//===--- RISCV.cpp - Implement RISC-V target feature support --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements RISC-V TargetInfo objects. // //===----------------------------------------------------------------------===// #include "RISCV.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/MacroBuilder.h" #include "clang/Basic/TargetBuiltins.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/RISCVTargetParser.h" #include using namespace clang; using namespace clang::targets; ArrayRef RISCVTargetInfo::getGCCRegNames() const { // clang-format off static const char *const GCCRegNames[] = { // Integer registers "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31", // Floating point registers "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", // Vector registers "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", // CSRs "fflags", "frm", "vtype", "vl", "vxsat", "vxrm" }; // clang-format on return llvm::ArrayRef(GCCRegNames); } ArrayRef RISCVTargetInfo::getGCCRegAliases() const { static const TargetInfo::GCCRegAlias GCCRegAliases[] = { {{"zero"}, "x0"}, {{"ra"}, "x1"}, {{"sp"}, "x2"}, {{"gp"}, "x3"}, {{"tp"}, "x4"}, {{"t0"}, "x5"}, {{"t1"}, "x6"}, {{"t2"}, "x7"}, {{"s0"}, "x8"}, {{"s1"}, "x9"}, {{"a0"}, "x10"}, {{"a1"}, "x11"}, {{"a2"}, "x12"}, {{"a3"}, "x13"}, {{"a4"}, "x14"}, {{"a5"}, "x15"}, {{"a6"}, "x16"}, {{"a7"}, "x17"}, {{"s2"}, "x18"}, {{"s3"}, "x19"}, {{"s4"}, "x20"}, {{"s5"}, "x21"}, {{"s6"}, "x22"}, {{"s7"}, "x23"}, {{"s8"}, "x24"}, {{"s9"}, "x25"}, {{"s10"}, "x26"}, {{"s11"}, "x27"}, {{"t3"}, "x28"}, {{"t4"}, "x29"}, {{"t5"}, "x30"}, {{"t6"}, "x31"}, {{"ft0"}, "f0"}, {{"ft1"}, "f1"}, {{"ft2"}, "f2"}, {{"ft3"}, "f3"}, {{"ft4"}, "f4"}, {{"ft5"}, "f5"}, {{"ft6"}, "f6"}, {{"ft7"}, "f7"}, {{"fs0"}, "f8"}, {{"fs1"}, "f9"}, {{"fa0"}, "f10"}, {{"fa1"}, "f11"}, {{"fa2"}, "f12"}, {{"fa3"}, "f13"}, {{"fa4"}, "f14"}, {{"fa5"}, "f15"}, {{"fa6"}, "f16"}, {{"fa7"}, "f17"}, {{"fs2"}, "f18"}, {{"fs3"}, "f19"}, {{"fs4"}, "f20"}, {{"fs5"}, "f21"}, {{"fs6"}, "f22"}, {{"fs7"}, "f23"}, {{"fs8"}, "f24"}, {{"fs9"}, "f25"}, {{"fs10"}, "f26"}, {{"fs11"}, "f27"}, {{"ft8"}, "f28"}, {{"ft9"}, "f29"}, {{"ft10"}, "f30"}, {{"ft11"}, "f31"}}; return llvm::ArrayRef(GCCRegAliases); } bool RISCVTargetInfo::validateAsmConstraint( const char *&Name, TargetInfo::ConstraintInfo &Info) const { switch (*Name) { default: return false; case 'I': // A 12-bit signed immediate. Info.setRequiresImmediate(-2048, 2047); return true; case 'J': // Integer zero. Info.setRequiresImmediate(0); return true; case 'K': // A 5-bit unsigned immediate for CSR access instructions. Info.setRequiresImmediate(0, 31); return true; case 'f': // A floating-point register. Info.setAllowsRegister(); return true; case 'A': // An address that is held in a general-purpose register. Info.setAllowsMemory(); return true; case 'S': // A symbolic address Info.setAllowsRegister(); return true; case 'v': // A vector register. if (Name[1] == 'r' || Name[1] == 'm') { Info.setAllowsRegister(); Name += 1; return true; } return false; } } std::string RISCVTargetInfo::convertConstraint(const char *&Constraint) const { std::string R; switch (*Constraint) { case 'v': R = std::string("^") + std::string(Constraint, 2); Constraint += 1; break; default: R = TargetInfo::convertConstraint(Constraint); break; } return R; } static unsigned getVersionValue(unsigned MajorVersion, unsigned MinorVersion) { return MajorVersion * 1000000 + MinorVersion * 1000; } void RISCVTargetInfo::getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const { Builder.defineMacro("__riscv"); bool Is64Bit = getTriple().isRISCV64(); Builder.defineMacro("__riscv_xlen", Is64Bit ? "64" : "32"); StringRef CodeModel = getTargetOpts().CodeModel; unsigned FLen = ISAInfo->getFLen(); unsigned MinVLen = ISAInfo->getMinVLen(); unsigned MaxELen = ISAInfo->getMaxELen(); unsigned MaxELenFp = ISAInfo->getMaxELenFp(); if (CodeModel == "default") CodeModel = "small"; if (CodeModel == "small") Builder.defineMacro("__riscv_cmodel_medlow"); else if (CodeModel == "medium") Builder.defineMacro("__riscv_cmodel_medany"); StringRef ABIName = getABI(); if (ABIName == "ilp32f" || ABIName == "lp64f") Builder.defineMacro("__riscv_float_abi_single"); else if (ABIName == "ilp32d" || ABIName == "lp64d") Builder.defineMacro("__riscv_float_abi_double"); else Builder.defineMacro("__riscv_float_abi_soft"); if (ABIName == "ilp32e") Builder.defineMacro("__riscv_abi_rve"); Builder.defineMacro("__riscv_arch_test"); for (auto &Extension : ISAInfo->getExtensions()) { auto ExtName = Extension.first; auto ExtInfo = Extension.second; Builder.defineMacro( Twine("__riscv_", ExtName), Twine(getVersionValue(ExtInfo.MajorVersion, ExtInfo.MinorVersion))); } if (ISAInfo->hasExtension("m") || ISAInfo->hasExtension("zmmul")) Builder.defineMacro("__riscv_mul"); if (ISAInfo->hasExtension("m")) { Builder.defineMacro("__riscv_div"); Builder.defineMacro("__riscv_muldiv"); } if (ISAInfo->hasExtension("a")) { Builder.defineMacro("__riscv_atomic"); Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1"); Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2"); Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4"); if (Is64Bit) Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8"); } if (FLen) { Builder.defineMacro("__riscv_flen", Twine(FLen)); Builder.defineMacro("__riscv_fdiv"); Builder.defineMacro("__riscv_fsqrt"); } if (MinVLen) { Builder.defineMacro("__riscv_v_min_vlen", Twine(MinVLen)); Builder.defineMacro("__riscv_v_elen", Twine(MaxELen)); Builder.defineMacro("__riscv_v_elen_fp", Twine(MaxELenFp)); } if (ISAInfo->hasExtension("c")) Builder.defineMacro("__riscv_compressed"); if (ISAInfo->hasExtension("zve32x")) { Builder.defineMacro("__riscv_vector"); // Currently we support the v0.12 RISC-V V intrinsics. Builder.defineMacro("__riscv_v_intrinsic", Twine(getVersionValue(0, 12))); } auto VScale = getVScaleRange(Opts); if (VScale && VScale->first && VScale->first == VScale->second) Builder.defineMacro("__riscv_v_fixed_vlen", Twine(VScale->first * llvm::RISCV::RVVBitsPerBlock)); if (FastUnalignedAccess) Builder.defineMacro("__riscv_misaligned_fast"); else Builder.defineMacro("__riscv_misaligned_avoid"); } static constexpr Builtin::Info BuiltinInfo[] = { #define BUILTIN(ID, TYPE, ATTRS) \ {#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, ALL_LANGUAGES}, #define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \ {#ID, TYPE, ATTRS, FEATURE, HeaderDesc::NO_HEADER, ALL_LANGUAGES}, #include "clang/Basic/BuiltinsRISCVVector.def" #define BUILTIN(ID, TYPE, ATTRS) \ {#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, ALL_LANGUAGES}, #define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \ {#ID, TYPE, ATTRS, FEATURE, HeaderDesc::NO_HEADER, ALL_LANGUAGES}, #include "clang/Basic/BuiltinsRISCV.def" }; ArrayRef RISCVTargetInfo::getTargetBuiltins() const { return llvm::ArrayRef(BuiltinInfo, clang::RISCV::LastTSBuiltin - Builtin::FirstTSBuiltin); } static std::vector collectNonISAExtFeature(ArrayRef FeaturesNeedOverride, int XLen) { std::vector NonISAExtFeatureVec; auto IsNonISAExtFeature = [](const std::string &Feature) { assert(Feature.size() > 1 && (Feature[0] == '+' || Feature[0] == '-')); StringRef Ext = StringRef(Feature).drop_front(); // drop the +/- return !llvm::RISCVISAInfo::isSupportedExtensionFeature(Ext); }; llvm::copy_if(FeaturesNeedOverride, std::back_inserter(NonISAExtFeatureVec), IsNonISAExtFeature); return NonISAExtFeatureVec; } static std::vector resolveTargetAttrOverride(const std::vector &FeaturesVec, int XLen) { auto I = llvm::find(FeaturesVec, "__RISCV_TargetAttrNeedOverride"); if (I == FeaturesVec.end()) return FeaturesVec; ArrayRef FeaturesNeedOverride(&*FeaturesVec.begin(), &*I); std::vector NonISAExtFeature = collectNonISAExtFeature(FeaturesNeedOverride, XLen); std::vector ResolvedFeature(++I, FeaturesVec.end()); ResolvedFeature.insert(ResolvedFeature.end(), NonISAExtFeature.begin(), NonISAExtFeature.end()); return ResolvedFeature; } bool RISCVTargetInfo::initFeatureMap( llvm::StringMap &Features, DiagnosticsEngine &Diags, StringRef CPU, const std::vector &FeaturesVec) const { unsigned XLen = 32; if (getTriple().isRISCV64()) { Features["64bit"] = true; XLen = 64; } else { Features["32bit"] = true; } std::vector NewFeaturesVec = resolveTargetAttrOverride(FeaturesVec, XLen); auto ParseResult = llvm::RISCVISAInfo::parseFeatures(XLen, NewFeaturesVec); if (!ParseResult) { std::string Buffer; llvm::raw_string_ostream OutputErrMsg(Buffer); handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) { OutputErrMsg << ErrMsg.getMessage(); }); Diags.Report(diag::err_invalid_feature_combination) << OutputErrMsg.str(); return false; } // RISCVISAInfo makes implications for ISA features std::vector ImpliedFeatures = (*ParseResult)->toFeatures(); // parseFeatures normalizes the feature set by dropping any explicit // negatives, and non-extension features. We need to preserve the later // for correctness and want to preserve the former for consistency. for (auto &Feature : NewFeaturesVec) { StringRef ExtName = Feature; assert(ExtName.size() > 1 && (ExtName[0] == '+' || ExtName[0] == '-')); ExtName = ExtName.drop_front(1); // Drop '+' or '-' if (!llvm::is_contained(ImpliedFeatures, ("+" + ExtName).str()) && !llvm::is_contained(ImpliedFeatures, ("-" + ExtName).str())) ImpliedFeatures.push_back(Feature); } return TargetInfo::initFeatureMap(Features, Diags, CPU, ImpliedFeatures); } std::optional> RISCVTargetInfo::getVScaleRange(const LangOptions &LangOpts) const { // RISCV::RVVBitsPerBlock is 64. unsigned VScaleMin = ISAInfo->getMinVLen() / llvm::RISCV::RVVBitsPerBlock; if (LangOpts.VScaleMin || LangOpts.VScaleMax) { // Treat Zvl*b as a lower bound on vscale. VScaleMin = std::max(VScaleMin, LangOpts.VScaleMin); unsigned VScaleMax = LangOpts.VScaleMax; if (VScaleMax != 0 && VScaleMax < VScaleMin) VScaleMax = VScaleMin; return std::pair(VScaleMin ? VScaleMin : 1, VScaleMax); } if (VScaleMin > 0) { unsigned VScaleMax = ISAInfo->getMaxVLen() / llvm::RISCV::RVVBitsPerBlock; return std::make_pair(VScaleMin, VScaleMax); } return std::nullopt; } /// Return true if has this feature, need to sync with handleTargetFeatures. bool RISCVTargetInfo::hasFeature(StringRef Feature) const { bool Is64Bit = getTriple().isRISCV64(); auto Result = llvm::StringSwitch>(Feature) .Case("riscv", true) .Case("riscv32", !Is64Bit) .Case("riscv64", Is64Bit) .Case("32bit", !Is64Bit) .Case("64bit", Is64Bit) .Case("experimental", HasExperimental) .Default(std::nullopt); if (Result) return *Result; return ISAInfo->hasExtension(Feature); } /// Perform initialization based on the user configured set of features. bool RISCVTargetInfo::handleTargetFeatures(std::vector &Features, DiagnosticsEngine &Diags) { unsigned XLen = getTriple().isArch64Bit() ? 64 : 32; auto ParseResult = llvm::RISCVISAInfo::parseFeatures(XLen, Features); if (!ParseResult) { std::string Buffer; llvm::raw_string_ostream OutputErrMsg(Buffer); handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) { OutputErrMsg << ErrMsg.getMessage(); }); Diags.Report(diag::err_invalid_feature_combination) << OutputErrMsg.str(); return false; } else { ISAInfo = std::move(*ParseResult); } if (ABI.empty()) ABI = ISAInfo->computeDefaultABI().str(); if (ISAInfo->hasExtension("zfh") || ISAInfo->hasExtension("zhinx")) HasLegalHalfType = true; FastUnalignedAccess = llvm::is_contained(Features, "+fast-unaligned-access"); if (llvm::is_contained(Features, "+experimental")) HasExperimental = true; return true; } bool RISCVTargetInfo::isValidCPUName(StringRef Name) const { bool Is64Bit = getTriple().isArch64Bit(); return llvm::RISCV::parseCPU(Name, Is64Bit); } void RISCVTargetInfo::fillValidCPUList( SmallVectorImpl &Values) const { bool Is64Bit = getTriple().isArch64Bit(); llvm::RISCV::fillValidCPUArchList(Values, Is64Bit); } bool RISCVTargetInfo::isValidTuneCPUName(StringRef Name) const { bool Is64Bit = getTriple().isArch64Bit(); return llvm::RISCV::parseTuneCPU(Name, Is64Bit); } void RISCVTargetInfo::fillValidTuneCPUList( SmallVectorImpl &Values) const { bool Is64Bit = getTriple().isArch64Bit(); llvm::RISCV::fillValidTuneCPUArchList(Values, Is64Bit); } static void handleFullArchString(StringRef FullArchStr, std::vector &Features) { Features.push_back("__RISCV_TargetAttrNeedOverride"); auto RII = llvm::RISCVISAInfo::parseArchString( FullArchStr, /* EnableExperimentalExtension */ true); if (llvm::errorToBool(RII.takeError())) { // Forward the invalid FullArchStr. Features.push_back("+" + FullArchStr.str()); } else { std::vector FeatStrings = (*RII)->toFeatures(); Features.insert(Features.end(), FeatStrings.begin(), FeatStrings.end()); } } ParsedTargetAttr RISCVTargetInfo::parseTargetAttr(StringRef Features) const { ParsedTargetAttr Ret; if (Features == "default") return Ret; SmallVector AttrFeatures; Features.split(AttrFeatures, ";"); bool FoundArch = false; for (auto &Feature : AttrFeatures) { Feature = Feature.trim(); StringRef AttrString = Feature.split("=").second.trim(); if (Feature.starts_with("arch=")) { // Override last features Ret.Features.clear(); if (FoundArch) Ret.Duplicate = "arch="; FoundArch = true; if (AttrString.starts_with("+")) { // EXTENSION like arch=+v,+zbb SmallVector Exts; AttrString.split(Exts, ","); for (auto Ext : Exts) { if (Ext.empty()) continue; StringRef ExtName = Ext.substr(1); std::string TargetFeature = llvm::RISCVISAInfo::getTargetFeatureForExtension(ExtName); if (!TargetFeature.empty()) Ret.Features.push_back(Ext.front() + TargetFeature); else Ret.Features.push_back(Ext.str()); } } else { // full-arch-string like arch=rv64gcv handleFullArchString(AttrString, Ret.Features); } } else if (Feature.starts_with("cpu=")) { if (!Ret.CPU.empty()) Ret.Duplicate = "cpu="; Ret.CPU = AttrString; if (!FoundArch) { // Update Features with CPU's features StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(Ret.CPU); if (MarchFromCPU != "") { Ret.Features.clear(); handleFullArchString(MarchFromCPU, Ret.Features); } } } else if (Feature.starts_with("tune=")) { if (!Ret.Tune.empty()) Ret.Duplicate = "tune="; Ret.Tune = AttrString; } } return Ret; }