//===- IdentifierTable.cpp - Hash table for identifier lookup -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the IdentifierInfo, IdentifierVisitor, and // IdentifierTable interfaces. // //===----------------------------------------------------------------------===// #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/DiagnosticLex.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TargetBuiltins.h" #include "clang/Basic/TokenKinds.h" #include "llvm/ADT/DenseMapInfo.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace clang; // A check to make sure the ObjCOrBuiltinID has sufficient room to store the // largest possible target/aux-target combination. If we exceed this, we likely // need to just change the ObjCOrBuiltinIDBits value in IdentifierTable.h. static_assert(2 * LargestBuiltinID < (2 << (ObjCOrBuiltinIDBits - 1)), "Insufficient ObjCOrBuiltinID Bits"); //===----------------------------------------------------------------------===// // IdentifierTable Implementation //===----------------------------------------------------------------------===// IdentifierIterator::~IdentifierIterator() = default; IdentifierInfoLookup::~IdentifierInfoLookup() = default; namespace { /// A simple identifier lookup iterator that represents an /// empty sequence of identifiers. class EmptyLookupIterator : public IdentifierIterator { public: StringRef Next() override { return StringRef(); } }; } // namespace IdentifierIterator *IdentifierInfoLookup::getIdentifiers() { return new EmptyLookupIterator(); } IdentifierTable::IdentifierTable(IdentifierInfoLookup *ExternalLookup) : HashTable(8192), // Start with space for 8K identifiers. ExternalLookup(ExternalLookup) {} IdentifierTable::IdentifierTable(const LangOptions &LangOpts, IdentifierInfoLookup *ExternalLookup) : IdentifierTable(ExternalLookup) { // Populate the identifier table with info about keywords for the current // language. AddKeywords(LangOpts); } //===----------------------------------------------------------------------===// // Language Keyword Implementation //===----------------------------------------------------------------------===// // Constants for TokenKinds.def namespace { enum TokenKey : unsigned { KEYC99 = 0x1, KEYCXX = 0x2, KEYCXX11 = 0x4, KEYGNU = 0x8, KEYMS = 0x10, BOOLSUPPORT = 0x20, KEYALTIVEC = 0x40, KEYNOCXX = 0x80, KEYBORLAND = 0x100, KEYOPENCLC = 0x200, KEYC23 = 0x400, KEYNOMS18 = 0x800, KEYNOOPENCL = 0x1000, WCHARSUPPORT = 0x2000, HALFSUPPORT = 0x4000, CHAR8SUPPORT = 0x8000, KEYOBJC = 0x10000, KEYZVECTOR = 0x20000, KEYCOROUTINES = 0x40000, KEYMODULES = 0x80000, KEYCXX20 = 0x100000, KEYOPENCLCXX = 0x200000, KEYMSCOMPAT = 0x400000, KEYSYCL = 0x800000, KEYCUDA = 0x1000000, KEYHLSL = 0x2000000, KEYFIXEDPOINT = 0x4000000, KEYMAX = KEYFIXEDPOINT, // The maximum key KEYALLCXX = KEYCXX | KEYCXX11 | KEYCXX20, KEYALL = (KEYMAX | (KEYMAX-1)) & ~KEYNOMS18 & ~KEYNOOPENCL // KEYNOMS18 and KEYNOOPENCL are used to exclude. }; /// How a keyword is treated in the selected standard. This enum is ordered /// intentionally so that the value that 'wins' is the most 'permissive'. enum KeywordStatus { KS_Unknown, // Not yet calculated. Used when figuring out the status. KS_Disabled, // Disabled KS_Future, // Is a keyword in future standard KS_Extension, // Is an extension KS_Enabled, // Enabled }; } // namespace // This works on a single TokenKey flag and checks the LangOpts to get the // KeywordStatus based exclusively on this flag, so that it can be merged in // getKeywordStatus. Most should be enabled/disabled, but some might imply // 'future' versions, or extensions. Returns 'unknown' unless this is KNOWN to // be disabled, and the calling function makes it 'disabled' if no other flag // changes it. This is necessary for the KEYNOCXX and KEYNOOPENCL flags. static KeywordStatus getKeywordStatusHelper(const LangOptions &LangOpts, TokenKey Flag) { // Flag is a single bit version of TokenKey (that is, not // KEYALL/KEYALLCXX/etc), so we can check with == throughout this function. assert((Flag & ~(Flag - 1)) == Flag && "Multiple bits set?"); switch (Flag) { case KEYC99: if (LangOpts.C99) return KS_Enabled; return !LangOpts.CPlusPlus ? KS_Future : KS_Unknown; case KEYC23: if (LangOpts.C23) return KS_Enabled; return !LangOpts.CPlusPlus ? KS_Future : KS_Unknown; case KEYCXX: return LangOpts.CPlusPlus ? KS_Enabled : KS_Unknown; case KEYCXX11: if (LangOpts.CPlusPlus11) return KS_Enabled; return LangOpts.CPlusPlus ? KS_Future : KS_Unknown; case KEYCXX20: if (LangOpts.CPlusPlus20) return KS_Enabled; return LangOpts.CPlusPlus ? KS_Future : KS_Unknown; case KEYGNU: return LangOpts.GNUKeywords ? KS_Extension : KS_Unknown; case KEYMS: return LangOpts.MicrosoftExt ? KS_Extension : KS_Unknown; case BOOLSUPPORT: if (LangOpts.Bool) return KS_Enabled; return !LangOpts.CPlusPlus ? KS_Future : KS_Unknown; case KEYALTIVEC: return LangOpts.AltiVec ? KS_Enabled : KS_Unknown; case KEYBORLAND: return LangOpts.Borland ? KS_Extension : KS_Unknown; case KEYOPENCLC: return LangOpts.OpenCL && !LangOpts.OpenCLCPlusPlus ? KS_Enabled : KS_Unknown; case WCHARSUPPORT: return LangOpts.WChar ? KS_Enabled : KS_Unknown; case HALFSUPPORT: return LangOpts.Half ? KS_Enabled : KS_Unknown; case CHAR8SUPPORT: if (LangOpts.Char8) return KS_Enabled; if (LangOpts.CPlusPlus20) return KS_Unknown; if (LangOpts.CPlusPlus) return KS_Future; return KS_Unknown; case KEYOBJC: // We treat bridge casts as objective-C keywords so we can warn on them // in non-arc mode. return LangOpts.ObjC ? KS_Enabled : KS_Unknown; case KEYZVECTOR: return LangOpts.ZVector ? KS_Enabled : KS_Unknown; case KEYCOROUTINES: return LangOpts.Coroutines ? KS_Enabled : KS_Unknown; case KEYMODULES: return KS_Unknown; case KEYOPENCLCXX: return LangOpts.OpenCLCPlusPlus ? KS_Enabled : KS_Unknown; case KEYMSCOMPAT: return LangOpts.MSVCCompat ? KS_Enabled : KS_Unknown; case KEYSYCL: return LangOpts.isSYCL() ? KS_Enabled : KS_Unknown; case KEYCUDA: return LangOpts.CUDA ? KS_Enabled : KS_Unknown; case KEYHLSL: return LangOpts.HLSL ? KS_Enabled : KS_Unknown; case KEYNOCXX: // This is enabled in all non-C++ modes, but might be enabled for other // reasons as well. return LangOpts.CPlusPlus ? KS_Unknown : KS_Enabled; case KEYNOOPENCL: // The disable behavior for this is handled in getKeywordStatus. return KS_Unknown; case KEYNOMS18: // The disable behavior for this is handled in getKeywordStatus. return KS_Unknown; case KEYFIXEDPOINT: return LangOpts.FixedPoint ? KS_Enabled : KS_Disabled; default: llvm_unreachable("Unknown KeywordStatus flag"); } } /// Translates flags as specified in TokenKinds.def into keyword status /// in the given language standard. static KeywordStatus getKeywordStatus(const LangOptions &LangOpts, unsigned Flags) { // KEYALL means always enabled, so special case this one. if (Flags == KEYALL) return KS_Enabled; // These are tests that need to 'always win', as they are special in that they // disable based on certain conditions. if (LangOpts.OpenCL && (Flags & KEYNOOPENCL)) return KS_Disabled; if (LangOpts.MSVCCompat && (Flags & KEYNOMS18) && !LangOpts.isCompatibleWithMSVC(LangOptions::MSVC2015)) return KS_Disabled; KeywordStatus CurStatus = KS_Unknown; while (Flags != 0) { unsigned CurFlag = Flags & ~(Flags - 1); Flags = Flags & ~CurFlag; CurStatus = std::max( CurStatus, getKeywordStatusHelper(LangOpts, static_cast(CurFlag))); } if (CurStatus == KS_Unknown) return KS_Disabled; return CurStatus; } /// AddKeyword - This method is used to associate a token ID with specific /// identifiers because they are language keywords. This causes the lexer to /// automatically map matching identifiers to specialized token codes. static void AddKeyword(StringRef Keyword, tok::TokenKind TokenCode, unsigned Flags, const LangOptions &LangOpts, IdentifierTable &Table) { KeywordStatus AddResult = getKeywordStatus(LangOpts, Flags); // Don't add this keyword if disabled in this language. if (AddResult == KS_Disabled) return; IdentifierInfo &Info = Table.get(Keyword, AddResult == KS_Future ? tok::identifier : TokenCode); Info.setIsExtensionToken(AddResult == KS_Extension); Info.setIsFutureCompatKeyword(AddResult == KS_Future); } /// AddCXXOperatorKeyword - Register a C++ operator keyword alternative /// representations. static void AddCXXOperatorKeyword(StringRef Keyword, tok::TokenKind TokenCode, IdentifierTable &Table) { IdentifierInfo &Info = Table.get(Keyword, TokenCode); Info.setIsCPlusPlusOperatorKeyword(); } /// AddObjCKeyword - Register an Objective-C \@keyword like "class" "selector" /// or "property". static void AddObjCKeyword(StringRef Name, tok::ObjCKeywordKind ObjCID, IdentifierTable &Table) { Table.get(Name).setObjCKeywordID(ObjCID); } static void AddInterestingIdentifier(StringRef Name, tok::InterestingIdentifierKind BTID, IdentifierTable &Table) { // Don't add 'not_interesting' identifier. if (BTID != tok::not_interesting) { IdentifierInfo &Info = Table.get(Name, tok::identifier); Info.setInterestingIdentifierID(BTID); } } /// AddKeywords - Add all keywords to the symbol table. /// void IdentifierTable::AddKeywords(const LangOptions &LangOpts) { // Add keywords and tokens for the current language. #define KEYWORD(NAME, FLAGS) \ AddKeyword(StringRef(#NAME), tok::kw_ ## NAME, \ FLAGS, LangOpts, *this); #define ALIAS(NAME, TOK, FLAGS) \ AddKeyword(StringRef(NAME), tok::kw_ ## TOK, \ FLAGS, LangOpts, *this); #define CXX_KEYWORD_OPERATOR(NAME, ALIAS) \ if (LangOpts.CXXOperatorNames) \ AddCXXOperatorKeyword(StringRef(#NAME), tok::ALIAS, *this); #define OBJC_AT_KEYWORD(NAME) \ if (LangOpts.ObjC) \ AddObjCKeyword(StringRef(#NAME), tok::objc_##NAME, *this); #define INTERESTING_IDENTIFIER(NAME) \ AddInterestingIdentifier(StringRef(#NAME), tok::NAME, *this); #define TESTING_KEYWORD(NAME, FLAGS) #include "clang/Basic/TokenKinds.def" if (LangOpts.ParseUnknownAnytype) AddKeyword("__unknown_anytype", tok::kw___unknown_anytype, KEYALL, LangOpts, *this); if (LangOpts.DeclSpecKeyword) AddKeyword("__declspec", tok::kw___declspec, KEYALL, LangOpts, *this); if (LangOpts.IEEE128) AddKeyword("__ieee128", tok::kw___float128, KEYALL, LangOpts, *this); // Add the 'import' contextual keyword. get("import").setModulesImport(true); } /// Checks if the specified token kind represents a keyword in the /// specified language. /// \returns Status of the keyword in the language. static KeywordStatus getTokenKwStatus(const LangOptions &LangOpts, tok::TokenKind K) { switch (K) { #define KEYWORD(NAME, FLAGS) \ case tok::kw_##NAME: return getKeywordStatus(LangOpts, FLAGS); #include "clang/Basic/TokenKinds.def" default: return KS_Disabled; } } /// Returns true if the identifier represents a keyword in the /// specified language. bool IdentifierInfo::isKeyword(const LangOptions &LangOpts) const { switch (getTokenKwStatus(LangOpts, getTokenID())) { case KS_Enabled: case KS_Extension: return true; default: return false; } } /// Returns true if the identifier represents a C++ keyword in the /// specified language. bool IdentifierInfo::isCPlusPlusKeyword(const LangOptions &LangOpts) const { if (!LangOpts.CPlusPlus || !isKeyword(LangOpts)) return false; // This is a C++ keyword if this identifier is not a keyword when checked // using LangOptions without C++ support. LangOptions LangOptsNoCPP = LangOpts; LangOptsNoCPP.CPlusPlus = false; LangOptsNoCPP.CPlusPlus11 = false; LangOptsNoCPP.CPlusPlus20 = false; return !isKeyword(LangOptsNoCPP); } ReservedIdentifierStatus IdentifierInfo::isReserved(const LangOptions &LangOpts) const { StringRef Name = getName(); // '_' is a reserved identifier, but its use is so common (e.g. to store // ignored values) that we don't warn on it. if (Name.size() <= 1) return ReservedIdentifierStatus::NotReserved; // [lex.name] p3 if (Name[0] == '_') { // Each name that begins with an underscore followed by an uppercase letter // or another underscore is reserved. if (Name[1] == '_') return ReservedIdentifierStatus::StartsWithDoubleUnderscore; if ('A' <= Name[1] && Name[1] <= 'Z') return ReservedIdentifierStatus:: StartsWithUnderscoreFollowedByCapitalLetter; // This is a bit misleading: it actually means it's only reserved if we're // at global scope because it starts with an underscore. return ReservedIdentifierStatus::StartsWithUnderscoreAtGlobalScope; } // Each name that contains a double underscore (__) is reserved. if (LangOpts.CPlusPlus && Name.contains("__")) return ReservedIdentifierStatus::ContainsDoubleUnderscore; return ReservedIdentifierStatus::NotReserved; } ReservedLiteralSuffixIdStatus IdentifierInfo::isReservedLiteralSuffixId() const { StringRef Name = getName(); if (Name[0] != '_') return ReservedLiteralSuffixIdStatus::NotStartsWithUnderscore; if (Name.contains("__")) return ReservedLiteralSuffixIdStatus::ContainsDoubleUnderscore; return ReservedLiteralSuffixIdStatus::NotReserved; } StringRef IdentifierInfo::deuglifiedName() const { StringRef Name = getName(); if (Name.size() >= 2 && Name.front() == '_' && (Name[1] == '_' || (Name[1] >= 'A' && Name[1] <= 'Z'))) return Name.ltrim('_'); return Name; } tok::PPKeywordKind IdentifierInfo::getPPKeywordID() const { // We use a perfect hash function here involving the length of the keyword, // the first and third character. For preprocessor ID's there are no // collisions (if there were, the switch below would complain about duplicate // case values). Note that this depends on 'if' being null terminated. #define HASH(LEN, FIRST, THIRD) \ (LEN << 5) + (((FIRST-'a') + (THIRD-'a')) & 31) #define CASE(LEN, FIRST, THIRD, NAME) \ case HASH(LEN, FIRST, THIRD): \ return memcmp(Name, #NAME, LEN) ? tok::pp_not_keyword : tok::pp_ ## NAME unsigned Len = getLength(); if (Len < 2) return tok::pp_not_keyword; const char *Name = getNameStart(); switch (HASH(Len, Name[0], Name[2])) { default: return tok::pp_not_keyword; CASE( 2, 'i', '\0', if); CASE( 4, 'e', 'i', elif); CASE( 4, 'e', 's', else); CASE( 4, 'l', 'n', line); CASE( 4, 's', 'c', sccs); CASE( 5, 'e', 'd', endif); CASE( 5, 'e', 'r', error); CASE( 5, 'i', 'e', ident); CASE( 5, 'i', 'd', ifdef); CASE( 5, 'u', 'd', undef); CASE( 6, 'a', 's', assert); CASE( 6, 'd', 'f', define); CASE( 6, 'i', 'n', ifndef); CASE( 6, 'i', 'p', import); CASE( 6, 'p', 'a', pragma); CASE( 7, 'd', 'f', defined); CASE( 7, 'e', 'i', elifdef); CASE( 7, 'i', 'c', include); CASE( 7, 'w', 'r', warning); CASE( 8, 'e', 'i', elifndef); CASE( 8, 'u', 'a', unassert); CASE(12, 'i', 'c', include_next); CASE(14, '_', 'p', __public_macro); CASE(15, '_', 'p', __private_macro); CASE(16, '_', 'i', __include_macros); #undef CASE #undef HASH } } //===----------------------------------------------------------------------===// // Stats Implementation //===----------------------------------------------------------------------===// /// PrintStats - Print statistics about how well the identifier table is doing /// at hashing identifiers. void IdentifierTable::PrintStats() const { unsigned NumBuckets = HashTable.getNumBuckets(); unsigned NumIdentifiers = HashTable.getNumItems(); unsigned NumEmptyBuckets = NumBuckets-NumIdentifiers; unsigned AverageIdentifierSize = 0; unsigned MaxIdentifierLength = 0; // TODO: Figure out maximum times an identifier had to probe for -stats. for (llvm::StringMap::const_iterator I = HashTable.begin(), E = HashTable.end(); I != E; ++I) { unsigned IdLen = I->getKeyLength(); AverageIdentifierSize += IdLen; if (MaxIdentifierLength < IdLen) MaxIdentifierLength = IdLen; } fprintf(stderr, "\n*** Identifier Table Stats:\n"); fprintf(stderr, "# Identifiers: %d\n", NumIdentifiers); fprintf(stderr, "# Empty Buckets: %d\n", NumEmptyBuckets); fprintf(stderr, "Hash density (#identifiers per bucket): %f\n", NumIdentifiers/(double)NumBuckets); fprintf(stderr, "Ave identifier length: %f\n", (AverageIdentifierSize/(double)NumIdentifiers)); fprintf(stderr, "Max identifier length: %d\n", MaxIdentifierLength); // Compute statistics about the memory allocated for identifiers. HashTable.getAllocator().PrintStats(); } //===----------------------------------------------------------------------===// // SelectorTable Implementation //===----------------------------------------------------------------------===// unsigned llvm::DenseMapInfo::getHashValue(clang::Selector S) { return DenseMapInfo::getHashValue(S.getAsOpaquePtr()); } bool Selector::isKeywordSelector(ArrayRef Names) const { assert(!Names.empty() && "must have >= 1 selector slots"); if (getNumArgs() != Names.size()) return false; for (unsigned I = 0, E = Names.size(); I != E; ++I) { if (getNameForSlot(I) != Names[I]) return false; } return true; } bool Selector::isUnarySelector(StringRef Name) const { return isUnarySelector() && getNameForSlot(0) == Name; } unsigned Selector::getNumArgs() const { unsigned IIF = getIdentifierInfoFlag(); if (IIF <= ZeroArg) return 0; if (IIF == OneArg) return 1; // We point to a MultiKeywordSelector. MultiKeywordSelector *SI = getMultiKeywordSelector(); return SI->getNumArgs(); } IdentifierInfo *Selector::getIdentifierInfoForSlot(unsigned argIndex) const { if (getIdentifierInfoFlag() < MultiArg) { assert(argIndex == 0 && "illegal keyword index"); return getAsIdentifierInfo(); } // We point to a MultiKeywordSelector. MultiKeywordSelector *SI = getMultiKeywordSelector(); return SI->getIdentifierInfoForSlot(argIndex); } StringRef Selector::getNameForSlot(unsigned int argIndex) const { IdentifierInfo *II = getIdentifierInfoForSlot(argIndex); return II ? II->getName() : StringRef(); } std::string MultiKeywordSelector::getName() const { SmallString<256> Str; llvm::raw_svector_ostream OS(Str); for (keyword_iterator I = keyword_begin(), E = keyword_end(); I != E; ++I) { if (*I) OS << (*I)->getName(); OS << ':'; } return std::string(OS.str()); } std::string Selector::getAsString() const { if (isNull()) return ""; if (getIdentifierInfoFlag() < MultiArg) { IdentifierInfo *II = getAsIdentifierInfo(); if (getNumArgs() == 0) { assert(II && "If the number of arguments is 0 then II is guaranteed to " "not be null."); return std::string(II->getName()); } if (!II) return ":"; return II->getName().str() + ":"; } // We have a multiple keyword selector. return getMultiKeywordSelector()->getName(); } void Selector::print(llvm::raw_ostream &OS) const { OS << getAsString(); } LLVM_DUMP_METHOD void Selector::dump() const { print(llvm::errs()); } /// Interpreting the given string using the normal CamelCase /// conventions, determine whether the given string starts with the /// given "word", which is assumed to end in a lowercase letter. static bool startsWithWord(StringRef name, StringRef word) { if (name.size() < word.size()) return false; return ((name.size() == word.size() || !isLowercase(name[word.size()])) && name.starts_with(word)); } ObjCMethodFamily Selector::getMethodFamilyImpl(Selector sel) { IdentifierInfo *first = sel.getIdentifierInfoForSlot(0); if (!first) return OMF_None; StringRef name = first->getName(); if (sel.isUnarySelector()) { if (name == "autorelease") return OMF_autorelease; if (name == "dealloc") return OMF_dealloc; if (name == "finalize") return OMF_finalize; if (name == "release") return OMF_release; if (name == "retain") return OMF_retain; if (name == "retainCount") return OMF_retainCount; if (name == "self") return OMF_self; if (name == "initialize") return OMF_initialize; } if (name == "performSelector" || name == "performSelectorInBackground" || name == "performSelectorOnMainThread") return OMF_performSelector; // The other method families may begin with a prefix of underscores. name = name.ltrim('_'); if (name.empty()) return OMF_None; switch (name.front()) { case 'a': if (startsWithWord(name, "alloc")) return OMF_alloc; break; case 'c': if (startsWithWord(name, "copy")) return OMF_copy; break; case 'i': if (startsWithWord(name, "init")) return OMF_init; break; case 'm': if (startsWithWord(name, "mutableCopy")) return OMF_mutableCopy; break; case 'n': if (startsWithWord(name, "new")) return OMF_new; break; default: break; } return OMF_None; } ObjCInstanceTypeFamily Selector::getInstTypeMethodFamily(Selector sel) { IdentifierInfo *first = sel.getIdentifierInfoForSlot(0); if (!first) return OIT_None; StringRef name = first->getName(); if (name.empty()) return OIT_None; switch (name.front()) { case 'a': if (startsWithWord(name, "array")) return OIT_Array; break; case 'd': if (startsWithWord(name, "default")) return OIT_ReturnsSelf; if (startsWithWord(name, "dictionary")) return OIT_Dictionary; break; case 's': if (startsWithWord(name, "shared")) return OIT_ReturnsSelf; if (startsWithWord(name, "standard")) return OIT_Singleton; break; case 'i': if (startsWithWord(name, "init")) return OIT_Init; break; default: break; } return OIT_None; } ObjCStringFormatFamily Selector::getStringFormatFamilyImpl(Selector sel) { IdentifierInfo *first = sel.getIdentifierInfoForSlot(0); if (!first) return SFF_None; StringRef name = first->getName(); switch (name.front()) { case 'a': if (name == "appendFormat") return SFF_NSString; break; case 'i': if (name == "initWithFormat") return SFF_NSString; break; case 'l': if (name == "localizedStringWithFormat") return SFF_NSString; break; case 's': if (name == "stringByAppendingFormat" || name == "stringWithFormat") return SFF_NSString; break; } return SFF_None; } namespace { struct SelectorTableImpl { llvm::FoldingSet Table; llvm::BumpPtrAllocator Allocator; }; } // namespace static SelectorTableImpl &getSelectorTableImpl(void *P) { return *static_cast(P); } SmallString<64> SelectorTable::constructSetterName(StringRef Name) { SmallString<64> SetterName("set"); SetterName += Name; SetterName[3] = toUppercase(SetterName[3]); return SetterName; } Selector SelectorTable::constructSetterSelector(IdentifierTable &Idents, SelectorTable &SelTable, const IdentifierInfo *Name) { IdentifierInfo *SetterName = &Idents.get(constructSetterName(Name->getName())); return SelTable.getUnarySelector(SetterName); } std::string SelectorTable::getPropertyNameFromSetterSelector(Selector Sel) { StringRef Name = Sel.getNameForSlot(0); assert(Name.starts_with("set") && "invalid setter name"); return (Twine(toLowercase(Name[3])) + Name.drop_front(4)).str(); } size_t SelectorTable::getTotalMemory() const { SelectorTableImpl &SelTabImpl = getSelectorTableImpl(Impl); return SelTabImpl.Allocator.getTotalMemory(); } Selector SelectorTable::getSelector(unsigned nKeys, IdentifierInfo **IIV) { if (nKeys < 2) return Selector(IIV[0], nKeys); SelectorTableImpl &SelTabImpl = getSelectorTableImpl(Impl); // Unique selector, to guarantee there is one per name. llvm::FoldingSetNodeID ID; MultiKeywordSelector::Profile(ID, IIV, nKeys); void *InsertPos = nullptr; if (MultiKeywordSelector *SI = SelTabImpl.Table.FindNodeOrInsertPos(ID, InsertPos)) return Selector(SI); // MultiKeywordSelector objects are not allocated with new because they have a // variable size array (for parameter types) at the end of them. unsigned Size = sizeof(MultiKeywordSelector) + nKeys*sizeof(IdentifierInfo *); MultiKeywordSelector *SI = (MultiKeywordSelector *)SelTabImpl.Allocator.Allocate( Size, alignof(MultiKeywordSelector)); new (SI) MultiKeywordSelector(nKeys, IIV); SelTabImpl.Table.InsertNode(SI, InsertPos); return Selector(SI); } SelectorTable::SelectorTable() { Impl = new SelectorTableImpl(); } SelectorTable::~SelectorTable() { delete &getSelectorTableImpl(Impl); } const char *clang::getOperatorSpelling(OverloadedOperatorKind Operator) { switch (Operator) { case OO_None: case NUM_OVERLOADED_OPERATORS: return nullptr; #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ case OO_##Name: return Spelling; #include "clang/Basic/OperatorKinds.def" } llvm_unreachable("Invalid OverloadedOperatorKind!"); } StringRef clang::getNullabilitySpelling(NullabilityKind kind, bool isContextSensitive) { switch (kind) { case NullabilityKind::NonNull: return isContextSensitive ? "nonnull" : "_Nonnull"; case NullabilityKind::Nullable: return isContextSensitive ? "nullable" : "_Nullable"; case NullabilityKind::NullableResult: assert(!isContextSensitive && "_Nullable_result isn't supported as context-sensitive keyword"); return "_Nullable_result"; case NullabilityKind::Unspecified: return isContextSensitive ? "null_unspecified" : "_Null_unspecified"; } llvm_unreachable("Unknown nullability kind."); } llvm::raw_ostream &clang::operator<<(llvm::raw_ostream &OS, NullabilityKind NK) { switch (NK) { case NullabilityKind::NonNull: return OS << "NonNull"; case NullabilityKind::Nullable: return OS << "Nullable"; case NullabilityKind::NullableResult: return OS << "NullableResult"; case NullabilityKind::Unspecified: return OS << "Unspecified"; } llvm_unreachable("Unknown nullability kind."); } diag::kind IdentifierTable::getFutureCompatDiagKind(const IdentifierInfo &II, const LangOptions &LangOpts) { assert(II.isFutureCompatKeyword() && "diagnostic should not be needed"); unsigned Flags = llvm::StringSwitch(II.getName()) #define KEYWORD(NAME, FLAGS) .Case(#NAME, FLAGS) #include "clang/Basic/TokenKinds.def" #undef KEYWORD ; if (LangOpts.CPlusPlus) { if ((Flags & KEYCXX11) == KEYCXX11) return diag::warn_cxx11_keyword; // char8_t is not modeled as a CXX20_KEYWORD because it's not // unconditionally enabled in C++20 mode. (It can be disabled // by -fno-char8_t.) if (((Flags & KEYCXX20) == KEYCXX20) || ((Flags & CHAR8SUPPORT) == CHAR8SUPPORT)) return diag::warn_cxx20_keyword; } else { if ((Flags & KEYC99) == KEYC99) return diag::warn_c99_keyword; if ((Flags & KEYC23) == KEYC23) return diag::warn_c23_keyword; } llvm_unreachable( "Keyword not known to come from a newer Standard or proposed Standard"); }