//===- Stmt.cpp - Statement AST Node Implementation -----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Stmt class and statement subclasses. // //===----------------------------------------------------------------------===// #include "clang/AST/Stmt.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/Attr.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclGroup.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprConcepts.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ExprOpenMP.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/StmtOpenMP.h" #include "clang/AST/Type.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Token.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include using namespace clang; static struct StmtClassNameTable { const char *Name; unsigned Counter; unsigned Size; } StmtClassInfo[Stmt::lastStmtConstant+1]; static StmtClassNameTable &getStmtInfoTableEntry(Stmt::StmtClass E) { static bool Initialized = false; if (Initialized) return StmtClassInfo[E]; // Initialize the table on the first use. Initialized = true; #define ABSTRACT_STMT(STMT) #define STMT(CLASS, PARENT) \ StmtClassInfo[(unsigned)Stmt::CLASS##Class].Name = #CLASS; \ StmtClassInfo[(unsigned)Stmt::CLASS##Class].Size = sizeof(CLASS); #include "clang/AST/StmtNodes.inc" return StmtClassInfo[E]; } void *Stmt::operator new(size_t bytes, const ASTContext& C, unsigned alignment) { return ::operator new(bytes, C, alignment); } const char *Stmt::getStmtClassName() const { return getStmtInfoTableEntry((StmtClass) StmtBits.sClass).Name; } // Check that no statement / expression class is polymorphic. LLVM style RTTI // should be used instead. If absolutely needed an exception can still be added // here by defining the appropriate macro (but please don't do this). #define STMT(CLASS, PARENT) \ static_assert(!std::is_polymorphic::value, \ #CLASS " should not be polymorphic!"); #include "clang/AST/StmtNodes.inc" // Check that no statement / expression class has a non-trival destructor. // Statements and expressions are allocated with the BumpPtrAllocator from // ASTContext and therefore their destructor is not executed. #define STMT(CLASS, PARENT) \ static_assert(std::is_trivially_destructible::value, \ #CLASS " should be trivially destructible!"); // FIXME: InitListExpr is not trivially destructible due to its ASTVector. #define INITLISTEXPR(CLASS, PARENT) #include "clang/AST/StmtNodes.inc" void Stmt::PrintStats() { // Ensure the table is primed. getStmtInfoTableEntry(Stmt::NullStmtClass); unsigned sum = 0; llvm::errs() << "\n*** Stmt/Expr Stats:\n"; for (int i = 0; i != Stmt::lastStmtConstant+1; i++) { if (StmtClassInfo[i].Name == nullptr) continue; sum += StmtClassInfo[i].Counter; } llvm::errs() << " " << sum << " stmts/exprs total.\n"; sum = 0; for (int i = 0; i != Stmt::lastStmtConstant+1; i++) { if (StmtClassInfo[i].Name == nullptr) continue; if (StmtClassInfo[i].Counter == 0) continue; llvm::errs() << " " << StmtClassInfo[i].Counter << " " << StmtClassInfo[i].Name << ", " << StmtClassInfo[i].Size << " each (" << StmtClassInfo[i].Counter*StmtClassInfo[i].Size << " bytes)\n"; sum += StmtClassInfo[i].Counter*StmtClassInfo[i].Size; } llvm::errs() << "Total bytes = " << sum << "\n"; } void Stmt::addStmtClass(StmtClass s) { ++getStmtInfoTableEntry(s).Counter; } bool Stmt::StatisticsEnabled = false; void Stmt::EnableStatistics() { StatisticsEnabled = true; } static std::pair getLikelihood(ArrayRef Attrs) { for (const auto *A : Attrs) { if (isa(A)) return std::make_pair(Stmt::LH_Likely, A); if (isa(A)) return std::make_pair(Stmt::LH_Unlikely, A); } return std::make_pair(Stmt::LH_None, nullptr); } static std::pair getLikelihood(const Stmt *S) { if (const auto *AS = dyn_cast_or_null(S)) return getLikelihood(AS->getAttrs()); return std::make_pair(Stmt::LH_None, nullptr); } Stmt::Likelihood Stmt::getLikelihood(ArrayRef Attrs) { return ::getLikelihood(Attrs).first; } Stmt::Likelihood Stmt::getLikelihood(const Stmt *S) { return ::getLikelihood(S).first; } const Attr *Stmt::getLikelihoodAttr(const Stmt *S) { return ::getLikelihood(S).second; } Stmt::Likelihood Stmt::getLikelihood(const Stmt *Then, const Stmt *Else) { Likelihood LHT = ::getLikelihood(Then).first; Likelihood LHE = ::getLikelihood(Else).first; if (LHE == LH_None) return LHT; // If the same attribute is used on both branches there's a conflict. if (LHT == LHE) return LH_None; if (LHT != LH_None) return LHT; // Invert the value of Else to get the value for Then. return LHE == LH_Likely ? LH_Unlikely : LH_Likely; } std::tuple Stmt::determineLikelihoodConflict(const Stmt *Then, const Stmt *Else) { std::pair LHT = ::getLikelihood(Then); std::pair LHE = ::getLikelihood(Else); // If the same attribute is used on both branches there's a conflict. if (LHT.first != LH_None && LHT.first == LHE.first) return std::make_tuple(true, LHT.second, LHE.second); return std::make_tuple(false, nullptr, nullptr); } /// Skip no-op (attributed, compound) container stmts and skip captured /// stmt at the top, if \a IgnoreCaptured is true. Stmt *Stmt::IgnoreContainers(bool IgnoreCaptured) { Stmt *S = this; if (IgnoreCaptured) if (auto CapS = dyn_cast_or_null(S)) S = CapS->getCapturedStmt(); while (true) { if (auto AS = dyn_cast_or_null(S)) S = AS->getSubStmt(); else if (auto CS = dyn_cast_or_null(S)) { if (CS->size() != 1) break; S = CS->body_back(); } else break; } return S; } /// Strip off all label-like statements. /// /// This will strip off label statements, case statements, attributed /// statements and default statements recursively. const Stmt *Stmt::stripLabelLikeStatements() const { const Stmt *S = this; while (true) { if (const auto *LS = dyn_cast(S)) S = LS->getSubStmt(); else if (const auto *SC = dyn_cast(S)) S = SC->getSubStmt(); else if (const auto *AS = dyn_cast(S)) S = AS->getSubStmt(); else return S; } } namespace { struct good {}; struct bad {}; // These silly little functions have to be static inline to suppress // unused warnings, and they have to be defined to suppress other // warnings. static good is_good(good) { return good(); } typedef Stmt::child_range children_t(); template good implements_children(children_t T::*) { return good(); } LLVM_ATTRIBUTE_UNUSED static bad implements_children(children_t Stmt::*) { return bad(); } typedef SourceLocation getBeginLoc_t() const; template good implements_getBeginLoc(getBeginLoc_t T::*) { return good(); } LLVM_ATTRIBUTE_UNUSED static bad implements_getBeginLoc(getBeginLoc_t Stmt::*) { return bad(); } typedef SourceLocation getLocEnd_t() const; template good implements_getEndLoc(getLocEnd_t T::*) { return good(); } LLVM_ATTRIBUTE_UNUSED static bad implements_getEndLoc(getLocEnd_t Stmt::*) { return bad(); } #define ASSERT_IMPLEMENTS_children(type) \ (void) is_good(implements_children(&type::children)) #define ASSERT_IMPLEMENTS_getBeginLoc(type) \ (void)is_good(implements_getBeginLoc(&type::getBeginLoc)) #define ASSERT_IMPLEMENTS_getEndLoc(type) \ (void)is_good(implements_getEndLoc(&type::getEndLoc)) } // namespace /// Check whether the various Stmt classes implement their member /// functions. LLVM_ATTRIBUTE_UNUSED static inline void check_implementations() { #define ABSTRACT_STMT(type) #define STMT(type, base) \ ASSERT_IMPLEMENTS_children(type); \ ASSERT_IMPLEMENTS_getBeginLoc(type); \ ASSERT_IMPLEMENTS_getEndLoc(type); #include "clang/AST/StmtNodes.inc" } Stmt::child_range Stmt::children() { switch (getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("statement without class"); #define ABSTRACT_STMT(type) #define STMT(type, base) \ case Stmt::type##Class: \ return static_cast(this)->children(); #include "clang/AST/StmtNodes.inc" } llvm_unreachable("unknown statement kind!"); } // Amusing macro metaprogramming hack: check whether a class provides // a more specific implementation of getSourceRange. // // See also Expr.cpp:getExprLoc(). namespace { /// This implementation is used when a class provides a custom /// implementation of getSourceRange. template SourceRange getSourceRangeImpl(const Stmt *stmt, SourceRange (T::*v)() const) { return static_cast(stmt)->getSourceRange(); } /// This implementation is used when a class doesn't provide a custom /// implementation of getSourceRange. Overload resolution should pick it over /// the implementation above because it's more specialized according to /// function template partial ordering. template SourceRange getSourceRangeImpl(const Stmt *stmt, SourceRange (Stmt::*v)() const) { return SourceRange(static_cast(stmt)->getBeginLoc(), static_cast(stmt)->getEndLoc()); } } // namespace SourceRange Stmt::getSourceRange() const { switch (getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("statement without class"); #define ABSTRACT_STMT(type) #define STMT(type, base) \ case Stmt::type##Class: \ return getSourceRangeImpl(this, &type::getSourceRange); #include "clang/AST/StmtNodes.inc" } llvm_unreachable("unknown statement kind!"); } SourceLocation Stmt::getBeginLoc() const { switch (getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("statement without class"); #define ABSTRACT_STMT(type) #define STMT(type, base) \ case Stmt::type##Class: \ return static_cast(this)->getBeginLoc(); #include "clang/AST/StmtNodes.inc" } llvm_unreachable("unknown statement kind"); } SourceLocation Stmt::getEndLoc() const { switch (getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("statement without class"); #define ABSTRACT_STMT(type) #define STMT(type, base) \ case Stmt::type##Class: \ return static_cast(this)->getEndLoc(); #include "clang/AST/StmtNodes.inc" } llvm_unreachable("unknown statement kind"); } int64_t Stmt::getID(const ASTContext &Context) const { return Context.getAllocator().identifyKnownAlignedObject(this); } CompoundStmt::CompoundStmt(ArrayRef Stmts, FPOptionsOverride FPFeatures, SourceLocation LB, SourceLocation RB) : Stmt(CompoundStmtClass), LBraceLoc(LB), RBraceLoc(RB) { CompoundStmtBits.NumStmts = Stmts.size(); CompoundStmtBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); setStmts(Stmts); if (hasStoredFPFeatures()) setStoredFPFeatures(FPFeatures); } void CompoundStmt::setStmts(ArrayRef Stmts) { assert(CompoundStmtBits.NumStmts == Stmts.size() && "NumStmts doesn't fit in bits of CompoundStmtBits.NumStmts!"); std::copy(Stmts.begin(), Stmts.end(), body_begin()); } CompoundStmt *CompoundStmt::Create(const ASTContext &C, ArrayRef Stmts, FPOptionsOverride FPFeatures, SourceLocation LB, SourceLocation RB) { void *Mem = C.Allocate(totalSizeToAlloc( Stmts.size(), FPFeatures.requiresTrailingStorage()), alignof(CompoundStmt)); return new (Mem) CompoundStmt(Stmts, FPFeatures, LB, RB); } CompoundStmt *CompoundStmt::CreateEmpty(const ASTContext &C, unsigned NumStmts, bool HasFPFeatures) { void *Mem = C.Allocate( totalSizeToAlloc(NumStmts, HasFPFeatures), alignof(CompoundStmt)); CompoundStmt *New = new (Mem) CompoundStmt(EmptyShell()); New->CompoundStmtBits.NumStmts = NumStmts; New->CompoundStmtBits.HasFPFeatures = HasFPFeatures; return New; } const Expr *ValueStmt::getExprStmt() const { const Stmt *S = this; do { if (const auto *E = dyn_cast(S)) return E; if (const auto *LS = dyn_cast(S)) S = LS->getSubStmt(); else if (const auto *AS = dyn_cast(S)) S = AS->getSubStmt(); else llvm_unreachable("unknown kind of ValueStmt"); } while (isa(S)); return nullptr; } const char *LabelStmt::getName() const { return getDecl()->getIdentifier()->getNameStart(); } AttributedStmt *AttributedStmt::Create(const ASTContext &C, SourceLocation Loc, ArrayRef Attrs, Stmt *SubStmt) { assert(!Attrs.empty() && "Attrs should not be empty"); void *Mem = C.Allocate(totalSizeToAlloc(Attrs.size()), alignof(AttributedStmt)); return new (Mem) AttributedStmt(Loc, Attrs, SubStmt); } AttributedStmt *AttributedStmt::CreateEmpty(const ASTContext &C, unsigned NumAttrs) { assert(NumAttrs > 0 && "NumAttrs should be greater than zero"); void *Mem = C.Allocate(totalSizeToAlloc(NumAttrs), alignof(AttributedStmt)); return new (Mem) AttributedStmt(EmptyShell(), NumAttrs); } std::string AsmStmt::generateAsmString(const ASTContext &C) const { if (const auto *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->generateAsmString(C); if (const auto *msAsmStmt = dyn_cast(this)) return msAsmStmt->generateAsmString(C); llvm_unreachable("unknown asm statement kind!"); } StringRef AsmStmt::getOutputConstraint(unsigned i) const { if (const auto *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->getOutputConstraint(i); if (const auto *msAsmStmt = dyn_cast(this)) return msAsmStmt->getOutputConstraint(i); llvm_unreachable("unknown asm statement kind!"); } const Expr *AsmStmt::getOutputExpr(unsigned i) const { if (const auto *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->getOutputExpr(i); if (const auto *msAsmStmt = dyn_cast(this)) return msAsmStmt->getOutputExpr(i); llvm_unreachable("unknown asm statement kind!"); } StringRef AsmStmt::getInputConstraint(unsigned i) const { if (const auto *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->getInputConstraint(i); if (const auto *msAsmStmt = dyn_cast(this)) return msAsmStmt->getInputConstraint(i); llvm_unreachable("unknown asm statement kind!"); } const Expr *AsmStmt::getInputExpr(unsigned i) const { if (const auto *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->getInputExpr(i); if (const auto *msAsmStmt = dyn_cast(this)) return msAsmStmt->getInputExpr(i); llvm_unreachable("unknown asm statement kind!"); } StringRef AsmStmt::getClobber(unsigned i) const { if (const auto *gccAsmStmt = dyn_cast(this)) return gccAsmStmt->getClobber(i); if (const auto *msAsmStmt = dyn_cast(this)) return msAsmStmt->getClobber(i); llvm_unreachable("unknown asm statement kind!"); } /// getNumPlusOperands - Return the number of output operands that have a "+" /// constraint. unsigned AsmStmt::getNumPlusOperands() const { unsigned Res = 0; for (unsigned i = 0, e = getNumOutputs(); i != e; ++i) if (isOutputPlusConstraint(i)) ++Res; return Res; } char GCCAsmStmt::AsmStringPiece::getModifier() const { assert(isOperand() && "Only Operands can have modifiers."); return isLetter(Str[0]) ? Str[0] : '\0'; } StringRef GCCAsmStmt::getClobber(unsigned i) const { return getClobberStringLiteral(i)->getString(); } Expr *GCCAsmStmt::getOutputExpr(unsigned i) { return cast(Exprs[i]); } /// getOutputConstraint - Return the constraint string for the specified /// output operand. All output constraints are known to be non-empty (either /// '=' or '+'). StringRef GCCAsmStmt::getOutputConstraint(unsigned i) const { return getOutputConstraintLiteral(i)->getString(); } Expr *GCCAsmStmt::getInputExpr(unsigned i) { return cast(Exprs[i + NumOutputs]); } void GCCAsmStmt::setInputExpr(unsigned i, Expr *E) { Exprs[i + NumOutputs] = E; } AddrLabelExpr *GCCAsmStmt::getLabelExpr(unsigned i) const { return cast(Exprs[i + NumOutputs + NumInputs]); } StringRef GCCAsmStmt::getLabelName(unsigned i) const { return getLabelExpr(i)->getLabel()->getName(); } /// getInputConstraint - Return the specified input constraint. Unlike output /// constraints, these can be empty. StringRef GCCAsmStmt::getInputConstraint(unsigned i) const { return getInputConstraintLiteral(i)->getString(); } void GCCAsmStmt::setOutputsAndInputsAndClobbers(const ASTContext &C, IdentifierInfo **Names, StringLiteral **Constraints, Stmt **Exprs, unsigned NumOutputs, unsigned NumInputs, unsigned NumLabels, StringLiteral **Clobbers, unsigned NumClobbers) { this->NumOutputs = NumOutputs; this->NumInputs = NumInputs; this->NumClobbers = NumClobbers; this->NumLabels = NumLabels; unsigned NumExprs = NumOutputs + NumInputs + NumLabels; C.Deallocate(this->Names); this->Names = new (C) IdentifierInfo*[NumExprs]; std::copy(Names, Names + NumExprs, this->Names); C.Deallocate(this->Exprs); this->Exprs = new (C) Stmt*[NumExprs]; std::copy(Exprs, Exprs + NumExprs, this->Exprs); unsigned NumConstraints = NumOutputs + NumInputs; C.Deallocate(this->Constraints); this->Constraints = new (C) StringLiteral*[NumConstraints]; std::copy(Constraints, Constraints + NumConstraints, this->Constraints); C.Deallocate(this->Clobbers); this->Clobbers = new (C) StringLiteral*[NumClobbers]; std::copy(Clobbers, Clobbers + NumClobbers, this->Clobbers); } /// getNamedOperand - Given a symbolic operand reference like %[foo], /// translate this into a numeric value needed to reference the same operand. /// This returns -1 if the operand name is invalid. int GCCAsmStmt::getNamedOperand(StringRef SymbolicName) const { // Check if this is an output operand. unsigned NumOutputs = getNumOutputs(); for (unsigned i = 0; i != NumOutputs; ++i) if (getOutputName(i) == SymbolicName) return i; unsigned NumInputs = getNumInputs(); for (unsigned i = 0; i != NumInputs; ++i) if (getInputName(i) == SymbolicName) return NumOutputs + i; for (unsigned i = 0, e = getNumLabels(); i != e; ++i) if (getLabelName(i) == SymbolicName) return NumOutputs + NumInputs + getNumPlusOperands() + i; // Not found. return -1; } /// AnalyzeAsmString - Analyze the asm string of the current asm, decomposing /// it into pieces. If the asm string is erroneous, emit errors and return /// true, otherwise return false. unsigned GCCAsmStmt::AnalyzeAsmString(SmallVectorImpl&Pieces, const ASTContext &C, unsigned &DiagOffs) const { StringRef Str = getAsmString()->getString(); const char *StrStart = Str.begin(); const char *StrEnd = Str.end(); const char *CurPtr = StrStart; // "Simple" inline asms have no constraints or operands, just convert the asm // string to escape $'s. if (isSimple()) { std::string Result; for (; CurPtr != StrEnd; ++CurPtr) { switch (*CurPtr) { case '$': Result += "$$"; break; default: Result += *CurPtr; break; } } Pieces.push_back(AsmStringPiece(Result)); return 0; } // CurStringPiece - The current string that we are building up as we scan the // asm string. std::string CurStringPiece; bool HasVariants = !C.getTargetInfo().hasNoAsmVariants(); unsigned LastAsmStringToken = 0; unsigned LastAsmStringOffset = 0; while (true) { // Done with the string? if (CurPtr == StrEnd) { if (!CurStringPiece.empty()) Pieces.push_back(AsmStringPiece(CurStringPiece)); return 0; } char CurChar = *CurPtr++; switch (CurChar) { case '$': CurStringPiece += "$$"; continue; case '{': CurStringPiece += (HasVariants ? "$(" : "{"); continue; case '|': CurStringPiece += (HasVariants ? "$|" : "|"); continue; case '}': CurStringPiece += (HasVariants ? "$)" : "}"); continue; case '%': break; default: CurStringPiece += CurChar; continue; } const TargetInfo &TI = C.getTargetInfo(); // Escaped "%" character in asm string. if (CurPtr == StrEnd) { // % at end of string is invalid (no escape). DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_escape; } // Handle escaped char and continue looping over the asm string. char EscapedChar = *CurPtr++; switch (EscapedChar) { default: // Handle target-specific escaped characters. if (auto MaybeReplaceStr = TI.handleAsmEscapedChar(EscapedChar)) { CurStringPiece += *MaybeReplaceStr; continue; } break; case '%': // %% -> % case '{': // %{ -> { case '}': // %} -> } CurStringPiece += EscapedChar; continue; case '=': // %= -> Generate a unique ID. CurStringPiece += "${:uid}"; continue; } // Otherwise, we have an operand. If we have accumulated a string so far, // add it to the Pieces list. if (!CurStringPiece.empty()) { Pieces.push_back(AsmStringPiece(CurStringPiece)); CurStringPiece.clear(); } // Handle operands that have asmSymbolicName (e.g., %x[foo]) and those that // don't (e.g., %x4). 'x' following the '%' is the constraint modifier. const char *Begin = CurPtr - 1; // Points to the character following '%'. const char *Percent = Begin - 1; // Points to '%'. if (isLetter(EscapedChar)) { if (CurPtr == StrEnd) { // Premature end. DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_escape; } EscapedChar = *CurPtr++; } const SourceManager &SM = C.getSourceManager(); const LangOptions &LO = C.getLangOpts(); // Handle operands that don't have asmSymbolicName (e.g., %x4). if (isDigit(EscapedChar)) { // %n - Assembler operand n unsigned N = 0; --CurPtr; while (CurPtr != StrEnd && isDigit(*CurPtr)) N = N*10 + ((*CurPtr++)-'0'); unsigned NumOperands = getNumOutputs() + getNumPlusOperands() + getNumInputs() + getNumLabels(); if (N >= NumOperands) { DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_operand_number; } // Str contains "x4" (Operand without the leading %). std::string Str(Begin, CurPtr - Begin); // (BeginLoc, EndLoc) represents the range of the operand we are currently // processing. Unlike Str, the range includes the leading '%'. SourceLocation BeginLoc = getAsmString()->getLocationOfByte( Percent - StrStart, SM, LO, TI, &LastAsmStringToken, &LastAsmStringOffset); SourceLocation EndLoc = getAsmString()->getLocationOfByte( CurPtr - StrStart, SM, LO, TI, &LastAsmStringToken, &LastAsmStringOffset); Pieces.emplace_back(N, std::move(Str), BeginLoc, EndLoc); continue; } // Handle operands that have asmSymbolicName (e.g., %x[foo]). if (EscapedChar == '[') { DiagOffs = CurPtr-StrStart-1; // Find the ']'. const char *NameEnd = (const char*)memchr(CurPtr, ']', StrEnd-CurPtr); if (NameEnd == nullptr) return diag::err_asm_unterminated_symbolic_operand_name; if (NameEnd == CurPtr) return diag::err_asm_empty_symbolic_operand_name; StringRef SymbolicName(CurPtr, NameEnd - CurPtr); int N = getNamedOperand(SymbolicName); if (N == -1) { // Verify that an operand with that name exists. DiagOffs = CurPtr-StrStart; return diag::err_asm_unknown_symbolic_operand_name; } // Str contains "x[foo]" (Operand without the leading %). std::string Str(Begin, NameEnd + 1 - Begin); // (BeginLoc, EndLoc) represents the range of the operand we are currently // processing. Unlike Str, the range includes the leading '%'. SourceLocation BeginLoc = getAsmString()->getLocationOfByte( Percent - StrStart, SM, LO, TI, &LastAsmStringToken, &LastAsmStringOffset); SourceLocation EndLoc = getAsmString()->getLocationOfByte( NameEnd + 1 - StrStart, SM, LO, TI, &LastAsmStringToken, &LastAsmStringOffset); Pieces.emplace_back(N, std::move(Str), BeginLoc, EndLoc); CurPtr = NameEnd+1; continue; } DiagOffs = CurPtr-StrStart-1; return diag::err_asm_invalid_escape; } } /// Assemble final IR asm string (GCC-style). std::string GCCAsmStmt::generateAsmString(const ASTContext &C) const { // Analyze the asm string to decompose it into its pieces. We know that Sema // has already done this, so it is guaranteed to be successful. SmallVector Pieces; unsigned DiagOffs; AnalyzeAsmString(Pieces, C, DiagOffs); std::string AsmString; for (const auto &Piece : Pieces) { if (Piece.isString()) AsmString += Piece.getString(); else if (Piece.getModifier() == '\0') AsmString += '$' + llvm::utostr(Piece.getOperandNo()); else AsmString += "${" + llvm::utostr(Piece.getOperandNo()) + ':' + Piece.getModifier() + '}'; } return AsmString; } /// Assemble final IR asm string (MS-style). std::string MSAsmStmt::generateAsmString(const ASTContext &C) const { // FIXME: This needs to be translated into the IR string representation. SmallVector Pieces; AsmStr.split(Pieces, "\n\t"); std::string MSAsmString; for (size_t I = 0, E = Pieces.size(); I < E; ++I) { StringRef Instruction = Pieces[I]; // For vex/vex2/vex3/evex masm style prefix, convert it to att style // since we don't support masm style prefix in backend. if (Instruction.startswith("vex ")) MSAsmString += '{' + Instruction.substr(0, 3).str() + '}' + Instruction.substr(3).str(); else if (Instruction.startswith("vex2 ") || Instruction.startswith("vex3 ") || Instruction.startswith("evex ")) MSAsmString += '{' + Instruction.substr(0, 4).str() + '}' + Instruction.substr(4).str(); else MSAsmString += Instruction.str(); // If this is not the last instruction, adding back the '\n\t'. if (I < E - 1) MSAsmString += "\n\t"; } return MSAsmString; } Expr *MSAsmStmt::getOutputExpr(unsigned i) { return cast(Exprs[i]); } Expr *MSAsmStmt::getInputExpr(unsigned i) { return cast(Exprs[i + NumOutputs]); } void MSAsmStmt::setInputExpr(unsigned i, Expr *E) { Exprs[i + NumOutputs] = E; } //===----------------------------------------------------------------------===// // Constructors //===----------------------------------------------------------------------===// GCCAsmStmt::GCCAsmStmt(const ASTContext &C, SourceLocation asmloc, bool issimple, bool isvolatile, unsigned numoutputs, unsigned numinputs, IdentifierInfo **names, StringLiteral **constraints, Expr **exprs, StringLiteral *asmstr, unsigned numclobbers, StringLiteral **clobbers, unsigned numlabels, SourceLocation rparenloc) : AsmStmt(GCCAsmStmtClass, asmloc, issimple, isvolatile, numoutputs, numinputs, numclobbers), RParenLoc(rparenloc), AsmStr(asmstr), NumLabels(numlabels) { unsigned NumExprs = NumOutputs + NumInputs + NumLabels; Names = new (C) IdentifierInfo*[NumExprs]; std::copy(names, names + NumExprs, Names); Exprs = new (C) Stmt*[NumExprs]; std::copy(exprs, exprs + NumExprs, Exprs); unsigned NumConstraints = NumOutputs + NumInputs; Constraints = new (C) StringLiteral*[NumConstraints]; std::copy(constraints, constraints + NumConstraints, Constraints); Clobbers = new (C) StringLiteral*[NumClobbers]; std::copy(clobbers, clobbers + NumClobbers, Clobbers); } MSAsmStmt::MSAsmStmt(const ASTContext &C, SourceLocation asmloc, SourceLocation lbraceloc, bool issimple, bool isvolatile, ArrayRef asmtoks, unsigned numoutputs, unsigned numinputs, ArrayRef constraints, ArrayRef exprs, StringRef asmstr, ArrayRef clobbers, SourceLocation endloc) : AsmStmt(MSAsmStmtClass, asmloc, issimple, isvolatile, numoutputs, numinputs, clobbers.size()), LBraceLoc(lbraceloc), EndLoc(endloc), NumAsmToks(asmtoks.size()) { initialize(C, asmstr, asmtoks, constraints, exprs, clobbers); } static StringRef copyIntoContext(const ASTContext &C, StringRef str) { return str.copy(C); } void MSAsmStmt::initialize(const ASTContext &C, StringRef asmstr, ArrayRef asmtoks, ArrayRef constraints, ArrayRef exprs, ArrayRef clobbers) { assert(NumAsmToks == asmtoks.size()); assert(NumClobbers == clobbers.size()); assert(exprs.size() == NumOutputs + NumInputs); assert(exprs.size() == constraints.size()); AsmStr = copyIntoContext(C, asmstr); Exprs = new (C) Stmt*[exprs.size()]; std::copy(exprs.begin(), exprs.end(), Exprs); AsmToks = new (C) Token[asmtoks.size()]; std::copy(asmtoks.begin(), asmtoks.end(), AsmToks); Constraints = new (C) StringRef[exprs.size()]; std::transform(constraints.begin(), constraints.end(), Constraints, [&](StringRef Constraint) { return copyIntoContext(C, Constraint); }); Clobbers = new (C) StringRef[NumClobbers]; // FIXME: Avoid the allocation/copy if at all possible. std::transform(clobbers.begin(), clobbers.end(), Clobbers, [&](StringRef Clobber) { return copyIntoContext(C, Clobber); }); } IfStmt::IfStmt(const ASTContext &Ctx, SourceLocation IL, IfStatementKind Kind, Stmt *Init, VarDecl *Var, Expr *Cond, SourceLocation LPL, SourceLocation RPL, Stmt *Then, SourceLocation EL, Stmt *Else) : Stmt(IfStmtClass), LParenLoc(LPL), RParenLoc(RPL) { bool HasElse = Else != nullptr; bool HasVar = Var != nullptr; bool HasInit = Init != nullptr; IfStmtBits.HasElse = HasElse; IfStmtBits.HasVar = HasVar; IfStmtBits.HasInit = HasInit; setStatementKind(Kind); setCond(Cond); setThen(Then); if (HasElse) setElse(Else); if (HasVar) setConditionVariable(Ctx, Var); if (HasInit) setInit(Init); setIfLoc(IL); if (HasElse) setElseLoc(EL); } IfStmt::IfStmt(EmptyShell Empty, bool HasElse, bool HasVar, bool HasInit) : Stmt(IfStmtClass, Empty) { IfStmtBits.HasElse = HasElse; IfStmtBits.HasVar = HasVar; IfStmtBits.HasInit = HasInit; } IfStmt *IfStmt::Create(const ASTContext &Ctx, SourceLocation IL, IfStatementKind Kind, Stmt *Init, VarDecl *Var, Expr *Cond, SourceLocation LPL, SourceLocation RPL, Stmt *Then, SourceLocation EL, Stmt *Else) { bool HasElse = Else != nullptr; bool HasVar = Var != nullptr; bool HasInit = Init != nullptr; void *Mem = Ctx.Allocate( totalSizeToAlloc( NumMandatoryStmtPtr + HasElse + HasVar + HasInit, HasElse), alignof(IfStmt)); return new (Mem) IfStmt(Ctx, IL, Kind, Init, Var, Cond, LPL, RPL, Then, EL, Else); } IfStmt *IfStmt::CreateEmpty(const ASTContext &Ctx, bool HasElse, bool HasVar, bool HasInit) { void *Mem = Ctx.Allocate( totalSizeToAlloc( NumMandatoryStmtPtr + HasElse + HasVar + HasInit, HasElse), alignof(IfStmt)); return new (Mem) IfStmt(EmptyShell(), HasElse, HasVar, HasInit); } VarDecl *IfStmt::getConditionVariable() { auto *DS = getConditionVariableDeclStmt(); if (!DS) return nullptr; return cast(DS->getSingleDecl()); } void IfStmt::setConditionVariable(const ASTContext &Ctx, VarDecl *V) { assert(hasVarStorage() && "This if statement has no storage for a condition variable!"); if (!V) { getTrailingObjects()[varOffset()] = nullptr; return; } SourceRange VarRange = V->getSourceRange(); getTrailingObjects()[varOffset()] = new (Ctx) DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); } bool IfStmt::isObjCAvailabilityCheck() const { return isa(getCond()); } std::optional IfStmt::getNondiscardedCase(const ASTContext &Ctx) { if (!isConstexpr() || getCond()->isValueDependent()) return std::nullopt; return !getCond()->EvaluateKnownConstInt(Ctx) ? getElse() : getThen(); } std::optional IfStmt::getNondiscardedCase(const ASTContext &Ctx) const { if (std::optional Result = const_cast(this)->getNondiscardedCase(Ctx)) return *Result; return std::nullopt; } ForStmt::ForStmt(const ASTContext &C, Stmt *Init, Expr *Cond, VarDecl *condVar, Expr *Inc, Stmt *Body, SourceLocation FL, SourceLocation LP, SourceLocation RP) : Stmt(ForStmtClass), LParenLoc(LP), RParenLoc(RP) { SubExprs[INIT] = Init; setConditionVariable(C, condVar); SubExprs[COND] = Cond; SubExprs[INC] = Inc; SubExprs[BODY] = Body; ForStmtBits.ForLoc = FL; } VarDecl *ForStmt::getConditionVariable() const { if (!SubExprs[CONDVAR]) return nullptr; auto *DS = cast(SubExprs[CONDVAR]); return cast(DS->getSingleDecl()); } void ForStmt::setConditionVariable(const ASTContext &C, VarDecl *V) { if (!V) { SubExprs[CONDVAR] = nullptr; return; } SourceRange VarRange = V->getSourceRange(); SubExprs[CONDVAR] = new (C) DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); } SwitchStmt::SwitchStmt(const ASTContext &Ctx, Stmt *Init, VarDecl *Var, Expr *Cond, SourceLocation LParenLoc, SourceLocation RParenLoc) : Stmt(SwitchStmtClass), FirstCase(nullptr), LParenLoc(LParenLoc), RParenLoc(RParenLoc) { bool HasInit = Init != nullptr; bool HasVar = Var != nullptr; SwitchStmtBits.HasInit = HasInit; SwitchStmtBits.HasVar = HasVar; SwitchStmtBits.AllEnumCasesCovered = false; setCond(Cond); setBody(nullptr); if (HasInit) setInit(Init); if (HasVar) setConditionVariable(Ctx, Var); setSwitchLoc(SourceLocation{}); } SwitchStmt::SwitchStmt(EmptyShell Empty, bool HasInit, bool HasVar) : Stmt(SwitchStmtClass, Empty) { SwitchStmtBits.HasInit = HasInit; SwitchStmtBits.HasVar = HasVar; SwitchStmtBits.AllEnumCasesCovered = false; } SwitchStmt *SwitchStmt::Create(const ASTContext &Ctx, Stmt *Init, VarDecl *Var, Expr *Cond, SourceLocation LParenLoc, SourceLocation RParenLoc) { bool HasInit = Init != nullptr; bool HasVar = Var != nullptr; void *Mem = Ctx.Allocate( totalSizeToAlloc(NumMandatoryStmtPtr + HasInit + HasVar), alignof(SwitchStmt)); return new (Mem) SwitchStmt(Ctx, Init, Var, Cond, LParenLoc, RParenLoc); } SwitchStmt *SwitchStmt::CreateEmpty(const ASTContext &Ctx, bool HasInit, bool HasVar) { void *Mem = Ctx.Allocate( totalSizeToAlloc(NumMandatoryStmtPtr + HasInit + HasVar), alignof(SwitchStmt)); return new (Mem) SwitchStmt(EmptyShell(), HasInit, HasVar); } VarDecl *SwitchStmt::getConditionVariable() { auto *DS = getConditionVariableDeclStmt(); if (!DS) return nullptr; return cast(DS->getSingleDecl()); } void SwitchStmt::setConditionVariable(const ASTContext &Ctx, VarDecl *V) { assert(hasVarStorage() && "This switch statement has no storage for a condition variable!"); if (!V) { getTrailingObjects()[varOffset()] = nullptr; return; } SourceRange VarRange = V->getSourceRange(); getTrailingObjects()[varOffset()] = new (Ctx) DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); } WhileStmt::WhileStmt(const ASTContext &Ctx, VarDecl *Var, Expr *Cond, Stmt *Body, SourceLocation WL, SourceLocation LParenLoc, SourceLocation RParenLoc) : Stmt(WhileStmtClass) { bool HasVar = Var != nullptr; WhileStmtBits.HasVar = HasVar; setCond(Cond); setBody(Body); if (HasVar) setConditionVariable(Ctx, Var); setWhileLoc(WL); setLParenLoc(LParenLoc); setRParenLoc(RParenLoc); } WhileStmt::WhileStmt(EmptyShell Empty, bool HasVar) : Stmt(WhileStmtClass, Empty) { WhileStmtBits.HasVar = HasVar; } WhileStmt *WhileStmt::Create(const ASTContext &Ctx, VarDecl *Var, Expr *Cond, Stmt *Body, SourceLocation WL, SourceLocation LParenLoc, SourceLocation RParenLoc) { bool HasVar = Var != nullptr; void *Mem = Ctx.Allocate(totalSizeToAlloc(NumMandatoryStmtPtr + HasVar), alignof(WhileStmt)); return new (Mem) WhileStmt(Ctx, Var, Cond, Body, WL, LParenLoc, RParenLoc); } WhileStmt *WhileStmt::CreateEmpty(const ASTContext &Ctx, bool HasVar) { void *Mem = Ctx.Allocate(totalSizeToAlloc(NumMandatoryStmtPtr + HasVar), alignof(WhileStmt)); return new (Mem) WhileStmt(EmptyShell(), HasVar); } VarDecl *WhileStmt::getConditionVariable() { auto *DS = getConditionVariableDeclStmt(); if (!DS) return nullptr; return cast(DS->getSingleDecl()); } void WhileStmt::setConditionVariable(const ASTContext &Ctx, VarDecl *V) { assert(hasVarStorage() && "This while statement has no storage for a condition variable!"); if (!V) { getTrailingObjects()[varOffset()] = nullptr; return; } SourceRange VarRange = V->getSourceRange(); getTrailingObjects()[varOffset()] = new (Ctx) DeclStmt(DeclGroupRef(V), VarRange.getBegin(), VarRange.getEnd()); } // IndirectGotoStmt LabelDecl *IndirectGotoStmt::getConstantTarget() { if (auto *E = dyn_cast(getTarget()->IgnoreParenImpCasts())) return E->getLabel(); return nullptr; } // ReturnStmt ReturnStmt::ReturnStmt(SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate) : Stmt(ReturnStmtClass), RetExpr(E) { bool HasNRVOCandidate = NRVOCandidate != nullptr; ReturnStmtBits.HasNRVOCandidate = HasNRVOCandidate; if (HasNRVOCandidate) setNRVOCandidate(NRVOCandidate); setReturnLoc(RL); } ReturnStmt::ReturnStmt(EmptyShell Empty, bool HasNRVOCandidate) : Stmt(ReturnStmtClass, Empty) { ReturnStmtBits.HasNRVOCandidate = HasNRVOCandidate; } ReturnStmt *ReturnStmt::Create(const ASTContext &Ctx, SourceLocation RL, Expr *E, const VarDecl *NRVOCandidate) { bool HasNRVOCandidate = NRVOCandidate != nullptr; void *Mem = Ctx.Allocate(totalSizeToAlloc(HasNRVOCandidate), alignof(ReturnStmt)); return new (Mem) ReturnStmt(RL, E, NRVOCandidate); } ReturnStmt *ReturnStmt::CreateEmpty(const ASTContext &Ctx, bool HasNRVOCandidate) { void *Mem = Ctx.Allocate(totalSizeToAlloc(HasNRVOCandidate), alignof(ReturnStmt)); return new (Mem) ReturnStmt(EmptyShell(), HasNRVOCandidate); } // CaseStmt CaseStmt *CaseStmt::Create(const ASTContext &Ctx, Expr *lhs, Expr *rhs, SourceLocation caseLoc, SourceLocation ellipsisLoc, SourceLocation colonLoc) { bool CaseStmtIsGNURange = rhs != nullptr; void *Mem = Ctx.Allocate( totalSizeToAlloc( NumMandatoryStmtPtr + CaseStmtIsGNURange, CaseStmtIsGNURange), alignof(CaseStmt)); return new (Mem) CaseStmt(lhs, rhs, caseLoc, ellipsisLoc, colonLoc); } CaseStmt *CaseStmt::CreateEmpty(const ASTContext &Ctx, bool CaseStmtIsGNURange) { void *Mem = Ctx.Allocate( totalSizeToAlloc( NumMandatoryStmtPtr + CaseStmtIsGNURange, CaseStmtIsGNURange), alignof(CaseStmt)); return new (Mem) CaseStmt(EmptyShell(), CaseStmtIsGNURange); } SEHTryStmt::SEHTryStmt(bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler) : Stmt(SEHTryStmtClass), IsCXXTry(IsCXXTry), TryLoc(TryLoc) { Children[TRY] = TryBlock; Children[HANDLER] = Handler; } SEHTryStmt* SEHTryStmt::Create(const ASTContext &C, bool IsCXXTry, SourceLocation TryLoc, Stmt *TryBlock, Stmt *Handler) { return new(C) SEHTryStmt(IsCXXTry,TryLoc,TryBlock,Handler); } SEHExceptStmt* SEHTryStmt::getExceptHandler() const { return dyn_cast(getHandler()); } SEHFinallyStmt* SEHTryStmt::getFinallyHandler() const { return dyn_cast(getHandler()); } SEHExceptStmt::SEHExceptStmt(SourceLocation Loc, Expr *FilterExpr, Stmt *Block) : Stmt(SEHExceptStmtClass), Loc(Loc) { Children[FILTER_EXPR] = FilterExpr; Children[BLOCK] = Block; } SEHExceptStmt* SEHExceptStmt::Create(const ASTContext &C, SourceLocation Loc, Expr *FilterExpr, Stmt *Block) { return new(C) SEHExceptStmt(Loc,FilterExpr,Block); } SEHFinallyStmt::SEHFinallyStmt(SourceLocation Loc, Stmt *Block) : Stmt(SEHFinallyStmtClass), Loc(Loc), Block(Block) {} SEHFinallyStmt* SEHFinallyStmt::Create(const ASTContext &C, SourceLocation Loc, Stmt *Block) { return new(C)SEHFinallyStmt(Loc,Block); } CapturedStmt::Capture::Capture(SourceLocation Loc, VariableCaptureKind Kind, VarDecl *Var) : VarAndKind(Var, Kind), Loc(Loc) { switch (Kind) { case VCK_This: assert(!Var && "'this' capture cannot have a variable!"); break; case VCK_ByRef: assert(Var && "capturing by reference must have a variable!"); break; case VCK_ByCopy: assert(Var && "capturing by copy must have a variable!"); break; case VCK_VLAType: assert(!Var && "Variable-length array type capture cannot have a variable!"); break; } } CapturedStmt::VariableCaptureKind CapturedStmt::Capture::getCaptureKind() const { return VarAndKind.getInt(); } VarDecl *CapturedStmt::Capture::getCapturedVar() const { assert((capturesVariable() || capturesVariableByCopy()) && "No variable available for 'this' or VAT capture"); return VarAndKind.getPointer(); } CapturedStmt::Capture *CapturedStmt::getStoredCaptures() const { unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1); // Offset of the first Capture object. unsigned FirstCaptureOffset = llvm::alignTo(Size, alignof(Capture)); return reinterpret_cast( reinterpret_cast(const_cast(this)) + FirstCaptureOffset); } CapturedStmt::CapturedStmt(Stmt *S, CapturedRegionKind Kind, ArrayRef Captures, ArrayRef CaptureInits, CapturedDecl *CD, RecordDecl *RD) : Stmt(CapturedStmtClass), NumCaptures(Captures.size()), CapDeclAndKind(CD, Kind), TheRecordDecl(RD) { assert( S && "null captured statement"); assert(CD && "null captured declaration for captured statement"); assert(RD && "null record declaration for captured statement"); // Copy initialization expressions. Stmt **Stored = getStoredStmts(); for (unsigned I = 0, N = NumCaptures; I != N; ++I) *Stored++ = CaptureInits[I]; // Copy the statement being captured. *Stored = S; // Copy all Capture objects. Capture *Buffer = getStoredCaptures(); std::copy(Captures.begin(), Captures.end(), Buffer); } CapturedStmt::CapturedStmt(EmptyShell Empty, unsigned NumCaptures) : Stmt(CapturedStmtClass, Empty), NumCaptures(NumCaptures), CapDeclAndKind(nullptr, CR_Default) { getStoredStmts()[NumCaptures] = nullptr; // Construct default capture objects. Capture *Buffer = getStoredCaptures(); for (unsigned I = 0, N = NumCaptures; I != N; ++I) new (Buffer++) Capture(); } CapturedStmt *CapturedStmt::Create(const ASTContext &Context, Stmt *S, CapturedRegionKind Kind, ArrayRef Captures, ArrayRef CaptureInits, CapturedDecl *CD, RecordDecl *RD) { // The layout is // // ----------------------------------------------------------- // | CapturedStmt, Init, ..., Init, S, Capture, ..., Capture | // ----------------^-------------------^---------------------- // getStoredStmts() getStoredCaptures() // // where S is the statement being captured. // assert(CaptureInits.size() == Captures.size() && "wrong number of arguments"); unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (Captures.size() + 1); if (!Captures.empty()) { // Realign for the following Capture array. Size = llvm::alignTo(Size, alignof(Capture)); Size += sizeof(Capture) * Captures.size(); } void *Mem = Context.Allocate(Size); return new (Mem) CapturedStmt(S, Kind, Captures, CaptureInits, CD, RD); } CapturedStmt *CapturedStmt::CreateDeserialized(const ASTContext &Context, unsigned NumCaptures) { unsigned Size = sizeof(CapturedStmt) + sizeof(Stmt *) * (NumCaptures + 1); if (NumCaptures > 0) { // Realign for the following Capture array. Size = llvm::alignTo(Size, alignof(Capture)); Size += sizeof(Capture) * NumCaptures; } void *Mem = Context.Allocate(Size); return new (Mem) CapturedStmt(EmptyShell(), NumCaptures); } Stmt::child_range CapturedStmt::children() { // Children are captured field initializers. return child_range(getStoredStmts(), getStoredStmts() + NumCaptures); } Stmt::const_child_range CapturedStmt::children() const { return const_child_range(getStoredStmts(), getStoredStmts() + NumCaptures); } CapturedDecl *CapturedStmt::getCapturedDecl() { return CapDeclAndKind.getPointer(); } const CapturedDecl *CapturedStmt::getCapturedDecl() const { return CapDeclAndKind.getPointer(); } /// Set the outlined function declaration. void CapturedStmt::setCapturedDecl(CapturedDecl *D) { assert(D && "null CapturedDecl"); CapDeclAndKind.setPointer(D); } /// Retrieve the captured region kind. CapturedRegionKind CapturedStmt::getCapturedRegionKind() const { return CapDeclAndKind.getInt(); } /// Set the captured region kind. void CapturedStmt::setCapturedRegionKind(CapturedRegionKind Kind) { CapDeclAndKind.setInt(Kind); } bool CapturedStmt::capturesVariable(const VarDecl *Var) const { for (const auto &I : captures()) { if (!I.capturesVariable() && !I.capturesVariableByCopy()) continue; if (I.getCapturedVar()->getCanonicalDecl() == Var->getCanonicalDecl()) return true; } return false; }