//== BodyFarm.cpp - Factory for conjuring up fake bodies ----------*- C++ -*-// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // BodyFarm is a factory for creating faux implementations for functions/methods // for analysis purposes. // //===----------------------------------------------------------------------===// #include "clang/Analysis/BodyFarm.h" #include "clang/AST/ASTContext.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/Decl.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/Analysis/CodeInjector.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/OperatorKinds.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/Debug.h" #include #define DEBUG_TYPE "body-farm" using namespace clang; //===----------------------------------------------------------------------===// // Helper creation functions for constructing faux ASTs. //===----------------------------------------------------------------------===// static bool isDispatchBlock(QualType Ty) { // Is it a block pointer? const BlockPointerType *BPT = Ty->getAs(); if (!BPT) return false; // Check if the block pointer type takes no arguments and // returns void. const FunctionProtoType *FT = BPT->getPointeeType()->getAs(); return FT && FT->getReturnType()->isVoidType() && FT->getNumParams() == 0; } namespace { class ASTMaker { public: ASTMaker(ASTContext &C) : C(C) {} /// Create a new BinaryOperator representing a simple assignment. BinaryOperator *makeAssignment(const Expr *LHS, const Expr *RHS, QualType Ty); /// Create a new BinaryOperator representing a comparison. BinaryOperator *makeComparison(const Expr *LHS, const Expr *RHS, BinaryOperator::Opcode Op); /// Create a new compound stmt using the provided statements. CompoundStmt *makeCompound(ArrayRef); /// Create a new DeclRefExpr for the referenced variable. DeclRefExpr *makeDeclRefExpr(const VarDecl *D, bool RefersToEnclosingVariableOrCapture = false); /// Create a new UnaryOperator representing a dereference. UnaryOperator *makeDereference(const Expr *Arg, QualType Ty); /// Create an implicit cast for an integer conversion. Expr *makeIntegralCast(const Expr *Arg, QualType Ty); /// Create an implicit cast to a builtin boolean type. ImplicitCastExpr *makeIntegralCastToBoolean(const Expr *Arg); /// Create an implicit cast for lvalue-to-rvaluate conversions. ImplicitCastExpr *makeLvalueToRvalue(const Expr *Arg, QualType Ty); /// Make RValue out of variable declaration, creating a temporary /// DeclRefExpr in the process. ImplicitCastExpr * makeLvalueToRvalue(const VarDecl *Decl, bool RefersToEnclosingVariableOrCapture = false); /// Create an implicit cast of the given type. ImplicitCastExpr *makeImplicitCast(const Expr *Arg, QualType Ty, CastKind CK = CK_LValueToRValue); /// Create a cast to reference type. CastExpr *makeReferenceCast(const Expr *Arg, QualType Ty); /// Create an Objective-C bool literal. ObjCBoolLiteralExpr *makeObjCBool(bool Val); /// Create an Objective-C ivar reference. ObjCIvarRefExpr *makeObjCIvarRef(const Expr *Base, const ObjCIvarDecl *IVar); /// Create a Return statement. ReturnStmt *makeReturn(const Expr *RetVal); /// Create an integer literal expression of the given type. IntegerLiteral *makeIntegerLiteral(uint64_t Value, QualType Ty); /// Create a member expression. MemberExpr *makeMemberExpression(Expr *base, ValueDecl *MemberDecl, bool IsArrow = false, ExprValueKind ValueKind = VK_LValue); /// Returns a *first* member field of a record declaration with a given name. /// \return an nullptr if no member with such a name exists. ValueDecl *findMemberField(const RecordDecl *RD, StringRef Name); private: ASTContext &C; }; } BinaryOperator *ASTMaker::makeAssignment(const Expr *LHS, const Expr *RHS, QualType Ty) { return BinaryOperator::Create( C, const_cast(LHS), const_cast(RHS), BO_Assign, Ty, VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride()); } BinaryOperator *ASTMaker::makeComparison(const Expr *LHS, const Expr *RHS, BinaryOperator::Opcode Op) { assert(BinaryOperator::isLogicalOp(Op) || BinaryOperator::isComparisonOp(Op)); return BinaryOperator::Create( C, const_cast(LHS), const_cast(RHS), Op, C.getLogicalOperationType(), VK_PRValue, OK_Ordinary, SourceLocation(), FPOptionsOverride()); } CompoundStmt *ASTMaker::makeCompound(ArrayRef Stmts) { return CompoundStmt::Create(C, Stmts, FPOptionsOverride(), SourceLocation(), SourceLocation()); } DeclRefExpr *ASTMaker::makeDeclRefExpr( const VarDecl *D, bool RefersToEnclosingVariableOrCapture) { QualType Type = D->getType().getNonReferenceType(); DeclRefExpr *DR = DeclRefExpr::Create( C, NestedNameSpecifierLoc(), SourceLocation(), const_cast(D), RefersToEnclosingVariableOrCapture, SourceLocation(), Type, VK_LValue); return DR; } UnaryOperator *ASTMaker::makeDereference(const Expr *Arg, QualType Ty) { return UnaryOperator::Create(C, const_cast(Arg), UO_Deref, Ty, VK_LValue, OK_Ordinary, SourceLocation(), /*CanOverflow*/ false, FPOptionsOverride()); } ImplicitCastExpr *ASTMaker::makeLvalueToRvalue(const Expr *Arg, QualType Ty) { return makeImplicitCast(Arg, Ty, CK_LValueToRValue); } ImplicitCastExpr * ASTMaker::makeLvalueToRvalue(const VarDecl *Arg, bool RefersToEnclosingVariableOrCapture) { QualType Type = Arg->getType().getNonReferenceType(); return makeLvalueToRvalue(makeDeclRefExpr(Arg, RefersToEnclosingVariableOrCapture), Type); } ImplicitCastExpr *ASTMaker::makeImplicitCast(const Expr *Arg, QualType Ty, CastKind CK) { return ImplicitCastExpr::Create(C, Ty, /* CastKind=*/CK, /* Expr=*/const_cast(Arg), /* CXXCastPath=*/nullptr, /* ExprValueKind=*/VK_PRValue, /* FPFeatures */ FPOptionsOverride()); } CastExpr *ASTMaker::makeReferenceCast(const Expr *Arg, QualType Ty) { assert(Ty->isReferenceType()); return CXXStaticCastExpr::Create( C, Ty.getNonReferenceType(), Ty->isLValueReferenceType() ? VK_LValue : VK_XValue, CK_NoOp, const_cast(Arg), /*CXXCastPath=*/nullptr, /*Written=*/C.getTrivialTypeSourceInfo(Ty), FPOptionsOverride(), SourceLocation(), SourceLocation(), SourceRange()); } Expr *ASTMaker::makeIntegralCast(const Expr *Arg, QualType Ty) { if (Arg->getType() == Ty) return const_cast(Arg); return makeImplicitCast(Arg, Ty, CK_IntegralCast); } ImplicitCastExpr *ASTMaker::makeIntegralCastToBoolean(const Expr *Arg) { return makeImplicitCast(Arg, C.BoolTy, CK_IntegralToBoolean); } ObjCBoolLiteralExpr *ASTMaker::makeObjCBool(bool Val) { QualType Ty = C.getBOOLDecl() ? C.getBOOLType() : C.ObjCBuiltinBoolTy; return new (C) ObjCBoolLiteralExpr(Val, Ty, SourceLocation()); } ObjCIvarRefExpr *ASTMaker::makeObjCIvarRef(const Expr *Base, const ObjCIvarDecl *IVar) { return new (C) ObjCIvarRefExpr(const_cast(IVar), IVar->getType(), SourceLocation(), SourceLocation(), const_cast(Base), /*arrow=*/true, /*free=*/false); } ReturnStmt *ASTMaker::makeReturn(const Expr *RetVal) { return ReturnStmt::Create(C, SourceLocation(), const_cast(RetVal), /* NRVOCandidate=*/nullptr); } IntegerLiteral *ASTMaker::makeIntegerLiteral(uint64_t Value, QualType Ty) { llvm::APInt APValue = llvm::APInt(C.getTypeSize(Ty), Value); return IntegerLiteral::Create(C, APValue, Ty, SourceLocation()); } MemberExpr *ASTMaker::makeMemberExpression(Expr *base, ValueDecl *MemberDecl, bool IsArrow, ExprValueKind ValueKind) { DeclAccessPair FoundDecl = DeclAccessPair::make(MemberDecl, AS_public); return MemberExpr::Create( C, base, IsArrow, SourceLocation(), NestedNameSpecifierLoc(), SourceLocation(), MemberDecl, FoundDecl, DeclarationNameInfo(MemberDecl->getDeclName(), SourceLocation()), /* TemplateArgumentListInfo=*/ nullptr, MemberDecl->getType(), ValueKind, OK_Ordinary, NOUR_None); } ValueDecl *ASTMaker::findMemberField(const RecordDecl *RD, StringRef Name) { CXXBasePaths Paths( /* FindAmbiguities=*/false, /* RecordPaths=*/false, /* DetectVirtual=*/ false); const IdentifierInfo &II = C.Idents.get(Name); DeclarationName DeclName = C.DeclarationNames.getIdentifier(&II); DeclContextLookupResult Decls = RD->lookup(DeclName); for (NamedDecl *FoundDecl : Decls) if (!FoundDecl->getDeclContext()->isFunctionOrMethod()) return cast(FoundDecl); return nullptr; } //===----------------------------------------------------------------------===// // Creation functions for faux ASTs. //===----------------------------------------------------------------------===// typedef Stmt *(*FunctionFarmer)(ASTContext &C, const FunctionDecl *D); static CallExpr *create_call_once_funcptr_call(ASTContext &C, ASTMaker M, const ParmVarDecl *Callback, ArrayRef CallArgs) { QualType Ty = Callback->getType(); DeclRefExpr *Call = M.makeDeclRefExpr(Callback); Expr *SubExpr; if (Ty->isRValueReferenceType()) { SubExpr = M.makeImplicitCast( Call, Ty.getNonReferenceType(), CK_LValueToRValue); } else if (Ty->isLValueReferenceType() && Call->getType()->isFunctionType()) { Ty = C.getPointerType(Ty.getNonReferenceType()); SubExpr = M.makeImplicitCast(Call, Ty, CK_FunctionToPointerDecay); } else if (Ty->isLValueReferenceType() && Call->getType()->isPointerType() && Call->getType()->getPointeeType()->isFunctionType()){ SubExpr = Call; } else { llvm_unreachable("Unexpected state"); } return CallExpr::Create(C, SubExpr, CallArgs, C.VoidTy, VK_PRValue, SourceLocation(), FPOptionsOverride()); } static CallExpr *create_call_once_lambda_call(ASTContext &C, ASTMaker M, const ParmVarDecl *Callback, CXXRecordDecl *CallbackDecl, ArrayRef CallArgs) { assert(CallbackDecl != nullptr); assert(CallbackDecl->isLambda()); FunctionDecl *callOperatorDecl = CallbackDecl->getLambdaCallOperator(); assert(callOperatorDecl != nullptr); DeclRefExpr *callOperatorDeclRef = DeclRefExpr::Create(/* Ctx =*/ C, /* QualifierLoc =*/ NestedNameSpecifierLoc(), /* TemplateKWLoc =*/ SourceLocation(), const_cast(callOperatorDecl), /* RefersToEnclosingVariableOrCapture=*/ false, /* NameLoc =*/ SourceLocation(), /* T =*/ callOperatorDecl->getType(), /* VK =*/ VK_LValue); return CXXOperatorCallExpr::Create( /*AstContext=*/C, OO_Call, callOperatorDeclRef, /*Args=*/CallArgs, /*QualType=*/C.VoidTy, /*ExprValueType=*/VK_PRValue, /*SourceLocation=*/SourceLocation(), /*FPFeatures=*/FPOptionsOverride()); } /// Create a fake body for 'std::move' or 'std::forward'. This is just: /// /// \code /// return static_cast(param); /// \endcode static Stmt *create_std_move_forward(ASTContext &C, const FunctionDecl *D) { LLVM_DEBUG(llvm::dbgs() << "Generating body for std::move / std::forward\n"); ASTMaker M(C); QualType ReturnType = D->getType()->castAs()->getReturnType(); Expr *Param = M.makeDeclRefExpr(D->getParamDecl(0)); Expr *Cast = M.makeReferenceCast(Param, ReturnType); return M.makeReturn(Cast); } /// Create a fake body for std::call_once. /// Emulates the following function body: /// /// \code /// typedef struct once_flag_s { /// unsigned long __state = 0; /// } once_flag; /// template /// void call_once(once_flag& o, Callable func) { /// if (!o.__state) { /// func(); /// } /// o.__state = 1; /// } /// \endcode static Stmt *create_call_once(ASTContext &C, const FunctionDecl *D) { LLVM_DEBUG(llvm::dbgs() << "Generating body for call_once\n"); // We need at least two parameters. if (D->param_size() < 2) return nullptr; ASTMaker M(C); const ParmVarDecl *Flag = D->getParamDecl(0); const ParmVarDecl *Callback = D->getParamDecl(1); if (!Callback->getType()->isReferenceType()) { llvm::dbgs() << "libcxx03 std::call_once implementation, skipping.\n"; return nullptr; } if (!Flag->getType()->isReferenceType()) { llvm::dbgs() << "unknown std::call_once implementation, skipping.\n"; return nullptr; } QualType CallbackType = Callback->getType().getNonReferenceType(); // Nullable pointer, non-null iff function is a CXXRecordDecl. CXXRecordDecl *CallbackRecordDecl = CallbackType->getAsCXXRecordDecl(); QualType FlagType = Flag->getType().getNonReferenceType(); auto *FlagRecordDecl = FlagType->getAsRecordDecl(); if (!FlagRecordDecl) { LLVM_DEBUG(llvm::dbgs() << "Flag field is not a record: " << "unknown std::call_once implementation, " << "ignoring the call.\n"); return nullptr; } // We initially assume libc++ implementation of call_once, // where the once_flag struct has a field `__state_`. ValueDecl *FlagFieldDecl = M.findMemberField(FlagRecordDecl, "__state_"); // Otherwise, try libstdc++ implementation, with a field // `_M_once` if (!FlagFieldDecl) { FlagFieldDecl = M.findMemberField(FlagRecordDecl, "_M_once"); } if (!FlagFieldDecl) { LLVM_DEBUG(llvm::dbgs() << "No field _M_once or __state_ found on " << "std::once_flag struct: unknown std::call_once " << "implementation, ignoring the call."); return nullptr; } bool isLambdaCall = CallbackRecordDecl && CallbackRecordDecl->isLambda(); if (CallbackRecordDecl && !isLambdaCall) { LLVM_DEBUG(llvm::dbgs() << "Not supported: synthesizing body for functors when " << "body farming std::call_once, ignoring the call."); return nullptr; } SmallVector CallArgs; const FunctionProtoType *CallbackFunctionType; if (isLambdaCall) { // Lambda requires callback itself inserted as a first parameter. CallArgs.push_back( M.makeDeclRefExpr(Callback, /* RefersToEnclosingVariableOrCapture=*/ true)); CallbackFunctionType = CallbackRecordDecl->getLambdaCallOperator() ->getType() ->getAs(); } else if (!CallbackType->getPointeeType().isNull()) { CallbackFunctionType = CallbackType->getPointeeType()->getAs(); } else { CallbackFunctionType = CallbackType->getAs(); } if (!CallbackFunctionType) return nullptr; // First two arguments are used for the flag and for the callback. if (D->getNumParams() != CallbackFunctionType->getNumParams() + 2) { LLVM_DEBUG(llvm::dbgs() << "Types of params of the callback do not match " << "params passed to std::call_once, " << "ignoring the call\n"); return nullptr; } // All arguments past first two ones are passed to the callback, // and we turn lvalues into rvalues if the argument is not passed by // reference. for (unsigned int ParamIdx = 2; ParamIdx < D->getNumParams(); ParamIdx++) { const ParmVarDecl *PDecl = D->getParamDecl(ParamIdx); assert(PDecl); if (CallbackFunctionType->getParamType(ParamIdx - 2) .getNonReferenceType() .getCanonicalType() != PDecl->getType().getNonReferenceType().getCanonicalType()) { LLVM_DEBUG(llvm::dbgs() << "Types of params of the callback do not match " << "params passed to std::call_once, " << "ignoring the call\n"); return nullptr; } Expr *ParamExpr = M.makeDeclRefExpr(PDecl); if (!CallbackFunctionType->getParamType(ParamIdx - 2)->isReferenceType()) { QualType PTy = PDecl->getType().getNonReferenceType(); ParamExpr = M.makeLvalueToRvalue(ParamExpr, PTy); } CallArgs.push_back(ParamExpr); } CallExpr *CallbackCall; if (isLambdaCall) { CallbackCall = create_call_once_lambda_call(C, M, Callback, CallbackRecordDecl, CallArgs); } else { // Function pointer case. CallbackCall = create_call_once_funcptr_call(C, M, Callback, CallArgs); } DeclRefExpr *FlagDecl = M.makeDeclRefExpr(Flag, /* RefersToEnclosingVariableOrCapture=*/true); MemberExpr *Deref = M.makeMemberExpression(FlagDecl, FlagFieldDecl); assert(Deref->isLValue()); QualType DerefType = Deref->getType(); // Negation predicate. UnaryOperator *FlagCheck = UnaryOperator::Create( C, /* input=*/ M.makeImplicitCast(M.makeLvalueToRvalue(Deref, DerefType), DerefType, CK_IntegralToBoolean), /* opc=*/UO_LNot, /* QualType=*/C.IntTy, /* ExprValueKind=*/VK_PRValue, /* ExprObjectKind=*/OK_Ordinary, SourceLocation(), /* CanOverflow*/ false, FPOptionsOverride()); // Create assignment. BinaryOperator *FlagAssignment = M.makeAssignment( Deref, M.makeIntegralCast(M.makeIntegerLiteral(1, C.IntTy), DerefType), DerefType); auto *Out = IfStmt::Create(C, SourceLocation(), IfStatementKind::Ordinary, /* Init=*/nullptr, /* Var=*/nullptr, /* Cond=*/FlagCheck, /* LPL=*/SourceLocation(), /* RPL=*/SourceLocation(), /* Then=*/M.makeCompound({CallbackCall, FlagAssignment})); return Out; } /// Create a fake body for dispatch_once. static Stmt *create_dispatch_once(ASTContext &C, const FunctionDecl *D) { // Check if we have at least two parameters. if (D->param_size() != 2) return nullptr; // Check if the first parameter is a pointer to integer type. const ParmVarDecl *Predicate = D->getParamDecl(0); QualType PredicateQPtrTy = Predicate->getType(); const PointerType *PredicatePtrTy = PredicateQPtrTy->getAs(); if (!PredicatePtrTy) return nullptr; QualType PredicateTy = PredicatePtrTy->getPointeeType(); if (!PredicateTy->isIntegerType()) return nullptr; // Check if the second parameter is the proper block type. const ParmVarDecl *Block = D->getParamDecl(1); QualType Ty = Block->getType(); if (!isDispatchBlock(Ty)) return nullptr; // Everything checks out. Create a fakse body that checks the predicate, // sets it, and calls the block. Basically, an AST dump of: // // void dispatch_once(dispatch_once_t *predicate, dispatch_block_t block) { // if (*predicate != ~0l) { // *predicate = ~0l; // block(); // } // } ASTMaker M(C); // (1) Create the call. CallExpr *CE = CallExpr::Create( /*ASTContext=*/C, /*StmtClass=*/M.makeLvalueToRvalue(/*Expr=*/Block), /*Args=*/std::nullopt, /*QualType=*/C.VoidTy, /*ExprValueType=*/VK_PRValue, /*SourceLocation=*/SourceLocation(), FPOptionsOverride()); // (2) Create the assignment to the predicate. Expr *DoneValue = UnaryOperator::Create(C, M.makeIntegerLiteral(0, C.LongTy), UO_Not, C.LongTy, VK_PRValue, OK_Ordinary, SourceLocation(), /*CanOverflow*/ false, FPOptionsOverride()); BinaryOperator *B = M.makeAssignment( M.makeDereference( M.makeLvalueToRvalue( M.makeDeclRefExpr(Predicate), PredicateQPtrTy), PredicateTy), M.makeIntegralCast(DoneValue, PredicateTy), PredicateTy); // (3) Create the compound statement. Stmt *Stmts[] = { B, CE }; CompoundStmt *CS = M.makeCompound(Stmts); // (4) Create the 'if' condition. ImplicitCastExpr *LValToRval = M.makeLvalueToRvalue( M.makeDereference( M.makeLvalueToRvalue( M.makeDeclRefExpr(Predicate), PredicateQPtrTy), PredicateTy), PredicateTy); Expr *GuardCondition = M.makeComparison(LValToRval, DoneValue, BO_NE); // (5) Create the 'if' statement. auto *If = IfStmt::Create(C, SourceLocation(), IfStatementKind::Ordinary, /* Init=*/nullptr, /* Var=*/nullptr, /* Cond=*/GuardCondition, /* LPL=*/SourceLocation(), /* RPL=*/SourceLocation(), /* Then=*/CS); return If; } /// Create a fake body for dispatch_sync. static Stmt *create_dispatch_sync(ASTContext &C, const FunctionDecl *D) { // Check if we have at least two parameters. if (D->param_size() != 2) return nullptr; // Check if the second parameter is a block. const ParmVarDecl *PV = D->getParamDecl(1); QualType Ty = PV->getType(); if (!isDispatchBlock(Ty)) return nullptr; // Everything checks out. Create a fake body that just calls the block. // This is basically just an AST dump of: // // void dispatch_sync(dispatch_queue_t queue, void (^block)(void)) { // block(); // } // ASTMaker M(C); DeclRefExpr *DR = M.makeDeclRefExpr(PV); ImplicitCastExpr *ICE = M.makeLvalueToRvalue(DR, Ty); CallExpr *CE = CallExpr::Create(C, ICE, std::nullopt, C.VoidTy, VK_PRValue, SourceLocation(), FPOptionsOverride()); return CE; } static Stmt *create_OSAtomicCompareAndSwap(ASTContext &C, const FunctionDecl *D) { // There are exactly 3 arguments. if (D->param_size() != 3) return nullptr; // Signature: // _Bool OSAtomicCompareAndSwapPtr(void *__oldValue, // void *__newValue, // void * volatile *__theValue) // Generate body: // if (oldValue == *theValue) { // *theValue = newValue; // return YES; // } // else return NO; QualType ResultTy = D->getReturnType(); bool isBoolean = ResultTy->isBooleanType(); if (!isBoolean && !ResultTy->isIntegralType(C)) return nullptr; const ParmVarDecl *OldValue = D->getParamDecl(0); QualType OldValueTy = OldValue->getType(); const ParmVarDecl *NewValue = D->getParamDecl(1); QualType NewValueTy = NewValue->getType(); assert(OldValueTy == NewValueTy); const ParmVarDecl *TheValue = D->getParamDecl(2); QualType TheValueTy = TheValue->getType(); const PointerType *PT = TheValueTy->getAs(); if (!PT) return nullptr; QualType PointeeTy = PT->getPointeeType(); ASTMaker M(C); // Construct the comparison. Expr *Comparison = M.makeComparison( M.makeLvalueToRvalue(M.makeDeclRefExpr(OldValue), OldValueTy), M.makeLvalueToRvalue( M.makeDereference( M.makeLvalueToRvalue(M.makeDeclRefExpr(TheValue), TheValueTy), PointeeTy), PointeeTy), BO_EQ); // Construct the body of the IfStmt. Stmt *Stmts[2]; Stmts[0] = M.makeAssignment( M.makeDereference( M.makeLvalueToRvalue(M.makeDeclRefExpr(TheValue), TheValueTy), PointeeTy), M.makeLvalueToRvalue(M.makeDeclRefExpr(NewValue), NewValueTy), NewValueTy); Expr *BoolVal = M.makeObjCBool(true); Expr *RetVal = isBoolean ? M.makeIntegralCastToBoolean(BoolVal) : M.makeIntegralCast(BoolVal, ResultTy); Stmts[1] = M.makeReturn(RetVal); CompoundStmt *Body = M.makeCompound(Stmts); // Construct the else clause. BoolVal = M.makeObjCBool(false); RetVal = isBoolean ? M.makeIntegralCastToBoolean(BoolVal) : M.makeIntegralCast(BoolVal, ResultTy); Stmt *Else = M.makeReturn(RetVal); /// Construct the If. auto *If = IfStmt::Create(C, SourceLocation(), IfStatementKind::Ordinary, /* Init=*/nullptr, /* Var=*/nullptr, Comparison, /* LPL=*/SourceLocation(), /* RPL=*/SourceLocation(), Body, SourceLocation(), Else); return If; } Stmt *BodyFarm::getBody(const FunctionDecl *D) { std::optional &Val = Bodies[D]; if (Val) return *Val; Val = nullptr; if (D->getIdentifier() == nullptr) return nullptr; StringRef Name = D->getName(); if (Name.empty()) return nullptr; FunctionFarmer FF; if (unsigned BuiltinID = D->getBuiltinID()) { switch (BuiltinID) { case Builtin::BIas_const: case Builtin::BIforward: case Builtin::BImove: case Builtin::BImove_if_noexcept: FF = create_std_move_forward; break; default: FF = nullptr; break; } } else if (Name.startswith("OSAtomicCompareAndSwap") || Name.startswith("objc_atomicCompareAndSwap")) { FF = create_OSAtomicCompareAndSwap; } else if (Name == "call_once" && D->getDeclContext()->isStdNamespace()) { FF = create_call_once; } else { FF = llvm::StringSwitch(Name) .Case("dispatch_sync", create_dispatch_sync) .Case("dispatch_once", create_dispatch_once) .Default(nullptr); } if (FF) { Val = FF(C, D); } else if (Injector) { Val = Injector->getBody(D); } return *Val; } static const ObjCIvarDecl *findBackingIvar(const ObjCPropertyDecl *Prop) { const ObjCIvarDecl *IVar = Prop->getPropertyIvarDecl(); if (IVar) return IVar; // When a readonly property is shadowed in a class extensions with a // a readwrite property, the instance variable belongs to the shadowing // property rather than the shadowed property. If there is no instance // variable on a readonly property, check to see whether the property is // shadowed and if so try to get the instance variable from shadowing // property. if (!Prop->isReadOnly()) return nullptr; auto *Container = cast(Prop->getDeclContext()); const ObjCInterfaceDecl *PrimaryInterface = nullptr; if (auto *InterfaceDecl = dyn_cast(Container)) { PrimaryInterface = InterfaceDecl; } else if (auto *CategoryDecl = dyn_cast(Container)) { PrimaryInterface = CategoryDecl->getClassInterface(); } else if (auto *ImplDecl = dyn_cast(Container)) { PrimaryInterface = ImplDecl->getClassInterface(); } else { return nullptr; } // FindPropertyVisibleInPrimaryClass() looks first in class extensions, so it // is guaranteed to find the shadowing property, if it exists, rather than // the shadowed property. auto *ShadowingProp = PrimaryInterface->FindPropertyVisibleInPrimaryClass( Prop->getIdentifier(), Prop->getQueryKind()); if (ShadowingProp && ShadowingProp != Prop) { IVar = ShadowingProp->getPropertyIvarDecl(); } return IVar; } static Stmt *createObjCPropertyGetter(ASTContext &Ctx, const ObjCMethodDecl *MD) { // First, find the backing ivar. const ObjCIvarDecl *IVar = nullptr; const ObjCPropertyDecl *Prop = nullptr; // Property accessor stubs sometimes do not correspond to any property decl // in the current interface (but in a superclass). They still have a // corresponding property impl decl in this case. if (MD->isSynthesizedAccessorStub()) { const ObjCInterfaceDecl *IntD = MD->getClassInterface(); const ObjCImplementationDecl *ImpD = IntD->getImplementation(); for (const auto *PI : ImpD->property_impls()) { if (const ObjCPropertyDecl *Candidate = PI->getPropertyDecl()) { if (Candidate->getGetterName() == MD->getSelector()) { Prop = Candidate; IVar = Prop->getPropertyIvarDecl(); } } } } if (!IVar) { Prop = MD->findPropertyDecl(); IVar = findBackingIvar(Prop); } if (!IVar || !Prop) return nullptr; // Ignore weak variables, which have special behavior. if (Prop->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak) return nullptr; // Look to see if Sema has synthesized a body for us. This happens in // Objective-C++ because the return value may be a C++ class type with a // non-trivial copy constructor. We can only do this if we can find the // @synthesize for this property, though (or if we know it's been auto- // synthesized). const ObjCImplementationDecl *ImplDecl = IVar->getContainingInterface()->getImplementation(); if (ImplDecl) { for (const auto *I : ImplDecl->property_impls()) { if (I->getPropertyDecl() != Prop) continue; if (I->getGetterCXXConstructor()) { ASTMaker M(Ctx); return M.makeReturn(I->getGetterCXXConstructor()); } } } // We expect that the property is the same type as the ivar, or a reference to // it, and that it is either an object pointer or trivially copyable. if (!Ctx.hasSameUnqualifiedType(IVar->getType(), Prop->getType().getNonReferenceType())) return nullptr; if (!IVar->getType()->isObjCLifetimeType() && !IVar->getType().isTriviallyCopyableType(Ctx)) return nullptr; // Generate our body: // return self->_ivar; ASTMaker M(Ctx); const VarDecl *selfVar = MD->getSelfDecl(); if (!selfVar) return nullptr; Expr *loadedIVar = M.makeObjCIvarRef( M.makeLvalueToRvalue(M.makeDeclRefExpr(selfVar), selfVar->getType()), IVar); if (!MD->getReturnType()->isReferenceType()) loadedIVar = M.makeLvalueToRvalue(loadedIVar, IVar->getType()); return M.makeReturn(loadedIVar); } Stmt *BodyFarm::getBody(const ObjCMethodDecl *D) { // We currently only know how to synthesize property accessors. if (!D->isPropertyAccessor()) return nullptr; D = D->getCanonicalDecl(); // We should not try to synthesize explicitly redefined accessors. // We do not know for sure how they behave. if (!D->isImplicit()) return nullptr; std::optional &Val = Bodies[D]; if (Val) return *Val; Val = nullptr; // For now, we only synthesize getters. // Synthesizing setters would cause false negatives in the // RetainCountChecker because the method body would bind the parameter // to an instance variable, causing it to escape. This would prevent // warning in the following common scenario: // // id foo = [[NSObject alloc] init]; // self.foo = foo; // We should warn that foo leaks here. // if (D->param_size() != 0) return nullptr; // If the property was defined in an extension, search the extensions for // overrides. const ObjCInterfaceDecl *OID = D->getClassInterface(); if (dyn_cast(D->getParent()) != OID) for (auto *Ext : OID->known_extensions()) { auto *OMD = Ext->getInstanceMethod(D->getSelector()); if (OMD && !OMD->isImplicit()) return nullptr; } Val = createObjCPropertyGetter(C, D); return *Val; }