//===- PathDiagnostic.cpp - Path-Specific Diagnostic Handling -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the PathDiagnostic-related interfaces. // //===----------------------------------------------------------------------===// #include "clang/Analysis/PathDiagnostic.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/OperationKinds.h" #include "clang/AST/ParentMap.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/Stmt.h" #include "clang/AST/Type.h" #include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace clang; using namespace ento; static StringRef StripTrailingDots(StringRef s) { for (StringRef::size_type i = s.size(); i != 0; --i) if (s[i - 1] != '.') return s.substr(0, i); return {}; } PathDiagnosticPiece::PathDiagnosticPiece(StringRef s, Kind k, DisplayHint hint) : str(StripTrailingDots(s)), kind(k), Hint(hint) {} PathDiagnosticPiece::PathDiagnosticPiece(Kind k, DisplayHint hint) : kind(k), Hint(hint) {} PathDiagnosticPiece::~PathDiagnosticPiece() = default; PathDiagnosticEventPiece::~PathDiagnosticEventPiece() = default; PathDiagnosticCallPiece::~PathDiagnosticCallPiece() = default; PathDiagnosticControlFlowPiece::~PathDiagnosticControlFlowPiece() = default; PathDiagnosticMacroPiece::~PathDiagnosticMacroPiece() = default; PathDiagnosticNotePiece::~PathDiagnosticNotePiece() = default; PathDiagnosticPopUpPiece::~PathDiagnosticPopUpPiece() = default; void PathPieces::flattenTo(PathPieces &Primary, PathPieces &Current, bool ShouldFlattenMacros) const { for (auto &Piece : *this) { switch (Piece->getKind()) { case PathDiagnosticPiece::Call: { auto &Call = cast(*Piece); if (auto CallEnter = Call.getCallEnterEvent()) Current.push_back(std::move(CallEnter)); Call.path.flattenTo(Primary, Primary, ShouldFlattenMacros); if (auto callExit = Call.getCallExitEvent()) Current.push_back(std::move(callExit)); break; } case PathDiagnosticPiece::Macro: { auto &Macro = cast(*Piece); if (ShouldFlattenMacros) { Macro.subPieces.flattenTo(Primary, Primary, ShouldFlattenMacros); } else { Current.push_back(Piece); PathPieces NewPath; Macro.subPieces.flattenTo(Primary, NewPath, ShouldFlattenMacros); // FIXME: This probably shouldn't mutate the original path piece. Macro.subPieces = NewPath; } break; } case PathDiagnosticPiece::Event: case PathDiagnosticPiece::ControlFlow: case PathDiagnosticPiece::Note: case PathDiagnosticPiece::PopUp: Current.push_back(Piece); break; } } } PathDiagnostic::~PathDiagnostic() = default; PathDiagnostic::PathDiagnostic( StringRef CheckerName, const Decl *declWithIssue, StringRef bugtype, StringRef verboseDesc, StringRef shortDesc, StringRef category, PathDiagnosticLocation LocationToUnique, const Decl *DeclToUnique, std::unique_ptr ExecutedLines) : CheckerName(CheckerName), DeclWithIssue(declWithIssue), BugType(StripTrailingDots(bugtype)), VerboseDesc(StripTrailingDots(verboseDesc)), ShortDesc(StripTrailingDots(shortDesc)), Category(StripTrailingDots(category)), UniqueingLoc(LocationToUnique), UniqueingDecl(DeclToUnique), ExecutedLines(std::move(ExecutedLines)), path(pathImpl) {} void PathDiagnosticConsumer::anchor() {} PathDiagnosticConsumer::~PathDiagnosticConsumer() { // Delete the contents of the FoldingSet if it isn't empty already. for (auto &Diag : Diags) delete &Diag; } void PathDiagnosticConsumer::HandlePathDiagnostic( std::unique_ptr D) { if (!D || D->path.empty()) return; // We need to flatten the locations (convert Stmt* to locations) because // the referenced statements may be freed by the time the diagnostics // are emitted. D->flattenLocations(); // If the PathDiagnosticConsumer does not support diagnostics that // cross file boundaries, prune out such diagnostics now. if (!supportsCrossFileDiagnostics()) { // Verify that the entire path is from the same FileID. FileID FID; const SourceManager &SMgr = D->path.front()->getLocation().getManager(); SmallVector WorkList; WorkList.push_back(&D->path); SmallString<128> buf; llvm::raw_svector_ostream warning(buf); warning << "warning: Path diagnostic report is not generated. Current " << "output format does not support diagnostics that cross file " << "boundaries. Refer to --analyzer-output for valid output " << "formats\n"; while (!WorkList.empty()) { const PathPieces &path = *WorkList.pop_back_val(); for (const auto &I : path) { const PathDiagnosticPiece *piece = I.get(); FullSourceLoc L = piece->getLocation().asLocation().getExpansionLoc(); if (FID.isInvalid()) { FID = SMgr.getFileID(L); } else if (SMgr.getFileID(L) != FID) { llvm::errs() << warning.str(); return; } // Check the source ranges. ArrayRef Ranges = piece->getRanges(); for (const auto &I : Ranges) { SourceLocation L = SMgr.getExpansionLoc(I.getBegin()); if (!L.isFileID() || SMgr.getFileID(L) != FID) { llvm::errs() << warning.str(); return; } L = SMgr.getExpansionLoc(I.getEnd()); if (!L.isFileID() || SMgr.getFileID(L) != FID) { llvm::errs() << warning.str(); return; } } if (const auto *call = dyn_cast(piece)) WorkList.push_back(&call->path); else if (const auto *macro = dyn_cast(piece)) WorkList.push_back(¯o->subPieces); } } if (FID.isInvalid()) return; // FIXME: Emit a warning? } // Profile the node to see if we already have something matching it llvm::FoldingSetNodeID profile; D->Profile(profile); void *InsertPos = nullptr; if (PathDiagnostic *orig = Diags.FindNodeOrInsertPos(profile, InsertPos)) { // Keep the PathDiagnostic with the shorter path. // Note, the enclosing routine is called in deterministic order, so the // results will be consistent between runs (no reason to break ties if the // size is the same). const unsigned orig_size = orig->full_size(); const unsigned new_size = D->full_size(); if (orig_size <= new_size) return; assert(orig != D.get()); Diags.RemoveNode(orig); delete orig; } Diags.InsertNode(D.release()); } static std::optional comparePath(const PathPieces &X, const PathPieces &Y); static std::optional compareControlFlow(const PathDiagnosticControlFlowPiece &X, const PathDiagnosticControlFlowPiece &Y) { FullSourceLoc XSL = X.getStartLocation().asLocation(); FullSourceLoc YSL = Y.getStartLocation().asLocation(); if (XSL != YSL) return XSL.isBeforeInTranslationUnitThan(YSL); FullSourceLoc XEL = X.getEndLocation().asLocation(); FullSourceLoc YEL = Y.getEndLocation().asLocation(); if (XEL != YEL) return XEL.isBeforeInTranslationUnitThan(YEL); return std::nullopt; } static std::optional compareMacro(const PathDiagnosticMacroPiece &X, const PathDiagnosticMacroPiece &Y) { return comparePath(X.subPieces, Y.subPieces); } static std::optional compareCall(const PathDiagnosticCallPiece &X, const PathDiagnosticCallPiece &Y) { FullSourceLoc X_CEL = X.callEnter.asLocation(); FullSourceLoc Y_CEL = Y.callEnter.asLocation(); if (X_CEL != Y_CEL) return X_CEL.isBeforeInTranslationUnitThan(Y_CEL); FullSourceLoc X_CEWL = X.callEnterWithin.asLocation(); FullSourceLoc Y_CEWL = Y.callEnterWithin.asLocation(); if (X_CEWL != Y_CEWL) return X_CEWL.isBeforeInTranslationUnitThan(Y_CEWL); FullSourceLoc X_CRL = X.callReturn.asLocation(); FullSourceLoc Y_CRL = Y.callReturn.asLocation(); if (X_CRL != Y_CRL) return X_CRL.isBeforeInTranslationUnitThan(Y_CRL); return comparePath(X.path, Y.path); } static std::optional comparePiece(const PathDiagnosticPiece &X, const PathDiagnosticPiece &Y) { if (X.getKind() != Y.getKind()) return X.getKind() < Y.getKind(); FullSourceLoc XL = X.getLocation().asLocation(); FullSourceLoc YL = Y.getLocation().asLocation(); if (XL != YL) return XL.isBeforeInTranslationUnitThan(YL); if (X.getString() != Y.getString()) return X.getString() < Y.getString(); if (X.getRanges().size() != Y.getRanges().size()) return X.getRanges().size() < Y.getRanges().size(); const SourceManager &SM = XL.getManager(); for (unsigned i = 0, n = X.getRanges().size(); i < n; ++i) { SourceRange XR = X.getRanges()[i]; SourceRange YR = Y.getRanges()[i]; if (XR != YR) { if (XR.getBegin() != YR.getBegin()) return SM.isBeforeInTranslationUnit(XR.getBegin(), YR.getBegin()); return SM.isBeforeInTranslationUnit(XR.getEnd(), YR.getEnd()); } } switch (X.getKind()) { case PathDiagnosticPiece::ControlFlow: return compareControlFlow(cast(X), cast(Y)); case PathDiagnosticPiece::Macro: return compareMacro(cast(X), cast(Y)); case PathDiagnosticPiece::Call: return compareCall(cast(X), cast(Y)); case PathDiagnosticPiece::Event: case PathDiagnosticPiece::Note: case PathDiagnosticPiece::PopUp: return std::nullopt; } llvm_unreachable("all cases handled"); } static std::optional comparePath(const PathPieces &X, const PathPieces &Y) { if (X.size() != Y.size()) return X.size() < Y.size(); PathPieces::const_iterator X_I = X.begin(), X_end = X.end(); PathPieces::const_iterator Y_I = Y.begin(), Y_end = Y.end(); for (; X_I != X_end && Y_I != Y_end; ++X_I, ++Y_I) if (std::optional b = comparePiece(**X_I, **Y_I)) return *b; return std::nullopt; } static bool compareCrossTUSourceLocs(FullSourceLoc XL, FullSourceLoc YL) { if (XL.isInvalid() && YL.isValid()) return true; if (XL.isValid() && YL.isInvalid()) return false; std::pair XOffs = XL.getDecomposedLoc(); std::pair YOffs = YL.getDecomposedLoc(); const SourceManager &SM = XL.getManager(); std::pair InSameTU = SM.isInTheSameTranslationUnit(XOffs, YOffs); if (InSameTU.first) return XL.isBeforeInTranslationUnitThan(YL); const FileEntry *XFE = SM.getFileEntryForID(XL.getSpellingLoc().getFileID()); const FileEntry *YFE = SM.getFileEntryForID(YL.getSpellingLoc().getFileID()); if (!XFE || !YFE) return XFE && !YFE; int NameCmp = XFE->getName().compare(YFE->getName()); if (NameCmp != 0) return NameCmp < 0; // Last resort: Compare raw file IDs that are possibly expansions. return XL.getFileID() < YL.getFileID(); } static bool compare(const PathDiagnostic &X, const PathDiagnostic &Y) { FullSourceLoc XL = X.getLocation().asLocation(); FullSourceLoc YL = Y.getLocation().asLocation(); if (XL != YL) return compareCrossTUSourceLocs(XL, YL); FullSourceLoc XUL = X.getUniqueingLoc().asLocation(); FullSourceLoc YUL = Y.getUniqueingLoc().asLocation(); if (XUL != YUL) return compareCrossTUSourceLocs(XUL, YUL); if (X.getBugType() != Y.getBugType()) return X.getBugType() < Y.getBugType(); if (X.getCategory() != Y.getCategory()) return X.getCategory() < Y.getCategory(); if (X.getVerboseDescription() != Y.getVerboseDescription()) return X.getVerboseDescription() < Y.getVerboseDescription(); if (X.getShortDescription() != Y.getShortDescription()) return X.getShortDescription() < Y.getShortDescription(); auto CompareDecls = [&XL](const Decl *D1, const Decl *D2) -> std::optional { if (D1 == D2) return std::nullopt; if (!D1) return true; if (!D2) return false; SourceLocation D1L = D1->getLocation(); SourceLocation D2L = D2->getLocation(); if (D1L != D2L) { const SourceManager &SM = XL.getManager(); return compareCrossTUSourceLocs(FullSourceLoc(D1L, SM), FullSourceLoc(D2L, SM)); } return std::nullopt; }; if (auto Result = CompareDecls(X.getDeclWithIssue(), Y.getDeclWithIssue())) return *Result; if (XUL.isValid()) { if (auto Result = CompareDecls(X.getUniqueingDecl(), Y.getUniqueingDecl())) return *Result; } PathDiagnostic::meta_iterator XI = X.meta_begin(), XE = X.meta_end(); PathDiagnostic::meta_iterator YI = Y.meta_begin(), YE = Y.meta_end(); if (XE - XI != YE - YI) return (XE - XI) < (YE - YI); for ( ; XI != XE ; ++XI, ++YI) { if (*XI != *YI) return (*XI) < (*YI); } return *comparePath(X.path, Y.path); } void PathDiagnosticConsumer::FlushDiagnostics( PathDiagnosticConsumer::FilesMade *Files) { if (flushed) return; flushed = true; std::vector BatchDiags; for (const auto &D : Diags) BatchDiags.push_back(&D); // Sort the diagnostics so that they are always emitted in a deterministic // order. int (*Comp)(const PathDiagnostic *const *, const PathDiagnostic *const *) = [](const PathDiagnostic *const *X, const PathDiagnostic *const *Y) { assert(*X != *Y && "PathDiagnostics not uniqued!"); if (compare(**X, **Y)) return -1; assert(compare(**Y, **X) && "Not a total order!"); return 1; }; array_pod_sort(BatchDiags.begin(), BatchDiags.end(), Comp); FlushDiagnosticsImpl(BatchDiags, Files); // Delete the flushed diagnostics. for (const auto D : BatchDiags) delete D; // Clear out the FoldingSet. Diags.clear(); } PathDiagnosticConsumer::FilesMade::~FilesMade() { for (auto It = Set.begin(); It != Set.end();) (It++)->~PDFileEntry(); } void PathDiagnosticConsumer::FilesMade::addDiagnostic(const PathDiagnostic &PD, StringRef ConsumerName, StringRef FileName) { llvm::FoldingSetNodeID NodeID; NodeID.Add(PD); void *InsertPos; PDFileEntry *Entry = Set.FindNodeOrInsertPos(NodeID, InsertPos); if (!Entry) { Entry = Alloc.Allocate(); Entry = new (Entry) PDFileEntry(NodeID); Set.InsertNode(Entry, InsertPos); } // Allocate persistent storage for the file name. char *FileName_cstr = (char*) Alloc.Allocate(FileName.size(), 1); memcpy(FileName_cstr, FileName.data(), FileName.size()); Entry->files.push_back(std::make_pair(ConsumerName, StringRef(FileName_cstr, FileName.size()))); } PathDiagnosticConsumer::PDFileEntry::ConsumerFiles * PathDiagnosticConsumer::FilesMade::getFiles(const PathDiagnostic &PD) { llvm::FoldingSetNodeID NodeID; NodeID.Add(PD); void *InsertPos; PDFileEntry *Entry = Set.FindNodeOrInsertPos(NodeID, InsertPos); if (!Entry) return nullptr; return &Entry->files; } //===----------------------------------------------------------------------===// // PathDiagnosticLocation methods. //===----------------------------------------------------------------------===// SourceLocation PathDiagnosticLocation::getValidSourceLocation( const Stmt *S, LocationOrAnalysisDeclContext LAC, bool UseEndOfStatement) { SourceLocation L = UseEndOfStatement ? S->getEndLoc() : S->getBeginLoc(); assert(!LAC.isNull() && "A valid LocationContext or AnalysisDeclContext should be passed to " "PathDiagnosticLocation upon creation."); // S might be a temporary statement that does not have a location in the // source code, so find an enclosing statement and use its location. if (!L.isValid()) { AnalysisDeclContext *ADC; if (LAC.is()) ADC = LAC.get()->getAnalysisDeclContext(); else ADC = LAC.get(); ParentMap &PM = ADC->getParentMap(); const Stmt *Parent = S; do { Parent = PM.getParent(Parent); // In rare cases, we have implicit top-level expressions, // such as arguments for implicit member initializers. // In this case, fall back to the start of the body (even if we were // asked for the statement end location). if (!Parent) { const Stmt *Body = ADC->getBody(); if (Body) L = Body->getBeginLoc(); else L = ADC->getDecl()->getEndLoc(); break; } L = UseEndOfStatement ? Parent->getEndLoc() : Parent->getBeginLoc(); } while (!L.isValid()); } // FIXME: Ironically, this assert actually fails in some cases. //assert(L.isValid()); return L; } static PathDiagnosticLocation getLocationForCaller(const StackFrameContext *SFC, const LocationContext *CallerCtx, const SourceManager &SM) { const CFGBlock &Block = *SFC->getCallSiteBlock(); CFGElement Source = Block[SFC->getIndex()]; switch (Source.getKind()) { case CFGElement::Statement: case CFGElement::Constructor: case CFGElement::CXXRecordTypedCall: return PathDiagnosticLocation(Source.castAs().getStmt(), SM, CallerCtx); case CFGElement::Initializer: { const CFGInitializer &Init = Source.castAs(); return PathDiagnosticLocation(Init.getInitializer()->getInit(), SM, CallerCtx); } case CFGElement::AutomaticObjectDtor: { const CFGAutomaticObjDtor &Dtor = Source.castAs(); return PathDiagnosticLocation::createEnd(Dtor.getTriggerStmt(), SM, CallerCtx); } case CFGElement::DeleteDtor: { const CFGDeleteDtor &Dtor = Source.castAs(); return PathDiagnosticLocation(Dtor.getDeleteExpr(), SM, CallerCtx); } case CFGElement::BaseDtor: case CFGElement::MemberDtor: { const AnalysisDeclContext *CallerInfo = CallerCtx->getAnalysisDeclContext(); if (const Stmt *CallerBody = CallerInfo->getBody()) return PathDiagnosticLocation::createEnd(CallerBody, SM, CallerCtx); return PathDiagnosticLocation::create(CallerInfo->getDecl(), SM); } case CFGElement::NewAllocator: { const CFGNewAllocator &Alloc = Source.castAs(); return PathDiagnosticLocation(Alloc.getAllocatorExpr(), SM, CallerCtx); } case CFGElement::TemporaryDtor: { // Temporary destructors are for temporaries. They die immediately at around // the location of CXXBindTemporaryExpr. If they are lifetime-extended, // they'd be dealt with via an AutomaticObjectDtor instead. const auto &Dtor = Source.castAs(); return PathDiagnosticLocation::createEnd(Dtor.getBindTemporaryExpr(), SM, CallerCtx); } case CFGElement::ScopeBegin: case CFGElement::ScopeEnd: llvm_unreachable("not yet implemented!"); case CFGElement::LifetimeEnds: case CFGElement::LoopExit: llvm_unreachable("CFGElement kind should not be on callsite!"); } llvm_unreachable("Unknown CFGElement kind"); } PathDiagnosticLocation PathDiagnosticLocation::createBegin(const Decl *D, const SourceManager &SM) { return PathDiagnosticLocation(D->getBeginLoc(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createBegin(const Stmt *S, const SourceManager &SM, LocationOrAnalysisDeclContext LAC) { return PathDiagnosticLocation(getValidSourceLocation(S, LAC), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createEnd(const Stmt *S, const SourceManager &SM, LocationOrAnalysisDeclContext LAC) { if (const auto *CS = dyn_cast(S)) return createEndBrace(CS, SM); return PathDiagnosticLocation(getValidSourceLocation(S, LAC, /*End=*/true), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createOperatorLoc(const BinaryOperator *BO, const SourceManager &SM) { return PathDiagnosticLocation(BO->getOperatorLoc(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createConditionalColonLoc( const ConditionalOperator *CO, const SourceManager &SM) { return PathDiagnosticLocation(CO->getColonLoc(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createMemberLoc(const MemberExpr *ME, const SourceManager &SM) { assert(ME->getMemberLoc().isValid() || ME->getBeginLoc().isValid()); // In some cases, getMemberLoc isn't valid -- in this case we'll return with // some other related valid SourceLocation. if (ME->getMemberLoc().isValid()) return PathDiagnosticLocation(ME->getMemberLoc(), SM, SingleLocK); return PathDiagnosticLocation(ME->getBeginLoc(), SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createBeginBrace(const CompoundStmt *CS, const SourceManager &SM) { SourceLocation L = CS->getLBracLoc(); return PathDiagnosticLocation(L, SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createEndBrace(const CompoundStmt *CS, const SourceManager &SM) { SourceLocation L = CS->getRBracLoc(); return PathDiagnosticLocation(L, SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::createDeclBegin(const LocationContext *LC, const SourceManager &SM) { // FIXME: Should handle CXXTryStmt if analyser starts supporting C++. if (const auto *CS = dyn_cast_or_null(LC->getDecl()->getBody())) if (!CS->body_empty()) { SourceLocation Loc = (*CS->body_begin())->getBeginLoc(); return PathDiagnosticLocation(Loc, SM, SingleLocK); } return PathDiagnosticLocation(); } PathDiagnosticLocation PathDiagnosticLocation::createDeclEnd(const LocationContext *LC, const SourceManager &SM) { SourceLocation L = LC->getDecl()->getBodyRBrace(); return PathDiagnosticLocation(L, SM, SingleLocK); } PathDiagnosticLocation PathDiagnosticLocation::create(const ProgramPoint& P, const SourceManager &SMng) { const Stmt* S = nullptr; if (std::optional BE = P.getAs()) { const CFGBlock *BSrc = BE->getSrc(); if (BSrc->getTerminator().isVirtualBaseBranch()) { // TODO: VirtualBaseBranches should also appear for destructors. // In this case we should put the diagnostic at the end of decl. return PathDiagnosticLocation::createBegin( P.getLocationContext()->getDecl(), SMng); } else { S = BSrc->getTerminatorCondition(); if (!S) { // If the BlockEdge has no terminator condition statement but its // source is the entry of the CFG (e.g. a checker crated the branch at // the beginning of a function), use the function's declaration instead. assert(BSrc == &BSrc->getParent()->getEntry() && "CFGBlock has no " "TerminatorCondition and is not the enrty block of the CFG"); return PathDiagnosticLocation::createBegin( P.getLocationContext()->getDecl(), SMng); } } } else if (std::optional SP = P.getAs()) { S = SP->getStmt(); if (P.getAs()) return PathDiagnosticLocation::createEnd(S, SMng, P.getLocationContext()); } else if (std::optional PIP = P.getAs()) { return PathDiagnosticLocation(PIP->getInitializer()->getSourceLocation(), SMng); } else if (std::optional PIC = P.getAs()) { return PathDiagnosticLocation(PIC->getLocation(), SMng); } else if (std::optional PIE = P.getAs()) { return PathDiagnosticLocation(PIE->getLocation(), SMng); } else if (std::optional CE = P.getAs()) { return getLocationForCaller(CE->getCalleeContext(), CE->getLocationContext(), SMng); } else if (std::optional CEE = P.getAs()) { return getLocationForCaller(CEE->getCalleeContext(), CEE->getLocationContext(), SMng); } else if (auto CEB = P.getAs()) { if (const ReturnStmt *RS = CEB->getReturnStmt()) return PathDiagnosticLocation::createBegin(RS, SMng, CEB->getLocationContext()); return PathDiagnosticLocation( CEB->getLocationContext()->getDecl()->getSourceRange().getEnd(), SMng); } else if (std::optional BE = P.getAs()) { if (std::optional BlockFront = BE->getFirstElement()) { if (auto StmtElt = BlockFront->getAs()) { return PathDiagnosticLocation(StmtElt->getStmt()->getBeginLoc(), SMng); } else if (auto NewAllocElt = BlockFront->getAs()) { return PathDiagnosticLocation( NewAllocElt->getAllocatorExpr()->getBeginLoc(), SMng); } llvm_unreachable("Unexpected CFG element at front of block"); } return PathDiagnosticLocation( BE->getBlock()->getTerminatorStmt()->getBeginLoc(), SMng); } else if (std::optional FE = P.getAs()) { return PathDiagnosticLocation(FE->getStmt(), SMng, FE->getLocationContext()); } else { llvm_unreachable("Unexpected ProgramPoint"); } return PathDiagnosticLocation(S, SMng, P.getLocationContext()); } PathDiagnosticLocation PathDiagnosticLocation::createSingleLocation( const PathDiagnosticLocation &PDL) { FullSourceLoc L = PDL.asLocation(); return PathDiagnosticLocation(L, L.getManager(), SingleLocK); } FullSourceLoc PathDiagnosticLocation::genLocation(SourceLocation L, LocationOrAnalysisDeclContext LAC) const { assert(isValid()); // Note that we want a 'switch' here so that the compiler can warn us in // case we add more cases. switch (K) { case SingleLocK: case RangeK: break; case StmtK: // Defensive checking. if (!S) break; return FullSourceLoc(getValidSourceLocation(S, LAC), const_cast(*SM)); case DeclK: // Defensive checking. if (!D) break; return FullSourceLoc(D->getLocation(), const_cast(*SM)); } return FullSourceLoc(L, const_cast(*SM)); } PathDiagnosticRange PathDiagnosticLocation::genRange(LocationOrAnalysisDeclContext LAC) const { assert(isValid()); // Note that we want a 'switch' here so that the compiler can warn us in // case we add more cases. switch (K) { case SingleLocK: return PathDiagnosticRange(SourceRange(Loc,Loc), true); case RangeK: break; case StmtK: { const Stmt *S = asStmt(); switch (S->getStmtClass()) { default: break; case Stmt::DeclStmtClass: { const auto *DS = cast(S); if (DS->isSingleDecl()) { // Should always be the case, but we'll be defensive. return SourceRange(DS->getBeginLoc(), DS->getSingleDecl()->getLocation()); } break; } // FIXME: Provide better range information for different // terminators. case Stmt::IfStmtClass: case Stmt::WhileStmtClass: case Stmt::DoStmtClass: case Stmt::ForStmtClass: case Stmt::ChooseExprClass: case Stmt::IndirectGotoStmtClass: case Stmt::SwitchStmtClass: case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: case Stmt::ObjCForCollectionStmtClass: { SourceLocation L = getValidSourceLocation(S, LAC); return SourceRange(L, L); } } SourceRange R = S->getSourceRange(); if (R.isValid()) return R; break; } case DeclK: if (const auto *MD = dyn_cast(D)) return MD->getSourceRange(); if (const auto *FD = dyn_cast(D)) { if (Stmt *Body = FD->getBody()) return Body->getSourceRange(); } else { SourceLocation L = D->getLocation(); return PathDiagnosticRange(SourceRange(L, L), true); } } return SourceRange(Loc, Loc); } void PathDiagnosticLocation::flatten() { if (K == StmtK) { K = RangeK; S = nullptr; D = nullptr; } else if (K == DeclK) { K = SingleLocK; S = nullptr; D = nullptr; } } //===----------------------------------------------------------------------===// // Manipulation of PathDiagnosticCallPieces. //===----------------------------------------------------------------------===// std::shared_ptr PathDiagnosticCallPiece::construct(const CallExitEnd &CE, const SourceManager &SM) { const Decl *caller = CE.getLocationContext()->getDecl(); PathDiagnosticLocation pos = getLocationForCaller(CE.getCalleeContext(), CE.getLocationContext(), SM); return std::shared_ptr( new PathDiagnosticCallPiece(caller, pos)); } PathDiagnosticCallPiece * PathDiagnosticCallPiece::construct(PathPieces &path, const Decl *caller) { std::shared_ptr C( new PathDiagnosticCallPiece(path, caller)); path.clear(); auto *R = C.get(); path.push_front(std::move(C)); return R; } void PathDiagnosticCallPiece::setCallee(const CallEnter &CE, const SourceManager &SM) { const StackFrameContext *CalleeCtx = CE.getCalleeContext(); Callee = CalleeCtx->getDecl(); callEnterWithin = PathDiagnosticLocation::createBegin(Callee, SM); callEnter = getLocationForCaller(CalleeCtx, CE.getLocationContext(), SM); // Autosynthesized property accessors are special because we'd never // pop back up to non-autosynthesized code until we leave them. // This is not generally true for autosynthesized callees, which may call // non-autosynthesized callbacks. // Unless set here, the IsCalleeAnAutosynthesizedPropertyAccessor flag // defaults to false. if (const auto *MD = dyn_cast(Callee)) IsCalleeAnAutosynthesizedPropertyAccessor = ( MD->isPropertyAccessor() && CalleeCtx->getAnalysisDeclContext()->isBodyAutosynthesized()); } static void describeTemplateParameters(raw_ostream &Out, const ArrayRef TAList, const LangOptions &LO, StringRef Prefix = StringRef(), StringRef Postfix = StringRef()); static void describeTemplateParameter(raw_ostream &Out, const TemplateArgument &TArg, const LangOptions &LO) { if (TArg.getKind() == TemplateArgument::ArgKind::Pack) { describeTemplateParameters(Out, TArg.getPackAsArray(), LO); } else { TArg.print(PrintingPolicy(LO), Out, /*IncludeType*/ true); } } static void describeTemplateParameters(raw_ostream &Out, const ArrayRef TAList, const LangOptions &LO, StringRef Prefix, StringRef Postfix) { if (TAList.empty()) return; Out << Prefix; for (int I = 0, Last = TAList.size() - 1; I != Last; ++I) { describeTemplateParameter(Out, TAList[I], LO); Out << ", "; } describeTemplateParameter(Out, TAList[TAList.size() - 1], LO); Out << Postfix; } static void describeClass(raw_ostream &Out, const CXXRecordDecl *D, StringRef Prefix = StringRef()) { if (!D->getIdentifier()) return; Out << Prefix << '\'' << *D; if (const auto T = dyn_cast(D)) describeTemplateParameters(Out, T->getTemplateArgs().asArray(), D->getLangOpts(), "<", ">"); Out << '\''; } static bool describeCodeDecl(raw_ostream &Out, const Decl *D, bool ExtendedDescription, StringRef Prefix = StringRef()) { if (!D) return false; if (isa(D)) { if (ExtendedDescription) Out << Prefix << "anonymous block"; return ExtendedDescription; } if (const auto *MD = dyn_cast(D)) { Out << Prefix; if (ExtendedDescription && !MD->isUserProvided()) { if (MD->isExplicitlyDefaulted()) Out << "defaulted "; else Out << "implicit "; } if (const auto *CD = dyn_cast(MD)) { if (CD->isDefaultConstructor()) Out << "default "; else if (CD->isCopyConstructor()) Out << "copy "; else if (CD->isMoveConstructor()) Out << "move "; Out << "constructor"; describeClass(Out, MD->getParent(), " for "); } else if (isa(MD)) { if (!MD->isUserProvided()) { Out << "destructor"; describeClass(Out, MD->getParent(), " for "); } else { // Use ~Foo for explicitly-written destructors. Out << "'" << *MD << "'"; } } else if (MD->isCopyAssignmentOperator()) { Out << "copy assignment operator"; describeClass(Out, MD->getParent(), " for "); } else if (MD->isMoveAssignmentOperator()) { Out << "move assignment operator"; describeClass(Out, MD->getParent(), " for "); } else { if (MD->getParent()->getIdentifier()) Out << "'" << *MD->getParent() << "::" << *MD << "'"; else Out << "'" << *MD << "'"; } return true; } Out << Prefix << '\'' << cast(*D); // Adding template parameters. if (const auto FD = dyn_cast(D)) if (const TemplateArgumentList *TAList = FD->getTemplateSpecializationArgs()) describeTemplateParameters(Out, TAList->asArray(), FD->getLangOpts(), "<", ">"); Out << '\''; return true; } std::shared_ptr PathDiagnosticCallPiece::getCallEnterEvent() const { // We do not produce call enters and call exits for autosynthesized property // accessors. We do generally produce them for other functions coming from // the body farm because they may call callbacks that bring us back into // visible code. if (!Callee || IsCalleeAnAutosynthesizedPropertyAccessor) return nullptr; SmallString<256> buf; llvm::raw_svector_ostream Out(buf); Out << "Calling "; describeCodeDecl(Out, Callee, /*ExtendedDescription=*/true); assert(callEnter.asLocation().isValid()); return std::make_shared(callEnter, Out.str()); } std::shared_ptr PathDiagnosticCallPiece::getCallEnterWithinCallerEvent() const { if (!callEnterWithin.asLocation().isValid()) return nullptr; if (Callee->isImplicit() || !Callee->hasBody()) return nullptr; if (const auto *MD = dyn_cast(Callee)) if (MD->isDefaulted()) return nullptr; SmallString<256> buf; llvm::raw_svector_ostream Out(buf); Out << "Entered call"; describeCodeDecl(Out, Caller, /*ExtendedDescription=*/false, " from "); return std::make_shared(callEnterWithin, Out.str()); } std::shared_ptr PathDiagnosticCallPiece::getCallExitEvent() const { // We do not produce call enters and call exits for autosynthesized property // accessors. We do generally produce them for other functions coming from // the body farm because they may call callbacks that bring us back into // visible code. if (NoExit || IsCalleeAnAutosynthesizedPropertyAccessor) return nullptr; SmallString<256> buf; llvm::raw_svector_ostream Out(buf); if (!CallStackMessage.empty()) { Out << CallStackMessage; } else { bool DidDescribe = describeCodeDecl(Out, Callee, /*ExtendedDescription=*/false, "Returning from "); if (!DidDescribe) Out << "Returning to caller"; } assert(callReturn.asLocation().isValid()); return std::make_shared(callReturn, Out.str()); } static void compute_path_size(const PathPieces &pieces, unsigned &size) { for (const auto &I : pieces) { const PathDiagnosticPiece *piece = I.get(); if (const auto *cp = dyn_cast(piece)) compute_path_size(cp->path, size); else ++size; } } unsigned PathDiagnostic::full_size() { unsigned size = 0; compute_path_size(path, size); return size; } //===----------------------------------------------------------------------===// // FoldingSet profiling methods. //===----------------------------------------------------------------------===// void PathDiagnosticLocation::Profile(llvm::FoldingSetNodeID &ID) const { ID.Add(Range.getBegin()); ID.Add(Range.getEnd()); ID.Add(static_cast(Loc)); } void PathDiagnosticPiece::Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger((unsigned) getKind()); ID.AddString(str); // FIXME: Add profiling support for code hints. ID.AddInteger((unsigned) getDisplayHint()); ArrayRef Ranges = getRanges(); for (const auto &I : Ranges) { ID.Add(I.getBegin()); ID.Add(I.getEnd()); } } void PathDiagnosticCallPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticPiece::Profile(ID); for (const auto &I : path) ID.Add(*I); } void PathDiagnosticSpotPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticPiece::Profile(ID); ID.Add(Pos); } void PathDiagnosticControlFlowPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticPiece::Profile(ID); for (const auto &I : *this) ID.Add(I); } void PathDiagnosticMacroPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticSpotPiece::Profile(ID); for (const auto &I : subPieces) ID.Add(*I); } void PathDiagnosticNotePiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticSpotPiece::Profile(ID); } void PathDiagnosticPopUpPiece::Profile(llvm::FoldingSetNodeID &ID) const { PathDiagnosticSpotPiece::Profile(ID); } void PathDiagnostic::Profile(llvm::FoldingSetNodeID &ID) const { ID.Add(getLocation()); ID.Add(getUniqueingLoc()); ID.AddString(BugType); ID.AddString(VerboseDesc); ID.AddString(Category); } void PathDiagnostic::FullProfile(llvm::FoldingSetNodeID &ID) const { Profile(ID); for (const auto &I : path) ID.Add(*I); for (meta_iterator I = meta_begin(), E = meta_end(); I != E; ++I) ID.AddString(*I); } LLVM_DUMP_METHOD void PathPieces::dump() const { unsigned index = 0; for (PathPieces::const_iterator I = begin(), E = end(); I != E; ++I) { llvm::errs() << "[" << index++ << "] "; (*I)->dump(); llvm::errs() << "\n"; } } LLVM_DUMP_METHOD void PathDiagnosticCallPiece::dump() const { llvm::errs() << "CALL\n--------------\n"; if (const Stmt *SLoc = getLocation().getStmtOrNull()) SLoc->dump(); else if (const auto *ND = dyn_cast_or_null(getCallee())) llvm::errs() << *ND << "\n"; else getLocation().dump(); } LLVM_DUMP_METHOD void PathDiagnosticEventPiece::dump() const { llvm::errs() << "EVENT\n--------------\n"; llvm::errs() << getString() << "\n"; llvm::errs() << " ---- at ----\n"; getLocation().dump(); } LLVM_DUMP_METHOD void PathDiagnosticControlFlowPiece::dump() const { llvm::errs() << "CONTROL\n--------------\n"; getStartLocation().dump(); llvm::errs() << " ---- to ----\n"; getEndLocation().dump(); } LLVM_DUMP_METHOD void PathDiagnosticMacroPiece::dump() const { llvm::errs() << "MACRO\n--------------\n"; // FIXME: Print which macro is being invoked. } LLVM_DUMP_METHOD void PathDiagnosticNotePiece::dump() const { llvm::errs() << "NOTE\n--------------\n"; llvm::errs() << getString() << "\n"; llvm::errs() << " ---- at ----\n"; getLocation().dump(); } LLVM_DUMP_METHOD void PathDiagnosticPopUpPiece::dump() const { llvm::errs() << "POP-UP\n--------------\n"; llvm::errs() << getString() << "\n"; llvm::errs() << " ---- at ----\n"; getLocation().dump(); } LLVM_DUMP_METHOD void PathDiagnosticLocation::dump() const { if (!isValid()) { llvm::errs() << "\n"; return; } switch (K) { case RangeK: // FIXME: actually print the range. llvm::errs() << "\n"; break; case SingleLocK: asLocation().dump(); llvm::errs() << "\n"; break; case StmtK: if (S) S->dump(); else llvm::errs() << "\n"; break; case DeclK: if (const auto *ND = dyn_cast_or_null(D)) llvm::errs() << *ND << "\n"; else if (isa(D)) // FIXME: Make this nicer. llvm::errs() << "\n"; else if (D) llvm::errs() << "\n"; else llvm::errs() << "\n"; break; } }