X86::BI__builtin_ia32_compressstoreqi128_mask: case X86::BI__builtin_ia32_compressstoreqi256_mask: case X86::BI__builtin_ia32_compressstoreqi512_mask: return EmitX86CompressStore(*this, Ops); case X86::BI__builtin_ia32_expanddf128_mask: case X86::BI__builtin_ia32_expanddf256_mask: case X86::BI__builtin_ia32_expanddf512_mask: case X86::BI__builtin_ia32_expandsf128_mask: case X86::BI__builtin_ia32_expandsf256_mask: case X86::BI__builtin_ia32_expandsf512_mask: case X86::BI__builtin_ia32_expanddi128_mask: case X86::BI__builtin_ia32_expanddi256_mask: case X86::BI__builtin_ia32_expanddi512_mask: case X86::BI__builtin_ia32_expandsi128_mask: case X86::BI__builtin_ia32_expandsi256_mask: case X86::BI__builtin_ia32_expandsi512_mask: case X86::BI__builtin_ia32_expandhi128_mask: case X86::BI__builtin_ia32_expandhi256_mask: case X86::BI__builtin_ia32_expandhi512_mask: case X86::BI__builtin_ia32_expandqi128_mask: case X86::BI__builtin_ia32_expandqi256_mask: case X86::BI__builtin_ia32_expandqi512_mask: return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false); case X86::BI__builtin_ia32_compressdf128_mask: case X86::BI__builtin_ia32_compressdf256_mask: case X86::BI__builtin_ia32_compressdf512_mask: case X86::BI__builtin_ia32_compresssf128_mask: case X86::BI__builtin_ia32_compresssf256_mask: case X86::BI__builtin_ia32_compresssf512_mask: case X86::BI__builtin_ia32_compressdi128_mask: case X86::BI__builtin_ia32_compressdi256_mask: case X86::BI__builtin_ia32_compressdi512_mask: case X86::BI__builtin_ia32_compresssi128_mask: case X86::BI__builtin_ia32_compresssi256_mask: case X86::BI__builtin_ia32_compresssi512_mask: case X86::BI__builtin_ia32_compresshi128_mask: case X86::BI__builtin_ia32_compresshi256_mask: case X86::BI__builtin_ia32_compresshi512_mask: case X86::BI__builtin_ia32_compressqi128_mask: case X86::BI__builtin_ia32_compressqi256_mask: case X86::BI__builtin_ia32_compressqi512_mask: return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true); case X86::BI__builtin_ia32_gather3div2df: case X86::BI__builtin_ia32_gather3div2di: case X86::BI__builtin_ia32_gather3div4df: case X86::BI__builtin_ia32_gather3div4di: case X86::BI__builtin_ia32_gather3div4sf: case X86::BI__builtin_ia32_gather3div4si: case X86::BI__builtin_ia32_gather3div8sf: case X86::BI__builtin_ia32_gather3div8si: case X86::BI__builtin_ia32_gather3siv2df: case X86::BI__builtin_ia32_gather3siv2di: case X86::BI__builtin_ia32_gather3siv4df: case X86::BI__builtin_ia32_gather3siv4di: case X86::BI__builtin_ia32_gather3siv4sf: case X86::BI__builtin_ia32_gather3siv4si: case X86::BI__builtin_ia32_gather3siv8sf: case X86::BI__builtin_ia32_gather3siv8si: case X86::BI__builtin_ia32_gathersiv8df: case X86::BI__builtin_ia32_gathersiv16sf: case X86::BI__builtin_ia32_gatherdiv8df: case X86::BI__builtin_ia32_gatherdiv16sf: case X86::BI__builtin_ia32_gathersiv8di: case X86::BI__builtin_ia32_gathersiv16si: case X86::BI__builtin_ia32_gatherdiv8di: case X86::BI__builtin_ia32_gatherdiv16si: { Intrinsic::ID IID; switch (BuiltinID) { default: llvm_unreachable("Unexpected builtin"); case X86::BI__builtin_ia32_gather3div2df: IID = Intrinsic::x86_avx512_mask_gather3div2_df; break; case X86::BI__builtin_ia32_gather3div2di: IID = Intrinsic::x86_avx512_mask_gather3div2_di; break; case X86::BI__builtin_ia32_gather3div4df: IID = Intrinsic::x86_avx512_mask_gather3div4_df; break; case X86::BI__builtin_ia32_gather3div4di: IID = Intrinsic::x86_avx512_mask_gather3div4_di; break; case X86::BI__builtin_ia32_gather3div4sf: IID = Intrinsic::x86_avx512_mask_gather3div4_sf; break; case X86::BI__builtin_ia32_gather3div4si: IID = Intrinsic::x86_avx512_mask_gather3div4_si; break; case X86::BI__builtin_ia32_gather3div8sf: IID = Intrinsic::x86_avx512_mask_gather3div8_sf; break; case X86::BI__builtin_ia32_gather3div8si: IID = Intrinsic::x86_avx512_mask_gather3div8_si; break; case X86::BI__builtin_ia32_gather3siv2df: IID = Intrinsic::x86_avx512_mask_gather3siv2_df; break; case X86::BI__builtin_ia32_gather3siv2di: IID = Intrinsic::x86_avx512_mask_gather3siv2_di; break; case X86::BI__builtin_ia32_gather3siv4df: IID = Intrinsic::x86_avx512_mask_gather3siv4_df; break; case X86::BI__builtin_ia32_gather3siv4di: IID = Intrinsic::x86_avx512_mask_gather3siv4_di; break; case X86::BI__builtin_ia32_gather3siv4sf: IID = Intrinsic::x86_avx512_mask_gather3siv4_sf; break; case X86::BI__builtin_ia32_gather3siv4si: IID = Intrinsic::x86_avx512_mask_gather3siv4_si; break; case X86::BI__builtin_ia32_gather3siv8sf: IID = Intrinsic::x86_avx512_mask_gather3siv8_sf; break; case X86::BI__builtin_ia32_gather3siv8si: IID = Intrinsic::x86_avx512_mask_gather3siv8_si; break; case X86::BI__builtin_ia32_gathersiv8df: IID = Intrinsic::x86_avx512_mask_gather_dpd_512; break; case X86::BI__builtin_ia32_gathersiv16sf: IID = Intrinsic::x86_avx512_mask_gather_dps_512; break; case X86::BI__builtin_ia32_gatherdiv8df: IID = Intrinsic::x86_avx512_mask_gather_qpd_512; break; case X86::BI__builtin_ia32_gatherdiv16sf: IID = Intrinsic::x86_avx512_mask_gather_qps_512; break; case X86::BI__builtin_ia32_gathersiv8di: IID = Intrinsic::x86_avx512_mask_gather_dpq_512; break; case X86::BI__builtin_ia32_gathersiv16si: IID = Intrinsic::x86_avx512_mask_gather_dpi_512; break; case X86::BI__builtin_ia32_gatherdiv8di: IID = Intrinsic::x86_avx512_mask_gather_qpq_512; break; case X86::BI__builtin_ia32_gatherdiv16si: IID = Intrinsic::x86_avx512_mask_gather_qpi_512; break; } unsigned MinElts = std::min(cast(Ops[0]->getType())->getNumElements(), cast(Ops[2]->getType())->getNumElements()); Ops[3] = getMaskVecValue(*this, Ops[3], MinElts); Function *Intr = CGM.getIntrinsic(IID); return Builder.CreateCall(Intr, Ops); } case X86::BI__builtin_ia32_scattersiv8df: case X86::BI__builtin_ia32_scattersiv16sf: case X86::BI__builtin_ia32_scatterdiv8df: case X86::BI__builtin_ia32_scatterdiv16sf: case X86::BI__builtin_ia32_scattersiv8di: case X86::BI__builtin_ia32_scattersiv16si: case X86::BI__builtin_ia32_scatterdiv8di: case X86::BI__builtin_ia32_scatterdiv16si: case X86::BI__builtin_ia32_scatterdiv2df: case X86::BI__builtin_ia32_scatterdiv2di: case X86::BI__builtin_ia32_scatterdiv4df: case X86::BI__builtin_ia32_scatterdiv4di: case X86::BI__builtin_ia32_scatterdiv4sf: case X86::BI__builtin_ia32_scatterdiv4si: case X86::BI__builtin_ia32_scatterdiv8sf: case X86::BI__builtin_ia32_scatterdiv8si: case X86::BI__builtin_ia32_scattersiv2df: case X86::BI__builtin_ia32_scattersiv2di: case X86::BI__builtin_ia32_scattersiv4df: case X86::BI__builtin_ia32_scattersiv4di: case X86::BI__builtin_ia32_scattersiv4sf: case X86::BI__builtin_ia32_scattersiv4si: case X86::BI__builtin_ia32_scattersiv8sf: case X86::BI__builtin_ia32_scattersiv8si: { Intrinsic::ID IID; switch (BuiltinID) { default: llvm_unreachable("Unexpected builtin"); case X86::BI__builtin_ia32_scattersiv8df: IID = Intrinsic::x86_avx512_mask_scatter_dpd_512; break; case X86::BI__builtin_ia32_scattersiv16sf: IID = Intrinsic::x86_avx512_mask_scatter_dps_512; break; case X86::BI__builtin_ia32_scatterdiv8df: IID = Intrinsic::x86_avx512_mask_scatter_qpd_512; break; case X86::BI__builtin_ia32_scatterdiv16sf: IID = Intrinsic::x86_avx512_mask_scatter_qps_512; break; case X86::BI__builtin_ia32_scattersiv8di: IID = Intrinsic::x86_avx512_mask_scatter_dpq_512; break; case X86::BI__builtin_ia32_scattersiv16si: IID = Intrinsic::x86_avx512_mask_scatter_dpi_512; break; case X86::BI__builtin_ia32_scatterdiv8di: IID = Intrinsic::x86_avx512_mask_scatter_qpq_512; break; case X86::BI__builtin_ia32_scatterdiv16si: IID = Intrinsic::x86_avx512_mask_scatter_qpi_512; break; case X86::BI__builtin_ia32_scatterdiv2df: IID = Intrinsic::x86_avx512_mask_scatterdiv2_df; break; case X86::BI__builtin_ia32_scatterdiv2di: IID = Intrinsic::x86_avx512_mask_scatterdiv2_di; break; case X86::BI__builtin_ia32_scatterdiv4df: IID = Intrinsic::x86_avx512_mask_scatterdiv4_df; break; case X86::BI__builtin_ia32_scatterdiv4di: IID = Intrinsic::x86_avx512_mask_scatterdiv4_di; break; case X86::BI__builtin_ia32_scatterdiv4sf: IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf; break; case X86::BI__builtin_ia32_scatterdiv4si: IID = Intrinsic::x86_avx512_mask_scatterdiv4_si; break; case X86::BI__builtin_ia32_scatterdiv8sf: IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf; break; case X86::BI__builtin_ia32_scatterdiv8si: IID = Intrinsic::x86_avx512_mask_scatterdiv8_si; break; case X86::BI__builtin_ia32_scattersiv2df: IID = Intrinsic::x86_avx512_mask_scattersiv2_df; break; case X86::BI__builtin_ia32_scattersiv2di: IID = Intrinsic::x86_avx512_mask_scattersiv2_di; break; case X86::BI__builtin_ia32_scattersiv4df: IID = Intrinsic::x86_avx512_mask_scattersiv4_df; break; case X86::BI__builtin_ia32_scattersiv4di: IID = Intrinsic::x86_avx512_mask_scattersiv4_di; break; case X86::BI__builtin_ia32_scattersiv4sf: IID = Intrinsic::x86_avx512_mask_scattersiv4_sf; break; case X86::BI__builtin_ia32_scattersiv4si: IID = Intrinsic::x86_avx512_mask_scattersiv4_si; break; case X86::BI__builtin_ia32_scattersiv8sf: IID = Intrinsic::x86_avx512_mask_scattersiv8_sf; break; case X86::BI__builtin_ia32_scattersiv8si: IID = Intrinsic::x86_avx512_mask_scattersiv8_si; break; } unsigned MinElts = std::min(cast(Ops[2]->getType())->getNumElements(), cast(Ops[3]->getType())->getNumElements()); Ops[1] = getMaskVecValue(*this, Ops[1], MinElts); Function *Intr = CGM.getIntrinsic(IID); return Builder.CreateCall(Intr, Ops); } case X86::BI__builtin_ia32_vextractf128_pd256: case X86::BI__builtin_ia32_vextractf128_ps256: case X86::BI__builtin_ia32_vextractf128_si256: case X86::BI__builtin_ia32_extract128i256: case X86::BI__builtin_ia32_extractf64x4_mask: case X86::BI__builtin_ia32_extractf32x4_mask: case X86::BI__builtin_ia32_extracti64x4_mask: case X86::BI__builtin_ia32_extracti32x4_mask: case X86::BI__builtin_ia32_extractf32x8_mask: case X86::BI__builtin_ia32_extracti32x8_mask: case X86::BI__builtin_ia32_extractf32x4_256_mask: case X86::BI__builtin_ia32_extracti32x4_256_mask: case X86::BI__builtin_ia32_extractf64x2_256_mask: case X86::BI__builtin_ia32_extracti64x2_256_mask: case X86::BI__builtin_ia32_extractf64x2_512_mask: case X86::BI__builtin_ia32_extracti64x2_512_mask: { auto *DstTy = cast(ConvertType(E->getType())); unsigned NumElts = DstTy->getNumElements(); unsigned SrcNumElts = cast(Ops[0]->getType())->getNumElements(); unsigned SubVectors = SrcNumElts / NumElts; unsigned Index = cast(Ops[1])->getZExtValue(); assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); Index &= SubVectors - 1; // Remove any extra bits. Index *= NumElts; int Indices[16]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i + Index; Value *Res = Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ops[0]->getType()), makeArrayRef(Indices, NumElts), "extract"); if (Ops.size() == 4) Res = EmitX86Select(*this, Ops[3], Res, Ops[2]); return Res; } case X86::BI__builtin_ia32_vinsertf128_pd256: case X86::BI__builtin_ia32_vinsertf128_ps256: case X86::BI__builtin_ia32_vinsertf128_si256: case X86::BI__builtin_ia32_insert128i256: case X86::BI__builtin_ia32_insertf64x4: case X86::BI__builtin_ia32_insertf32x4: case X86::BI__builtin_ia32_inserti64x4: case X86::BI__builtin_ia32_inserti32x4: case X86::BI__builtin_ia32_insertf32x8: case X86::BI__builtin_ia32_inserti32x8: case X86::BI__builtin_ia32_insertf32x4_256: case X86::BI__builtin_ia32_inserti32x4_256: case X86::BI__builtin_ia32_insertf64x2_256: case X86::BI__builtin_ia32_inserti64x2_256: case X86::BI__builtin_ia32_insertf64x2_512: case X86::BI__builtin_ia32_inserti64x2_512: { unsigned DstNumElts = cast(Ops[0]->getType())->getNumElements(); unsigned SrcNumElts = cast(Ops[1]->getType())->getNumElements(); unsigned SubVectors = DstNumElts / SrcNumElts; unsigned Index = cast(Ops[2])->getZExtValue(); assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); Index &= SubVectors - 1; // Remove any extra bits. Index *= SrcNumElts; int Indices[16]; for (unsigned i = 0; i != DstNumElts; ++i) Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i; Value *Op1 = Builder.CreateShuffleVector(Ops[1], UndefValue::get(Ops[1]->getType()), makeArrayRef(Indices, DstNumElts), "widen"); for (unsigned i = 0; i != DstNumElts; ++i) { if (i >= Index && i < (Index + SrcNumElts)) Indices[i] = (i - Index) + DstNumElts; else Indices[i] = i; } return Builder.CreateShuffleVector(Ops[0], Op1, makeArrayRef(Indices, DstNumElts), "insert"); } case X86::BI__builtin_ia32_pmovqd512_mask: case X86::BI__builtin_ia32_pmovwb512_mask: { Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType()); return EmitX86Select(*this, Ops[2], Res, Ops[1]); } case X86::BI__builtin_ia32_pmovdb512_mask: case X86::BI__builtin_ia32_pmovdw512_mask: case X86::BI__builtin_ia32_pmovqw512_mask: { if (const auto *C = dyn_cast(Ops[2])) if (C->isAllOnesValue()) return Builder.CreateTrunc(Ops[0], Ops[1]->getType()); Intrinsic::ID IID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_pmovdb512_mask: IID = Intrinsic::x86_avx512_mask_pmov_db_512; break; case X86::BI__builtin_ia32_pmovdw512_mask: IID = Intrinsic::x86_avx512_mask_pmov_dw_512; break; case X86::BI__builtin_ia32_pmovqw512_mask: IID = Intrinsic::x86_avx512_mask_pmov_qw_512; break; } Function *Intr = CGM.getIntrinsic(IID); return Builder.CreateCall(Intr, Ops); } case X86::BI__builtin_ia32_pblendw128: case X86::BI__builtin_ia32_blendpd: case X86::BI__builtin_ia32_blendps: case X86::BI__builtin_ia32_blendpd256: case X86::BI__builtin_ia32_blendps256: case X86::BI__builtin_ia32_pblendw256: case X86::BI__builtin_ia32_pblendd128: case X86::BI__builtin_ia32_pblendd256: { unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); unsigned Imm = cast(Ops[2])->getZExtValue(); int Indices[16]; // If there are more than 8 elements, the immediate is used twice so make // sure we handle that. for (unsigned i = 0; i != NumElts; ++i) Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i; return Builder.CreateShuffleVector(Ops[0], Ops[1], makeArrayRef(Indices, NumElts), "blend"); } case X86::BI__builtin_ia32_pshuflw: case X86::BI__builtin_ia32_pshuflw256: case X86::BI__builtin_ia32_pshuflw512: { uint32_t Imm = cast(Ops[1])->getZExtValue(); auto *Ty = cast(Ops[0]->getType()); unsigned NumElts = Ty->getNumElements(); // Splat the 8-bits of immediate 4 times to help the loop wrap around. Imm = (Imm & 0xff) * 0x01010101; int Indices[32]; for (unsigned l = 0; l != NumElts; l += 8) { for (unsigned i = 0; i != 4; ++i) { Indices[l + i] = l + (Imm & 3); Imm >>= 2; } for (unsigned i = 4; i != 8; ++i) Indices[l + i] = l + i; } return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), makeArrayRef(Indices, NumElts), "pshuflw"); } case X86::BI__builtin_ia32_pshufhw: case X86::BI__builtin_ia32_pshufhw256: case X86::BI__builtin_ia32_pshufhw512: { uint32_t Imm = cast(Ops[1])->getZExtValue(); auto *Ty = cast(Ops[0]->getType()); unsigned NumElts = Ty->getNumElements(); // Splat the 8-bits of immediate 4 times to help the loop wrap around. Imm = (Imm & 0xff) * 0x01010101; int Indices[32]; for (unsigned l = 0; l != NumElts; l += 8) { for (unsigned i = 0; i != 4; ++i) Indices[l + i] = l + i; for (unsigned i = 4; i != 8; ++i) { Indices[l + i] = l + 4 + (Imm & 3); Imm >>= 2; } } return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), makeArrayRef(Indices, NumElts), "pshufhw"); } case X86::BI__builtin_ia32_pshufd: case X86::BI__builtin_ia32_pshufd256: case X86::BI__builtin_ia32_pshufd512: case X86::BI__builtin_ia32_vpermilpd: case X86::BI__builtin_ia32_vpermilps: case X86::BI__builtin_ia32_vpermilpd256: case X86::BI__builtin_ia32_vpermilps256: case X86::BI__builtin_ia32_vpermilpd512: case X86::BI__builtin_ia32_vpermilps512: { uint32_t Imm = cast(Ops[1])->getZExtValue(); auto *Ty = cast(Ops[0]->getType()); unsigned NumElts = Ty->getNumElements(); unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; unsigned NumLaneElts = NumElts / NumLanes; // Splat the 8-bits of immediate 4 times to help the loop wrap around. Imm = (Imm & 0xff) * 0x01010101; int Indices[16]; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0; i != NumLaneElts; ++i) { Indices[i + l] = (Imm % NumLaneElts) + l; Imm /= NumLaneElts; } } return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), makeArrayRef(Indices, NumElts), "permil"); } case X86::BI__builtin_ia32_shufpd: case X86::BI__builtin_ia32_shufpd256: case X86::BI__builtin_ia32_shufpd512: case X86::BI__builtin_ia32_shufps: case X86::BI__builtin_ia32_shufps256: case X86::BI__builtin_ia32_shufps512: { uint32_t Imm = cast(Ops[2])->getZExtValue(); auto *Ty = cast(Ops[0]->getType()); unsigned NumElts = Ty->getNumElements(); unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; unsigned NumLaneElts = NumElts / NumLanes; // Splat the 8-bits of immediate 4 times to help the loop wrap around. Imm = (Imm & 0xff) * 0x01010101; int Indices[16]; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { for (unsigned i = 0; i != NumLaneElts; ++i) { unsigned Index = Imm % NumLaneElts; Imm /= NumLaneElts; if (i >= (NumLaneElts / 2)) Index += NumElts; Indices[l + i] = l + Index; } } return Builder.CreateShuffleVector(Ops[0], Ops[1], makeArrayRef(Indices, NumElts), "shufp"); } case X86::BI__builtin_ia32_permdi256: case X86::BI__builtin_ia32_permdf256: case X86::BI__builtin_ia32_permdi512: case X86::BI__builtin_ia32_permdf512: { unsigned Imm = cast(Ops[1])->getZExtValue(); auto *Ty = cast(Ops[0]->getType()); unsigned NumElts = Ty->getNumElements(); // These intrinsics operate on 256-bit lanes of four 64-bit elements. int Indices[8]; for (unsigned l = 0; l != NumElts; l += 4) for (unsigned i = 0; i != 4; ++i) Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3); return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty), makeArrayRef(Indices, NumElts), "perm"); } case X86::BI__builtin_ia32_palignr128: case X86::BI__builtin_ia32_palignr256: case X86::BI__builtin_ia32_palignr512: { unsigned ShiftVal = cast(Ops[2])->getZExtValue() & 0xff; unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); assert(NumElts % 16 == 0); // If palignr is shifting the pair of vectors more than the size of two // lanes, emit zero. if (ShiftVal >= 32) return llvm::Constant::getNullValue(ConvertType(E->getType())); // If palignr is shifting the pair of input vectors more than one lane, // but less than two lanes, convert to shifting in zeroes. if (ShiftVal > 16) { ShiftVal -= 16; Ops[1] = Ops[0]; Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType()); } int Indices[64]; // 256-bit palignr operates on 128-bit lanes so we need to handle that for (unsigned l = 0; l != NumElts; l += 16) { for (unsigned i = 0; i != 16; ++i) { unsigned Idx = ShiftVal + i; if (Idx >= 16) Idx += NumElts - 16; // End of lane, switch operand. Indices[l + i] = Idx + l; } } return Builder.CreateShuffleVector(Ops[1], Ops[0], makeArrayRef(Indices, NumElts), "palignr"); } case X86::BI__builtin_ia32_alignd128: case X86::BI__builtin_ia32_alignd256: case X86::BI__builtin_ia32_alignd512: case X86::BI__builtin_ia32_alignq128: case X86::BI__builtin_ia32_alignq256: case X86::BI__builtin_ia32_alignq512: { unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); unsigned ShiftVal = cast(Ops[2])->getZExtValue() & 0xff; // Mask the shift amount to width of two vectors. ShiftVal &= (2 * NumElts) - 1; int Indices[16]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i + ShiftVal; return Builder.CreateShuffleVector(Ops[1], Ops[0], makeArrayRef(Indices, NumElts), "valign"); } case X86::BI__builtin_ia32_shuf_f32x4_256: case X86::BI__builtin_ia32_shuf_f64x2_256: case X86::BI__builtin_ia32_shuf_i32x4_256: case X86::BI__builtin_ia32_shuf_i64x2_256: case X86::BI__builtin_ia32_shuf_f32x4: case X86::BI__builtin_ia32_shuf_f64x2: case X86::BI__builtin_ia32_shuf_i32x4: case X86::BI__builtin_ia32_shuf_i64x2: { unsigned Imm = cast(Ops[2])->getZExtValue(); auto *Ty = cast(Ops[0]->getType()); unsigned NumElts = Ty->getNumElements(); unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2; unsigned NumLaneElts = NumElts / NumLanes; int Indices[16]; for (unsigned l = 0; l != NumElts; l += NumLaneElts) { unsigned Index = (Imm % NumLanes) * NumLaneElts; Imm /= NumLanes; // Discard the bits we just used. if (l >= (NumElts / 2)) Index += NumElts; // Switch to other source. for (unsigned i = 0; i != NumLaneElts; ++i) { Indices[l + i] = Index + i; } } return Builder.CreateShuffleVector(Ops[0], Ops[1], makeArrayRef(Indices, NumElts), "shuf"); } case X86::BI__builtin_ia32_vperm2f128_pd256: case X86::BI__builtin_ia32_vperm2f128_ps256: case X86::BI__builtin_ia32_vperm2f128_si256: case X86::BI__builtin_ia32_permti256: { unsigned Imm = cast(Ops[2])->getZExtValue(); unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); // This takes a very simple approach since there are two lanes and a // shuffle can have 2 inputs. So we reserve the first input for the first // lane and the second input for the second lane. This may result in // duplicate sources, but this can be dealt with in the backend. Value *OutOps[2]; int Indices[8]; for (unsigned l = 0; l != 2; ++l) { // Determine the source for this lane. if (Imm & (1 << ((l * 4) + 3))) OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType()); else if (Imm & (1 << ((l * 4) + 1))) OutOps[l] = Ops[1]; else OutOps[l] = Ops[0]; for (unsigned i = 0; i != NumElts/2; ++i) { // Start with ith element of the source for this lane. unsigned Idx = (l * NumElts) + i; // If bit 0 of the immediate half is set, switch to the high half of // the source. if (Imm & (1 << (l * 4))) Idx += NumElts/2; Indices[(l * (NumElts/2)) + i] = Idx; } } return Builder.CreateShuffleVector(OutOps[0], OutOps[1], makeArrayRef(Indices, NumElts), "vperm"); } case X86::BI__builtin_ia32_pslldqi128_byteshift: case X86::BI__builtin_ia32_pslldqi256_byteshift: case X86::BI__builtin_ia32_pslldqi512_byteshift: { unsigned ShiftVal = cast(Ops[1])->getZExtValue() & 0xff; auto *ResultType = cast(Ops[0]->getType()); // Builtin type is vXi64 so multiply by 8 to get bytes. unsigned NumElts = ResultType->getNumElements() * 8; // If pslldq is shifting the vector more than 15 bytes, emit zero. if (ShiftVal >= 16) return llvm::Constant::getNullValue(ResultType); int Indices[64]; // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that for (unsigned l = 0; l != NumElts; l += 16) { for (unsigned i = 0; i != 16; ++i) { unsigned Idx = NumElts + i - ShiftVal; if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. Indices[l + i] = Idx + l; } } auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); Value *Zero = llvm::Constant::getNullValue(VecTy); Value *SV = Builder.CreateShuffleVector(Zero, Cast, makeArrayRef(Indices, NumElts), "pslldq"); return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast"); } case X86::BI__builtin_ia32_psrldqi128_byteshift: case X86::BI__builtin_ia32_psrldqi256_byteshift: case X86::BI__builtin_ia32_psrldqi512_byteshift: { unsigned ShiftVal = cast(Ops[1])->getZExtValue() & 0xff; auto *ResultType = cast(Ops[0]->getType()); // Builtin type is vXi64 so multiply by 8 to get bytes. unsigned NumElts = ResultType->getNumElements() * 8; // If psrldq is shifting the vector more than 15 bytes, emit zero. if (ShiftVal >= 16) return llvm::Constant::getNullValue(ResultType); int Indices[64]; // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that for (unsigned l = 0; l != NumElts; l += 16) { for (unsigned i = 0; i != 16; ++i) { unsigned Idx = i + ShiftVal; if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. Indices[l + i] = Idx + l; } } auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); Value *Zero = llvm::Constant::getNullValue(VecTy); Value *SV = Builder.CreateShuffleVector(Cast, Zero, makeArrayRef(Indices, NumElts), "psrldq"); return Builder.CreateBitCast(SV, ResultType, "cast"); } case X86::BI__builtin_ia32_kshiftliqi: case X86::BI__builtin_ia32_kshiftlihi: case X86::BI__builtin_ia32_kshiftlisi: case X86::BI__builtin_ia32_kshiftlidi: { unsigned ShiftVal = cast(Ops[1])->getZExtValue() & 0xff; unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); if (ShiftVal >= NumElts) return llvm::Constant::getNullValue(Ops[0]->getType()); Value *In = getMaskVecValue(*this, Ops[0], NumElts); int Indices[64]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = NumElts + i - ShiftVal; Value *Zero = llvm::Constant::getNullValue(In->getType()); Value *SV = Builder.CreateShuffleVector(Zero, In, makeArrayRef(Indices, NumElts), "kshiftl"); return Builder.CreateBitCast(SV, Ops[0]->getType()); } case X86::BI__builtin_ia32_kshiftriqi: case X86::BI__builtin_ia32_kshiftrihi: case X86::BI__builtin_ia32_kshiftrisi: case X86::BI__builtin_ia32_kshiftridi: { unsigned ShiftVal = cast(Ops[1])->getZExtValue() & 0xff; unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); if (ShiftVal >= NumElts) return llvm::Constant::getNullValue(Ops[0]->getType()); Value *In = getMaskVecValue(*this, Ops[0], NumElts); int Indices[64]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i + ShiftVal; Value *Zero = llvm::Constant::getNullValue(In->getType()); Value *SV = Builder.CreateShuffleVector(In, Zero, makeArrayRef(Indices, NumElts), "kshiftr"); return Builder.CreateBitCast(SV, Ops[0]->getType()); } case X86::BI__builtin_ia32_movnti: case X86::BI__builtin_ia32_movnti64: case X86::BI__builtin_ia32_movntsd: case X86::BI__builtin_ia32_movntss: { llvm::MDNode *Node = llvm::MDNode::get( getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); Value *Ptr = Ops[0]; Value *Src = Ops[1]; // Extract the 0'th element of the source vector. if (BuiltinID == X86::BI__builtin_ia32_movntsd || BuiltinID == X86::BI__builtin_ia32_movntss) Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract"); // Convert the type of the pointer to a pointer to the stored type. Value *BC = Builder.CreateBitCast( Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast"); // Unaligned nontemporal store of the scalar value. StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC); SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); SI->setAlignment(llvm::Align(1)); return SI; } // Rotate is a special case of funnel shift - 1st 2 args are the same. case X86::BI__builtin_ia32_vprotb: case X86::BI__builtin_ia32_vprotw: case X86::BI__builtin_ia32_vprotd: case X86::BI__builtin_ia32_vprotq: case X86::BI__builtin_ia32_vprotbi: case X86::BI__builtin_ia32_vprotwi: case X86::BI__builtin_ia32_vprotdi: case X86::BI__builtin_ia32_vprotqi: case X86::BI__builtin_ia32_prold128: case X86::BI__builtin_ia32_prold256: case X86::BI__builtin_ia32_prold512: case X86::BI__builtin_ia32_prolq128: case X86::BI__builtin_ia32_prolq256: case X86::BI__builtin_ia32_prolq512: case X86::BI__builtin_ia32_prolvd128: case X86::BI__builtin_ia32_prolvd256: case X86::BI__builtin_ia32_prolvd512: case X86::BI__builtin_ia32_prolvq128: case X86::BI__builtin_ia32_prolvq256: case X86::BI__builtin_ia32_prolvq512: return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false); case X86::BI__builtin_ia32_prord128: case X86::BI__builtin_ia32_prord256: case X86::BI__builtin_ia32_prord512: case X86::BI__builtin_ia32_prorq128: case X86::BI__builtin_ia32_prorq256: case X86::BI__builtin_ia32_prorq512: case X86::BI__builtin_ia32_prorvd128: case X86::BI__builtin_ia32_prorvd256: case X86::BI__builtin_ia32_prorvd512: case X86::BI__builtin_ia32_prorvq128: case X86::BI__builtin_ia32_prorvq256: case X86::BI__builtin_ia32_prorvq512: return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true); case X86::BI__builtin_ia32_selectb_128: case X86::BI__builtin_ia32_selectb_256: case X86::BI__builtin_ia32_selectb_512: case X86::BI__builtin_ia32_selectw_128: case X86::BI__builtin_ia32_selectw_256: case X86::BI__builtin_ia32_selectw_512: case X86::BI__builtin_ia32_selectd_128: case X86::BI__builtin_ia32_selectd_256: case X86::BI__builtin_ia32_selectd_512: case X86::BI__builtin_ia32_selectq_128: case X86::BI__builtin_ia32_selectq_256: case X86::BI__builtin_ia32_selectq_512: case X86::BI__builtin_ia32_selectps_128: case X86::BI__builtin_ia32_selectps_256: case X86::BI__builtin_ia32_selectps_512: case X86::BI__builtin_ia32_selectpd_128: case X86::BI__builtin_ia32_selectpd_256: case X86::BI__builtin_ia32_selectpd_512: return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]); case X86::BI__builtin_ia32_selectss_128: case X86::BI__builtin_ia32_selectsd_128: { Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0); A = EmitX86ScalarSelect(*this, Ops[0], A, B); return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0); } case X86::BI__builtin_ia32_cmpb128_mask: case X86::BI__builtin_ia32_cmpb256_mask: case X86::BI__builtin_ia32_cmpb512_mask: case X86::BI__builtin_ia32_cmpw128_mask: case X86::BI__builtin_ia32_cmpw256_mask: case X86::BI__builtin_ia32_cmpw512_mask: case X86::BI__builtin_ia32_cmpd128_mask: case X86::BI__builtin_ia32_cmpd256_mask: case X86::BI__builtin_ia32_cmpd512_mask: case X86::BI__builtin_ia32_cmpq128_mask: case X86::BI__builtin_ia32_cmpq256_mask: case X86::BI__builtin_ia32_cmpq512_mask: { unsigned CC = cast(Ops[2])->getZExtValue() & 0x7; return EmitX86MaskedCompare(*this, CC, true, Ops); } case X86::BI__builtin_ia32_ucmpb128_mask: case X86::BI__builtin_ia32_ucmpb256_mask: case X86::BI__builtin_ia32_ucmpb512_mask: case X86::BI__builtin_ia32_ucmpw128_mask: case X86::BI__builtin_ia32_ucmpw256_mask: case X86::BI__builtin_ia32_ucmpw512_mask: case X86::BI__builtin_ia32_ucmpd128_mask: case X86::BI__builtin_ia32_ucmpd256_mask: case X86::BI__builtin_ia32_ucmpd512_mask: case X86::BI__builtin_ia32_ucmpq128_mask: case X86::BI__builtin_ia32_ucmpq256_mask: case X86::BI__builtin_ia32_ucmpq512_mask: { unsigned CC = cast(Ops[2])->getZExtValue() & 0x7; return EmitX86MaskedCompare(*this, CC, false, Ops); } case X86::BI__builtin_ia32_vpcomb: case X86::BI__builtin_ia32_vpcomw: case X86::BI__builtin_ia32_vpcomd: case X86::BI__builtin_ia32_vpcomq: return EmitX86vpcom(*this, Ops, true); case X86::BI__builtin_ia32_vpcomub: case X86::BI__builtin_ia32_vpcomuw: case X86::BI__builtin_ia32_vpcomud: case X86::BI__builtin_ia32_vpcomuq: return EmitX86vpcom(*this, Ops, false); case X86::BI__builtin_ia32_kortestcqi: case X86::BI__builtin_ia32_kortestchi: case X86::BI__builtin_ia32_kortestcsi: case X86::BI__builtin_ia32_kortestcdi: { Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType()); Value *Cmp = Builder.CreateICmpEQ(Or, C); return Builder.CreateZExt(Cmp, ConvertType(E->getType())); } case X86::BI__builtin_ia32_kortestzqi: case X86::BI__builtin_ia32_kortestzhi: case X86::BI__builtin_ia32_kortestzsi: case X86::BI__builtin_ia32_kortestzdi: { Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); Value *C = llvm::Constant::getNullValue(Ops[0]->getType()); Value *Cmp = Builder.CreateICmpEQ(Or, C); return Builder.CreateZExt(Cmp, ConvertType(E->getType())); } case X86::BI__builtin_ia32_ktestcqi: case X86::BI__builtin_ia32_ktestzqi: case X86::BI__builtin_ia32_ktestchi: case X86::BI__builtin_ia32_ktestzhi: case X86::BI__builtin_ia32_ktestcsi: case X86::BI__builtin_ia32_ktestzsi: case X86::BI__builtin_ia32_ktestcdi: case X86::BI__builtin_ia32_ktestzdi: { Intrinsic::ID IID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_ktestcqi: IID = Intrinsic::x86_avx512_ktestc_b; break; case X86::BI__builtin_ia32_ktestzqi: IID = Intrinsic::x86_avx512_ktestz_b; break; case X86::BI__builtin_ia32_ktestchi: IID = Intrinsic::x86_avx512_ktestc_w; break; case X86::BI__builtin_ia32_ktestzhi: IID = Intrinsic::x86_avx512_ktestz_w; break; case X86::BI__builtin_ia32_ktestcsi: IID = Intrinsic::x86_avx512_ktestc_d; break; case X86::BI__builtin_ia32_ktestzsi: IID = Intrinsic::x86_avx512_ktestz_d; break; case X86::BI__builtin_ia32_ktestcdi: IID = Intrinsic::x86_avx512_ktestc_q; break; case X86::BI__builtin_ia32_ktestzdi: IID = Intrinsic::x86_avx512_ktestz_q; break; } unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); Function *Intr = CGM.getIntrinsic(IID); return Builder.CreateCall(Intr, {LHS, RHS}); } case X86::BI__builtin_ia32_kaddqi: case X86::BI__builtin_ia32_kaddhi: case X86::BI__builtin_ia32_kaddsi: case X86::BI__builtin_ia32_kadddi: { Intrinsic::ID IID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_kaddqi: IID = Intrinsic::x86_avx512_kadd_b; break; case X86::BI__builtin_ia32_kaddhi: IID = Intrinsic::x86_avx512_kadd_w; break; case X86::BI__builtin_ia32_kaddsi: IID = Intrinsic::x86_avx512_kadd_d; break; case X86::BI__builtin_ia32_kadddi: IID = Intrinsic::x86_avx512_kadd_q; break; } unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); Function *Intr = CGM.getIntrinsic(IID); Value *Res = Builder.CreateCall(Intr, {LHS, RHS}); return Builder.CreateBitCast(Res, Ops[0]->getType()); } case X86::BI__builtin_ia32_kandqi: case X86::BI__builtin_ia32_kandhi: case X86::BI__builtin_ia32_kandsi: case X86::BI__builtin_ia32_kanddi: return EmitX86MaskLogic(*this, Instruction::And, Ops); case X86::BI__builtin_ia32_kandnqi: case X86::BI__builtin_ia32_kandnhi: case X86::BI__builtin_ia32_kandnsi: case X86::BI__builtin_ia32_kandndi: return EmitX86MaskLogic(*this, Instruction::And, Ops, true); case X86::BI__builtin_ia32_korqi: case X86::BI__builtin_ia32_korhi: case X86::BI__builtin_ia32_korsi: case X86::BI__builtin_ia32_kordi: return EmitX86MaskLogic(*this, Instruction::Or, Ops); case X86::BI__builtin_ia32_kxnorqi: case X86::BI__builtin_ia32_kxnorhi: case X86::BI__builtin_ia32_kxnorsi: case X86::BI__builtin_ia32_kxnordi: return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true); case X86::BI__builtin_ia32_kxorqi: case X86::BI__builtin_ia32_kxorhi: case X86::BI__builtin_ia32_kxorsi: case X86::BI__builtin_ia32_kxordi: return EmitX86MaskLogic(*this, Instruction::Xor, Ops); case X86::BI__builtin_ia32_knotqi: case X86::BI__builtin_ia32_knothi: case X86::BI__builtin_ia32_knotsi: case X86::BI__builtin_ia32_knotdi: { unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); Value *Res = getMaskVecValue(*this, Ops[0], NumElts); return Builder.CreateBitCast(Builder.CreateNot(Res), Ops[0]->getType()); } case X86::BI__builtin_ia32_kmovb: case X86::BI__builtin_ia32_kmovw: case X86::BI__builtin_ia32_kmovd: case X86::BI__builtin_ia32_kmovq: { // Bitcast to vXi1 type and then back to integer. This gets the mask // register type into the IR, but might be optimized out depending on // what's around it. unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); Value *Res = getMaskVecValue(*this, Ops[0], NumElts); return Builder.CreateBitCast(Res, Ops[0]->getType()); } case X86::BI__builtin_ia32_kunpckdi: case X86::BI__builtin_ia32_kunpcksi: case X86::BI__builtin_ia32_kunpckhi: { unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); int Indices[64]; for (unsigned i = 0; i != NumElts; ++i) Indices[i] = i; // First extract half of each vector. This gives better codegen than // doing it in a single shuffle. LHS = Builder.CreateShuffleVector(LHS, LHS, makeArrayRef(Indices, NumElts / 2)); RHS = Builder.CreateShuffleVector(RHS, RHS, makeArrayRef(Indices, NumElts / 2)); // Concat the vectors. // NOTE: Operands are swapped to match the intrinsic definition. Value *Res = Builder.CreateShuffleVector(RHS, LHS, makeArrayRef(Indices, NumElts)); return Builder.CreateBitCast(Res, Ops[0]->getType()); } case X86::BI__builtin_ia32_vplzcntd_128: case X86::BI__builtin_ia32_vplzcntd_256: case X86::BI__builtin_ia32_vplzcntd_512: case X86::BI__builtin_ia32_vplzcntq_128: case X86::BI__builtin_ia32_vplzcntq_256: case X86::BI__builtin_ia32_vplzcntq_512: { Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}); } case X86::BI__builtin_ia32_sqrtss: case X86::BI__builtin_ia32_sqrtsd: { Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0); Function *F; if (Builder.getIsFPConstrained()) { F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, A->getType()); A = Builder.CreateConstrainedFPCall(F, {A}); } else { F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); A = Builder.CreateCall(F, {A}); } return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); } case X86::BI__builtin_ia32_sqrtsd_round_mask: case X86::BI__builtin_ia32_sqrtss_round_mask: { unsigned CC = cast(Ops[4])->getZExtValue(); // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), // otherwise keep the intrinsic. if (CC != 4) { Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ? Intrinsic::x86_avx512_mask_sqrt_sd : Intrinsic::x86_avx512_mask_sqrt_ss; return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); } Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); Function *F; if (Builder.getIsFPConstrained()) { F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, A->getType()); A = Builder.CreateConstrainedFPCall(F, A); } else { F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); A = Builder.CreateCall(F, A); } Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0); A = EmitX86ScalarSelect(*this, Ops[3], A, Src); return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); } case X86::BI__builtin_ia32_sqrtpd256: case X86::BI__builtin_ia32_sqrtpd: case X86::BI__builtin_ia32_sqrtps256: case X86::BI__builtin_ia32_sqrtps: case X86::BI__builtin_ia32_sqrtps512: case X86::BI__builtin_ia32_sqrtpd512: { if (Ops.size() == 2) { unsigned CC = cast(Ops[1])->getZExtValue(); // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), // otherwise keep the intrinsic. if (CC != 4) { Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ? Intrinsic::x86_avx512_sqrt_ps_512 : Intrinsic::x86_avx512_sqrt_pd_512; return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); } } if (Builder.getIsFPConstrained()) { Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, Ops[0]->getType()); return Builder.CreateConstrainedFPCall(F, Ops[0]); } else { Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType()); return Builder.CreateCall(F, Ops[0]); } } case X86::BI__builtin_ia32_pabsb128: case X86::BI__builtin_ia32_pabsw128: case X86::BI__builtin_ia32_pabsd128: case X86::BI__builtin_ia32_pabsb256: case X86::BI__builtin_ia32_pabsw256: case X86::BI__builtin_ia32_pabsd256: case X86::BI__builtin_ia32_pabsq128: case X86::BI__builtin_ia32_pabsq256: case X86::BI__builtin_ia32_pabsb512: case X86::BI__builtin_ia32_pabsw512: case X86::BI__builtin_ia32_pabsd512: case X86::BI__builtin_ia32_pabsq512: return EmitX86Abs(*this, Ops); case X86::BI__builtin_ia32_pmaxsb128: case X86::BI__builtin_ia32_pmaxsw128: case X86::BI__builtin_ia32_pmaxsd128: case X86::BI__builtin_ia32_pmaxsq128: case X86::BI__builtin_ia32_pmaxsb256: case X86::BI__builtin_ia32_pmaxsw256: case X86::BI__builtin_ia32_pmaxsd256: case X86::BI__builtin_ia32_pmaxsq256: case X86::BI__builtin_ia32_pmaxsb512: case X86::BI__builtin_ia32_pmaxsw512: case X86::BI__builtin_ia32_pmaxsd512: case X86::BI__builtin_ia32_pmaxsq512: return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops); case X86::BI__builtin_ia32_pmaxub128: case X86::BI__builtin_ia32_pmaxuw128: case X86::BI__builtin_ia32_pmaxud128: case X86::BI__builtin_ia32_pmaxuq128: case X86::BI__builtin_ia32_pmaxub256: case X86::BI__builtin_ia32_pmaxuw256: case X86::BI__builtin_ia32_pmaxud256: case X86::BI__builtin_ia32_pmaxuq256: case X86::BI__builtin_ia32_pmaxub512: case X86::BI__builtin_ia32_pmaxuw512: case X86::BI__builtin_ia32_pmaxud512: case X86::BI__builtin_ia32_pmaxuq512: return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops); case X86::BI__builtin_ia32_pminsb128: case X86::BI__builtin_ia32_pminsw128: case X86::BI__builtin_ia32_pminsd128: case X86::BI__builtin_ia32_pminsq128: case X86::BI__builtin_ia32_pminsb256: case X86::BI__builtin_ia32_pminsw256: case X86::BI__builtin_ia32_pminsd256: case X86::BI__builtin_ia32_pminsq256: case X86::BI__builtin_ia32_pminsb512: case X86::BI__builtin_ia32_pminsw512: case X86::BI__builtin_ia32_pminsd512: case X86::BI__builtin_ia32_pminsq512: return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops); case X86::BI__builtin_ia32_pminub128: case X86::BI__builtin_ia32_pminuw128: case X86::BI__builtin_ia32_pminud128: case X86::BI__builtin_ia32_pminuq128: case X86::BI__builtin_ia32_pminub256: case X86::BI__builtin_ia32_pminuw256: case X86::BI__builtin_ia32_pminud256: case X86::BI__builtin_ia32_pminuq256: case X86::BI__builtin_ia32_pminub512: case X86::BI__builtin_ia32_pminuw512: case X86::BI__builtin_ia32_pminud512: case X86::BI__builtin_ia32_pminuq512: return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops); case X86::BI__builtin_ia32_pmuludq128: case X86::BI__builtin_ia32_pmuludq256: case X86::BI__builtin_ia32_pmuludq512: return EmitX86Muldq(*this, /*IsSigned*/false, Ops); case X86::BI__builtin_ia32_pmuldq128: case X86::BI__builtin_ia32_pmuldq256: case X86::BI__builtin_ia32_pmuldq512: return EmitX86Muldq(*this, /*IsSigned*/true, Ops); case X86::BI__builtin_ia32_pternlogd512_mask: case X86::BI__builtin_ia32_pternlogq512_mask: case X86::BI__builtin_ia32_pternlogd128_mask: case X86::BI__builtin_ia32_pternlogd256_mask: case X86::BI__builtin_ia32_pternlogq128_mask: case X86::BI__builtin_ia32_pternlogq256_mask: return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops); case X86::BI__builtin_ia32_pternlogd512_maskz: case X86::BI__builtin_ia32_pternlogq512_maskz: case X86::BI__builtin_ia32_pternlogd128_maskz: case X86::BI__builtin_ia32_pternlogd256_maskz: case X86::BI__builtin_ia32_pternlogq128_maskz: case X86::BI__builtin_ia32_pternlogq256_maskz: return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops); case X86::BI__builtin_ia32_vpshldd128: case X86::BI__builtin_ia32_vpshldd256: case X86::BI__builtin_ia32_vpshldd512: case X86::BI__builtin_ia32_vpshldq128: case X86::BI__builtin_ia32_vpshldq256: case X86::BI__builtin_ia32_vpshldq512: case X86::BI__builtin_ia32_vpshldw128: case X86::BI__builtin_ia32_vpshldw256: case X86::BI__builtin_ia32_vpshldw512: return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); case X86::BI__builtin_ia32_vpshrdd128: case X86::BI__builtin_ia32_vpshrdd256: case X86::BI__builtin_ia32_vpshrdd512: case X86::BI__builtin_ia32_vpshrdq128: case X86::BI__builtin_ia32_vpshrdq256: case X86::BI__builtin_ia32_vpshrdq512: case X86::BI__builtin_ia32_vpshrdw128: case X86::BI__builtin_ia32_vpshrdw256: case X86::BI__builtin_ia32_vpshrdw512: // Ops 0 and 1 are swapped. return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); case X86::BI__builtin_ia32_vpshldvd128: case X86::BI__builtin_ia32_vpshldvd256: case X86::BI__builtin_ia32_vpshldvd512: case X86::BI__builtin_ia32_vpshldvq128: case X86::BI__builtin_ia32_vpshldvq256: case X86::BI__builtin_ia32_vpshldvq512: case X86::BI__builtin_ia32_vpshldvw128: case X86::BI__builtin_ia32_vpshldvw256: case X86::BI__builtin_ia32_vpshldvw512: return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); case X86::BI__builtin_ia32_vpshrdvd128: case X86::BI__builtin_ia32_vpshrdvd256: case X86::BI__builtin_ia32_vpshrdvd512: case X86::BI__builtin_ia32_vpshrdvq128: case X86::BI__builtin_ia32_vpshrdvq256: case X86::BI__builtin_ia32_vpshrdvq512: case X86::BI__builtin_ia32_vpshrdvw128: case X86::BI__builtin_ia32_vpshrdvw256: case X86::BI__builtin_ia32_vpshrdvw512: // Ops 0 and 1 are swapped. return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); // 3DNow! case X86::BI__builtin_ia32_pswapdsf: case X86::BI__builtin_ia32_pswapdsi: { llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd); return Builder.CreateCall(F, Ops, "pswapd"); } case X86::BI__builtin_ia32_rdrand16_step: case X86::BI__builtin_ia32_rdrand32_step: case X86::BI__builtin_ia32_rdrand64_step: case X86::BI__builtin_ia32_rdseed16_step: case X86::BI__builtin_ia32_rdseed32_step: case X86::BI__builtin_ia32_rdseed64_step: { Intrinsic::ID ID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_rdrand16_step: ID = Intrinsic::x86_rdrand_16; break; case X86::BI__builtin_ia32_rdrand32_step: ID = Intrinsic::x86_rdrand_32; break; case X86::BI__builtin_ia32_rdrand64_step: ID = Intrinsic::x86_rdrand_64; break; case X86::BI__builtin_ia32_rdseed16_step: ID = Intrinsic::x86_rdseed_16; break; case X86::BI__builtin_ia32_rdseed32_step: ID = Intrinsic::x86_rdseed_32; break; case X86::BI__builtin_ia32_rdseed64_step: ID = Intrinsic::x86_rdseed_64; break; } Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0), Ops[0]); return Builder.CreateExtractValue(Call, 1); } case X86::BI__builtin_ia32_addcarryx_u32: case X86::BI__builtin_ia32_addcarryx_u64: case X86::BI__builtin_ia32_subborrow_u32: case X86::BI__builtin_ia32_subborrow_u64: { Intrinsic::ID IID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_addcarryx_u32: IID = Intrinsic::x86_addcarry_32; break; case X86::BI__builtin_ia32_addcarryx_u64: IID = Intrinsic::x86_addcarry_64; break; case X86::BI__builtin_ia32_subborrow_u32: IID = Intrinsic::x86_subborrow_32; break; case X86::BI__builtin_ia32_subborrow_u64: IID = Intrinsic::x86_subborrow_64; break; } Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), { Ops[0], Ops[1], Ops[2] }); Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), Ops[3]); return Builder.CreateExtractValue(Call, 0); } case X86::BI__builtin_ia32_fpclassps128_mask: case X86::BI__builtin_ia32_fpclassps256_mask: case X86::BI__builtin_ia32_fpclassps512_mask: case X86::BI__builtin_ia32_fpclasspd128_mask: case X86::BI__builtin_ia32_fpclasspd256_mask: case X86::BI__builtin_ia32_fpclasspd512_mask: { unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); Value *MaskIn = Ops[2]; Ops.erase(&Ops[2]); Intrinsic::ID ID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_fpclassps128_mask: ID = Intrinsic::x86_avx512_fpclass_ps_128; break; case X86::BI__builtin_ia32_fpclassps256_mask: ID = Intrinsic::x86_avx512_fpclass_ps_256; break; case X86::BI__builtin_ia32_fpclassps512_mask: ID = Intrinsic::x86_avx512_fpclass_ps_512; break; case X86::BI__builtin_ia32_fpclasspd128_mask: ID = Intrinsic::x86_avx512_fpclass_pd_128; break; case X86::BI__builtin_ia32_fpclasspd256_mask: ID = Intrinsic::x86_avx512_fpclass_pd_256; break; case X86::BI__builtin_ia32_fpclasspd512_mask: ID = Intrinsic::x86_avx512_fpclass_pd_512; break; } Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn); } case X86::BI__builtin_ia32_vp2intersect_q_512: case X86::BI__builtin_ia32_vp2intersect_q_256: case X86::BI__builtin_ia32_vp2intersect_q_128: case X86::BI__builtin_ia32_vp2intersect_d_512: case X86::BI__builtin_ia32_vp2intersect_d_256: case X86::BI__builtin_ia32_vp2intersect_d_128: { unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); Intrinsic::ID ID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_vp2intersect_q_512: ID = Intrinsic::x86_avx512_vp2intersect_q_512; break; case X86::BI__builtin_ia32_vp2intersect_q_256: ID = Intrinsic::x86_avx512_vp2intersect_q_256; break; case X86::BI__builtin_ia32_vp2intersect_q_128: ID = Intrinsic::x86_avx512_vp2intersect_q_128; break; case X86::BI__builtin_ia32_vp2intersect_d_512: ID = Intrinsic::x86_avx512_vp2intersect_d_512; break; case X86::BI__builtin_ia32_vp2intersect_d_256: ID = Intrinsic::x86_avx512_vp2intersect_d_256; break; case X86::BI__builtin_ia32_vp2intersect_d_128: ID = Intrinsic::x86_avx512_vp2intersect_d_128; break; } Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]}); Value *Result = Builder.CreateExtractValue(Call, 0); Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); Builder.CreateDefaultAlignedStore(Result, Ops[2]); Result = Builder.CreateExtractValue(Call, 1); Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); return Builder.CreateDefaultAlignedStore(Result, Ops[3]); } case X86::BI__builtin_ia32_vpmultishiftqb128: case X86::BI__builtin_ia32_vpmultishiftqb256: case X86::BI__builtin_ia32_vpmultishiftqb512: { Intrinsic::ID ID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_vpmultishiftqb128: ID = Intrinsic::x86_avx512_pmultishift_qb_128; break; case X86::BI__builtin_ia32_vpmultishiftqb256: ID = Intrinsic::x86_avx512_pmultishift_qb_256; break; case X86::BI__builtin_ia32_vpmultishiftqb512: ID = Intrinsic::x86_avx512_pmultishift_qb_512; break; } return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); } case X86::BI__builtin_ia32_vpshufbitqmb128_mask: case X86::BI__builtin_ia32_vpshufbitqmb256_mask: case X86::BI__builtin_ia32_vpshufbitqmb512_mask: { unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); Value *MaskIn = Ops[2]; Ops.erase(&Ops[2]); Intrinsic::ID ID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_vpshufbitqmb128_mask: ID = Intrinsic::x86_avx512_vpshufbitqmb_128; break; case X86::BI__builtin_ia32_vpshufbitqmb256_mask: ID = Intrinsic::x86_avx512_vpshufbitqmb_256; break; case X86::BI__builtin_ia32_vpshufbitqmb512_mask: ID = Intrinsic::x86_avx512_vpshufbitqmb_512; break; } Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn); } // packed comparison intrinsics case X86::BI__builtin_ia32_cmpeqps: case X86::BI__builtin_ia32_cmpeqpd: return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false); case X86::BI__builtin_ia32_cmpltps: case X86::BI__builtin_ia32_cmpltpd: return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true); case X86::BI__builtin_ia32_cmpleps: case X86::BI__builtin_ia32_cmplepd: return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true); case X86::BI__builtin_ia32_cmpunordps: case X86::BI__builtin_ia32_cmpunordpd: return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false); case X86::BI__builtin_ia32_cmpneqps: case X86::BI__builtin_ia32_cmpneqpd: return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false); case X86::BI__builtin_ia32_cmpnltps: case X86::BI__builtin_ia32_cmpnltpd: return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true); case X86::BI__builtin_ia32_cmpnleps: case X86::BI__builtin_ia32_cmpnlepd: return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true); case X86::BI__builtin_ia32_cmpordps: case X86::BI__builtin_ia32_cmpordpd: return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false); case X86::BI__builtin_ia32_cmpps: case X86::BI__builtin_ia32_cmpps256: case X86::BI__builtin_ia32_cmppd: case X86::BI__builtin_ia32_cmppd256: case X86::BI__builtin_ia32_cmpps128_mask: case X86::BI__builtin_ia32_cmpps256_mask: case X86::BI__builtin_ia32_cmpps512_mask: case X86::BI__builtin_ia32_cmppd128_mask: case X86::BI__builtin_ia32_cmppd256_mask: case X86::BI__builtin_ia32_cmppd512_mask: { // Lowering vector comparisons to fcmp instructions, while // ignoring signalling behaviour requested // ignoring rounding mode requested // This is is only possible as long as FENV_ACCESS is not implemented. // See also: https://reviews.llvm.org/D45616 // The third argument is the comparison condition, and integer in the // range [0, 31] unsigned CC = cast(Ops[2])->getZExtValue() & 0x1f; // Lowering to IR fcmp instruction. // Ignoring requested signaling behaviour, // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT. FCmpInst::Predicate Pred; bool IsSignaling; // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling // behavior is inverted. We'll handle that after the switch. switch (CC & 0xf) { case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break; case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break; case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break; case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break; case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break; case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break; case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break; case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break; case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break; case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break; case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break; case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break; case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break; case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break; case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break; case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break; default: llvm_unreachable("Unhandled CC"); } // Invert the signalling behavior for 16-31. if (CC & 0x10) IsSignaling = !IsSignaling; // If the predicate is true or false and we're using constrained intrinsics, // we don't have a compare intrinsic we can use. Just use the legacy X86 // specific intrinsic. if ((Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE) && Builder.getIsFPConstrained()) { Intrinsic::ID IID; switch (BuiltinID) { default: llvm_unreachable("Unexpected builtin"); case X86::BI__builtin_ia32_cmpps: IID = Intrinsic::x86_sse_cmp_ps; break; case X86::BI__builtin_ia32_cmpps256: IID = Intrinsic::x86_avx_cmp_ps_256; break; case X86::BI__builtin_ia32_cmppd: IID = Intrinsic::x86_sse2_cmp_pd; break; case X86::BI__builtin_ia32_cmppd256: IID = Intrinsic::x86_avx_cmp_pd_256; break; case X86::BI__builtin_ia32_cmpps512_mask: IID = Intrinsic::x86_avx512_cmp_ps_512; break; case X86::BI__builtin_ia32_cmppd512_mask: IID = Intrinsic::x86_avx512_cmp_pd_512; break; case X86::BI__builtin_ia32_cmpps128_mask: IID = Intrinsic::x86_avx512_cmp_ps_128; break; case X86::BI__builtin_ia32_cmpps256_mask: IID = Intrinsic::x86_avx512_cmp_ps_256; break; case X86::BI__builtin_ia32_cmppd128_mask: IID = Intrinsic::x86_avx512_cmp_pd_128; break; case X86::BI__builtin_ia32_cmppd256_mask: IID = Intrinsic::x86_avx512_cmp_pd_256; break; } Function *Intr = CGM.getIntrinsic(IID); if (cast(Intr->getReturnType()) ->getElementType() ->isIntegerTy(1)) { unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); Value *MaskIn = Ops[3]; Ops.erase(&Ops[3]); Value *Cmp = Builder.CreateCall(Intr, Ops); return EmitX86MaskedCompareResult(*this, Cmp, NumElts, MaskIn); } return Builder.CreateCall(Intr, Ops); } // Builtins without the _mask suffix return a vector of integers // of the same width as the input vectors switch (BuiltinID) { case X86::BI__builtin_ia32_cmpps512_mask: case X86::BI__builtin_ia32_cmppd512_mask: case X86::BI__builtin_ia32_cmpps128_mask: case X86::BI__builtin_ia32_cmpps256_mask: case X86::BI__builtin_ia32_cmppd128_mask: case X86::BI__builtin_ia32_cmppd256_mask: { // FIXME: Support SAE. unsigned NumElts = cast(Ops[0]->getType())->getNumElements(); Value *Cmp; if (IsSignaling) Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); else Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]); } default: return getVectorFCmpIR(Pred, IsSignaling); } } // SSE scalar comparison intrinsics case X86::BI__builtin_ia32_cmpeqss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0); case X86::BI__builtin_ia32_cmpltss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1); case X86::BI__builtin_ia32_cmpless: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2); case X86::BI__builtin_ia32_cmpunordss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3); case X86::BI__builtin_ia32_cmpneqss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4); case X86::BI__builtin_ia32_cmpnltss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5); case X86::BI__builtin_ia32_cmpnless: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6); case X86::BI__builtin_ia32_cmpordss: return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7); case X86::BI__builtin_ia32_cmpeqsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0); case X86::BI__builtin_ia32_cmpltsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1); case X86::BI__builtin_ia32_cmplesd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2); case X86::BI__builtin_ia32_cmpunordsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3); case X86::BI__builtin_ia32_cmpneqsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4); case X86::BI__builtin_ia32_cmpnltsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5); case X86::BI__builtin_ia32_cmpnlesd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6); case X86::BI__builtin_ia32_cmpordsd: return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7); // f16c half2float intrinsics case X86::BI__builtin_ia32_vcvtph2ps: case X86::BI__builtin_ia32_vcvtph2ps256: case X86::BI__builtin_ia32_vcvtph2ps_mask: case X86::BI__builtin_ia32_vcvtph2ps256_mask: case X86::BI__builtin_ia32_vcvtph2ps512_mask: return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType())); // AVX512 bf16 intrinsics case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: { Ops[2] = getMaskVecValue( *this, Ops[2], cast(Ops[0]->getType())->getNumElements()); Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128; return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); } case X86::BI__builtin_ia32_cvtsbf162ss_32: return EmitX86CvtBF16ToFloatExpr(*this, E, Ops); case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: { Intrinsic::ID IID; switch (BuiltinID) { default: llvm_unreachable("Unsupported intrinsic!"); case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256; break; case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512; break; } Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]); return EmitX86Select(*this, Ops[2], Res, Ops[1]); } case X86::BI__emul: case X86::BI__emulu: { llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64); bool isSigned = (BuiltinID == X86::BI__emul); Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned); Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned); return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned); } case X86::BI__mulh: case X86::BI__umulh: case X86::BI_mul128: case X86::BI_umul128: { llvm::Type *ResType = ConvertType(E->getType()); llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128); Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned); Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned); Value *MulResult, *HigherBits; if (IsSigned) { MulResult = Builder.CreateNSWMul(LHS, RHS); HigherBits = Builder.CreateAShr(MulResult, 64); } else { MulResult = Builder.CreateNUWMul(LHS, RHS); HigherBits = Builder.CreateLShr(MulResult, 64); } HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh) return HigherBits; Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2)); Builder.CreateStore(HigherBits, HighBitsAddress); return Builder.CreateIntCast(MulResult, ResType, IsSigned); } case X86::BI__faststorefence: { return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, llvm::SyncScope::System); } case X86::BI__shiftleft128: case X86::BI__shiftright128: { // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this: // llvm::Function *F = CGM.getIntrinsic( // BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr, // Int64Ty); // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); // return Builder.CreateCall(F, Ops); llvm::Type *Int128Ty = Builder.getInt128Ty(); Value *HighPart128 = Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64); Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty); Value *Val = Builder.CreateOr(HighPart128, LowPart128); Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty), llvm::ConstantInt::get(Int128Ty, 0x3f)); Value *Res; if (BuiltinID == X86::BI__shiftleft128) Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64); else Res = Builder.CreateLShr(Val, Amt); return Builder.CreateTrunc(Res, Int64Ty); } case X86::BI_ReadWriteBarrier: case X86::BI_ReadBarrier: case X86::BI_WriteBarrier: { return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, llvm::SyncScope::SingleThread); } case X86::BI_BitScanForward: case X86::BI_BitScanForward64: return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E); case X86::BI_BitScanReverse: case X86::BI_BitScanReverse64: return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E); case X86::BI_InterlockedAnd64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E); case X86::BI_InterlockedExchange64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E); case X86::BI_InterlockedExchangeAdd64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E); case X86::BI_InterlockedExchangeSub64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E); case X86::BI_InterlockedOr64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E); case X86::BI_InterlockedXor64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E); case X86::BI_InterlockedDecrement64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E); case X86::BI_InterlockedIncrement64: return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E); case X86::BI_InterlockedCompareExchange128: { // InterlockedCompareExchange128 doesn't directly refer to 128bit ints, // instead it takes pointers to 64bit ints for Destination and // ComparandResult, and exchange is taken as two 64bit ints (high & low). // The previous value is written to ComparandResult, and success is // returned. llvm::Type *Int128Ty = Builder.getInt128Ty(); llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); Value *Destination = Builder.CreateBitCast(Ops[0], Int128PtrTy); Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty); Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty); Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy), getContext().toCharUnitsFromBits(128)); Value *Exchange = Builder.CreateOr( Builder.CreateShl(ExchangeHigh128, 64, "", false, false), ExchangeLow128); Value *Comparand = Builder.CreateLoad(ComparandResult); AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, AtomicOrdering::SequentiallyConsistent, AtomicOrdering::SequentiallyConsistent); CXI->setVolatile(true); // Write the result back to the inout pointer. Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult); // Get the success boolean and zero extend it to i8. Value *Success = Builder.CreateExtractValue(CXI, 1); return Builder.CreateZExt(Success, ConvertType(E->getType())); } case X86::BI_AddressOfReturnAddress: { Function *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); return Builder.CreateCall(F); } case X86::BI__stosb: { // We treat __stosb as a volatile memset - it may not generate "rep stosb" // instruction, but it will create a memset that won't be optimized away. return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true); } case X86::BI__ud2: // llvm.trap makes a ud2a instruction on x86. return EmitTrapCall(Intrinsic::trap); case X86::BI__int2c: { // This syscall signals a driver assertion failure in x86 NT kernels. llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); llvm::InlineAsm *IA = llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true); llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoReturn); llvm::CallInst *CI = Builder.CreateCall(IA); CI->setAttributes(NoReturnAttr); return CI; } case X86::BI__readfsbyte: case X86::BI__readfsword: case X86::BI__readfsdword: case X86::BI__readfsqword: { llvm::Type *IntTy = ConvertType(E->getType()); Value *Ptr = Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257)); LoadInst *Load = Builder.CreateAlignedLoad( IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); Load->setVolatile(true); return Load; } case X86::BI__readgsbyte: case X86::BI__readgsword: case X86::BI__readgsdword: case X86::BI__readgsqword: { llvm::Type *IntTy = ConvertType(E->getType()); Value *Ptr = Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256)); LoadInst *Load = Builder.CreateAlignedLoad( IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); Load->setVolatile(true); return Load; } case X86::BI__builtin_ia32_paddsb512: case X86::BI__builtin_ia32_paddsw512: case X86::BI__builtin_ia32_paddsb256: case X86::BI__builtin_ia32_paddsw256: case X86::BI__builtin_ia32_paddsb128: case X86::BI__builtin_ia32_paddsw128: return EmitX86AddSubSatExpr(*this, Ops, true, true); case X86::BI__builtin_ia32_paddusb512: case X86::BI__builtin_ia32_paddusw512: case X86::BI__builtin_ia32_paddusb256: case X86::BI__builtin_ia32_paddusw256: case X86::BI__builtin_ia32_paddusb128: case X86::BI__builtin_ia32_paddusw128: return EmitX86AddSubSatExpr(*this, Ops, false, true); case X86::BI__builtin_ia32_psubsb512: case X86::BI__builtin_ia32_psubsw512: case X86::BI__builtin_ia32_psubsb256: case X86::BI__builtin_ia32_psubsw256: case X86::BI__builtin_ia32_psubsb128: case X86::BI__builtin_ia32_psubsw128: return EmitX86AddSubSatExpr(*this, Ops, true, false); case X86::BI__builtin_ia32_psubusb512: case X86::BI__builtin_ia32_psubusw512: case X86::BI__builtin_ia32_psubusb256: case X86::BI__builtin_ia32_psubusw256: case X86::BI__builtin_ia32_psubusb128: case X86::BI__builtin_ia32_psubusw128: return EmitX86AddSubSatExpr(*this, Ops, false, false); } } Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { SmallVector Ops; for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) Ops.push_back(EmitScalarExpr(E->getArg(i))); Intrinsic::ID ID = Intrinsic::not_intrinsic; switch (BuiltinID) { default: return nullptr; // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we // call __builtin_readcyclecounter. case PPC::BI__builtin_ppc_get_timebase: return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter)); // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr case PPC::BI__builtin_altivec_lvx: case PPC::BI__builtin_altivec_lvxl: case PPC::BI__builtin_altivec_lvebx: case PPC::BI__builtin_altivec_lvehx: case PPC::BI__builtin_altivec_lvewx: case PPC::BI__builtin_altivec_lvsl: case PPC::BI__builtin_altivec_lvsr: case PPC::BI__builtin_vsx_lxvd2x: case PPC::BI__builtin_vsx_lxvw4x: case PPC::BI__builtin_vsx_lxvd2x_be: case PPC::BI__builtin_vsx_lxvw4x_be: case PPC::BI__builtin_vsx_lxvl: case PPC::BI__builtin_vsx_lxvll: { if(BuiltinID == PPC::BI__builtin_vsx_lxvl || BuiltinID == PPC::BI__builtin_vsx_lxvll){ Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); }else { Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]); Ops.pop_back(); } switch (BuiltinID) { default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); case PPC::BI__builtin_altivec_lvx: ID = Intrinsic::ppc_altivec_lvx; break; case PPC::BI__builtin_altivec_lvxl: ID = Intrinsic::ppc_altivec_lvxl; break; case PPC::BI__builtin_altivec_lvebx: ID = Intrinsic::ppc_altivec_lvebx; break; case PPC::BI__builtin_altivec_lvehx: ID = Intrinsic::ppc_altivec_lvehx; break; case PPC::BI__builtin_altivec_lvewx: ID = Intrinsic::ppc_altivec_lvewx; break; case PPC::BI__builtin_altivec_lvsl: ID = Intrinsic::ppc_altivec_lvsl; break; case PPC::BI__builtin_altivec_lvsr: ID = Intrinsic::ppc_altivec_lvsr; break; case PPC::BI__builtin_vsx_lxvd2x: ID = Intrinsic::ppc_vsx_lxvd2x; break; case PPC::BI__builtin_vsx_lxvw4x: ID = Intrinsic::ppc_vsx_lxvw4x; break; case PPC::BI__builtin_vsx_lxvd2x_be: ID = Intrinsic::ppc_vsx_lxvd2x_be; break; case PPC::BI__builtin_vsx_lxvw4x_be: ID = Intrinsic::ppc_vsx_lxvw4x_be; break; case PPC::BI__builtin_vsx_lxvl: ID = Intrinsic::ppc_vsx_lxvl; break; case PPC::BI__builtin_vsx_lxvll: ID = Intrinsic::ppc_vsx_lxvll; break; } llvm::Function *F = CGM.getIntrinsic(ID); return Builder.CreateCall(F, Ops, ""); } // vec_st, vec_xst_be case PPC::BI__builtin_altivec_stvx: case PPC::BI__builtin_altivec_stvxl: case PPC::BI__builtin_altivec_stvebx: case PPC::BI__builtin_altivec_stvehx: case PPC::BI__builtin_altivec_stvewx: case PPC::BI__builtin_vsx_stxvd2x: case PPC::BI__builtin_vsx_stxvw4x: case PPC::BI__builtin_vsx_stxvd2x_be: case PPC::BI__builtin_vsx_stxvw4x_be: case PPC::BI__builtin_vsx_stxvl: case PPC::BI__builtin_vsx_stxvll: { if(BuiltinID == PPC::BI__builtin_vsx_stxvl || BuiltinID == PPC::BI__builtin_vsx_stxvll ){ Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); }else { Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]); Ops.pop_back(); } switch (BuiltinID) { default: llvm_unreachable("Unsupported st intrinsic!"); case PPC::BI__builtin_altivec_stvx: ID = Intrinsic::ppc_altivec_stvx; break; case PPC::BI__builtin_altivec_stvxl: ID = Intrinsic::ppc_altivec_stvxl; break; case PPC::BI__builtin_altivec_stvebx: ID = Intrinsic::ppc_altivec_stvebx; break; case PPC::BI__builtin_altivec_stvehx: ID = Intrinsic::ppc_altivec_stvehx; break; case PPC::BI__builtin_altivec_stvewx: ID = Intrinsic::ppc_altivec_stvewx; break; case PPC::BI__builtin_vsx_stxvd2x: ID = Intrinsic::ppc_vsx_stxvd2x; break; case PPC::BI__builtin_vsx_stxvw4x: ID = Intrinsic::ppc_vsx_stxvw4x; break; case PPC::BI__builtin_vsx_stxvd2x_be: ID = Intrinsic::ppc_vsx_stxvd2x_be; break; case PPC::BI__builtin_vsx_stxvw4x_be: ID = Intrinsic::ppc_vsx_stxvw4x_be; break; case PPC::BI__builtin_vsx_stxvl: ID = Intrinsic::ppc_vsx_stxvl; break; case PPC::BI__builtin_vsx_stxvll: ID = Intrinsic::ppc_vsx_stxvll; break; } llvm::Function *F = CGM.getIntrinsic(ID); return Builder.CreateCall(F, Ops, ""); } // Square root case PPC::BI__builtin_vsx_xvsqrtsp: case PPC::BI__builtin_vsx_xvsqrtdp: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); if (Builder.getIsFPConstrained()) { llvm::Function *F = CGM.getIntrinsic( Intrinsic::experimental_constrained_sqrt, ResultType); return Builder.CreateConstrainedFPCall(F, X); } else { llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); return Builder.CreateCall(F, X); } } // Count leading zeros case PPC::BI__builtin_altivec_vclzb: case PPC::BI__builtin_altivec_vclzh: case PPC::BI__builtin_altivec_vclzw: case PPC::BI__builtin_altivec_vclzd: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); return Builder.CreateCall(F, {X, Undef}); } case PPC::BI__builtin_altivec_vctzb: case PPC::BI__builtin_altivec_vctzh: case PPC::BI__builtin_altivec_vctzw: case PPC::BI__builtin_altivec_vctzd: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); return Builder.CreateCall(F, {X, Undef}); } case PPC::BI__builtin_altivec_vpopcntb: case PPC::BI__builtin_altivec_vpopcnth: case PPC::BI__builtin_altivec_vpopcntw: case PPC::BI__builtin_altivec_vpopcntd: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); return Builder.CreateCall(F, X); } // Copy sign case PPC::BI__builtin_vsx_xvcpsgnsp: case PPC::BI__builtin_vsx_xvcpsgndp: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); ID = Intrinsic::copysign; llvm::Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.CreateCall(F, {X, Y}); } // Rounding/truncation case PPC::BI__builtin_vsx_xvrspip: case PPC::BI__builtin_vsx_xvrdpip: case PPC::BI__builtin_vsx_xvrdpim: case PPC::BI__builtin_vsx_xvrspim: case PPC::BI__builtin_vsx_xvrdpi: case PPC::BI__builtin_vsx_xvrspi: case PPC::BI__builtin_vsx_xvrdpic: case PPC::BI__builtin_vsx_xvrspic: case PPC::BI__builtin_vsx_xvrdpiz: case PPC::BI__builtin_vsx_xvrspiz: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || BuiltinID == PPC::BI__builtin_vsx_xvrspim) ID = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_floor : Intrinsic::floor; else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || BuiltinID == PPC::BI__builtin_vsx_xvrspi) ID = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_round : Intrinsic::round; else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || BuiltinID == PPC::BI__builtin_vsx_xvrspic) ID = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_nearbyint : Intrinsic::nearbyint; else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || BuiltinID == PPC::BI__builtin_vsx_xvrspip) ID = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_ceil : Intrinsic::ceil; else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || BuiltinID == PPC::BI__builtin_vsx_xvrspiz) ID = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_trunc : Intrinsic::trunc; llvm::Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X) : Builder.CreateCall(F, X); } // Absolute value case PPC::BI__builtin_vsx_xvabsdp: case PPC::BI__builtin_vsx_xvabssp: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); return Builder.CreateCall(F, X); } // FMA variations case PPC::BI__builtin_vsx_xvmaddadp: case PPC::BI__builtin_vsx_xvmaddasp: case PPC::BI__builtin_vsx_xvnmaddadp: case PPC::BI__builtin_vsx_xvnmaddasp: case PPC::BI__builtin_vsx_xvmsubadp: case PPC::BI__builtin_vsx_xvmsubasp: case PPC::BI__builtin_vsx_xvnmsubadp: case PPC::BI__builtin_vsx_xvnmsubasp: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); Value *Z = EmitScalarExpr(E->getArg(2)); llvm::Function *F; if (Builder.getIsFPConstrained()) F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); else F = CGM.getIntrinsic(Intrinsic::fma, ResultType); switch (BuiltinID) { case PPC::BI__builtin_vsx_xvmaddadp: case PPC::BI__builtin_vsx_xvmaddasp: if (Builder.getIsFPConstrained()) return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); else return Builder.CreateCall(F, {X, Y, Z}); case PPC::BI__builtin_vsx_xvnmaddadp: case PPC::BI__builtin_vsx_xvnmaddasp: if (Builder.getIsFPConstrained()) return Builder.CreateFNeg( Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); else return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); case PPC::BI__builtin_vsx_xvmsubadp: case PPC::BI__builtin_vsx_xvmsubasp: if (Builder.getIsFPConstrained()) return Builder.CreateConstrainedFPCall( F, {X, Y, Builder.CreateFNeg(Z, "neg")}); else return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); case PPC::BI__builtin_vsx_xvnmsubadp: case PPC::BI__builtin_vsx_xvnmsubasp: if (Builder.getIsFPConstrained()) return Builder.CreateFNeg( Builder.CreateConstrainedFPCall( F, {X, Y, Builder.CreateFNeg(Z, "neg")}), "neg"); else return Builder.CreateFNeg( Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}), "neg"); } llvm_unreachable("Unknown FMA operation"); return nullptr; // Suppress no-return warning } case PPC::BI__builtin_vsx_insertword: { llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw); // Third argument is a compile time constant int. It must be clamped to // to the range [0, 12]. ConstantInt *ArgCI = dyn_cast(Ops[2]); assert(ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"); const int64_t MaxIndex = 12; int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); // The builtin semantics don't exactly match the xxinsertw instructions // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the // word from the first argument, and inserts it in the second argument. The // instruction extracts the word from its second input register and inserts // it into its first input register, so swap the first and second arguments. std::swap(Ops[0], Ops[1]); // Need to cast the second argument from a vector of unsigned int to a // vector of long long. Ops[1] = Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2)); if (getTarget().isLittleEndian()) { // Reverse the double words in the vector we will extract from. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef{1, 0}); // Reverse the index. Index = MaxIndex - Index; } // Intrinsic expects the first arg to be a vector of int. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); Ops[2] = ConstantInt::getSigned(Int32Ty, Index); return Builder.CreateCall(F, Ops); } case PPC::BI__builtin_vsx_extractuword: { llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw); // Intrinsic expects the first argument to be a vector of doublewords. Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); // The second argument is a compile time constant int that needs to // be clamped to the range [0, 12]. ConstantInt *ArgCI = dyn_cast(Ops[1]); assert(ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"); const int64_t MaxIndex = 12; int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); if (getTarget().isLittleEndian()) { // Reverse the index. Index = MaxIndex - Index; Ops[1] = ConstantInt::getSigned(Int32Ty, Index); // Emit the call, then reverse the double words of the results vector. Value *Call = Builder.CreateCall(F, Ops); Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ArrayRef{1, 0}); return ShuffleCall; } else { Ops[1] = ConstantInt::getSigned(Int32Ty, Index); return Builder.CreateCall(F, Ops); } } case PPC::BI__builtin_vsx_xxpermdi: { ConstantInt *ArgCI = dyn_cast(Ops[2]); assert(ArgCI && "Third arg must be constant integer!"); unsigned Index = ArgCI->getZExtValue(); Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); Ops[1] = Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2)); // Account for endianness by treating this as just a shuffle. So we use the // same indices for both LE and BE in order to produce expected results in // both cases. int ElemIdx0 = (Index & 2) >> 1; int ElemIdx1 = 2 + (Index & 1); int ShuffleElts[2] = {ElemIdx0, ElemIdx1}; Value *ShuffleCall = Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts); QualType BIRetType = E->getType(); auto RetTy = ConvertType(BIRetType); return Builder.CreateBitCast(ShuffleCall, RetTy); } case PPC::BI__builtin_vsx_xxsldwi: { ConstantInt *ArgCI = dyn_cast(Ops[2]); assert(ArgCI && "Third argument must be a compile time constant"); unsigned Index = ArgCI->getZExtValue() & 0x3; Ops[0] = Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); Ops[1] = Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4)); // Create a shuffle mask int ElemIdx0; int ElemIdx1; int ElemIdx2; int ElemIdx3; if (getTarget().isLittleEndian()) { // Little endian element N comes from element 8+N-Index of the // concatenated wide vector (of course, using modulo arithmetic on // the total number of elements). ElemIdx0 = (8 - Index) % 8; ElemIdx1 = (9 - Index) % 8; ElemIdx2 = (10 - Index) % 8; ElemIdx3 = (11 - Index) % 8; } else { // Big endian ElemIdx = Index + N ElemIdx0 = Index; ElemIdx1 = Index + 1; ElemIdx2 = Index + 2; ElemIdx3 = Index + 3; } int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3}; Value *ShuffleCall = Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts); QualType BIRetType = E->getType(); auto RetTy = ConvertType(BIRetType); return Builder.CreateBitCast(ShuffleCall, RetTy); } case PPC::BI__builtin_pack_vector_int128: { bool isLittleEndian = getTarget().isLittleEndian(); Value *UndefValue = llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2)); Value *Res = Builder.CreateInsertElement( UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0)); Res = Builder.CreateInsertElement(Res, Ops[1], (uint64_t)(isLittleEndian ? 0 : 1)); return Builder.CreateBitCast(Res, ConvertType(E->getType())); } case PPC::BI__builtin_unpack_vector_int128: { ConstantInt *Index = cast(Ops[1]); Value *Unpacked = Builder.CreateBitCast( Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2)); if (getTarget().isLittleEndian()) Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue()); return Builder.CreateExtractElement(Unpacked, Index); } } } namespace { // If \p E is not null pointer, insert address space cast to match return // type of \p E if necessary. Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF, const CallExpr *E = nullptr) { auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr); auto *Call = CGF.Builder.CreateCall(F); Call->addAttribute( AttributeList::ReturnIndex, Attribute::getWithDereferenceableBytes(Call->getContext(), 64)); Call->addAttribute(AttributeList::ReturnIndex, Attribute::getWithAlignment(Call->getContext(), Align(4))); if (!E) return Call; QualType BuiltinRetType = E->getType(); auto *RetTy = cast(CGF.ConvertType(BuiltinRetType)); if (RetTy == Call->getType()) return Call; return CGF.Builder.CreateAddrSpaceCast(Call, RetTy); } // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) { const unsigned XOffset = 4; auto *DP = EmitAMDGPUDispatchPtr(CGF); // Indexing the HSA kernel_dispatch_packet struct. auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2); auto *GEP = CGF.Builder.CreateGEP(DP, Offset); auto *DstTy = CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace()); auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy); auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2))); llvm::MDBuilder MDHelper(CGF.getLLVMContext()); llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1), APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1)); LD->setMetadata(llvm::LLVMContext::MD_range, RNode); LD->setMetadata(llvm::LLVMContext::MD_invariant_load, llvm::MDNode::get(CGF.getLLVMContext(), None)); return LD; } } // namespace // For processing memory ordering and memory scope arguments of various // amdgcn builtins. // \p Order takes a C++11 comptabile memory-ordering specifier and converts // it into LLVM's memory ordering specifier using atomic C ABI, and writes // to \p AO. \p Scope takes a const char * and converts it into AMDGCN // specific SyncScopeID and writes it to \p SSID. bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope, llvm::AtomicOrdering &AO, llvm::SyncScope::ID &SSID) { if (isa(Order)) { int ord = cast(Order)->getZExtValue(); // Map C11/C++11 memory ordering to LLVM memory ordering switch (static_cast(ord)) { case llvm::AtomicOrderingCABI::acquire: AO = llvm::AtomicOrdering::Acquire; break; case llvm::AtomicOrderingCABI::release: AO = llvm::AtomicOrdering::Release; break; case llvm::AtomicOrderingCABI::acq_rel: AO = llvm::AtomicOrdering::AcquireRelease; break; case llvm::AtomicOrderingCABI::seq_cst: AO = llvm::AtomicOrdering::SequentiallyConsistent; break; case llvm::AtomicOrderingCABI::consume: case llvm::AtomicOrderingCABI::relaxed: break; } StringRef scp; llvm::getConstantStringInfo(Scope, scp); SSID = getLLVMContext().getOrInsertSyncScopeID(scp); return true; } return false; } Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent; llvm::SyncScope::ID SSID; switch (BuiltinID) { case AMDGPU::BI__builtin_amdgcn_div_scale: case AMDGPU::BI__builtin_amdgcn_div_scalef: { // Translate from the intrinsics's struct return to the builtin's out // argument. Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3)); llvm::Value *X = EmitScalarExpr(E->getArg(0)); llvm::Value *Y = EmitScalarExpr(E->getArg(1)); llvm::Value *Z = EmitScalarExpr(E->getArg(2)); llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale, X->getType()); llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z}); llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); llvm::Type *RealFlagType = FlagOutPtr.getPointer()->getType()->getPointerElementType(); llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); Builder.CreateStore(FlagExt, FlagOutPtr); return Result; } case AMDGPU::BI__builtin_amdgcn_div_fmas: case AMDGPU::BI__builtin_amdgcn_div_fmasf: { llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas, Src0->getType()); llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3); return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool}); } case AMDGPU::BI__builtin_amdgcn_ds_swizzle: return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle); case AMDGPU::BI__builtin_amdgcn_mov_dpp8: return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8); case AMDGPU::BI__builtin_amdgcn_mov_dpp: case AMDGPU::BI__builtin_amdgcn_update_dpp: { llvm::SmallVector Args; for (unsigned I = 0; I != E->getNumArgs(); ++I) Args.push_back(EmitScalarExpr(E->getArg(I))); assert(Args.size() == 5 || Args.size() == 6); if (Args.size() == 5) Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType())); Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType()); return Builder.CreateCall(F, Args); } case AMDGPU::BI__builtin_amdgcn_div_fixup: case AMDGPU::BI__builtin_amdgcn_div_fixupf: case AMDGPU::BI__builtin_amdgcn_div_fixuph: return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup); case AMDGPU::BI__builtin_amdgcn_trig_preop: case AMDGPU::BI__builtin_amdgcn_trig_preopf: return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop); case AMDGPU::BI__builtin_amdgcn_rcp: case AMDGPU::BI__builtin_amdgcn_rcpf: case AMDGPU::BI__builtin_amdgcn_rcph: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp); case AMDGPU::BI__builtin_amdgcn_sqrt: case AMDGPU::BI__builtin_amdgcn_sqrtf: case AMDGPU::BI__builtin_amdgcn_sqrth: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt); case AMDGPU::BI__builtin_amdgcn_rsq: case AMDGPU::BI__builtin_amdgcn_rsqf: case AMDGPU::BI__builtin_amdgcn_rsqh: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq); case AMDGPU::BI__builtin_amdgcn_rsq_clamp: case AMDGPU::BI__builtin_amdgcn_rsq_clampf: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp); case AMDGPU::BI__builtin_amdgcn_sinf: case AMDGPU::BI__builtin_amdgcn_sinh: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin); case AMDGPU::BI__builtin_amdgcn_cosf: case AMDGPU::BI__builtin_amdgcn_cosh: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos); case AMDGPU::BI__builtin_amdgcn_dispatch_ptr: return EmitAMDGPUDispatchPtr(*this, E); case AMDGPU::BI__builtin_amdgcn_log_clampf: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp); case AMDGPU::BI__builtin_amdgcn_ldexp: case AMDGPU::BI__builtin_amdgcn_ldexpf: case AMDGPU::BI__builtin_amdgcn_ldexph: return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp); case AMDGPU::BI__builtin_amdgcn_frexp_mant: case AMDGPU::BI__builtin_amdgcn_frexp_mantf: case AMDGPU::BI__builtin_amdgcn_frexp_manth: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant); case AMDGPU::BI__builtin_amdgcn_frexp_exp: case AMDGPU::BI__builtin_amdgcn_frexp_expf: { Value *Src0 = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, { Builder.getInt32Ty(), Src0->getType() }); return Builder.CreateCall(F, Src0); } case AMDGPU::BI__builtin_amdgcn_frexp_exph: { Value *Src0 = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, { Builder.getInt16Ty(), Src0->getType() }); return Builder.CreateCall(F, Src0); } case AMDGPU::BI__builtin_amdgcn_fract: case AMDGPU::BI__builtin_amdgcn_fractf: case AMDGPU::BI__builtin_amdgcn_fracth: return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract); case AMDGPU::BI__builtin_amdgcn_lerp: return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp); case AMDGPU::BI__builtin_amdgcn_ubfe: return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe); case AMDGPU::BI__builtin_amdgcn_sbfe: return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe); case AMDGPU::BI__builtin_amdgcn_uicmp: case AMDGPU::BI__builtin_amdgcn_uicmpl: case AMDGPU::BI__builtin_amdgcn_sicmp: case AMDGPU::BI__builtin_amdgcn_sicmpl: { llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); // FIXME-GFX10: How should 32 bit mask be handled? Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp, { Builder.getInt64Ty(), Src0->getType() }); return Builder.CreateCall(F, { Src0, Src1, Src2 }); } case AMDGPU::BI__builtin_amdgcn_fcmp: case AMDGPU::BI__builtin_amdgcn_fcmpf: { llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); // FIXME-GFX10: How should 32 bit mask be handled? Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp, { Builder.getInt64Ty(), Src0->getType() }); return Builder.CreateCall(F, { Src0, Src1, Src2 }); } case AMDGPU::BI__builtin_amdgcn_class: case AMDGPU::BI__builtin_amdgcn_classf: case AMDGPU::BI__builtin_amdgcn_classh: return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class); case AMDGPU::BI__builtin_amdgcn_fmed3f: case AMDGPU::BI__builtin_amdgcn_fmed3h: return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3); case AMDGPU::BI__builtin_amdgcn_ds_append: case AMDGPU::BI__builtin_amdgcn_ds_consume: { Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ? Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume; Value *Src0 = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() }); return Builder.CreateCall(F, { Src0, Builder.getFalse() }); } case AMDGPU::BI__builtin_amdgcn_read_exec: { CallInst *CI = cast( EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec")); CI->setConvergent(); return CI; } case AMDGPU::BI__builtin_amdgcn_read_exec_lo: case AMDGPU::BI__builtin_amdgcn_read_exec_hi: { StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ? "exec_lo" : "exec_hi"; CallInst *CI = cast( EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName)); CI->setConvergent(); return CI; } // amdgcn workitem case AMDGPU::BI__builtin_amdgcn_workitem_id_x: return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024); case AMDGPU::BI__builtin_amdgcn_workitem_id_y: return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024); case AMDGPU::BI__builtin_amdgcn_workitem_id_z: return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024); // amdgcn workgroup size case AMDGPU::BI__builtin_amdgcn_workgroup_size_x: return EmitAMDGPUWorkGroupSize(*this, 0); case AMDGPU::BI__builtin_amdgcn_workgroup_size_y: return EmitAMDGPUWorkGroupSize(*this, 1); case AMDGPU::BI__builtin_amdgcn_workgroup_size_z: return EmitAMDGPUWorkGroupSize(*this, 2); // r600 intrinsics case AMDGPU::BI__builtin_r600_recipsqrt_ieee: case AMDGPU::BI__builtin_r600_recipsqrt_ieeef: return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee); case AMDGPU::BI__builtin_r600_read_tidig_x: return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024); case AMDGPU::BI__builtin_r600_read_tidig_y: return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024); case AMDGPU::BI__builtin_r600_read_tidig_z: return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024); case AMDGPU::BI__builtin_amdgcn_alignbit: { llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType()); return Builder.CreateCall(F, { Src0, Src1, Src2 }); } case AMDGPU::BI__builtin_amdgcn_fence: { if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), AO, SSID)) return Builder.CreateFence(AO, SSID); LLVM_FALLTHROUGH; } case AMDGPU::BI__builtin_amdgcn_atomic_inc32: case AMDGPU::BI__builtin_amdgcn_atomic_inc64: case AMDGPU::BI__builtin_amdgcn_atomic_dec32: case AMDGPU::BI__builtin_amdgcn_atomic_dec64: { unsigned BuiltinAtomicOp; llvm::Type *ResultType = ConvertType(E->getType()); switch (BuiltinID) { case AMDGPU::BI__builtin_amdgcn_atomic_inc32: case AMDGPU::BI__builtin_amdgcn_atomic_inc64: BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc; break; case AMDGPU::BI__builtin_amdgcn_atomic_dec32: case AMDGPU::BI__builtin_amdgcn_atomic_dec64: BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec; break; } Value *Ptr = EmitScalarExpr(E->getArg(0)); Value *Val = EmitScalarExpr(E->getArg(1)); llvm::Function *F = CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()}); if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)), AO, SSID)) { // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and // scope as unsigned values Value *MemOrder = Builder.getInt32(static_cast(AO)); Value *MemScope = Builder.getInt32(static_cast(SSID)); QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); bool Volatile = PtrTy->castAs()->getPointeeType().isVolatileQualified(); Value *IsVolatile = Builder.getInt1(static_cast(Volatile)); return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile}); } LLVM_FALLTHROUGH; } default: return nullptr; } } /// Handle a SystemZ function in which the final argument is a pointer /// to an int that receives the post-instruction CC value. At the LLVM level /// this is represented as a function that returns a {result, cc} pair. static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF, unsigned IntrinsicID, const CallExpr *E) { unsigned NumArgs = E->getNumArgs() - 1; SmallVector Args(NumArgs); for (unsigned I = 0; I < NumArgs; ++I) Args[I] = CGF.EmitScalarExpr(E->getArg(I)); Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs)); Function *F = CGF.CGM.getIntrinsic(IntrinsicID); Value *Call = CGF.Builder.CreateCall(F, Args); Value *CC = CGF.Builder.CreateExtractValue(Call, 1); CGF.Builder.CreateStore(CC, CCPtr); return CGF.Builder.CreateExtractValue(Call, 0); } Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { switch (BuiltinID) { case SystemZ::BI__builtin_tbegin: { Value *TDB = EmitScalarExpr(E->getArg(0)); Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin); return Builder.CreateCall(F, {TDB, Control}); } case SystemZ::BI__builtin_tbegin_nofloat: { Value *TDB = EmitScalarExpr(E->getArg(0)); Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat); return Builder.CreateCall(F, {TDB, Control}); } case SystemZ::BI__builtin_tbeginc: { Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy); Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08); Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc); return Builder.CreateCall(F, {TDB, Control}); } case SystemZ::BI__builtin_tabort: { Value *Data = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort); return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort")); } case SystemZ::BI__builtin_non_tx_store: { Value *Address = EmitScalarExpr(E->getArg(0)); Value *Data = EmitScalarExpr(E->getArg(1)); Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg); return Builder.CreateCall(F, {Data, Address}); } // Vector builtins. Note that most vector builtins are mapped automatically // to target-specific LLVM intrinsics. The ones handled specially here can // be represented via standard LLVM IR, which is preferable to enable common // LLVM optimizations. case SystemZ::BI__builtin_s390_vpopctb: case SystemZ::BI__builtin_s390_vpopcth: case SystemZ::BI__builtin_s390_vpopctf: case SystemZ::BI__builtin_s390_vpopctg: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); return Builder.CreateCall(F, X); } case SystemZ::BI__builtin_s390_vclzb: case SystemZ::BI__builtin_s390_vclzh: case SystemZ::BI__builtin_s390_vclzf: case SystemZ::BI__builtin_s390_vclzg: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); return Builder.CreateCall(F, {X, Undef}); } case SystemZ::BI__builtin_s390_vctzb: case SystemZ::BI__builtin_s390_vctzh: case SystemZ::BI__builtin_s390_vctzf: case SystemZ::BI__builtin_s390_vctzg: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); return Builder.CreateCall(F, {X, Undef}); } case SystemZ::BI__builtin_s390_vfsqsb: case SystemZ::BI__builtin_s390_vfsqdb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); if (Builder.getIsFPConstrained()) { Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType); return Builder.CreateConstrainedFPCall(F, { X }); } else { Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); return Builder.CreateCall(F, X); } } case SystemZ::BI__builtin_s390_vfmasb: case SystemZ::BI__builtin_s390_vfmadb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); Value *Z = EmitScalarExpr(E->getArg(2)); if (Builder.getIsFPConstrained()) { Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); } else { Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); return Builder.CreateCall(F, {X, Y, Z}); } } case SystemZ::BI__builtin_s390_vfmssb: case SystemZ::BI__builtin_s390_vfmsdb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); Value *Z = EmitScalarExpr(E->getArg(2)); if (Builder.getIsFPConstrained()) { Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); } else { Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); } } case SystemZ::BI__builtin_s390_vfnmasb: case SystemZ::BI__builtin_s390_vfnmadb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); Value *Z = EmitScalarExpr(E->getArg(2)); if (Builder.getIsFPConstrained()) { Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); } else { Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); } } case SystemZ::BI__builtin_s390_vfnmssb: case SystemZ::BI__builtin_s390_vfnmsdb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); Value *Z = EmitScalarExpr(E->getArg(2)); if (Builder.getIsFPConstrained()) { Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); Value *NegZ = Builder.CreateFNeg(Z, "sub"); return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ})); } else { Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); Value *NegZ = Builder.CreateFNeg(Z, "neg"); return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ})); } } case SystemZ::BI__builtin_s390_vflpsb: case SystemZ::BI__builtin_s390_vflpdb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); return Builder.CreateCall(F, X); } case SystemZ::BI__builtin_s390_vflnsb: case SystemZ::BI__builtin_s390_vflndb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg"); } case SystemZ::BI__builtin_s390_vfisb: case SystemZ::BI__builtin_s390_vfidb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); // Constant-fold the M4 and M5 mask arguments. llvm::APSInt M4, M5; bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext()); bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext()); assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?"); (void)IsConstM4; (void)IsConstM5; // Check whether this instance can be represented via a LLVM standard // intrinsic. We only support some combinations of M4 and M5. Intrinsic::ID ID = Intrinsic::not_intrinsic; Intrinsic::ID CI; switch (M4.getZExtValue()) { default: break; case 0: // IEEE-inexact exception allowed switch (M5.getZExtValue()) { default: break; case 0: ID = Intrinsic::rint; CI = Intrinsic::experimental_constrained_rint; break; } break; case 4: // IEEE-inexact exception suppressed switch (M5.getZExtValue()) { default: break; case 0: ID = Intrinsic::nearbyint; CI = Intrinsic::experimental_constrained_nearbyint; break; case 1: ID = Intrinsic::round; CI = Intrinsic::experimental_constrained_round; break; case 5: ID = Intrinsic::trunc; CI = Intrinsic::experimental_constrained_trunc; break; case 6: ID = Intrinsic::ceil; CI = Intrinsic::experimental_constrained_ceil; break; case 7: ID = Intrinsic::floor; CI = Intrinsic::experimental_constrained_floor; break; } break; } if (ID != Intrinsic::not_intrinsic) { if (Builder.getIsFPConstrained()) { Function *F = CGM.getIntrinsic(CI, ResultType); return Builder.CreateConstrainedFPCall(F, X); } else { Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.CreateCall(F, X); } } switch (BuiltinID) { // FIXME: constrained version? case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break; case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break; default: llvm_unreachable("Unknown BuiltinID"); } Function *F = CGM.getIntrinsic(ID); Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5); return Builder.CreateCall(F, {X, M4Value, M5Value}); } case SystemZ::BI__builtin_s390_vfmaxsb: case SystemZ::BI__builtin_s390_vfmaxdb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); // Constant-fold the M4 mask argument. llvm::APSInt M4; bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext()); assert(IsConstM4 && "Constant arg isn't actually constant?"); (void)IsConstM4; // Check whether this instance can be represented via a LLVM standard // intrinsic. We only support some values of M4. Intrinsic::ID ID = Intrinsic::not_intrinsic; Intrinsic::ID CI; switch (M4.getZExtValue()) { default: break; case 4: ID = Intrinsic::maxnum; CI = Intrinsic::experimental_constrained_maxnum; break; } if (ID != Intrinsic::not_intrinsic) { if (Builder.getIsFPConstrained()) { Function *F = CGM.getIntrinsic(CI, ResultType); return Builder.CreateConstrainedFPCall(F, {X, Y}); } else { Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.CreateCall(F, {X, Y}); } } switch (BuiltinID) { case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break; case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break; default: llvm_unreachable("Unknown BuiltinID"); } Function *F = CGM.getIntrinsic(ID); Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); return Builder.CreateCall(F, {X, Y, M4Value}); } case SystemZ::BI__builtin_s390_vfminsb: case SystemZ::BI__builtin_s390_vfmindb: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Value *Y = EmitScalarExpr(E->getArg(1)); // Constant-fold the M4 mask argument. llvm::APSInt M4; bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext()); assert(IsConstM4 && "Constant arg isn't actually constant?"); (void)IsConstM4; // Check whether this instance can be represented via a LLVM standard // intrinsic. We only support some values of M4. Intrinsic::ID ID = Intrinsic::not_intrinsic; Intrinsic::ID CI; switch (M4.getZExtValue()) { default: break; case 4: ID = Intrinsic::minnum; CI = Intrinsic::experimental_constrained_minnum; break; } if (ID != Intrinsic::not_intrinsic) { if (Builder.getIsFPConstrained()) { Function *F = CGM.getIntrinsic(CI, ResultType); return Builder.CreateConstrainedFPCall(F, {X, Y}); } else { Function *F = CGM.getIntrinsic(ID, ResultType); return Builder.CreateCall(F, {X, Y}); } } switch (BuiltinID) { case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break; case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break; default: llvm_unreachable("Unknown BuiltinID"); } Function *F = CGM.getIntrinsic(ID); Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); return Builder.CreateCall(F, {X, Y, M4Value}); } case SystemZ::BI__builtin_s390_vlbrh: case SystemZ::BI__builtin_s390_vlbrf: case SystemZ::BI__builtin_s390_vlbrg: { llvm::Type *ResultType = ConvertType(E->getType()); Value *X = EmitScalarExpr(E->getArg(0)); Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType); return Builder.CreateCall(F, X); } // Vector intrinsics that output the post-instruction CC value. #define INTRINSIC_WITH_CC(NAME) \ case SystemZ::BI__builtin_##NAME: \ return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E) INTRINSIC_WITH_CC(s390_vpkshs); INTRINSIC_WITH_CC(s390_vpksfs); INTRINSIC_WITH_CC(s390_vpksgs); INTRINSIC_WITH_CC(s390_vpklshs); INTRINSIC_WITH_CC(s390_vpklsfs); INTRINSIC_WITH_CC(s390_vpklsgs); INTRINSIC_WITH_CC(s390_vceqbs); INTRINSIC_WITH_CC(s390_vceqhs); INTRINSIC_WITH_CC(s390_vceqfs); INTRINSIC_WITH_CC(s390_vceqgs); INTRINSIC_WITH_CC(s390_vchbs); INTRINSIC_WITH_CC(s390_vchhs); INTRINSIC_WITH_CC(s390_vchfs); INTRINSIC_WITH_CC(s390_vchgs); INTRINSIC_WITH_CC(s390_vchlbs); INTRINSIC_WITH_CC(s390_vchlhs); INTRINSIC_WITH_CC(s390_vchlfs); INTRINSIC_WITH_CC(s390_vchlgs); INTRINSIC_WITH_CC(s390_vfaebs); INTRINSIC_WITH_CC(s390_vfaehs); INTRINSIC_WITH_CC(s390_vfaefs); INTRINSIC_WITH_CC(s390_vfaezbs); INTRINSIC_WITH_CC(s390_vfaezhs); INTRINSIC_WITH_CC(s390_vfaezfs); INTRINSIC_WITH_CC(s390_vfeebs); INTRINSIC_WITH_CC(s390_vfeehs); INTRINSIC_WITH_CC(s390_vfeefs); INTRINSIC_WITH_CC(s390_vfeezbs); INTRINSIC_WITH_CC(s390_vfeezhs); INTRINSIC_WITH_CC(s390_vfeezfs); INTRINSIC_WITH_CC(s390_vfenebs); INTRINSIC_WITH_CC(s390_vfenehs); INTRINSIC_WITH_CC(s390_vfenefs); INTRINSIC_WITH_CC(s390_vfenezbs); INTRINSIC_WITH_CC(s390_vfenezhs); INTRINSIC_WITH_CC(s390_vfenezfs); INTRINSIC_WITH_CC(s390_vistrbs); INTRINSIC_WITH_CC(s390_vistrhs); INTRINSIC_WITH_CC(s390_vistrfs); INTRINSIC_WITH_CC(s390_vstrcbs); INTRINSIC_WITH_CC(s390_vstrchs); INTRINSIC_WITH_CC(s390_vstrcfs); INTRINSIC_WITH_CC(s390_vstrczbs); INTRINSIC_WITH_CC(s390_vstrczhs); INTRINSIC_WITH_CC(s390_vstrczfs); INTRINSIC_WITH_CC(s390_vfcesbs); INTRINSIC_WITH_CC(s390_vfcedbs); INTRINSIC_WITH_CC(s390_vfchsbs); INTRINSIC_WITH_CC(s390_vfchdbs); INTRINSIC_WITH_CC(s390_vfchesbs); INTRINSIC_WITH_CC(s390_vfchedbs); INTRINSIC_WITH_CC(s390_vftcisb); INTRINSIC_WITH_CC(s390_vftcidb); INTRINSIC_WITH_CC(s390_vstrsb); INTRINSIC_WITH_CC(s390_vstrsh); INTRINSIC_WITH_CC(s390_vstrsf); INTRINSIC_WITH_CC(s390_vstrszb); INTRINSIC_WITH_CC(s390_vstrszh); INTRINSIC_WITH_CC(s390_vstrszf); #undef INTRINSIC_WITH_CC default: return nullptr; } } namespace { // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant. struct NVPTXMmaLdstInfo { unsigned NumResults; // Number of elements to load/store // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported. unsigned IID_col; unsigned IID_row; }; #define MMA_INTR(geom_op_type, layout) \ Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride #define MMA_LDST(n, geom_op_type) \ { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) } static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) { switch (BuiltinID) { // FP MMA loads case NVPTX::BI__hmma_m16n16k16_ld_a: return MMA_LDST(8, m16n16k16_load_a_f16); case NVPTX::BI__hmma_m16n16k16_ld_b: return MMA_LDST(8, m16n16k16_load_b_f16); case NVPTX::BI__hmma_m16n16k16_ld_c_f16: return MMA_LDST(4, m16n16k16_load_c_f16); case NVPTX::BI__hmma_m16n16k16_ld_c_f32: return MMA_LDST(8, m16n16k16_load_c_f32); case NVPTX::BI__hmma_m32n8k16_ld_a: return MMA_LDST(8, m32n8k16_load_a_f16); case NVPTX::BI__hmma_m32n8k16_ld_b: return MMA_LDST(8, m32n8k16_load_b_f16); case NVPTX::BI__hmma_m32n8k16_ld_c_f16: return MMA_LDST(4, m32n8k16_load_c_f16); case NVPTX::BI__hmma_m32n8k16_ld_c_f32: return MMA_LDST(8, m32n8k16_load_c_f32); case NVPTX::BI__hmma_m8n32k16_ld_a: return MMA_LDST(8, m8n32k16_load_a_f16); case NVPTX::BI__hmma_m8n32k16_ld_b: return MMA_LDST(8, m8n32k16_load_b_f16); case NVPTX::BI__hmma_m8n32k16_ld_c_f16: return MMA_LDST(4, m8n32k16_load_c_f16); case NVPTX::BI__hmma_m8n32k16_ld_c_f32: return MMA_LDST(8, m8n32k16_load_c_f32); // Integer MMA loads case NVPTX::BI__imma_m16n16k16_ld_a_s8: return MMA_LDST(2, m16n16k16_load_a_s8); case NVPTX::BI__imma_m16n16k16_ld_a_u8: return MMA_LDST(2, m16n16k16_load_a_u8); case NVPTX::BI__imma_m16n16k16_ld_b_s8: return MMA_LDST(2, m16n16k16_load_b_s8); case NVPTX::BI__imma_m16n16k16_ld_b_u8: return MMA_LDST(2, m16n16k16_load_b_u8); case NVPTX::BI__imma_m16n16k16_ld_c: return MMA_LDST(8, m16n16k16_load_c_s32); case NVPTX::BI__imma_m32n8k16_ld_a_s8: return MMA_LDST(4, m32n8k16_load_a_s8); case NVPTX::BI__imma_m32n8k16_ld_a_u8: return MMA_LDST(4, m32n8k16_load_a_u8); case NVPTX::BI__imma_m32n8k16_ld_b_s8: return MMA_LDST(1, m32n8k16_load_b_s8); case NVPTX::BI__imma_m32n8k16_ld_b_u8: return MMA_LDST(1, m32n8k16_load_b_u8); case NVPTX::BI__imma_m32n8k16_ld_c: return MMA_LDST(8, m32n8k16_load_c_s32); case NVPTX::BI__imma_m8n32k16_ld_a_s8: return MMA_LDST(1, m8n32k16_load_a_s8); case NVPTX::BI__imma_m8n32k16_ld_a_u8: return MMA_LDST(1, m8n32k16_load_a_u8); case NVPTX::BI__imma_m8n32k16_ld_b_s8: return MMA_LDST(4, m8n32k16_load_b_s8); case NVPTX::BI__imma_m8n32k16_ld_b_u8: return MMA_LDST(4, m8n32k16_load_b_u8); case NVPTX::BI__imma_m8n32k16_ld_c: return MMA_LDST(8, m8n32k16_load_c_s32); // Sub-integer MMA loads. // Only row/col layout is supported by A/B fragments. case NVPTX::BI__imma_m8n8k32_ld_a_s4: return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)}; case NVPTX::BI__imma_m8n8k32_ld_a_u4: return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)}; case NVPTX::BI__imma_m8n8k32_ld_b_s4: return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0}; case NVPTX::BI__imma_m8n8k32_ld_b_u4: return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0}; case NVPTX::BI__imma_m8n8k32_ld_c: return MMA_LDST(2, m8n8k32_load_c_s32); case NVPTX::BI__bmma_m8n8k128_ld_a_b1: return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)}; case NVPTX::BI__bmma_m8n8k128_ld_b_b1: return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0}; case NVPTX::BI__bmma_m8n8k128_ld_c: return MMA_LDST(2, m8n8k128_load_c_s32); // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike // PTX and LLVM IR where stores always use fragment D, NVCC builtins always // use fragment C for both loads and stores. // FP MMA stores. case NVPTX::BI__hmma_m16n16k16_st_c_f16: return MMA_LDST(4, m16n16k16_store_d_f16); case NVPTX::BI__hmma_m16n16k16_st_c_f32: return MMA_LDST(8, m16n16k16_store_d_f32); case NVPTX::BI__hmma_m32n8k16_st_c_f16: return MMA_LDST(4, m32n8k16_store_d_f16); case NVPTX::BI__hmma_m32n8k16_st_c_f32: return MMA_LDST(8, m32n8k16_store_d_f32); case NVPTX::BI__hmma_m8n32k16_st_c_f16: return MMA_LDST(4, m8n32k16_store_d_f16); case NVPTX::BI__hmma_m8n32k16_st_c_f32: return MMA_LDST(8, m8n32k16_store_d_f32); // Integer and sub-integer MMA stores. // Another naming quirk. Unlike other MMA builtins that use PTX types in the // name, integer loads/stores use LLVM's i32. case NVPTX::BI__imma_m16n16k16_st_c_i32: return MMA_LDST(8, m16n16k16_store_d_s32); case NVPTX::BI__imma_m32n8k16_st_c_i32: return MMA_LDST(8, m32n8k16_store_d_s32); case NVPTX::BI__imma_m8n32k16_st_c_i32: return MMA_LDST(8, m8n32k16_store_d_s32); case NVPTX::BI__imma_m8n8k32_st_c_i32: return MMA_LDST(2, m8n8k32_store_d_s32); case NVPTX::BI__bmma_m8n8k128_st_c_i32: return MMA_LDST(2, m8n8k128_store_d_s32); default: llvm_unreachable("Unknown MMA builtin"); } } #undef MMA_LDST #undef MMA_INTR struct NVPTXMmaInfo { unsigned NumEltsA; unsigned NumEltsB; unsigned NumEltsC; unsigned NumEltsD; std::array Variants; unsigned getMMAIntrinsic(int Layout, bool Satf) { unsigned Index = Layout * 2 + Satf; if (Index >= Variants.size()) return 0; return Variants[Index]; } }; // Returns an intrinsic that matches Layout and Satf for valid combinations of // Layout and Satf, 0 otherwise. static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) { // clang-format off #define MMA_VARIANTS(geom, type) {{ \ Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \ Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \ Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \ Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \ Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \ Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \ }} // Sub-integer MMA only supports row.col layout. #define MMA_VARIANTS_I4(geom, type) {{ \ 0, \ 0, \ Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 0, \ 0, \ 0, \ 0 \ }} // b1 MMA does not support .satfinite. #define MMA_VARIANTS_B1(geom, type) {{ \ 0, \ 0, \ Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 0, \ 0, \ 0, \ 0, \ 0 \ }} // clang-format on switch (BuiltinID) { // FP MMA // Note that 'type' argument of MMA_VARIANT uses D_C notation, while // NumEltsN of return value are ordered as A,B,C,D. case NVPTX::BI__hmma_m16n16k16_mma_f16f16: return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)}; case NVPTX::BI__hmma_m16n16k16_mma_f32f16: return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)}; case NVPTX::BI__hmma_m16n16k16_mma_f16f32: return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)}; case NVPTX::BI__hmma_m16n16k16_mma_f32f32: return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)}; case NVPTX::BI__hmma_m32n8k16_mma_f16f16: return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)}; case NVPTX::BI__hmma_m32n8k16_mma_f32f16: return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)}; case NVPTX::BI__hmma_m32n8k16_mma_f16f32: return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)}; case NVPTX::BI__hmma_m32n8k16_mma_f32f32: return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)}; case NVPTX::BI__hmma_m8n32k16_mma_f16f16: return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)}; case NVPTX::BI__hmma_m8n32k16_mma_f32f16: return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)}; case NVPTX::BI__hmma_m8n32k16_mma_f16f32: return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)}; case NVPTX::BI__hmma_m8n32k16_mma_f32f32: return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)}; // Integer MMA case NVPTX::BI__imma_m16n16k16_mma_s8: return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)}; case NVPTX::BI__imma_m16n16k16_mma_u8: return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)}; case NVPTX::BI__imma_m32n8k16_mma_s8: return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)}; case NVPTX::BI__imma_m32n8k16_mma_u8: return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)}; case NVPTX::BI__imma_m8n32k16_mma_s8: return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)}; case NVPTX::BI__imma_m8n32k16_mma_u8: return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)}; // Sub-integer MMA case NVPTX::BI__imma_m8n8k32_mma_s4: return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)}; case NVPTX::BI__imma_m8n8k32_mma_u4: return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)}; case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)}; default: llvm_unreachable("Unexpected builtin ID."); } #undef MMA_VARIANTS #undef MMA_VARIANTS_I4 #undef MMA_VARIANTS_B1 } } // namespace Value * CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { auto MakeLdg = [&](unsigned IntrinsicID) { Value *Ptr = EmitScalarExpr(E->getArg(0)); clang::CharUnits Align = CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType()); return Builder.CreateCall( CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), Ptr->getType()}), {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())}); }; auto MakeScopedAtomic = [&](unsigned IntrinsicID) { Value *Ptr = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), Ptr->getType()}), {Ptr, EmitScalarExpr(E->getArg(1))}); }; switch (BuiltinID) { case NVPTX::BI__nvvm_atom_add_gen_i: case NVPTX::BI__nvvm_atom_add_gen_l: case NVPTX::BI__nvvm_atom_add_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E); case NVPTX::BI__nvvm_atom_sub_gen_i: case NVPTX::BI__nvvm_atom_sub_gen_l: case NVPTX::BI__nvvm_atom_sub_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E); case NVPTX::BI__nvvm_atom_and_gen_i: case NVPTX::BI__nvvm_atom_and_gen_l: case NVPTX::BI__nvvm_atom_and_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E); case NVPTX::BI__nvvm_atom_or_gen_i: case NVPTX::BI__nvvm_atom_or_gen_l: case NVPTX::BI__nvvm_atom_or_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E); case NVPTX::BI__nvvm_atom_xor_gen_i: case NVPTX::BI__nvvm_atom_xor_gen_l: case NVPTX::BI__nvvm_atom_xor_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E); case NVPTX::BI__nvvm_atom_xchg_gen_i: case NVPTX::BI__nvvm_atom_xchg_gen_l: case NVPTX::BI__nvvm_atom_xchg_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E); case NVPTX::BI__nvvm_atom_max_gen_i: case NVPTX::BI__nvvm_atom_max_gen_l: case NVPTX::BI__nvvm_atom_max_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E); case NVPTX::BI__nvvm_atom_max_gen_ui: case NVPTX::BI__nvvm_atom_max_gen_ul: case NVPTX::BI__nvvm_atom_max_gen_ull: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E); case NVPTX::BI__nvvm_atom_min_gen_i: case NVPTX::BI__nvvm_atom_min_gen_l: case NVPTX::BI__nvvm_atom_min_gen_ll: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E); case NVPTX::BI__nvvm_atom_min_gen_ui: case NVPTX::BI__nvvm_atom_min_gen_ul: case NVPTX::BI__nvvm_atom_min_gen_ull: return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E); case NVPTX::BI__nvvm_atom_cas_gen_i: case NVPTX::BI__nvvm_atom_cas_gen_l: case NVPTX::BI__nvvm_atom_cas_gen_ll: // __nvvm_atom_cas_gen_* should return the old value rather than the // success flag. return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false); case NVPTX::BI__nvvm_atom_add_gen_f: case NVPTX::BI__nvvm_atom_add_gen_d: { Value *Ptr = EmitScalarExpr(E->getArg(0)); Value *Val = EmitScalarExpr(E->getArg(1)); return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val, AtomicOrdering::SequentiallyConsistent); } case NVPTX::BI__nvvm_atom_inc_gen_ui: { Value *Ptr = EmitScalarExpr(E->getArg(0)); Value *Val = EmitScalarExpr(E->getArg(1)); Function *FnALI32 = CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType()); return Builder.CreateCall(FnALI32, {Ptr, Val}); } case NVPTX::BI__nvvm_atom_dec_gen_ui: { Value *Ptr = EmitScalarExpr(E->getArg(0)); Value *Val = EmitScalarExpr(E->getArg(1)); Function *FnALD32 = CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType()); return Builder.CreateCall(FnALD32, {Ptr, Val}); } case NVPTX::BI__nvvm_ldg_c: case NVPTX::BI__nvvm_ldg_c2: case NVPTX::BI__nvvm_ldg_c4: case NVPTX::BI__nvvm_ldg_s: case NVPTX::BI__nvvm_ldg_s2: case NVPTX::BI__nvvm_ldg_s4: case NVPTX::BI__nvvm_ldg_i: case NVPTX::BI__nvvm_ldg_i2: case NVPTX::BI__nvvm_ldg_i4: case NVPTX::BI__nvvm_ldg_l: case NVPTX::BI__nvvm_ldg_ll: case NVPTX::BI__nvvm_ldg_ll2: case NVPTX::BI__nvvm_ldg_uc: case NVPTX::BI__nvvm_ldg_uc2: case NVPTX::BI__nvvm_ldg_uc4: case NVPTX::BI__nvvm_ldg_us: case NVPTX::BI__nvvm_ldg_us2: case NVPTX::BI__nvvm_ldg_us4: case NVPTX::BI__nvvm_ldg_ui: case NVPTX::BI__nvvm_ldg_ui2: case NVPTX::BI__nvvm_ldg_ui4: case NVPTX::BI__nvvm_ldg_ul: case NVPTX::BI__nvvm_ldg_ull: case NVPTX::BI__nvvm_ldg_ull2: // PTX Interoperability section 2.2: "For a vector with an even number of // elements, its alignment is set to number of elements times the alignment // of its member: n*alignof(t)." return MakeLdg(Intrinsic::nvvm_ldg_global_i); case NVPTX::BI__nvvm_ldg_f: case NVPTX::BI__nvvm_ldg_f2: case NVPTX::BI__nvvm_ldg_f4: case NVPTX::BI__nvvm_ldg_d: case NVPTX::BI__nvvm_ldg_d2: return MakeLdg(Intrinsic::nvvm_ldg_global_f); case NVPTX::BI__nvvm_atom_cta_add_gen_i: case NVPTX::BI__nvvm_atom_cta_add_gen_l: case NVPTX::BI__nvvm_atom_cta_add_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_add_gen_i: case NVPTX::BI__nvvm_atom_sys_add_gen_l: case NVPTX::BI__nvvm_atom_sys_add_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_add_gen_f: case NVPTX::BI__nvvm_atom_cta_add_gen_d: return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta); case NVPTX::BI__nvvm_atom_sys_add_gen_f: case NVPTX::BI__nvvm_atom_sys_add_gen_d: return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys); case NVPTX::BI__nvvm_atom_cta_xchg_gen_i: case NVPTX::BI__nvvm_atom_cta_xchg_gen_l: case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_xchg_gen_i: case NVPTX::BI__nvvm_atom_sys_xchg_gen_l: case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_max_gen_i: case NVPTX::BI__nvvm_atom_cta_max_gen_ui: case NVPTX::BI__nvvm_atom_cta_max_gen_l: case NVPTX::BI__nvvm_atom_cta_max_gen_ul: case NVPTX::BI__nvvm_atom_cta_max_gen_ll: case NVPTX::BI__nvvm_atom_cta_max_gen_ull: return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_max_gen_i: case NVPTX::BI__nvvm_atom_sys_max_gen_ui: case NVPTX::BI__nvvm_atom_sys_max_gen_l: case NVPTX::BI__nvvm_atom_sys_max_gen_ul: case NVPTX::BI__nvvm_atom_sys_max_gen_ll: case NVPTX::BI__nvvm_atom_sys_max_gen_ull: return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_min_gen_i: case NVPTX::BI__nvvm_atom_cta_min_gen_ui: case NVPTX::BI__nvvm_atom_cta_min_gen_l: case NVPTX::BI__nvvm_atom_cta_min_gen_ul: case NVPTX::BI__nvvm_atom_cta_min_gen_ll: case NVPTX::BI__nvvm_atom_cta_min_gen_ull: return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_min_gen_i: case NVPTX::BI__nvvm_atom_sys_min_gen_ui: case NVPTX::BI__nvvm_atom_sys_min_gen_l: case NVPTX::BI__nvvm_atom_sys_min_gen_ul: case NVPTX::BI__nvvm_atom_sys_min_gen_ll: case NVPTX::BI__nvvm_atom_sys_min_gen_ull: return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_inc_gen_ui: return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta); case NVPTX::BI__nvvm_atom_cta_dec_gen_ui: return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_inc_gen_ui: return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys); case NVPTX::BI__nvvm_atom_sys_dec_gen_ui: return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_and_gen_i: case NVPTX::BI__nvvm_atom_cta_and_gen_l: case NVPTX::BI__nvvm_atom_cta_and_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_and_gen_i: case NVPTX::BI__nvvm_atom_sys_and_gen_l: case NVPTX::BI__nvvm_atom_sys_and_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_or_gen_i: case NVPTX::BI__nvvm_atom_cta_or_gen_l: case NVPTX::BI__nvvm_atom_cta_or_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_or_gen_i: case NVPTX::BI__nvvm_atom_sys_or_gen_l: case NVPTX::BI__nvvm_atom_sys_or_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_xor_gen_i: case NVPTX::BI__nvvm_atom_cta_xor_gen_l: case NVPTX::BI__nvvm_atom_cta_xor_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta); case NVPTX::BI__nvvm_atom_sys_xor_gen_i: case NVPTX::BI__nvvm_atom_sys_xor_gen_l: case NVPTX::BI__nvvm_atom_sys_xor_gen_ll: return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys); case NVPTX::BI__nvvm_atom_cta_cas_gen_i: case NVPTX::BI__nvvm_atom_cta_cas_gen_l: case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: { Value *Ptr = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic( Intrinsic::nvvm_atomic_cas_gen_i_cta, {Ptr->getType()->getPointerElementType(), Ptr->getType()}), {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); } case NVPTX::BI__nvvm_atom_sys_cas_gen_i: case NVPTX::BI__nvvm_atom_sys_cas_gen_l: case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: { Value *Ptr = EmitScalarExpr(E->getArg(0)); return Builder.CreateCall( CGM.getIntrinsic( Intrinsic::nvvm_atomic_cas_gen_i_sys, {Ptr->getType()->getPointerElementType(), Ptr->getType()}), {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); } case NVPTX::BI__nvvm_match_all_sync_i32p: case NVPTX::BI__nvvm_match_all_sync_i64p: { Value *Mask = EmitScalarExpr(E->getArg(0)); Value *Val = EmitScalarExpr(E->getArg(1)); Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2)); Value *ResultPair = Builder.CreateCall( CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p ? Intrinsic::nvvm_match_all_sync_i32p : Intrinsic::nvvm_match_all_sync_i64p), {Mask, Val}); Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1), PredOutPtr.getElementType()); Builder.CreateStore(Pred, PredOutPtr); return Builder.CreateExtractValue(ResultPair, 0); } // FP MMA loads case NVPTX::BI__hmma_m16n16k16_ld_a: case NVPTX::BI__hmma_m16n16k16_ld_b: case NVPTX::BI__hmma_m16n16k16_ld_c_f16: case NVPTX::BI__hmma_m16n16k16_ld_c_f32: case NVPTX::BI__hmma_m32n8k16_ld_a: case NVPTX::BI__hmma_m32n8k16_ld_b: case NVPTX::BI__hmma_m32n8k16_ld_c_f16: case NVPTX::BI__hmma_m32n8k16_ld_c_f32: case NVPTX::BI__hmma_m8n32k16_ld_a: case NVPTX::BI__hmma_m8n32k16_ld_b: case NVPTX::BI__hmma_m8n32k16_ld_c_f16: case NVPTX::BI__hmma_m8n32k16_ld_c_f32: // Integer MMA loads. case NVPTX::BI__imma_m16n16k16_ld_a_s8: case NVPTX::BI__imma_m16n16k16_ld_a_u8: case NVPTX::BI__imma_m16n16k16_ld_b_s8: case NVPTX::BI__imma_m16n16k16_ld_b_u8: case NVPTX::BI__imma_m16n16k16_ld_c: case NVPTX::BI__imma_m32n8k16_ld_a_s8: case NVPTX::BI__imma_m32n8k16_ld_a_u8: case NVPTX::BI__imma_m32n8k16_ld_b_s8: case NVPTX::BI__imma_m32n8k16_ld_b_u8: case NVPTX::BI__imma_m32n8k16_ld_c: case NVPTX::BI__imma_m8n32k16_ld_a_s8: case NVPTX::BI__imma_m8n32k16_ld_a_u8: case NVPTX::BI__imma_m8n32k16_ld_b_s8: case NVPTX::BI__imma_m8n32k16_ld_b_u8: case NVPTX::BI__imma_m8n32k16_ld_c: // Sub-integer MMA loads. case NVPTX::BI__imma_m8n8k32_ld_a_s4: case NVPTX::BI__imma_m8n8k32_ld_a_u4: case NVPTX::BI__imma_m8n8k32_ld_b_s4: case NVPTX::BI__imma_m8n8k32_ld_b_u4: case NVPTX::BI__imma_m8n8k32_ld_c: case NVPTX::BI__bmma_m8n8k128_ld_a_b1: case NVPTX::BI__bmma_m8n8k128_ld_b_b1: case NVPTX::BI__bmma_m8n8k128_ld_c: { Address Dst = EmitPointerWithAlignment(E->getArg(0)); Value *Src = EmitScalarExpr(E->getArg(1)); Value *Ldm = EmitScalarExpr(E->getArg(2)); llvm::APSInt isColMajorArg; if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext())) return nullptr; bool isColMajor = isColMajorArg.getSExtValue(); NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); unsigned IID = isColMajor ? II.IID_col : II.IID_row; if (IID == 0) return nullptr; Value *Result = Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm}); // Save returned values. assert(II.NumResults); if (II.NumResults == 1) { Builder.CreateAlignedStore(Result, Dst.getPointer(), CharUnits::fromQuantity(4)); } else { for (unsigned i = 0; i < II.NumResults; ++i) { Builder.CreateAlignedStore( Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), Dst.getElementType()), Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); } } return Result; } case NVPTX::BI__hmma_m16n16k16_st_c_f16: case NVPTX::BI__hmma_m16n16k16_st_c_f32: case NVPTX::BI__hmma_m32n8k16_st_c_f16: case NVPTX::BI__hmma_m32n8k16_st_c_f32: case NVPTX::BI__hmma_m8n32k16_st_c_f16: case NVPTX::BI__hmma_m8n32k16_st_c_f32: case NVPTX::BI__imma_m16n16k16_st_c_i32: case NVPTX::BI__imma_m32n8k16_st_c_i32: case NVPTX::BI__imma_m8n32k16_st_c_i32: case NVPTX::BI__imma_m8n8k32_st_c_i32: case NVPTX::BI__bmma_m8n8k128_st_c_i32: { Value *Dst = EmitScalarExpr(E->getArg(0)); Address Src = EmitPointerWithAlignment(E->getArg(1)); Value *Ldm = EmitScalarExpr(E->getArg(2)); llvm::APSInt isColMajorArg; if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext())) return nullptr; bool isColMajor = isColMajorArg.getSExtValue(); NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); unsigned IID = isColMajor ? II.IID_col : II.IID_row; if (IID == 0) return nullptr; Function *Intrinsic = CGM.getIntrinsic(IID, Dst->getType()); llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1); SmallVector Values = {Dst}; for (unsigned i = 0; i < II.NumResults; ++i) { Value *V = Builder.CreateAlignedLoad( Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); Values.push_back(Builder.CreateBitCast(V, ParamType)); } Values.push_back(Ldm); Value *Result = Builder.CreateCall(Intrinsic, Values); return Result; } // BI__hmma_m16n16k16_mma_(d, a, b, c, layout, satf) --> // Intrinsic::nvvm_wmma_m16n16k16_mma_sync case NVPTX::BI__hmma_m16n16k16_mma_f16f16: case NVPTX::BI__hmma_m16n16k16_mma_f32f16: case NVPTX::BI__hmma_m16n16k16_mma_f32f32: case NVPTX::BI__hmma_m16n16k16_mma_f16f32: case NVPTX::BI__hmma_m32n8k16_mma_f16f16: case NVPTX::BI__hmma_m32n8k16_mma_f32f16: case NVPTX::BI__hmma_m32n8k16_mma_f32f32: case NVPTX::BI__hmma_m32n8k16_mma_f16f32: case NVPTX::BI__hmma_m8n32k16_mma_f16f16: case NVPTX::BI__hmma_m8n32k16_mma_f32f16: case NVPTX::BI__hmma_m8n32k16_mma_f32f32: case NVPTX::BI__hmma_m8n32k16_mma_f16f32: case NVPTX::BI__imma_m16n16k16_mma_s8: case NVPTX::BI__imma_m16n16k16_mma_u8: case NVPTX::BI__imma_m32n8k16_mma_s8: case NVPTX::BI__imma_m32n8k16_mma_u8: case NVPTX::BI__imma_m8n32k16_mma_s8: case NVPTX::BI__imma_m8n32k16_mma_u8: case NVPTX::BI__imma_m8n8k32_mma_s4: case NVPTX::BI__imma_m8n8k32_mma_u4: case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: { Address Dst = EmitPointerWithAlignment(E->getArg(0)); Address SrcA = EmitPointerWithAlignment(E->getArg(1)); Address SrcB = EmitPointerWithAlignment(E->getArg(2)); Address SrcC = EmitPointerWithAlignment(E->getArg(3)); llvm::APSInt LayoutArg; if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext())) return nullptr; int Layout = LayoutArg.getSExtValue(); if (Layout < 0 || Layout > 3) return nullptr; llvm::APSInt SatfArg; if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1) SatfArg = 0; // .b1 does not have satf argument. else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext())) return nullptr; bool Satf = SatfArg.getSExtValue(); NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID); unsigned IID = MI.getMMAIntrinsic(Layout, Satf); if (IID == 0) // Unsupported combination of Layout/Satf. return nullptr; SmallVector Values; Function *Intrinsic = CGM.getIntrinsic(IID); llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0); // Load A for (unsigned i = 0; i < MI.NumEltsA; ++i) { Value *V = Builder.CreateAlignedLoad( Builder.CreateGEP(SrcA.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); Values.push_back(Builder.CreateBitCast(V, AType)); } // Load B llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA); for (unsigned i = 0; i < MI.NumEltsB; ++i) { Value *V = Builder.CreateAlignedLoad( Builder.CreateGEP(SrcB.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); Values.push_back(Builder.CreateBitCast(V, BType)); } // Load C llvm::Type *CType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB); for (unsigned i = 0; i < MI.NumEltsC; ++i) { Value *V = Builder.CreateAlignedLoad( Builder.CreateGEP(SrcC.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); Values.push_back(Builder.CreateBitCast(V, CType)); } Value *Result = Builder.CreateCall(Intrinsic, Values); llvm::Type *DType = Dst.getElementType(); for (unsigned i = 0; i < MI.NumEltsD; ++i) Builder.CreateAlignedStore( Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType), Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)), CharUnits::fromQuantity(4)); return Result; } default: return nullptr; } } namespace { struct BuiltinAlignArgs { llvm::Value *Src = nullptr; llvm::Type *SrcType = nullptr; llvm::Value *Alignment = nullptr; llvm::Value *Mask = nullptr; llvm::IntegerType *IntType = nullptr; BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) { QualType AstType = E->getArg(0)->getType(); if (AstType->isArrayType()) Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer(); else Src = CGF.EmitScalarExpr(E->getArg(0)); SrcType = Src->getType(); if (SrcType->isPointerTy()) { IntType = IntegerType::get( CGF.getLLVMContext(), CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType)); } else { assert(SrcType->isIntegerTy()); IntType = cast(SrcType); } Alignment = CGF.EmitScalarExpr(E->getArg(1)); Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment"); auto *One = llvm::ConstantInt::get(IntType, 1); Mask = CGF.Builder.CreateSub(Alignment, One, "mask"); } }; } // namespace /// Generate (x & (y-1)) == 0. RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) { BuiltinAlignArgs Args(E, *this); llvm::Value *SrcAddress = Args.Src; if (Args.SrcType->isPointerTy()) SrcAddress = Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr"); return RValue::get(Builder.CreateICmpEQ( Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"), llvm::Constant::getNullValue(Args.IntType), "is_aligned")); } /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up. /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the /// llvm.ptrmask instrinsic (with a GEP before in the align_up case). /// TODO: actually use ptrmask once most optimization passes know about it. RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) { BuiltinAlignArgs Args(E, *this); llvm::Value *SrcAddr = Args.Src; if (Args.Src->getType()->isPointerTy()) SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr"); llvm::Value *SrcForMask = SrcAddr; if (AlignUp) { // When aligning up we have to first add the mask to ensure we go over the // next alignment value and then align down to the next valid multiple. // By adding the mask, we ensure that align_up on an already aligned // value will not change the value. SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary"); } // Invert the mask to only clear the lower bits. llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask"); llvm::Value *Result = Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result"); if (Args.Src->getType()->isPointerTy()) { /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well. // Result = Builder.CreateIntrinsic( // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType}, // {SrcForMask, NegatedMask}, nullptr, "aligned_result"); Result->setName("aligned_intptr"); llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff"); // The result must point to the same underlying allocation. This means we // can use an inbounds GEP to enable better optimization. Value *Base = EmitCastToVoidPtr(Args.Src); if (getLangOpts().isSignedOverflowDefined()) Result = Builder.CreateGEP(Base, Difference, "aligned_result"); else Result = EmitCheckedInBoundsGEP(Base, Difference, /*SignedIndices=*/true, /*isSubtraction=*/!AlignUp, E->getExprLoc(), "aligned_result"); Result = Builder.CreatePointerCast(Result, Args.SrcType); // Emit an alignment assumption to ensure that the new alignment is // propagated to loads/stores, etc. emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment); } assert(Result->getType() == Args.SrcType); return RValue::get(Result); } Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_memory_size: { llvm::Type *ResultType = ConvertType(E->getType()); Value *I = EmitScalarExpr(E->getArg(0)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType); return Builder.CreateCall(Callee, I); } case WebAssembly::BI__builtin_wasm_memory_grow: { llvm::Type *ResultType = ConvertType(E->getType()); Value *Args[] = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)) }; Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType); return Builder.CreateCall(Callee, Args); } case WebAssembly::BI__builtin_wasm_tls_size: { llvm::Type *ResultType = ConvertType(E->getType()); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType); return Builder.CreateCall(Callee); } case WebAssembly::BI__builtin_wasm_tls_align: { llvm::Type *ResultType = ConvertType(E->getType()); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType); return Builder.CreateCall(Callee); } case WebAssembly::BI__builtin_wasm_tls_base: { Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base); return Builder.CreateCall(Callee); } case WebAssembly::BI__builtin_wasm_throw: { Value *Tag = EmitScalarExpr(E->getArg(0)); Value *Obj = EmitScalarExpr(E->getArg(1)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw); return Builder.CreateCall(Callee, {Tag, Obj}); } case WebAssembly::BI__builtin_wasm_rethrow_in_catch: { Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch); return Builder.CreateCall(Callee); } case WebAssembly::BI__builtin_wasm_atomic_wait_i32: { Value *Addr = EmitScalarExpr(E->getArg(0)); Value *Expected = EmitScalarExpr(E->getArg(1)); Value *Timeout = EmitScalarExpr(E->getArg(2)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32); return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); } case WebAssembly::BI__builtin_wasm_atomic_wait_i64: { Value *Addr = EmitScalarExpr(E->getArg(0)); Value *Expected = EmitScalarExpr(E->getArg(1)); Value *Timeout = EmitScalarExpr(E->getArg(2)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64); return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); } case WebAssembly::BI__builtin_wasm_atomic_notify: { Value *Addr = EmitScalarExpr(E->getArg(0)); Value *Count = EmitScalarExpr(E->getArg(1)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify); return Builder.CreateCall(Callee, {Addr, Count}); } case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32: case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64: case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32: case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: { Value *Src = EmitScalarExpr(E->getArg(0)); llvm::Type *ResT = ConvertType(E->getType()); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()}); return Builder.CreateCall(Callee, {Src}); } case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32: case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64: case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32: case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: { Value *Src = EmitScalarExpr(E->getArg(0)); llvm::Type *ResT = ConvertType(E->getType()); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned, {ResT, Src->getType()}); return Builder.CreateCall(Callee, {Src}); } case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32: case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64: case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32: case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64: case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: { Value *Src = EmitScalarExpr(E->getArg(0)); llvm::Type *ResT = ConvertType(E->getType()); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed, {ResT, Src->getType()}); return Builder.CreateCall(Callee, {Src}); } case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32: case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64: case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32: case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64: case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: { Value *Src = EmitScalarExpr(E->getArg(0)); llvm::Type *ResT = ConvertType(E->getType()); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned, {ResT, Src->getType()}); return Builder.CreateCall(Callee, {Src}); } case WebAssembly::BI__builtin_wasm_min_f32: case WebAssembly::BI__builtin_wasm_min_f64: case WebAssembly::BI__builtin_wasm_min_f32x4: case WebAssembly::BI__builtin_wasm_min_f64x2: { Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); Function *Callee = CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType())); return Builder.CreateCall(Callee, {LHS, RHS}); } case WebAssembly::BI__builtin_wasm_max_f32: case WebAssembly::BI__builtin_wasm_max_f64: case WebAssembly::BI__builtin_wasm_max_f32x4: case WebAssembly::BI__builtin_wasm_max_f64x2: { Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); Function *Callee = CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType())); return Builder.CreateCall(Callee, {LHS, RHS}); } case WebAssembly::BI__builtin_wasm_pmin_f32x4: case WebAssembly::BI__builtin_wasm_pmin_f64x2: { Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType())); return Builder.CreateCall(Callee, {LHS, RHS}); } case WebAssembly::BI__builtin_wasm_pmax_f32x4: case WebAssembly::BI__builtin_wasm_pmax_f64x2: { Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType())); return Builder.CreateCall(Callee, {LHS, RHS}); } case WebAssembly::BI__builtin_wasm_ceil_f32x4: case WebAssembly::BI__builtin_wasm_floor_f32x4: case WebAssembly::BI__builtin_wasm_trunc_f32x4: case WebAssembly::BI__builtin_wasm_nearest_f32x4: case WebAssembly::BI__builtin_wasm_ceil_f64x2: case WebAssembly::BI__builtin_wasm_floor_f64x2: case WebAssembly::BI__builtin_wasm_trunc_f64x2: case WebAssembly::BI__builtin_wasm_nearest_f64x2: { unsigned IntNo; switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_ceil_f32x4: case WebAssembly::BI__builtin_wasm_ceil_f64x2: IntNo = Intrinsic::wasm_ceil; break; case WebAssembly::BI__builtin_wasm_floor_f32x4: case WebAssembly::BI__builtin_wasm_floor_f64x2: IntNo = Intrinsic::wasm_floor; break; case WebAssembly::BI__builtin_wasm_trunc_f32x4: case WebAssembly::BI__builtin_wasm_trunc_f64x2: IntNo = Intrinsic::wasm_trunc; break; case WebAssembly::BI__builtin_wasm_nearest_f32x4: case WebAssembly::BI__builtin_wasm_nearest_f64x2: IntNo = Intrinsic::wasm_nearest; break; default: llvm_unreachable("unexpected builtin ID"); } Value *Value = EmitScalarExpr(E->getArg(0)); Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); return Builder.CreateCall(Callee, Value); } case WebAssembly::BI__builtin_wasm_swizzle_v8x16: { Value *Src = EmitScalarExpr(E->getArg(0)); Value *Indices = EmitScalarExpr(E->getArg(1)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle); return Builder.CreateCall(Callee, {Src, Indices}); } case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16: case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16: case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8: case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8: case WebAssembly::BI__builtin_wasm_extract_lane_i32x4: case WebAssembly::BI__builtin_wasm_extract_lane_i64x2: case WebAssembly::BI__builtin_wasm_extract_lane_f32x4: case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: { llvm::APSInt LaneConst; if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext())) llvm_unreachable("Constant arg isn't actually constant?"); Value *Vec = EmitScalarExpr(E->getArg(0)); Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst); Value *Extract = Builder.CreateExtractElement(Vec, Lane); switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16: case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8: return Builder.CreateSExt(Extract, ConvertType(E->getType())); case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16: case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8: return Builder.CreateZExt(Extract, ConvertType(E->getType())); case WebAssembly::BI__builtin_wasm_extract_lane_i32x4: case WebAssembly::BI__builtin_wasm_extract_lane_i64x2: case WebAssembly::BI__builtin_wasm_extract_lane_f32x4: case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: return Extract; default: llvm_unreachable("unexpected builtin ID"); } } case WebAssembly::BI__builtin_wasm_replace_lane_i8x16: case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: case WebAssembly::BI__builtin_wasm_replace_lane_i32x4: case WebAssembly::BI__builtin_wasm_replace_lane_i64x2: case WebAssembly::BI__builtin_wasm_replace_lane_f32x4: case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: { llvm::APSInt LaneConst; if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext())) llvm_unreachable("Constant arg isn't actually constant?"); Value *Vec = EmitScalarExpr(E->getArg(0)); Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst); Value *Val = EmitScalarExpr(E->getArg(2)); switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_replace_lane_i8x16: case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: { llvm::Type *ElemType = cast(ConvertType(E->getType()))->getElementType(); Value *Trunc = Builder.CreateTrunc(Val, ElemType); return Builder.CreateInsertElement(Vec, Trunc, Lane); } case WebAssembly::BI__builtin_wasm_replace_lane_i32x4: case WebAssembly::BI__builtin_wasm_replace_lane_i64x2: case WebAssembly::BI__builtin_wasm_replace_lane_f32x4: case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: return Builder.CreateInsertElement(Vec, Val, Lane); default: llvm_unreachable("unexpected builtin ID"); } } case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16: case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16: case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8: case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8: case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16: case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16: case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8: case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: { unsigned IntNo; switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16: case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8: IntNo = Intrinsic::sadd_sat; break; case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16: case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8: IntNo = Intrinsic::uadd_sat; break; case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16: case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8: IntNo = Intrinsic::wasm_sub_saturate_signed; break; case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16: case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: IntNo = Intrinsic::wasm_sub_saturate_unsigned; break; default: llvm_unreachable("unexpected builtin ID"); } Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); return Builder.CreateCall(Callee, {LHS, RHS}); } case WebAssembly::BI__builtin_wasm_abs_i8x16: case WebAssembly::BI__builtin_wasm_abs_i16x8: case WebAssembly::BI__builtin_wasm_abs_i32x4: { Value *Vec = EmitScalarExpr(E->getArg(0)); Value *Neg = Builder.CreateNeg(Vec, "neg"); Constant *Zero = llvm::Constant::getNullValue(Vec->getType()); Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond"); return Builder.CreateSelect(ICmp, Neg, Vec, "abs"); } case WebAssembly::BI__builtin_wasm_min_s_i8x16: case WebAssembly::BI__builtin_wasm_min_u_i8x16: case WebAssembly::BI__builtin_wasm_max_s_i8x16: case WebAssembly::BI__builtin_wasm_max_u_i8x16: case WebAssembly::BI__builtin_wasm_min_s_i16x8: case WebAssembly::BI__builtin_wasm_min_u_i16x8: case WebAssembly::BI__builtin_wasm_max_s_i16x8: case WebAssembly::BI__builtin_wasm_max_u_i16x8: case WebAssembly::BI__builtin_wasm_min_s_i32x4: case WebAssembly::BI__builtin_wasm_min_u_i32x4: case WebAssembly::BI__builtin_wasm_max_s_i32x4: case WebAssembly::BI__builtin_wasm_max_u_i32x4: { Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); Value *ICmp; switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_min_s_i8x16: case WebAssembly::BI__builtin_wasm_min_s_i16x8: case WebAssembly::BI__builtin_wasm_min_s_i32x4: ICmp = Builder.CreateICmpSLT(LHS, RHS); break; case WebAssembly::BI__builtin_wasm_min_u_i8x16: case WebAssembly::BI__builtin_wasm_min_u_i16x8: case WebAssembly::BI__builtin_wasm_min_u_i32x4: ICmp = Builder.CreateICmpULT(LHS, RHS); break; case WebAssembly::BI__builtin_wasm_max_s_i8x16: case WebAssembly::BI__builtin_wasm_max_s_i16x8: case WebAssembly::BI__builtin_wasm_max_s_i32x4: ICmp = Builder.CreateICmpSGT(LHS, RHS); break; case WebAssembly::BI__builtin_wasm_max_u_i8x16: case WebAssembly::BI__builtin_wasm_max_u_i16x8: case WebAssembly::BI__builtin_wasm_max_u_i32x4: ICmp = Builder.CreateICmpUGT(LHS, RHS); break; default: llvm_unreachable("unexpected builtin ID"); } return Builder.CreateSelect(ICmp, LHS, RHS); } case WebAssembly::BI__builtin_wasm_avgr_u_i8x16: case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: { Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned, ConvertType(E->getType())); return Builder.CreateCall(Callee, {LHS, RHS}); } case WebAssembly::BI__builtin_wasm_bitselect: { Value *V1 = EmitScalarExpr(E->getArg(0)); Value *V2 = EmitScalarExpr(E->getArg(1)); Value *C = EmitScalarExpr(E->getArg(2)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType())); return Builder.CreateCall(Callee, {V1, V2, C}); } case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: { Value *LHS = EmitScalarExpr(E->getArg(0)); Value *RHS = EmitScalarExpr(E->getArg(1)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot); return Builder.CreateCall(Callee, {LHS, RHS}); } case WebAssembly::BI__builtin_wasm_any_true_i8x16: case WebAssembly::BI__builtin_wasm_any_true_i16x8: case WebAssembly::BI__builtin_wasm_any_true_i32x4: case WebAssembly::BI__builtin_wasm_any_true_i64x2: case WebAssembly::BI__builtin_wasm_all_true_i8x16: case WebAssembly::BI__builtin_wasm_all_true_i16x8: case WebAssembly::BI__builtin_wasm_all_true_i32x4: case WebAssembly::BI__builtin_wasm_all_true_i64x2: { unsigned IntNo; switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_any_true_i8x16: case WebAssembly::BI__builtin_wasm_any_true_i16x8: case WebAssembly::BI__builtin_wasm_any_true_i32x4: case WebAssembly::BI__builtin_wasm_any_true_i64x2: IntNo = Intrinsic::wasm_anytrue; break; case WebAssembly::BI__builtin_wasm_all_true_i8x16: case WebAssembly::BI__builtin_wasm_all_true_i16x8: case WebAssembly::BI__builtin_wasm_all_true_i32x4: case WebAssembly::BI__builtin_wasm_all_true_i64x2: IntNo = Intrinsic::wasm_alltrue; break; default: llvm_unreachable("unexpected builtin ID"); } Value *Vec = EmitScalarExpr(E->getArg(0)); Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType()); return Builder.CreateCall(Callee, {Vec}); } case WebAssembly::BI__builtin_wasm_bitmask_i8x16: case WebAssembly::BI__builtin_wasm_bitmask_i16x8: case WebAssembly::BI__builtin_wasm_bitmask_i32x4: { Value *Vec = EmitScalarExpr(E->getArg(0)); Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType()); return Builder.CreateCall(Callee, {Vec}); } case WebAssembly::BI__builtin_wasm_abs_f32x4: case WebAssembly::BI__builtin_wasm_abs_f64x2: { Value *Vec = EmitScalarExpr(E->getArg(0)); Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType()); return Builder.CreateCall(Callee, {Vec}); } case WebAssembly::BI__builtin_wasm_sqrt_f32x4: case WebAssembly::BI__builtin_wasm_sqrt_f64x2: { Value *Vec = EmitScalarExpr(E->getArg(0)); Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType()); return Builder.CreateCall(Callee, {Vec}); } case WebAssembly::BI__builtin_wasm_qfma_f32x4: case WebAssembly::BI__builtin_wasm_qfms_f32x4: case WebAssembly::BI__builtin_wasm_qfma_f64x2: case WebAssembly::BI__builtin_wasm_qfms_f64x2: { Value *A = EmitScalarExpr(E->getArg(0)); Value *B = EmitScalarExpr(E->getArg(1)); Value *C = EmitScalarExpr(E->getArg(2)); unsigned IntNo; switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_qfma_f32x4: case WebAssembly::BI__builtin_wasm_qfma_f64x2: IntNo = Intrinsic::wasm_qfma; break; case WebAssembly::BI__builtin_wasm_qfms_f32x4: case WebAssembly::BI__builtin_wasm_qfms_f64x2: IntNo = Intrinsic::wasm_qfms; break; default: llvm_unreachable("unexpected builtin ID"); } Function *Callee = CGM.getIntrinsic(IntNo, A->getType()); return Builder.CreateCall(Callee, {A, B, C}); } case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: { Value *Low = EmitScalarExpr(E->getArg(0)); Value *High = EmitScalarExpr(E->getArg(1)); unsigned IntNo; switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: IntNo = Intrinsic::wasm_narrow_signed; break; case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: IntNo = Intrinsic::wasm_narrow_unsigned; break; default: llvm_unreachable("unexpected builtin ID"); } Function *Callee = CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()}); return Builder.CreateCall(Callee, {Low, High}); } case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16: case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16: case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16: case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16: case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8: case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8: case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8: case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: { Value *Vec = EmitScalarExpr(E->getArg(0)); unsigned IntNo; switch (BuiltinID) { case WebAssembly::BI__builtin_wasm_widen_low_s_i16x8_i8x16: case WebAssembly::BI__builtin_wasm_widen_low_s_i32x4_i16x8: IntNo = Intrinsic::wasm_widen_low_signed; break; case WebAssembly::BI__builtin_wasm_widen_high_s_i16x8_i8x16: case WebAssembly::BI__builtin_wasm_widen_high_s_i32x4_i16x8: IntNo = Intrinsic::wasm_widen_high_signed; break; case WebAssembly::BI__builtin_wasm_widen_low_u_i16x8_i8x16: case WebAssembly::BI__builtin_wasm_widen_low_u_i32x4_i16x8: IntNo = Intrinsic::wasm_widen_low_unsigned; break; case WebAssembly::BI__builtin_wasm_widen_high_u_i16x8_i8x16: case WebAssembly::BI__builtin_wasm_widen_high_u_i32x4_i16x8: IntNo = Intrinsic::wasm_widen_high_unsigned; break; default: llvm_unreachable("unexpected builtin ID"); } Function *Callee = CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Vec->getType()}); return Builder.CreateCall(Callee, Vec); } case WebAssembly::BI__builtin_wasm_shuffle_v8x16: { Value *Ops[18]; size_t OpIdx = 0; Ops[OpIdx++] = EmitScalarExpr(E->getArg(0)); Ops[OpIdx++] = EmitScalarExpr(E->getArg(1)); while (OpIdx < 18) { llvm::APSInt LaneConst; if (!E->getArg(OpIdx)->isIntegerConstantExpr(LaneConst, getContext())) llvm_unreachable("Constant arg isn't actually constant?"); Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), LaneConst); } Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle); return Builder.CreateCall(Callee, Ops); } default: return nullptr; } } static std::pair getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) { struct Info { unsigned BuiltinID; Intrinsic::ID IntrinsicID; unsigned VecLen; }; Info Infos[] = { #define CUSTOM_BUILTIN_MAPPING(x,s) \ { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s }, CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0) CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0) CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0) CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0) CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0) CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0) CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0) CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0) CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0) CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0) CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0) CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0) CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0) CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0) CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0) CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0) CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0) CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0) CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0) CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0) CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0) CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0) CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64) CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64) CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64) CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64) CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128) CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128) CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128) CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128) #include "clang/Basic/BuiltinsHexagonMapCustomDep.def" #undef CUSTOM_BUILTIN_MAPPING }; auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; }; static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true); (void)SortOnce; const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos), Info{BuiltinID, 0, 0}, CmpInfo); if (F == std::end(Infos) || F->BuiltinID != BuiltinID) return {Intrinsic::not_intrinsic, 0}; return {F->IntrinsicID, F->VecLen}; } Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { Intrinsic::ID ID; unsigned VecLen; std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID); auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) { // The base pointer is passed by address, so it needs to be loaded. Address A = EmitPointerWithAlignment(E->getArg(0)); Address BP = Address( Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment()); llvm::Value *Base = Builder.CreateLoad(BP); // The treatment of both loads and stores is the same: the arguments for // the builtin are the same as the arguments for the intrinsic. // Load: // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start) // builtin(Base, Mod, Start) -> intr(Base, Mod, Start) // Store: // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start) // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start) SmallVector Ops = { Base }; for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i) Ops.push_back(EmitScalarExpr(E->getArg(i))); llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); // The load intrinsics generate two results (Value, NewBase), stores // generate one (NewBase). The new base address needs to be stored. llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1) : Result; llvm::Value *LV = Builder.CreateBitCast( EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo()); Address Dest = EmitPointerWithAlignment(E->getArg(0)); llvm::Value *RetVal = Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); if (IsLoad) RetVal = Builder.CreateExtractValue(Result, 0); return RetVal; }; // Handle the conversion of bit-reverse load intrinsics to bit code. // The intrinsic call after this function only reads from memory and the // write to memory is dealt by the store instruction. auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) { // The intrinsic generates one result, which is the new value for the base // pointer. It needs to be returned. The result of the load instruction is // passed to intrinsic by address, so the value needs to be stored. llvm::Value *BaseAddress = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy); // Expressions like &(*pt++) will be incremented per evaluation. // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression // per call. Address DestAddr = EmitPointerWithAlignment(E->getArg(1)); DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy), DestAddr.getAlignment()); llvm::Value *DestAddress = DestAddr.getPointer(); // Operands are Base, Dest, Modifier. // The intrinsic format in LLVM IR is defined as // { ValueType, i8* } (i8*, i32). llvm::Value *Result = Builder.CreateCall( CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))}); // The value needs to be stored as the variable is passed by reference. llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0); // The store needs to be truncated to fit the destination type. // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs // to be handled with stores of respective destination type. DestVal = Builder.CreateTrunc(DestVal, DestTy); llvm::Value *DestForStore = Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo()); Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment()); // The updated value of the base pointer is returned. return Builder.CreateExtractValue(Result, 1); }; auto V2Q = [this, VecLen] (llvm::Value *Vec) { Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B : Intrinsic::hexagon_V6_vandvrt; return Builder.CreateCall(CGM.getIntrinsic(ID), {Vec, Builder.getInt32(-1)}); }; auto Q2V = [this, VecLen] (llvm::Value *Pred) { Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B : Intrinsic::hexagon_V6_vandqrt; return Builder.CreateCall(CGM.getIntrinsic(ID), {Pred, Builder.getInt32(-1)}); }; switch (BuiltinID) { // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR, // and the corresponding C/C++ builtins use loads/stores to update // the predicate. case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry: case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry: case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: { // Get the type from the 0-th argument. llvm::Type *VecType = ConvertType(E->getArg(0)->getType()); Address PredAddr = Builder.CreateBitCast( EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0)); llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr)); llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn}); llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1); Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(), PredAddr.getAlignment()); return Builder.CreateExtractValue(Result, 0); } case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci: case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci: case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci: case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci: case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci: case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci: case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr: case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr: case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr: case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr: case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr: case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr: return MakeCircOp(ID, /*IsLoad=*/true); case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci: case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci: case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci: case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci: case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci: case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr: case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr: case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr: case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr: case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr: return MakeCircOp(ID, /*IsLoad=*/false); case Hexagon::BI__builtin_brev_ldub: return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty); case Hexagon::BI__builtin_brev_ldb: return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty); case Hexagon::BI__builtin_brev_lduh: return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty); case Hexagon::BI__builtin_brev_ldh: return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty); case Hexagon::BI__builtin_brev_ldw: return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty); case Hexagon::BI__builtin_brev_ldd: return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty); default: { if (ID == Intrinsic::not_intrinsic) return nullptr; auto IsVectorPredTy = [](llvm::Type *T) { return T->isVectorTy() && cast(T)->getElementType()->isIntegerTy(1); }; llvm::Function *IntrFn = CGM.getIntrinsic(ID); llvm::FunctionType *IntrTy = IntrFn->getFunctionType(); SmallVector Ops; for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) { llvm::Type *T = IntrTy->getParamType(i); const Expr *A = E->getArg(i); if (IsVectorPredTy(T)) { // There will be an implicit cast to a boolean vector. Strip it. if (auto *Cast = dyn_cast(A)) { if (Cast->getCastKind() == CK_BitCast) A = Cast->getSubExpr(); } Ops.push_back(V2Q(EmitScalarExpr(A))); } else { Ops.push_back(EmitScalarExpr(A)); } } llvm::Value *Call = Builder.CreateCall(IntrFn, Ops); if (IsVectorPredTy(IntrTy->getReturnType())) Call = Q2V(Call); return Call; } // default } // switch return nullptr; }