//===--- Expr.cpp - Expression AST Node Implementation --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Expr class and subclasses. // //===----------------------------------------------------------------------===// #include "clang/AST/Expr.h" #include "clang/AST/APValue.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/ComputeDependence.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DependenceFlags.h" #include "clang/AST/EvaluatedExprVisitor.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/Mangle.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/StmtVisitor.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Lexer.h" #include "clang/Lex/LiteralSupport.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include using namespace clang; const Expr *Expr::getBestDynamicClassTypeExpr() const { const Expr *E = this; while (true) { E = E->ignoreParenBaseCasts(); // Follow the RHS of a comma operator. if (auto *BO = dyn_cast(E)) { if (BO->getOpcode() == BO_Comma) { E = BO->getRHS(); continue; } } // Step into initializer for materialized temporaries. if (auto *MTE = dyn_cast(E)) { E = MTE->getSubExpr(); continue; } break; } return E; } const CXXRecordDecl *Expr::getBestDynamicClassType() const { const Expr *E = getBestDynamicClassTypeExpr(); QualType DerivedType = E->getType(); if (const PointerType *PTy = DerivedType->getAs()) DerivedType = PTy->getPointeeType(); if (DerivedType->isDependentType()) return nullptr; const RecordType *Ty = DerivedType->castAs(); Decl *D = Ty->getDecl(); return cast(D); } const Expr *Expr::skipRValueSubobjectAdjustments( SmallVectorImpl &CommaLHSs, SmallVectorImpl &Adjustments) const { const Expr *E = this; while (true) { E = E->IgnoreParens(); if (const CastExpr *CE = dyn_cast(E)) { if ((CE->getCastKind() == CK_DerivedToBase || CE->getCastKind() == CK_UncheckedDerivedToBase) && E->getType()->isRecordType()) { E = CE->getSubExpr(); auto *Derived = cast(E->getType()->castAs()->getDecl()); Adjustments.push_back(SubobjectAdjustment(CE, Derived)); continue; } if (CE->getCastKind() == CK_NoOp) { E = CE->getSubExpr(); continue; } } else if (const MemberExpr *ME = dyn_cast(E)) { if (!ME->isArrow()) { assert(ME->getBase()->getType()->isRecordType()); if (FieldDecl *Field = dyn_cast(ME->getMemberDecl())) { if (!Field->isBitField() && !Field->getType()->isReferenceType()) { E = ME->getBase(); Adjustments.push_back(SubobjectAdjustment(Field)); continue; } } } } else if (const BinaryOperator *BO = dyn_cast(E)) { if (BO->getOpcode() == BO_PtrMemD) { assert(BO->getRHS()->isRValue()); E = BO->getLHS(); const MemberPointerType *MPT = BO->getRHS()->getType()->getAs(); Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS())); continue; } else if (BO->getOpcode() == BO_Comma) { CommaLHSs.push_back(BO->getLHS()); E = BO->getRHS(); continue; } } // Nothing changed. break; } return E; } bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { const Expr *E = IgnoreParens(); // If this value has _Bool type, it is obvious 0/1. if (E->getType()->isBooleanType()) return true; // If this is a non-scalar-integer type, we don't care enough to try. if (!E->getType()->isIntegralOrEnumerationType()) return false; if (const UnaryOperator *UO = dyn_cast(E)) { switch (UO->getOpcode()) { case UO_Plus: return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); case UO_LNot: return true; default: return false; } } // Only look through implicit casts. If the user writes // '(int) (a && b)' treat it as an arbitrary int. // FIXME: Should we look through any cast expression in !Semantic mode? if (const ImplicitCastExpr *CE = dyn_cast(E)) return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); if (const BinaryOperator *BO = dyn_cast(E)) { switch (BO->getOpcode()) { default: return false; case BO_LT: // Relational operators. case BO_GT: case BO_LE: case BO_GE: case BO_EQ: // Equality operators. case BO_NE: case BO_LAnd: // AND operator. case BO_LOr: // Logical OR operator. return true; case BO_And: // Bitwise AND operator. case BO_Xor: // Bitwise XOR operator. case BO_Or: // Bitwise OR operator. // Handle things like (x==2)|(y==12). return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && BO->getRHS()->isKnownToHaveBooleanValue(Semantic); case BO_Comma: case BO_Assign: return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); } } if (const ConditionalOperator *CO = dyn_cast(E)) return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); if (isa(E)) return true; if (const auto *OVE = dyn_cast(E)) return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); if (const FieldDecl *FD = E->getSourceBitField()) if (!Semantic && FD->getType()->isUnsignedIntegerType() && !FD->getBitWidth()->isValueDependent() && FD->getBitWidthValue(FD->getASTContext()) == 1) return true; return false; } // Amusing macro metaprogramming hack: check whether a class provides // a more specific implementation of getExprLoc(). // // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. namespace { /// This implementation is used when a class provides a custom /// implementation of getExprLoc. template SourceLocation getExprLocImpl(const Expr *expr, SourceLocation (T::*v)() const) { return static_cast(expr)->getExprLoc(); } /// This implementation is used when a class doesn't provide /// a custom implementation of getExprLoc. Overload resolution /// should pick it over the implementation above because it's /// more specialized according to function template partial ordering. template SourceLocation getExprLocImpl(const Expr *expr, SourceLocation (Expr::*v)() const) { return static_cast(expr)->getBeginLoc(); } } SourceLocation Expr::getExprLoc() const { switch (getStmtClass()) { case Stmt::NoStmtClass: llvm_unreachable("statement without class"); #define ABSTRACT_STMT(type) #define STMT(type, base) \ case Stmt::type##Class: break; #define EXPR(type, base) \ case Stmt::type##Class: return getExprLocImpl(this, &type::getExprLoc); #include "clang/AST/StmtNodes.inc" } llvm_unreachable("unknown expression kind"); } //===----------------------------------------------------------------------===// // Primary Expressions. //===----------------------------------------------------------------------===// static void AssertResultStorageKind(ConstantExpr::ResultStorageKind Kind) { assert((Kind == ConstantExpr::RSK_APValue || Kind == ConstantExpr::RSK_Int64 || Kind == ConstantExpr::RSK_None) && "Invalid StorageKind Value"); (void)Kind; } ConstantExpr::ResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) { switch (Value.getKind()) { case APValue::None: case APValue::Indeterminate: return ConstantExpr::RSK_None; case APValue::Int: if (!Value.getInt().needsCleanup()) return ConstantExpr::RSK_Int64; LLVM_FALLTHROUGH; default: return ConstantExpr::RSK_APValue; } } ConstantExpr::ResultStorageKind ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) return ConstantExpr::RSK_Int64; return ConstantExpr::RSK_APValue; } ConstantExpr::ConstantExpr(Expr *SubExpr, ResultStorageKind StorageKind, bool IsImmediateInvocation) : FullExpr(ConstantExprClass, SubExpr) { ConstantExprBits.ResultKind = StorageKind; ConstantExprBits.APValueKind = APValue::None; ConstantExprBits.IsUnsigned = false; ConstantExprBits.BitWidth = 0; ConstantExprBits.HasCleanup = false; ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; if (StorageKind == ConstantExpr::RSK_APValue) ::new (getTrailingObjects()) APValue(); } ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, ResultStorageKind StorageKind, bool IsImmediateInvocation) { assert(!isa(E)); AssertResultStorageKind(StorageKind); unsigned Size = totalSizeToAlloc( StorageKind == ConstantExpr::RSK_APValue, StorageKind == ConstantExpr::RSK_Int64); void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); } ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, const APValue &Result) { ResultStorageKind StorageKind = getStorageKind(Result); ConstantExpr *Self = Create(Context, E, StorageKind); Self->SetResult(Result, Context); return Self; } ConstantExpr::ConstantExpr(EmptyShell Empty, ResultStorageKind StorageKind) : FullExpr(ConstantExprClass, Empty) { ConstantExprBits.ResultKind = StorageKind; if (StorageKind == ConstantExpr::RSK_APValue) ::new (getTrailingObjects()) APValue(); } ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, ResultStorageKind StorageKind) { AssertResultStorageKind(StorageKind); unsigned Size = totalSizeToAlloc( StorageKind == ConstantExpr::RSK_APValue, StorageKind == ConstantExpr::RSK_Int64); void *Mem = Context.Allocate(Size, alignof(ConstantExpr)); return new (Mem) ConstantExpr(EmptyShell(), StorageKind); } void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && "Invalid storage for this value kind"); ConstantExprBits.APValueKind = Value.getKind(); switch (ConstantExprBits.ResultKind) { case RSK_None: return; case RSK_Int64: Int64Result() = *Value.getInt().getRawData(); ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); return; case RSK_APValue: if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { ConstantExprBits.HasCleanup = true; Context.addDestruction(&APValueResult()); } APValueResult() = std::move(Value); return; } llvm_unreachable("Invalid ResultKind Bits"); } llvm::APSInt ConstantExpr::getResultAsAPSInt() const { switch (ConstantExprBits.ResultKind) { case ConstantExpr::RSK_APValue: return APValueResult().getInt(); case ConstantExpr::RSK_Int64: return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), ConstantExprBits.IsUnsigned); default: llvm_unreachable("invalid Accessor"); } } APValue ConstantExpr::getAPValueResult() const { assert(hasAPValueResult()); switch (ConstantExprBits.ResultKind) { case ConstantExpr::RSK_APValue: return APValueResult(); case ConstantExpr::RSK_Int64: return APValue( llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), ConstantExprBits.IsUnsigned)); case ConstantExpr::RSK_None: return APValue(); } llvm_unreachable("invalid ResultKind"); } DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T, ExprValueKind VK, SourceLocation L, const DeclarationNameLoc &LocInfo, NonOdrUseReason NOUR) : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { DeclRefExprBits.HasQualifier = false; DeclRefExprBits.HasTemplateKWAndArgsInfo = false; DeclRefExprBits.HasFoundDecl = false; DeclRefExprBits.HadMultipleCandidates = false; DeclRefExprBits.RefersToEnclosingVariableOrCapture = RefersToEnclosingVariableOrCapture; DeclRefExprBits.NonOdrUseReason = NOUR; DeclRefExprBits.Loc = L; setDependence(computeDependence(this, Ctx)); } DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, QualType T, ExprValueKind VK, NonOdrUseReason NOUR) : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(NameInfo.getInfo()) { DeclRefExprBits.Loc = NameInfo.getLoc(); DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; if (QualifierLoc) new (getTrailingObjects()) NestedNameSpecifierLoc(QualifierLoc); DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; if (FoundD) *getTrailingObjects() = FoundD; DeclRefExprBits.HasTemplateKWAndArgsInfo = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; DeclRefExprBits.RefersToEnclosingVariableOrCapture = RefersToEnclosingVariableOrCapture; DeclRefExprBits.NonOdrUseReason = NOUR; if (TemplateArgs) { auto Deps = TemplateArgumentDependence::None; getTrailingObjects()->initializeFrom( TemplateKWLoc, *TemplateArgs, getTrailingObjects(), Deps); assert(!(Deps & TemplateArgumentDependence::Dependent) && "built a DeclRefExpr with dependent template args"); } else if (TemplateKWLoc.isValid()) { getTrailingObjects()->initializeFrom( TemplateKWLoc); } DeclRefExprBits.HadMultipleCandidates = 0; setDependence(computeDependence(this, Ctx)); } DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc, QualType T, ExprValueKind VK, NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, NonOdrUseReason NOUR) { return Create(Context, QualifierLoc, TemplateKWLoc, D, RefersToEnclosingVariableOrCapture, DeclarationNameInfo(D->getDeclName(), NameLoc), T, VK, FoundD, TemplateArgs, NOUR); } DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *D, bool RefersToEnclosingVariableOrCapture, const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK, NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, NonOdrUseReason NOUR) { // Filter out cases where the found Decl is the same as the value refenenced. if (D == FoundD) FoundD = nullptr; bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); std::size_t Size = totalSizeToAlloc( QualifierLoc ? 1 : 0, FoundD ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, TemplateArgs ? TemplateArgs->size() : 0); void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, RefersToEnclosingVariableOrCapture, NameInfo, FoundD, TemplateArgs, T, VK, NOUR); } DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs) { assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); std::size_t Size = totalSizeToAlloc( HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo, NumTemplateArgs); void *Mem = Context.Allocate(Size, alignof(DeclRefExpr)); return new (Mem) DeclRefExpr(EmptyShell()); } SourceLocation DeclRefExpr::getBeginLoc() const { if (hasQualifier()) return getQualifierLoc().getBeginLoc(); return getNameInfo().getBeginLoc(); } SourceLocation DeclRefExpr::getEndLoc() const { if (hasExplicitTemplateArgs()) return getRAngleLoc(); return getNameInfo().getEndLoc(); } PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentKind IK, StringLiteral *SL) : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { PredefinedExprBits.Kind = IK; assert((getIdentKind() == IK) && "IdentKind do not fit in PredefinedExprBitfields!"); bool HasFunctionName = SL != nullptr; PredefinedExprBits.HasFunctionName = HasFunctionName; PredefinedExprBits.Loc = L; if (HasFunctionName) setFunctionName(SL); setDependence(computeDependence(this)); } PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FnTy, IdentKind IK, TypeSourceInfo *Info) : Expr(PredefinedExprClass, FnTy, VK_LValue, OK_Ordinary) { PredefinedExprBits.Kind = IK; assert((getIdentKind() == IK) && "IdentKind do not fit in PredefinedExprBitFields!"); assert(IK == UniqueStableNameType && "Constructor only valid with UniqueStableNameType"); PredefinedExprBits.HasFunctionName = false; PredefinedExprBits.Loc = L; setTypeSourceInfo(Info); setDependence(computeDependence(this)); } PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FnTy, IdentKind IK, Expr *E) : Expr(PredefinedExprClass, FnTy, VK_LValue, OK_Ordinary) { PredefinedExprBits.Kind = IK; assert((getIdentKind() == IK) && "IdentKind do not fit in PredefinedExprBitFields!"); assert(IK == UniqueStableNameExpr && "Constructor only valid with UniqueStableNameExpr"); PredefinedExprBits.HasFunctionName = false; PredefinedExprBits.Loc = L; setExpr(E); setDependence(computeDependence(this)); } PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) : Expr(PredefinedExprClass, Empty) { PredefinedExprBits.HasFunctionName = HasFunctionName; } PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, QualType FNTy, IdentKind IK, StringLiteral *SL) { bool HasFunctionName = SL != nullptr; void *Mem = Ctx.Allocate( totalSizeToAlloc(HasFunctionName, 0, 0), alignof(PredefinedExpr)); return new (Mem) PredefinedExpr(L, FNTy, IK, SL); } PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, QualType FNTy, IdentKind IK, StringLiteral *SL, TypeSourceInfo *Info) { assert(IK == UniqueStableNameType && "Only valid with UniqueStableNameType"); bool HasFunctionName = SL != nullptr; void *Mem = Ctx.Allocate(totalSizeToAlloc( HasFunctionName, 0, !HasFunctionName), alignof(PredefinedExpr)); if (HasFunctionName) return new (Mem) PredefinedExpr(L, FNTy, IK, SL); return new (Mem) PredefinedExpr(L, FNTy, IK, Info); } PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, QualType FNTy, IdentKind IK, StringLiteral *SL, Expr *E) { assert(IK == UniqueStableNameExpr && "Only valid with UniqueStableNameExpr"); bool HasFunctionName = SL != nullptr; void *Mem = Ctx.Allocate(totalSizeToAlloc( HasFunctionName, !HasFunctionName, 0), alignof(PredefinedExpr)); if (HasFunctionName) return new (Mem) PredefinedExpr(L, FNTy, IK, SL); return new (Mem) PredefinedExpr(L, FNTy, IK, E); } PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, bool HasFunctionName) { void *Mem = Ctx.Allocate( totalSizeToAlloc(HasFunctionName, 0, 0), alignof(PredefinedExpr)); return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); } StringRef PredefinedExpr::getIdentKindName(PredefinedExpr::IdentKind IK) { switch (IK) { case Func: return "__func__"; case Function: return "__FUNCTION__"; case FuncDName: return "__FUNCDNAME__"; case LFunction: return "L__FUNCTION__"; case PrettyFunction: return "__PRETTY_FUNCTION__"; case FuncSig: return "__FUNCSIG__"; case LFuncSig: return "L__FUNCSIG__"; case UniqueStableNameType: case UniqueStableNameExpr: return "__builtin_unique_stable_name"; case PrettyFunctionNoVirtual: break; } llvm_unreachable("Unknown ident kind for PredefinedExpr"); } std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentKind IK, QualType Ty) { std::unique_ptr Ctx{ItaniumMangleContext::create( Context, Context.getDiagnostics(), /*IsUniqueNameMangler*/ true)}; Ty = Ty.getCanonicalType(); SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); Ctx->mangleTypeName(Ty, Out); return std::string(Buffer.str()); } // FIXME: Maybe this should use DeclPrinter with a special "print predefined // expr" policy instead. std::string PredefinedExpr::ComputeName(IdentKind IK, const Decl *CurrentDecl) { ASTContext &Context = CurrentDecl->getASTContext(); if (IK == PredefinedExpr::FuncDName) { if (const NamedDecl *ND = dyn_cast(CurrentDecl)) { std::unique_ptr MC; MC.reset(Context.createMangleContext()); if (MC->shouldMangleDeclName(ND)) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); GlobalDecl GD; if (const CXXConstructorDecl *CD = dyn_cast(ND)) GD = GlobalDecl(CD, Ctor_Base); else if (const CXXDestructorDecl *DD = dyn_cast(ND)) GD = GlobalDecl(DD, Dtor_Base); else if (ND->hasAttr()) GD = GlobalDecl(cast(ND)); else GD = GlobalDecl(ND); MC->mangleName(GD, Out); if (!Buffer.empty() && Buffer.front() == '\01') return std::string(Buffer.substr(1)); return std::string(Buffer.str()); } else return std::string(ND->getIdentifier()->getName()); } return ""; } if (isa(CurrentDecl)) { // For blocks we only emit something if it is enclosed in a function // For top-level block we'd like to include the name of variable, but we // don't have it at this point. auto DC = CurrentDecl->getDeclContext(); if (DC->isFileContext()) return ""; SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); if (auto *DCBlock = dyn_cast(DC)) // For nested blocks, propagate up to the parent. Out << ComputeName(IK, DCBlock); else if (auto *DCDecl = dyn_cast(DC)) Out << ComputeName(IK, DCDecl) << "_block_invoke"; return std::string(Out.str()); } if (const FunctionDecl *FD = dyn_cast(CurrentDecl)) { if (IK != PrettyFunction && IK != PrettyFunctionNoVirtual && IK != FuncSig && IK != LFuncSig) return FD->getNameAsString(); SmallString<256> Name; llvm::raw_svector_ostream Out(Name); if (const CXXMethodDecl *MD = dyn_cast(FD)) { if (MD->isVirtual() && IK != PrettyFunctionNoVirtual) Out << "virtual "; if (MD->isStatic()) Out << "static "; } PrintingPolicy Policy(Context.getLangOpts()); std::string Proto; llvm::raw_string_ostream POut(Proto); const FunctionDecl *Decl = FD; if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) Decl = Pattern; const FunctionType *AFT = Decl->getType()->getAs(); const FunctionProtoType *FT = nullptr; if (FD->hasWrittenPrototype()) FT = dyn_cast(AFT); if (IK == FuncSig || IK == LFuncSig) { switch (AFT->getCallConv()) { case CC_C: POut << "__cdecl "; break; case CC_X86StdCall: POut << "__stdcall "; break; case CC_X86FastCall: POut << "__fastcall "; break; case CC_X86ThisCall: POut << "__thiscall "; break; case CC_X86VectorCall: POut << "__vectorcall "; break; case CC_X86RegCall: POut << "__regcall "; break; // Only bother printing the conventions that MSVC knows about. default: break; } } FD->printQualifiedName(POut, Policy); POut << "("; if (FT) { for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { if (i) POut << ", "; POut << Decl->getParamDecl(i)->getType().stream(Policy); } if (FT->isVariadic()) { if (FD->getNumParams()) POut << ", "; POut << "..."; } else if ((IK == FuncSig || IK == LFuncSig || !Context.getLangOpts().CPlusPlus) && !Decl->getNumParams()) { POut << "void"; } } POut << ")"; if (const CXXMethodDecl *MD = dyn_cast(FD)) { assert(FT && "We must have a written prototype in this case."); if (FT->isConst()) POut << " const"; if (FT->isVolatile()) POut << " volatile"; RefQualifierKind Ref = MD->getRefQualifier(); if (Ref == RQ_LValue) POut << " &"; else if (Ref == RQ_RValue) POut << " &&"; } typedef SmallVector SpecsTy; SpecsTy Specs; const DeclContext *Ctx = FD->getDeclContext(); while (Ctx && isa(Ctx)) { const ClassTemplateSpecializationDecl *Spec = dyn_cast(Ctx); if (Spec && !Spec->isExplicitSpecialization()) Specs.push_back(Spec); Ctx = Ctx->getParent(); } std::string TemplateParams; llvm::raw_string_ostream TOut(TemplateParams); for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend(); I != E; ++I) { const TemplateParameterList *Params = (*I)->getSpecializedTemplate()->getTemplateParameters(); const TemplateArgumentList &Args = (*I)->getTemplateArgs(); assert(Params->size() == Args.size()); for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { StringRef Param = Params->getParam(i)->getName(); if (Param.empty()) continue; TOut << Param << " = "; Args.get(i).print(Policy, TOut); TOut << ", "; } } FunctionTemplateSpecializationInfo *FSI = FD->getTemplateSpecializationInfo(); if (FSI && !FSI->isExplicitSpecialization()) { const TemplateParameterList* Params = FSI->getTemplate()->getTemplateParameters(); const TemplateArgumentList* Args = FSI->TemplateArguments; assert(Params->size() == Args->size()); for (unsigned i = 0, e = Params->size(); i != e; ++i) { StringRef Param = Params->getParam(i)->getName(); if (Param.empty()) continue; TOut << Param << " = "; Args->get(i).print(Policy, TOut); TOut << ", "; } } TOut.flush(); if (!TemplateParams.empty()) { // remove the trailing comma and space TemplateParams.resize(TemplateParams.size() - 2); POut << " [" << TemplateParams << "]"; } POut.flush(); // Print "auto" for all deduced return types. This includes C++1y return // type deduction and lambdas. For trailing return types resolve the // decltype expression. Otherwise print the real type when this is // not a constructor or destructor. if (isa(FD) && cast(FD)->getParent()->isLambda()) Proto = "auto " + Proto; else if (FT && FT->getReturnType()->getAs()) FT->getReturnType() ->getAs() ->getUnderlyingType() .getAsStringInternal(Proto, Policy); else if (!isa(FD) && !isa(FD)) AFT->getReturnType().getAsStringInternal(Proto, Policy); Out << Proto; return std::string(Name); } if (const CapturedDecl *CD = dyn_cast(CurrentDecl)) { for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) // Skip to its enclosing function or method, but not its enclosing // CapturedDecl. if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { const Decl *D = Decl::castFromDeclContext(DC); return ComputeName(IK, D); } llvm_unreachable("CapturedDecl not inside a function or method"); } if (const ObjCMethodDecl *MD = dyn_cast(CurrentDecl)) { SmallString<256> Name; llvm::raw_svector_ostream Out(Name); Out << (MD->isInstanceMethod() ? '-' : '+'); Out << '['; // For incorrect code, there might not be an ObjCInterfaceDecl. Do // a null check to avoid a crash. if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) Out << *ID; if (const ObjCCategoryImplDecl *CID = dyn_cast(MD->getDeclContext())) Out << '(' << *CID << ')'; Out << ' '; MD->getSelector().print(Out); Out << ']'; return std::string(Name); } if (isa(CurrentDecl) && IK == PrettyFunction) { // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. return "top level"; } return ""; } void APNumericStorage::setIntValue(const ASTContext &C, const llvm::APInt &Val) { if (hasAllocation()) C.Deallocate(pVal); BitWidth = Val.getBitWidth(); unsigned NumWords = Val.getNumWords(); const uint64_t* Words = Val.getRawData(); if (NumWords > 1) { pVal = new (C) uint64_t[NumWords]; std::copy(Words, Words + NumWords, pVal); } else if (NumWords == 1) VAL = Words[0]; else VAL = 0; } IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l) : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l) { assert(type->isIntegerType() && "Illegal type in IntegerLiteral"); assert(V.getBitWidth() == C.getIntWidth(type) && "Integer type is not the correct size for constant."); setValue(C, V); setDependence(ExprDependence::None); } IntegerLiteral * IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l) { return new (C) IntegerLiteral(C, V, type, l); } IntegerLiteral * IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { return new (C) IntegerLiteral(Empty); } FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l, unsigned Scale) : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary), Loc(l), Scale(Scale) { assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral"); assert(V.getBitWidth() == C.getTypeInfo(type).Width && "Fixed point type is not the correct size for constant."); setValue(C, V); setDependence(ExprDependence::None); } FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, const llvm::APInt &V, QualType type, SourceLocation l, unsigned Scale) { return new (C) FixedPointLiteral(C, V, type, l, Scale); } FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, EmptyShell Empty) { return new (C) FixedPointLiteral(Empty); } std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { // Currently the longest decimal number that can be printed is the max for an // unsigned long _Accum: 4294967295.99999999976716935634613037109375 // which is 43 characters. SmallString<64> S; FixedPointValueToString( S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale); return std::string(S.str()); } FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L) : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary), Loc(L) { setSemantics(V.getSemantics()); FloatingLiteralBits.IsExact = isexact; setValue(C, V); setDependence(ExprDependence::None); } FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) : Expr(FloatingLiteralClass, Empty) { setRawSemantics(llvm::APFloatBase::S_IEEEhalf); FloatingLiteralBits.IsExact = false; } FloatingLiteral * FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, bool isexact, QualType Type, SourceLocation L) { return new (C) FloatingLiteral(C, V, isexact, Type, L); } FloatingLiteral * FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { return new (C) FloatingLiteral(C, Empty); } /// getValueAsApproximateDouble - This returns the value as an inaccurate /// double. Note that this may cause loss of precision, but is useful for /// debugging dumps, etc. double FloatingLiteral::getValueAsApproximateDouble() const { llvm::APFloat V = getValue(); bool ignored; V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven, &ignored); return V.convertToDouble(); } unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, StringKind SK) { unsigned CharByteWidth = 0; switch (SK) { case Ascii: case UTF8: CharByteWidth = Target.getCharWidth(); break; case Wide: CharByteWidth = Target.getWCharWidth(); break; case UTF16: CharByteWidth = Target.getChar16Width(); break; case UTF32: CharByteWidth = Target.getChar32Width(); break; } assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); CharByteWidth /= 8; assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && "The only supported character byte widths are 1,2 and 4!"); return CharByteWidth; } StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, StringKind Kind, bool Pascal, QualType Ty, const SourceLocation *Loc, unsigned NumConcatenated) : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { assert(Ctx.getAsConstantArrayType(Ty) && "StringLiteral must be of constant array type!"); unsigned CharByteWidth = mapCharByteWidth(Ctx.getTargetInfo(), Kind); unsigned ByteLength = Str.size(); assert((ByteLength % CharByteWidth == 0) && "The size of the data must be a multiple of CharByteWidth!"); // Avoid the expensive division. The compiler should be able to figure it // out by itself. However as of clang 7, even with the appropriate // llvm_unreachable added just here, it is not able to do so. unsigned Length; switch (CharByteWidth) { case 1: Length = ByteLength; break; case 2: Length = ByteLength / 2; break; case 4: Length = ByteLength / 4; break; default: llvm_unreachable("Unsupported character width!"); } StringLiteralBits.Kind = Kind; StringLiteralBits.CharByteWidth = CharByteWidth; StringLiteralBits.IsPascal = Pascal; StringLiteralBits.NumConcatenated = NumConcatenated; *getTrailingObjects() = Length; // Initialize the trailing array of SourceLocation. // This is safe since SourceLocation is POD-like. std::memcpy(getTrailingObjects(), Loc, NumConcatenated * sizeof(SourceLocation)); // Initialize the trailing array of char holding the string data. std::memcpy(getTrailingObjects(), Str.data(), ByteLength); setDependence(ExprDependence::None); } StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, unsigned Length, unsigned CharByteWidth) : Expr(StringLiteralClass, Empty) { StringLiteralBits.CharByteWidth = CharByteWidth; StringLiteralBits.NumConcatenated = NumConcatenated; *getTrailingObjects() = Length; } StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, StringKind Kind, bool Pascal, QualType Ty, const SourceLocation *Loc, unsigned NumConcatenated) { void *Mem = Ctx.Allocate(totalSizeToAlloc( 1, NumConcatenated, Str.size()), alignof(StringLiteral)); return new (Mem) StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated); } StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, unsigned NumConcatenated, unsigned Length, unsigned CharByteWidth) { void *Mem = Ctx.Allocate(totalSizeToAlloc( 1, NumConcatenated, Length * CharByteWidth), alignof(StringLiteral)); return new (Mem) StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); } void StringLiteral::outputString(raw_ostream &OS) const { switch (getKind()) { case Ascii: break; // no prefix. case Wide: OS << 'L'; break; case UTF8: OS << "u8"; break; case UTF16: OS << 'u'; break; case UTF32: OS << 'U'; break; } OS << '"'; static const char Hex[] = "0123456789ABCDEF"; unsigned LastSlashX = getLength(); for (unsigned I = 0, N = getLength(); I != N; ++I) { switch (uint32_t Char = getCodeUnit(I)) { default: // FIXME: Convert UTF-8 back to codepoints before rendering. // Convert UTF-16 surrogate pairs back to codepoints before rendering. // Leave invalid surrogates alone; we'll use \x for those. if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && Char <= 0xdbff) { uint32_t Trail = getCodeUnit(I + 1); if (Trail >= 0xdc00 && Trail <= 0xdfff) { Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); ++I; } } if (Char > 0xff) { // If this is a wide string, output characters over 0xff using \x // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a // codepoint: use \x escapes for invalid codepoints. if (getKind() == Wide || (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { // FIXME: Is this the best way to print wchar_t? OS << "\\x"; int Shift = 28; while ((Char >> Shift) == 0) Shift -= 4; for (/**/; Shift >= 0; Shift -= 4) OS << Hex[(Char >> Shift) & 15]; LastSlashX = I; break; } if (Char > 0xffff) OS << "\\U00" << Hex[(Char >> 20) & 15] << Hex[(Char >> 16) & 15]; else OS << "\\u"; OS << Hex[(Char >> 12) & 15] << Hex[(Char >> 8) & 15] << Hex[(Char >> 4) & 15] << Hex[(Char >> 0) & 15]; break; } // If we used \x... for the previous character, and this character is a // hexadecimal digit, prevent it being slurped as part of the \x. if (LastSlashX + 1 == I) { switch (Char) { case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': OS << "\"\""; } } assert(Char <= 0xff && "Characters above 0xff should already have been handled."); if (isPrintable(Char)) OS << (char)Char; else // Output anything hard as an octal escape. OS << '\\' << (char)('0' + ((Char >> 6) & 7)) << (char)('0' + ((Char >> 3) & 7)) << (char)('0' + ((Char >> 0) & 7)); break; // Handle some common non-printable cases to make dumps prettier. case '\\': OS << "\\\\"; break; case '"': OS << "\\\""; break; case '\a': OS << "\\a"; break; case '\b': OS << "\\b"; break; case '\f': OS << "\\f"; break; case '\n': OS << "\\n"; break; case '\r': OS << "\\r"; break; case '\t': OS << "\\t"; break; case '\v': OS << "\\v"; break; } } OS << '"'; } /// getLocationOfByte - Return a source location that points to the specified /// byte of this string literal. /// /// Strings are amazingly complex. They can be formed from multiple tokens and /// can have escape sequences in them in addition to the usual trigraph and /// escaped newline business. This routine handles this complexity. /// /// The *StartToken sets the first token to be searched in this function and /// the *StartTokenByteOffset is the byte offset of the first token. Before /// returning, it updates the *StartToken to the TokNo of the token being found /// and sets *StartTokenByteOffset to the byte offset of the token in the /// string. /// Using these two parameters can reduce the time complexity from O(n^2) to /// O(n) if one wants to get the location of byte for all the tokens in a /// string. /// SourceLocation StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, const TargetInfo &Target, unsigned *StartToken, unsigned *StartTokenByteOffset) const { assert((getKind() == StringLiteral::Ascii || getKind() == StringLiteral::UTF8) && "Only narrow string literals are currently supported"); // Loop over all of the tokens in this string until we find the one that // contains the byte we're looking for. unsigned TokNo = 0; unsigned StringOffset = 0; if (StartToken) TokNo = *StartToken; if (StartTokenByteOffset) { StringOffset = *StartTokenByteOffset; ByteNo -= StringOffset; } while (1) { assert(TokNo < getNumConcatenated() && "Invalid byte number!"); SourceLocation StrTokLoc = getStrTokenLoc(TokNo); // Get the spelling of the string so that we can get the data that makes up // the string literal, not the identifier for the macro it is potentially // expanded through. SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc); // Re-lex the token to get its length and original spelling. std::pair LocInfo = SM.getDecomposedLoc(StrTokSpellingLoc); bool Invalid = false; StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); if (Invalid) { if (StartTokenByteOffset != nullptr) *StartTokenByteOffset = StringOffset; if (StartToken != nullptr) *StartToken = TokNo; return StrTokSpellingLoc; } const char *StrData = Buffer.data()+LocInfo.second; // Create a lexer starting at the beginning of this token. Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features, Buffer.begin(), StrData, Buffer.end()); Token TheTok; TheLexer.LexFromRawLexer(TheTok); // Use the StringLiteralParser to compute the length of the string in bytes. StringLiteralParser SLP(TheTok, SM, Features, Target); unsigned TokNumBytes = SLP.GetStringLength(); // If the byte is in this token, return the location of the byte. if (ByteNo < TokNumBytes || (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); // Now that we know the offset of the token in the spelling, use the // preprocessor to get the offset in the original source. if (StartTokenByteOffset != nullptr) *StartTokenByteOffset = StringOffset; if (StartToken != nullptr) *StartToken = TokNo; return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features); } // Move to the next string token. StringOffset += TokNumBytes; ++TokNo; ByteNo -= TokNumBytes; } } /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it /// corresponds to, e.g. "sizeof" or "[pre]++". StringRef UnaryOperator::getOpcodeStr(Opcode Op) { switch (Op) { #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; #include "clang/AST/OperationKinds.def" } llvm_unreachable("Unknown unary operator"); } UnaryOperatorKind UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { switch (OO) { default: llvm_unreachable("No unary operator for overloaded function"); case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; case OO_Amp: return UO_AddrOf; case OO_Star: return UO_Deref; case OO_Plus: return UO_Plus; case OO_Minus: return UO_Minus; case OO_Tilde: return UO_Not; case OO_Exclaim: return UO_LNot; case OO_Coawait: return UO_Coawait; } } OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { switch (Opc) { case UO_PostInc: case UO_PreInc: return OO_PlusPlus; case UO_PostDec: case UO_PreDec: return OO_MinusMinus; case UO_AddrOf: return OO_Amp; case UO_Deref: return OO_Star; case UO_Plus: return OO_Plus; case UO_Minus: return OO_Minus; case UO_Not: return OO_Tilde; case UO_LNot: return OO_Exclaim; case UO_Coawait: return OO_Coawait; default: return OO_None; } } //===----------------------------------------------------------------------===// // Postfix Operators. //===----------------------------------------------------------------------===// CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef PreArgs, ArrayRef Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, unsigned MinNumArgs, ADLCallKind UsesADL) : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { NumArgs = std::max(Args.size(), MinNumArgs); unsigned NumPreArgs = PreArgs.size(); CallExprBits.NumPreArgs = NumPreArgs; assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && "OffsetToTrailingObjects overflow!"); CallExprBits.UsesADL = static_cast(UsesADL); setCallee(Fn); for (unsigned I = 0; I != NumPreArgs; ++I) setPreArg(I, PreArgs[I]); for (unsigned I = 0; I != Args.size(); ++I) setArg(I, Args[I]); for (unsigned I = Args.size(); I != NumArgs; ++I) setArg(I, nullptr); setDependence(computeDependence(this, PreArgs)); } CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, EmptyShell Empty) : Expr(SC, Empty), NumArgs(NumArgs) { CallExprBits.NumPreArgs = NumPreArgs; assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!"); unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC); CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects; assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) && "OffsetToTrailingObjects overflow!"); } CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, ArrayRef Args, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, unsigned MinNumArgs, ADLCallKind UsesADL) { unsigned NumArgs = std::max(Args.size(), MinNumArgs); unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs); void *Mem = Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, RParenLoc, MinNumArgs, UsesADL); } CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty, ExprValueKind VK, SourceLocation RParenLoc, ADLCallKind UsesADL) { assert(!(reinterpret_cast(Mem) % alignof(CallExpr)) && "Misaligned memory in CallExpr::CreateTemporary!"); return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty, VK, RParenLoc, /*MinNumArgs=*/0, UsesADL); } CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, EmptyShell Empty) { unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs); void *Mem = Ctx.Allocate(sizeof(CallExpr) + SizeOfTrailingObjects, alignof(CallExpr)); return new (Mem) CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, Empty); } unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) { switch (SC) { case CallExprClass: return sizeof(CallExpr); case CXXOperatorCallExprClass: return sizeof(CXXOperatorCallExpr); case CXXMemberCallExprClass: return sizeof(CXXMemberCallExpr); case UserDefinedLiteralClass: return sizeof(UserDefinedLiteral); case CUDAKernelCallExprClass: return sizeof(CUDAKernelCallExpr); default: llvm_unreachable("unexpected class deriving from CallExpr!"); } } Decl *Expr::getReferencedDeclOfCallee() { Expr *CEE = IgnoreParenImpCasts(); while (SubstNonTypeTemplateParmExpr *NTTP = dyn_cast(CEE)) { CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); } // If we're calling a dereference, look at the pointer instead. while (true) { if (BinaryOperator *BO = dyn_cast(CEE)) { if (BO->isPtrMemOp()) { CEE = BO->getRHS()->IgnoreParenImpCasts(); continue; } } else if (UnaryOperator *UO = dyn_cast(CEE)) { if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Plus) { CEE = UO->getSubExpr()->IgnoreParenImpCasts(); continue; } } break; } if (DeclRefExpr *DRE = dyn_cast(CEE)) return DRE->getDecl(); if (MemberExpr *ME = dyn_cast(CEE)) return ME->getMemberDecl(); if (auto *BE = dyn_cast(CEE)) return BE->getBlockDecl(); return nullptr; } /// If this is a call to a builtin, return the builtin ID. If not, return 0. unsigned CallExpr::getBuiltinCallee() const { auto *FDecl = dyn_cast_or_null(getCallee()->getReferencedDeclOfCallee()); return FDecl ? FDecl->getBuiltinID() : 0; } bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { if (unsigned BI = getBuiltinCallee()) return Ctx.BuiltinInfo.isUnevaluated(BI); return false; } QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { const Expr *Callee = getCallee(); QualType CalleeType = Callee->getType(); if (const auto *FnTypePtr = CalleeType->getAs()) { CalleeType = FnTypePtr->getPointeeType(); } else if (const auto *BPT = CalleeType->getAs()) { CalleeType = BPT->getPointeeType(); } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) { if (isa(Callee->IgnoreParens())) return Ctx.VoidTy; // This should never be overloaded and so should never return null. CalleeType = Expr::findBoundMemberType(Callee); } const FunctionType *FnType = CalleeType->castAs(); return FnType->getReturnType(); } const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { // If the return type is a struct, union, or enum that is marked nodiscard, // then return the return type attribute. if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) if (const auto *A = TD->getAttr()) return A; // Otherwise, see if the callee is marked nodiscard and return that attribute // instead. const Decl *D = getCalleeDecl(); return D ? D->getAttr() : nullptr; } SourceLocation CallExpr::getBeginLoc() const { if (isa(this)) return cast(this)->getBeginLoc(); SourceLocation begin = getCallee()->getBeginLoc(); if (begin.isInvalid() && getNumArgs() > 0 && getArg(0)) begin = getArg(0)->getBeginLoc(); return begin; } SourceLocation CallExpr::getEndLoc() const { if (isa(this)) return cast(this)->getEndLoc(); SourceLocation end = getRParenLoc(); if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1)) end = getArg(getNumArgs() - 1)->getEndLoc(); return end; } OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, ArrayRef comps, ArrayRef exprs, SourceLocation RParenLoc) { void *Mem = C.Allocate( totalSizeToAlloc(comps.size(), exprs.size())); return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, RParenLoc); } OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, unsigned numComps, unsigned numExprs) { void *Mem = C.Allocate(totalSizeToAlloc(numComps, numExprs)); return new (Mem) OffsetOfExpr(numComps, numExprs); } OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, SourceLocation OperatorLoc, TypeSourceInfo *tsi, ArrayRef comps, ArrayRef exprs, SourceLocation RParenLoc) : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary), OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), NumComps(comps.size()), NumExprs(exprs.size()) { for (unsigned i = 0; i != comps.size(); ++i) setComponent(i, comps[i]); for (unsigned i = 0; i != exprs.size(); ++i) setIndexExpr(i, exprs[i]); setDependence(computeDependence(this)); } IdentifierInfo *OffsetOfNode::getFieldName() const { assert(getKind() == Field || getKind() == Identifier); if (getKind() == Field) return getField()->getIdentifier(); return reinterpret_cast (Data & ~(uintptr_t)Mask); } UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, SourceLocation op, SourceLocation rp) : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary), OpLoc(op), RParenLoc(rp) { assert(ExprKind <= UETT_Last && "invalid enum value!"); UnaryExprOrTypeTraitExprBits.Kind = ExprKind; assert(static_cast(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && "UnaryExprOrTypeTraitExprBits.Kind overflow!"); UnaryExprOrTypeTraitExprBits.IsType = false; Argument.Ex = E; setDependence(computeDependence(this)); } MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, ValueDecl *MemberDecl, const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { assert(!NameInfo.getName() || MemberDecl->getDeclName() == NameInfo.getName()); MemberExprBits.IsArrow = IsArrow; MemberExprBits.HasQualifierOrFoundDecl = false; MemberExprBits.HasTemplateKWAndArgsInfo = false; MemberExprBits.HadMultipleCandidates = false; MemberExprBits.NonOdrUseReason = NOUR; MemberExprBits.OperatorLoc = OperatorLoc; setDependence(computeDependence(this)); } MemberExpr *MemberExpr::Create( const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, ValueDecl *MemberDecl, DeclAccessPair FoundDecl, DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { bool HasQualOrFound = QualifierLoc || FoundDecl.getDecl() != MemberDecl || FoundDecl.getAccess() != MemberDecl->getAccess(); bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); std::size_t Size = totalSizeToAlloc( HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, TemplateArgs ? TemplateArgs->size() : 0); void *Mem = C.Allocate(Size, alignof(MemberExpr)); MemberExpr *E = new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, MemberDecl, NameInfo, T, VK, OK, NOUR); // FIXME: remove remaining dependence computation to computeDependence(). auto Deps = E->getDependence(); if (HasQualOrFound) { // FIXME: Wrong. We should be looking at the member declaration we found. if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) Deps |= ExprDependence::TypeValueInstantiation; else if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) Deps |= ExprDependence::Instantiation; E->MemberExprBits.HasQualifierOrFoundDecl = true; MemberExprNameQualifier *NQ = E->getTrailingObjects(); NQ->QualifierLoc = QualifierLoc; NQ->FoundDecl = FoundDecl; } E->MemberExprBits.HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); if (TemplateArgs) { auto TemplateArgDeps = TemplateArgumentDependence::None; E->getTrailingObjects()->initializeFrom( TemplateKWLoc, *TemplateArgs, E->getTrailingObjects(), TemplateArgDeps); if (TemplateArgDeps & TemplateArgumentDependence::Instantiation) Deps |= ExprDependence::Instantiation; } else if (TemplateKWLoc.isValid()) { E->getTrailingObjects()->initializeFrom( TemplateKWLoc); } E->setDependence(Deps); return E; } MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, bool HasQualifier, bool HasFoundDecl, bool HasTemplateKWAndArgsInfo, unsigned NumTemplateArgs) { assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && "template args but no template arg info?"); bool HasQualOrFound = HasQualifier || HasFoundDecl; std::size_t Size = totalSizeToAlloc(HasQualOrFound ? 1 : 0, HasTemplateKWAndArgsInfo ? 1 : 0, NumTemplateArgs); void *Mem = Context.Allocate(Size, alignof(MemberExpr)); return new (Mem) MemberExpr(EmptyShell()); } SourceLocation MemberExpr::getBeginLoc() const { if (isImplicitAccess()) { if (hasQualifier()) return getQualifierLoc().getBeginLoc(); return MemberLoc; } // FIXME: We don't want this to happen. Rather, we should be able to // detect all kinds of implicit accesses more cleanly. SourceLocation BaseStartLoc = getBase()->getBeginLoc(); if (BaseStartLoc.isValid()) return BaseStartLoc; return MemberLoc; } SourceLocation MemberExpr::getEndLoc() const { SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); if (hasExplicitTemplateArgs()) EndLoc = getRAngleLoc(); else if (EndLoc.isInvalid()) EndLoc = getBase()->getEndLoc(); return EndLoc; } bool CastExpr::CastConsistency() const { switch (getCastKind()) { case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_DerivedToBaseMemberPointer: case CK_BaseToDerived: case CK_BaseToDerivedMemberPointer: assert(!path_empty() && "Cast kind should have a base path!"); break; case CK_CPointerToObjCPointerCast: assert(getType()->isObjCObjectPointerType()); assert(getSubExpr()->getType()->isPointerType()); goto CheckNoBasePath; case CK_BlockPointerToObjCPointerCast: assert(getType()->isObjCObjectPointerType()); assert(getSubExpr()->getType()->isBlockPointerType()); goto CheckNoBasePath; case CK_ReinterpretMemberPointer: assert(getType()->isMemberPointerType()); assert(getSubExpr()->getType()->isMemberPointerType()); goto CheckNoBasePath; case CK_BitCast: // Arbitrary casts to C pointer types count as bitcasts. // Otherwise, we should only have block and ObjC pointer casts // here if they stay within the type kind. if (!getType()->isPointerType()) { assert(getType()->isObjCObjectPointerType() == getSubExpr()->getType()->isObjCObjectPointerType()); assert(getType()->isBlockPointerType() == getSubExpr()->getType()->isBlockPointerType()); } goto CheckNoBasePath; case CK_AnyPointerToBlockPointerCast: assert(getType()->isBlockPointerType()); assert(getSubExpr()->getType()->isAnyPointerType() && !getSubExpr()->getType()->isBlockPointerType()); goto CheckNoBasePath; case CK_CopyAndAutoreleaseBlockObject: assert(getType()->isBlockPointerType()); assert(getSubExpr()->getType()->isBlockPointerType()); goto CheckNoBasePath; case CK_FunctionToPointerDecay: assert(getType()->isPointerType()); assert(getSubExpr()->getType()->isFunctionType()); goto CheckNoBasePath; case CK_AddressSpaceConversion: { auto Ty = getType(); auto SETy = getSubExpr()->getType(); assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); if (isRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { Ty = Ty->getPointeeType(); SETy = SETy->getPointeeType(); } assert((Ty->isDependentType() || SETy->isDependentType()) || (!Ty.isNull() && !SETy.isNull() && Ty.getAddressSpace() != SETy.getAddressSpace())); goto CheckNoBasePath; } // These should not have an inheritance path. case CK_Dynamic: case CK_ToUnion: case CK_ArrayToPointerDecay: case CK_NullToMemberPointer: case CK_NullToPointer: case CK_ConstructorConversion: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_ToVoid: case CK_VectorSplat: case CK_IntegralCast: case CK_BooleanToSignedIntegral: case CK_IntegralToFloating: case CK_FloatingToIntegral: case CK_FloatingCast: case CK_ObjCObjectLValueCast: case CK_FloatingRealToComplex: case CK_FloatingComplexToReal: case CK_FloatingComplexCast: case CK_FloatingComplexToIntegralComplex: case CK_IntegralRealToComplex: case CK_IntegralComplexToReal: case CK_IntegralComplexCast: case CK_IntegralComplexToFloatingComplex: case CK_ARCProduceObject: case CK_ARCConsumeObject: case CK_ARCReclaimReturnedObject: case CK_ARCExtendBlockObject: case CK_ZeroToOCLOpaqueType: case CK_IntToOCLSampler: case CK_FixedPointCast: case CK_FixedPointToIntegral: case CK_IntegralToFixedPoint: assert(!getType()->isBooleanType() && "unheralded conversion to bool"); goto CheckNoBasePath; case CK_Dependent: case CK_LValueToRValue: case CK_NoOp: case CK_AtomicToNonAtomic: case CK_NonAtomicToAtomic: case CK_PointerToBoolean: case CK_IntegralToBoolean: case CK_FloatingToBoolean: case CK_MemberPointerToBoolean: case CK_FloatingComplexToBoolean: case CK_IntegralComplexToBoolean: case CK_LValueBitCast: // -> bool& case CK_LValueToRValueBitCast: case CK_UserDefinedConversion: // operator bool() case CK_BuiltinFnToFnPtr: case CK_FixedPointToBoolean: CheckNoBasePath: assert(path_empty() && "Cast kind should not have a base path!"); break; } return true; } const char *CastExpr::getCastKindName(CastKind CK) { switch (CK) { #define CAST_OPERATION(Name) case CK_##Name: return #Name; #include "clang/AST/OperationKinds.def" } llvm_unreachable("Unhandled cast kind!"); } namespace { const Expr *skipImplicitTemporary(const Expr *E) { // Skip through reference binding to temporary. if (auto *Materialize = dyn_cast(E)) E = Materialize->getSubExpr(); // Skip any temporary bindings; they're implicit. if (auto *Binder = dyn_cast(E)) E = Binder->getSubExpr(); return E; } } Expr *CastExpr::getSubExprAsWritten() { const Expr *SubExpr = nullptr; const CastExpr *E = this; do { SubExpr = skipImplicitTemporary(E->getSubExpr()); // Conversions by constructor and conversion functions have a // subexpression describing the call; strip it off. if (E->getCastKind() == CK_ConstructorConversion) SubExpr = skipImplicitTemporary(cast(SubExpr)->getArg(0)); else if (E->getCastKind() == CK_UserDefinedConversion) { assert((isa(SubExpr) || isa(SubExpr)) && "Unexpected SubExpr for CK_UserDefinedConversion."); if (auto *MCE = dyn_cast(SubExpr)) SubExpr = MCE->getImplicitObjectArgument(); } // If the subexpression we're left with is an implicit cast, look // through that, too. } while ((E = dyn_cast(SubExpr))); return const_cast(SubExpr); } NamedDecl *CastExpr::getConversionFunction() const { const Expr *SubExpr = nullptr; for (const CastExpr *E = this; E; E = dyn_cast(SubExpr)) { SubExpr = skipImplicitTemporary(E->getSubExpr()); if (E->getCastKind() == CK_ConstructorConversion) return cast(SubExpr)->getConstructor(); if (E->getCastKind() == CK_UserDefinedConversion) { if (auto *MCE = dyn_cast(SubExpr)) return MCE->getMethodDecl(); } } return nullptr; } CXXBaseSpecifier **CastExpr::path_buffer() { switch (getStmtClass()) { #define ABSTRACT_STMT(x) #define CASTEXPR(Type, Base) \ case Stmt::Type##Class: \ return static_cast(this)->getTrailingObjects(); #define STMT(Type, Base) #include "clang/AST/StmtNodes.inc" default: llvm_unreachable("non-cast expressions not possible here"); } } const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, QualType opType) { auto RD = unionType->castAs()->getDecl(); return getTargetFieldForToUnionCast(RD, opType); } const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, QualType OpType) { auto &Ctx = RD->getASTContext(); RecordDecl::field_iterator Field, FieldEnd; for (Field = RD->field_begin(), FieldEnd = RD->field_end(); Field != FieldEnd; ++Field) { if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) && !Field->isUnnamedBitfield()) { return *Field; } } return nullptr; } ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, CastKind Kind, Expr *Operand, const CXXCastPath *BasePath, ExprValueKind VK) { unsigned PathSize = (BasePath ? BasePath->size() : 0); void *Buffer = C.Allocate(totalSizeToAlloc(PathSize)); // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and // std::nullptr_t have special semantics not captured by CK_LValueToRValue. assert((Kind != CK_LValueToRValue || !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && "invalid type for lvalue-to-rvalue conversion"); ImplicitCastExpr *E = new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK); if (PathSize) std::uninitialized_copy_n(BasePath->data(), BasePath->size(), E->getTrailingObjects()); return E; } ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, unsigned PathSize) { void *Buffer = C.Allocate(totalSizeToAlloc(PathSize)); return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize); } CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, ExprValueKind VK, CastKind K, Expr *Op, const CXXCastPath *BasePath, TypeSourceInfo *WrittenTy, SourceLocation L, SourceLocation R) { unsigned PathSize = (BasePath ? BasePath->size() : 0); void *Buffer = C.Allocate(totalSizeToAlloc(PathSize)); CStyleCastExpr *E = new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R); if (PathSize) std::uninitialized_copy_n(BasePath->data(), BasePath->size(), E->getTrailingObjects()); return E; } CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, unsigned PathSize) { void *Buffer = C.Allocate(totalSizeToAlloc(PathSize)); return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize); } /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it /// corresponds to, e.g. "<<=". StringRef BinaryOperator::getOpcodeStr(Opcode Op) { switch (Op) { #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; #include "clang/AST/OperationKinds.def" } llvm_unreachable("Invalid OpCode!"); } BinaryOperatorKind BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { switch (OO) { default: llvm_unreachable("Not an overloadable binary operator"); case OO_Plus: return BO_Add; case OO_Minus: return BO_Sub; case OO_Star: return BO_Mul; case OO_Slash: return BO_Div; case OO_Percent: return BO_Rem; case OO_Caret: return BO_Xor; case OO_Amp: return BO_And; case OO_Pipe: return BO_Or; case OO_Equal: return BO_Assign; case OO_Spaceship: return BO_Cmp; case OO_Less: return BO_LT; case OO_Greater: return BO_GT; case OO_PlusEqual: return BO_AddAssign; case OO_MinusEqual: return BO_SubAssign; case OO_StarEqual: return BO_MulAssign; case OO_SlashEqual: return BO_DivAssign; case OO_PercentEqual: return BO_RemAssign; case OO_CaretEqual: return BO_XorAssign; case OO_AmpEqual: return BO_AndAssign; case OO_PipeEqual: return BO_OrAssign; case OO_LessLess: return BO_Shl; case OO_GreaterGreater: return BO_Shr; case OO_LessLessEqual: return BO_ShlAssign; case OO_GreaterGreaterEqual: return BO_ShrAssign; case OO_EqualEqual: return BO_EQ; case OO_ExclaimEqual: return BO_NE; case OO_LessEqual: return BO_LE; case OO_GreaterEqual: return BO_GE; case OO_AmpAmp: return BO_LAnd; case OO_PipePipe: return BO_LOr; case OO_Comma: return BO_Comma; case OO_ArrowStar: return BO_PtrMemI; } } OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { static const OverloadedOperatorKind OverOps[] = { /* .* Cannot be overloaded */OO_None, OO_ArrowStar, OO_Star, OO_Slash, OO_Percent, OO_Plus, OO_Minus, OO_LessLess, OO_GreaterGreater, OO_Spaceship, OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, OO_EqualEqual, OO_ExclaimEqual, OO_Amp, OO_Caret, OO_Pipe, OO_AmpAmp, OO_PipePipe, OO_Equal, OO_StarEqual, OO_SlashEqual, OO_PercentEqual, OO_PlusEqual, OO_MinusEqual, OO_LessLessEqual, OO_GreaterGreaterEqual, OO_AmpEqual, OO_CaretEqual, OO_PipeEqual, OO_Comma }; return OverOps[Opc]; } bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, Opcode Opc, Expr *LHS, Expr *RHS) { if (Opc != BO_Add) return false; // Check that we have one pointer and one integer operand. Expr *PExp; if (LHS->getType()->isPointerType()) { if (!RHS->getType()->isIntegerType()) return false; PExp = LHS; } else if (RHS->getType()->isPointerType()) { if (!LHS->getType()->isIntegerType()) return false; PExp = RHS; } else { return false; } // Check that the pointer is a nullptr. if (!PExp->IgnoreParenCasts() ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull)) return false; // Check that the pointee type is char-sized. const PointerType *PTy = PExp->getType()->getAs(); if (!PTy || !PTy->getPointeeType()->isCharType()) return false; return true; } static QualType getDecayedSourceLocExprType(const ASTContext &Ctx, SourceLocExpr::IdentKind Kind) { switch (Kind) { case SourceLocExpr::File: case SourceLocExpr::Function: { QualType ArrTy = Ctx.getStringLiteralArrayType(Ctx.CharTy, 0); return Ctx.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType()); } case SourceLocExpr::Line: case SourceLocExpr::Column: return Ctx.UnsignedIntTy; } llvm_unreachable("unhandled case"); } SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, IdentKind Kind, SourceLocation BLoc, SourceLocation RParenLoc, DeclContext *ParentContext) : Expr(SourceLocExprClass, getDecayedSourceLocExprType(Ctx, Kind), VK_RValue, OK_Ordinary), BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { SourceLocExprBits.Kind = Kind; setDependence(ExprDependence::None); } StringRef SourceLocExpr::getBuiltinStr() const { switch (getIdentKind()) { case File: return "__builtin_FILE"; case Function: return "__builtin_FUNCTION"; case Line: return "__builtin_LINE"; case Column: return "__builtin_COLUMN"; } llvm_unreachable("unexpected IdentKind!"); } APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, const Expr *DefaultExpr) const { SourceLocation Loc; const DeclContext *Context; std::tie(Loc, Context) = [&]() -> std::pair { if (auto *DIE = dyn_cast_or_null(DefaultExpr)) return {DIE->getUsedLocation(), DIE->getUsedContext()}; if (auto *DAE = dyn_cast_or_null(DefaultExpr)) return {DAE->getUsedLocation(), DAE->getUsedContext()}; return {this->getLocation(), this->getParentContext()}; }(); PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); auto MakeStringLiteral = [&](StringRef Tmp) { using LValuePathEntry = APValue::LValuePathEntry; StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Tmp); // Decay the string to a pointer to the first character. LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(0)}; return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); }; switch (getIdentKind()) { case SourceLocExpr::File: return MakeStringLiteral(PLoc.getFilename()); case SourceLocExpr::Function: { const Decl *CurDecl = dyn_cast_or_null(Context); return MakeStringLiteral( CurDecl ? PredefinedExpr::ComputeName(PredefinedExpr::Function, CurDecl) : std::string("")); } case SourceLocExpr::Line: case SourceLocExpr::Column: { llvm::APSInt IntVal(Ctx.getIntWidth(Ctx.UnsignedIntTy), /*isUnsigned=*/true); IntVal = getIdentKind() == SourceLocExpr::Line ? PLoc.getLine() : PLoc.getColumn(); return APValue(IntVal); } } llvm_unreachable("unhandled case"); } InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, ArrayRef initExprs, SourceLocation rbraceloc) : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary), InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true) { sawArrayRangeDesignator(false); InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end()); setDependence(computeDependence(this)); } void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { if (NumInits > InitExprs.size()) InitExprs.reserve(C, NumInits); } void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { InitExprs.resize(C, NumInits, nullptr); } Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { if (Init >= InitExprs.size()) { InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr); setInit(Init, expr); return nullptr; } Expr *Result = cast_or_null(InitExprs[Init]); setInit(Init, expr); return Result; } void InitListExpr::setArrayFiller(Expr *filler) { assert(!hasArrayFiller() && "Filler already set!"); ArrayFillerOrUnionFieldInit = filler; // Fill out any "holes" in the array due to designated initializers. Expr **inits = getInits(); for (unsigned i = 0, e = getNumInits(); i != e; ++i) if (inits[i] == nullptr) inits[i] = filler; } bool InitListExpr::isStringLiteralInit() const { if (getNumInits() != 1) return false; const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); if (!AT || !AT->getElementType()->isIntegerType()) return false; // It is possible for getInit() to return null. const Expr *Init = getInit(0); if (!Init) return false; Init = Init->IgnoreParens(); return isa(Init) || isa(Init); } bool InitListExpr::isTransparent() const { assert(isSemanticForm() && "syntactic form never semantically transparent"); // A glvalue InitListExpr is always just sugar. if (isGLValue()) { assert(getNumInits() == 1 && "multiple inits in glvalue init list"); return true; } // Otherwise, we're sugar if and only if we have exactly one initializer that // is of the same type. if (getNumInits() != 1 || !getInit(0)) return false; // Don't confuse aggregate initialization of a struct X { X &x; }; with a // transparent struct copy. if (!getInit(0)->isRValue() && getType()->isRecordType()) return false; return getType().getCanonicalType() == getInit(0)->getType().getCanonicalType(); } bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { assert(isSyntacticForm() && "only test syntactic form as zero initializer"); if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(0)) { return false; } const IntegerLiteral *Lit = dyn_cast(getInit(0)->IgnoreImplicit()); return Lit && Lit->getValue() == 0; } SourceLocation InitListExpr::getBeginLoc() const { if (InitListExpr *SyntacticForm = getSyntacticForm()) return SyntacticForm->getBeginLoc(); SourceLocation Beg = LBraceLoc; if (Beg.isInvalid()) { // Find the first non-null initializer. for (InitExprsTy::const_iterator I = InitExprs.begin(), E = InitExprs.end(); I != E; ++I) { if (Stmt *S = *I) { Beg = S->getBeginLoc(); break; } } } return Beg; } SourceLocation InitListExpr::getEndLoc() const { if (InitListExpr *SyntacticForm = getSyntacticForm()) return SyntacticForm->getEndLoc(); SourceLocation End = RBraceLoc; if (End.isInvalid()) { // Find the first non-null initializer from the end. for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(), E = InitExprs.rend(); I != E; ++I) { if (Stmt *S = *I) { End = S->getEndLoc(); break; } } } return End; } /// getFunctionType - Return the underlying function type for this block. /// const FunctionProtoType *BlockExpr::getFunctionType() const { // The block pointer is never sugared, but the function type might be. return cast(getType()) ->getPointeeType()->castAs(); } SourceLocation BlockExpr::getCaretLocation() const { return TheBlock->getCaretLocation(); } const Stmt *BlockExpr::getBody() const { return TheBlock->getBody(); } Stmt *BlockExpr::getBody() { return TheBlock->getBody(); } //===----------------------------------------------------------------------===// // Generic Expression Routines //===----------------------------------------------------------------------===// bool Expr::isReadIfDiscardedInCPlusPlus11() const { // In C++11, discarded-value expressions of a certain form are special, // according to [expr]p10: // The lvalue-to-rvalue conversion (4.1) is applied only if the // expression is an lvalue of volatile-qualified type and it has // one of the following forms: if (!isGLValue() || !getType().isVolatileQualified()) return false; const Expr *E = IgnoreParens(); // - id-expression (5.1.1), if (isa(E)) return true; // - subscripting (5.2.1), if (isa(E)) return true; // - class member access (5.2.5), if (isa(E)) return true; // - indirection (5.3.1), if (auto *UO = dyn_cast(E)) if (UO->getOpcode() == UO_Deref) return true; if (auto *BO = dyn_cast(E)) { // - pointer-to-member operation (5.5), if (BO->isPtrMemOp()) return true; // - comma expression (5.18) where the right operand is one of the above. if (BO->getOpcode() == BO_Comma) return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); } // - conditional expression (5.16) where both the second and the third // operands are one of the above, or if (auto *CO = dyn_cast(E)) return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); // The related edge case of "*x ?: *x". if (auto *BCO = dyn_cast(E)) { if (auto *OVE = dyn_cast(BCO->getTrueExpr())) return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); } // Objective-C++ extensions to the rule. if (isa(E) || isa(E)) return true; return false; } /// isUnusedResultAWarning - Return true if this immediate expression should /// be warned about if the result is unused. If so, fill in Loc and Ranges /// with location to warn on and the source range[s] to report with the /// warning. bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, SourceRange &R1, SourceRange &R2, ASTContext &Ctx) const { // Don't warn if the expr is type dependent. The type could end up // instantiating to void. if (isTypeDependent()) return false; switch (getStmtClass()) { default: if (getType()->isVoidType()) return false; WarnE = this; Loc = getExprLoc(); R1 = getSourceRange(); return true; case ParenExprClass: return cast(this)->getSubExpr()-> isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); case GenericSelectionExprClass: return cast(this)->getResultExpr()-> isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); case CoawaitExprClass: case CoyieldExprClass: return cast(this)->getResumeExpr()-> isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); case ChooseExprClass: return cast(this)->getChosenSubExpr()-> isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); case UnaryOperatorClass: { const UnaryOperator *UO = cast(this); switch (UO->getOpcode()) { case UO_Plus: case UO_Minus: case UO_AddrOf: case UO_Not: case UO_LNot: case UO_Deref: break; case UO_Coawait: // This is just the 'operator co_await' call inside the guts of a // dependent co_await call. case UO_PostInc: case UO_PostDec: case UO_PreInc: case UO_PreDec: // ++/-- return false; // Not a warning. case UO_Real: case UO_Imag: // accessing a piece of a volatile complex is a side-effect. if (Ctx.getCanonicalType(UO->getSubExpr()->getType()) .isVolatileQualified()) return false; break; case UO_Extension: return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); } WarnE = this; Loc = UO->getOperatorLoc(); R1 = UO->getSubExpr()->getSourceRange(); return true; } case BinaryOperatorClass: { const BinaryOperator *BO = cast(this); switch (BO->getOpcode()) { default: break; // Consider the RHS of comma for side effects. LHS was checked by // Sema::CheckCommaOperands. case BO_Comma: // ((foo = ), 0) is an idiom for hiding the result (and // lvalue-ness) of an assignment written in a macro. if (IntegerLiteral *IE = dyn_cast(BO->getRHS()->IgnoreParens())) if (IE->getValue() == 0) return false; return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); // Consider '||', '&&' to have side effects if the LHS or RHS does. case BO_LAnd: case BO_LOr: if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) return false; break; } if (BO->isAssignmentOp()) return false; WarnE = this; Loc = BO->getOperatorLoc(); R1 = BO->getLHS()->getSourceRange(); R2 = BO->getRHS()->getSourceRange(); return true; } case CompoundAssignOperatorClass: case VAArgExprClass: case AtomicExprClass: return false; case ConditionalOperatorClass: { // If only one of the LHS or RHS is a warning, the operator might // be being used for control flow. Only warn if both the LHS and // RHS are warnings. const auto *Exp = cast(this); return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); } case BinaryConditionalOperatorClass: { const auto *Exp = cast(this); return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); } case MemberExprClass: WarnE = this; Loc = cast(this)->getMemberLoc(); R1 = SourceRange(Loc, Loc); R2 = cast(this)->getBase()->getSourceRange(); return true; case ArraySubscriptExprClass: WarnE = this; Loc = cast(this)->getRBracketLoc(); R1 = cast(this)->getLHS()->getSourceRange(); R2 = cast(this)->getRHS()->getSourceRange(); return true; case CXXOperatorCallExprClass: { // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator // overloads as there is no reasonable way to define these such that they // have non-trivial, desirable side-effects. See the -Wunused-comparison // warning: operators == and != are commonly typo'ed, and so warning on them // provides additional value as well. If this list is updated, // DiagnoseUnusedComparison should be as well. const CXXOperatorCallExpr *Op = cast(this); switch (Op->getOperator()) { default: break; case OO_EqualEqual: case OO_ExclaimEqual: case OO_Less: case OO_Greater: case OO_GreaterEqual: case OO_LessEqual: if (Op->getCallReturnType(Ctx)->isReferenceType() || Op->getCallReturnType(Ctx)->isVoidType()) break; WarnE = this; Loc = Op->getOperatorLoc(); R1 = Op->getSourceRange(); return true; } // Fallthrough for generic call handling. LLVM_FALLTHROUGH; } case CallExprClass: case CXXMemberCallExprClass: case UserDefinedLiteralClass: { // If this is a direct call, get the callee. const CallExpr *CE = cast(this); if (const Decl *FD = CE->getCalleeDecl()) { // If the callee has attribute pure, const, or warn_unused_result, warn // about it. void foo() { strlen("bar"); } should warn. // // Note: If new cases are added here, DiagnoseUnusedExprResult should be // updated to match for QoI. if (CE->hasUnusedResultAttr(Ctx) || FD->hasAttr() || FD->hasAttr()) { WarnE = this; Loc = CE->getCallee()->getBeginLoc(); R1 = CE->getCallee()->getSourceRange(); if (unsigned NumArgs = CE->getNumArgs()) R2 = SourceRange(CE->getArg(0)->getBeginLoc(), CE->getArg(NumArgs - 1)->getEndLoc()); return true; } } return false; } // If we don't know precisely what we're looking at, let's not warn. case UnresolvedLookupExprClass: case CXXUnresolvedConstructExprClass: case RecoveryExprClass: return false; case CXXTemporaryObjectExprClass: case CXXConstructExprClass: { if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { const auto *WarnURAttr = Type->getAttr(); if (Type->hasAttr() || (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { WarnE = this; Loc = getBeginLoc(); R1 = getSourceRange(); return true; } } const auto *CE = cast(this); if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { const auto *WarnURAttr = Ctor->getAttr(); if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { WarnE = this; Loc = getBeginLoc(); R1 = getSourceRange(); if (unsigned NumArgs = CE->getNumArgs()) R2 = SourceRange(CE->getArg(0)->getBeginLoc(), CE->getArg(NumArgs - 1)->getEndLoc()); return true; } } return false; } case ObjCMessageExprClass: { const ObjCMessageExpr *ME = cast(this); if (Ctx.getLangOpts().ObjCAutoRefCount && ME->isInstanceMessage() && !ME->getType()->isVoidType() && ME->getMethodFamily() == OMF_init) { WarnE = this; Loc = getExprLoc(); R1 = ME->getSourceRange(); return true; } if (const ObjCMethodDecl *MD = ME->getMethodDecl()) if (MD->hasAttr()) { WarnE = this; Loc = getExprLoc(); return true; } return false; } case ObjCPropertyRefExprClass: WarnE = this; Loc = getExprLoc(); R1 = getSourceRange(); return true; case PseudoObjectExprClass: { const PseudoObjectExpr *PO = cast(this); // Only complain about things that have the form of a getter. if (isa(PO->getSyntacticForm()) || isa(PO->getSyntacticForm())) return false; WarnE = this; Loc = getExprLoc(); R1 = getSourceRange(); return true; } case StmtExprClass: { // Statement exprs don't logically have side effects themselves, but are // sometimes used in macros in ways that give them a type that is unused. // For example ({ blah; foo(); }) will end up with a type if foo has a type. // however, if the result of the stmt expr is dead, we don't want to emit a // warning. const CompoundStmt *CS = cast(this)->getSubStmt(); if (!CS->body_empty()) { if (const Expr *E = dyn_cast(CS->body_back())) return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); if (const LabelStmt *Label = dyn_cast(CS->body_back())) if (const Expr *E = dyn_cast(Label->getSubStmt())) return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); } if (getType()->isVoidType()) return false; WarnE = this; Loc = cast(this)->getLParenLoc(); R1 = getSourceRange(); return true; } case CXXFunctionalCastExprClass: case CStyleCastExprClass: { // Ignore an explicit cast to void, except in C++98 if the operand is a // volatile glvalue for which we would trigger an implicit read in any // other language mode. (Such an implicit read always happens as part of // the lvalue conversion in C, and happens in C++ for expressions of all // forms where it seems likely the user intended to trigger a volatile // load.) const CastExpr *CE = cast(this); const Expr *SubE = CE->getSubExpr()->IgnoreParens(); if (CE->getCastKind() == CK_ToVoid) { if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && SubE->isReadIfDiscardedInCPlusPlus11()) { // Suppress the "unused value" warning for idiomatic usage of // '(void)var;' used to suppress "unused variable" warnings. if (auto *DRE = dyn_cast(SubE)) if (auto *VD = dyn_cast(DRE->getDecl())) if (!VD->isExternallyVisible()) return false; // The lvalue-to-rvalue conversion would have no effect for an array. // It's implausible that the programmer expected this to result in a // volatile array load, so don't warn. if (SubE->getType()->isArrayType()) return false; return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); } return false; } // If this is a cast to a constructor conversion, check the operand. // Otherwise, the result of the cast is unused. if (CE->getCastKind() == CK_ConstructorConversion) return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); WarnE = this; if (const CXXFunctionalCastExpr *CXXCE = dyn_cast(this)) { Loc = CXXCE->getBeginLoc(); R1 = CXXCE->getSubExpr()->getSourceRange(); } else { const CStyleCastExpr *CStyleCE = cast(this); Loc = CStyleCE->getLParenLoc(); R1 = CStyleCE->getSubExpr()->getSourceRange(); } return true; } case ImplicitCastExprClass: { const CastExpr *ICE = cast(this); // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. if (ICE->getCastKind() == CK_LValueToRValue && ICE->getSubExpr()->getType().isVolatileQualified()) return false; return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); } case CXXDefaultArgExprClass: return (cast(this) ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); case CXXDefaultInitExprClass: return (cast(this) ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); case CXXNewExprClass: // FIXME: In theory, there might be new expressions that don't have side // effects (e.g. a placement new with an uninitialized POD). case CXXDeleteExprClass: return false; case MaterializeTemporaryExprClass: return cast(this) ->getSubExpr() ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); case CXXBindTemporaryExprClass: return cast(this)->getSubExpr() ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); case ExprWithCleanupsClass: return cast(this)->getSubExpr() ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); } } /// isOBJCGCCandidate - Check if an expression is objc gc'able. /// returns true, if it is; false otherwise. bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { const Expr *E = IgnoreParens(); switch (E->getStmtClass()) { default: return false; case ObjCIvarRefExprClass: return true; case Expr::UnaryOperatorClass: return cast(E)->getSubExpr()->isOBJCGCCandidate(Ctx); case ImplicitCastExprClass: return cast(E)->getSubExpr()->isOBJCGCCandidate(Ctx); case MaterializeTemporaryExprClass: return cast(E)->getSubExpr()->isOBJCGCCandidate( Ctx); case CStyleCastExprClass: return cast(E)->getSubExpr()->isOBJCGCCandidate(Ctx); case DeclRefExprClass: { const Decl *D = cast(E)->getDecl(); if (const VarDecl *VD = dyn_cast(D)) { if (VD->hasGlobalStorage()) return true; QualType T = VD->getType(); // dereferencing to a pointer is always a gc'able candidate, // unless it is __weak. return T->isPointerType() && (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak); } return false; } case MemberExprClass: { const MemberExpr *M = cast(E); return M->getBase()->isOBJCGCCandidate(Ctx); } case ArraySubscriptExprClass: return cast(E)->getBase()->isOBJCGCCandidate(Ctx); } } bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { if (isTypeDependent()) return false; return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; } QualType Expr::findBoundMemberType(const Expr *expr) { assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); // Bound member expressions are always one of these possibilities: // x->m x.m x->*y x.*y // (possibly parenthesized) expr = expr->IgnoreParens(); if (const MemberExpr *mem = dyn_cast(expr)) { assert(isa(mem->getMemberDecl())); return mem->getMemberDecl()->getType(); } if (const BinaryOperator *op = dyn_cast(expr)) { QualType type = op->getRHS()->getType()->castAs() ->getPointeeType(); assert(type->isFunctionType()); return type; } assert(isa(expr) || isa(expr)); return QualType(); } static Expr *IgnoreImpCastsSingleStep(Expr *E) { if (auto *ICE = dyn_cast(E)) return ICE->getSubExpr(); if (auto *FE = dyn_cast(E)) return FE->getSubExpr(); return E; } static Expr *IgnoreImpCastsExtraSingleStep(Expr *E) { // FIXME: Skip MaterializeTemporaryExpr and SubstNonTypeTemplateParmExpr in // addition to what IgnoreImpCasts() skips to account for the current // behaviour of IgnoreParenImpCasts(). Expr *SubE = IgnoreImpCastsSingleStep(E); if (SubE != E) return SubE; if (auto *MTE = dyn_cast(E)) return MTE->getSubExpr(); if (auto *NTTP = dyn_cast(E)) return NTTP->getReplacement(); return E; } static Expr *IgnoreCastsSingleStep(Expr *E) { if (auto *CE = dyn_cast(E)) return CE->getSubExpr(); if (auto *FE = dyn_cast(E)) return FE->getSubExpr(); if (auto *MTE = dyn_cast(E)) return MTE->getSubExpr(); if (auto *NTTP = dyn_cast(E)) return NTTP->getReplacement(); return E; } static Expr *IgnoreLValueCastsSingleStep(Expr *E) { // Skip what IgnoreCastsSingleStep skips, except that only // lvalue-to-rvalue casts are skipped. if (auto *CE = dyn_cast(E)) if (CE->getCastKind() != CK_LValueToRValue) return E; return IgnoreCastsSingleStep(E); } static Expr *IgnoreBaseCastsSingleStep(Expr *E) { if (auto *CE = dyn_cast(E)) if (CE->getCastKind() == CK_DerivedToBase || CE->getCastKind() == CK_UncheckedDerivedToBase || CE->getCastKind() == CK_NoOp) return CE->getSubExpr(); return E; } static Expr *IgnoreImplicitSingleStep(Expr *E) { Expr *SubE = IgnoreImpCastsSingleStep(E); if (SubE != E) return SubE; if (auto *MTE = dyn_cast(E)) return MTE->getSubExpr(); if (auto *BTE = dyn_cast(E)) return BTE->getSubExpr(); return E; } static Expr *IgnoreImplicitAsWrittenSingleStep(Expr *E) { if (auto *ICE = dyn_cast(E)) return ICE->getSubExprAsWritten(); return IgnoreImplicitSingleStep(E); } static Expr *IgnoreParensOnlySingleStep(Expr *E) { if (auto *PE = dyn_cast(E)) return PE->getSubExpr(); return E; } static Expr *IgnoreParensSingleStep(Expr *E) { if (auto *PE = dyn_cast(E)) return PE->getSubExpr(); if (auto *UO = dyn_cast(E)) { if (UO->getOpcode() == UO_Extension) return UO->getSubExpr(); } else if (auto *GSE = dyn_cast(E)) { if (!GSE->isResultDependent()) return GSE->getResultExpr(); } else if (auto *CE = dyn_cast(E)) { if (!CE->isConditionDependent()) return CE->getChosenSubExpr(); } return E; } static Expr *IgnoreNoopCastsSingleStep(const ASTContext &Ctx, Expr *E) { if (auto *CE = dyn_cast(E)) { // We ignore integer <-> casts that are of the same width, ptr<->ptr and // ptr<->int casts of the same width. We also ignore all identity casts. Expr *SubExpr = CE->getSubExpr(); bool IsIdentityCast = Ctx.hasSameUnqualifiedType(E->getType(), SubExpr->getType()); bool IsSameWidthCast = (E->getType()->isPointerType() || E->getType()->isIntegralType(Ctx)) && (SubExpr->getType()->isPointerType() || SubExpr->getType()->isIntegralType(Ctx)) && (Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SubExpr->getType())); if (IsIdentityCast || IsSameWidthCast) return SubExpr; } else if (auto *NTTP = dyn_cast(E)) return NTTP->getReplacement(); return E; } static Expr *IgnoreExprNodesImpl(Expr *E) { return E; } template static Expr *IgnoreExprNodesImpl(Expr *E, FnTy &&Fn, FnTys &&... Fns) { return IgnoreExprNodesImpl(Fn(E), std::forward(Fns)...); } /// Given an expression E and functions Fn_1,...,Fn_n : Expr * -> Expr *, /// Recursively apply each of the functions to E until reaching a fixed point. /// Note that a null E is valid; in this case nothing is done. template static Expr *IgnoreExprNodes(Expr *E, FnTys &&... Fns) { Expr *LastE = nullptr; while (E != LastE) { LastE = E; E = IgnoreExprNodesImpl(E, std::forward(Fns)...); } return E; } Expr *Expr::IgnoreImpCasts() { return IgnoreExprNodes(this, IgnoreImpCastsSingleStep); } Expr *Expr::IgnoreCasts() { return IgnoreExprNodes(this, IgnoreCastsSingleStep); } Expr *Expr::IgnoreImplicit() { return IgnoreExprNodes(this, IgnoreImplicitSingleStep); } Expr *Expr::IgnoreImplicitAsWritten() { return IgnoreExprNodes(this, IgnoreImplicitAsWrittenSingleStep); } Expr *Expr::IgnoreParens() { return IgnoreExprNodes(this, IgnoreParensSingleStep); } Expr *Expr::IgnoreParenImpCasts() { return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreImpCastsExtraSingleStep); } Expr *Expr::IgnoreParenCasts() { return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreCastsSingleStep); } Expr *Expr::IgnoreConversionOperator() { if (auto *MCE = dyn_cast(this)) { if (MCE->getMethodDecl() && isa(MCE->getMethodDecl())) return MCE->getImplicitObjectArgument(); } return this; } Expr *Expr::IgnoreParenLValueCasts() { return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreLValueCastsSingleStep); } Expr *Expr::ignoreParenBaseCasts() { return IgnoreExprNodes(this, IgnoreParensSingleStep, IgnoreBaseCastsSingleStep); } Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { return IgnoreExprNodes(this, IgnoreParensSingleStep, [&Ctx](Expr *E) { return IgnoreNoopCastsSingleStep(Ctx, E); }); } Expr *Expr::IgnoreUnlessSpelledInSource() { Expr *E = this; Expr *LastE = nullptr; while (E != LastE) { LastE = E; E = IgnoreExprNodes(E, IgnoreImplicitSingleStep, IgnoreImpCastsExtraSingleStep, IgnoreParensOnlySingleStep); auto SR = E->getSourceRange(); if (auto *C = dyn_cast(E)) { auto NumArgs = C->getNumArgs(); if (NumArgs == 1 || (NumArgs > 1 && isa(C->getArg(1)))) { Expr *A = C->getArg(0); if (A->getSourceRange() == SR || !isa(C)) E = A; } } if (auto *C = dyn_cast(E)) { Expr *ExprNode = C->getImplicitObjectArgument(); if (ExprNode->getSourceRange() == SR) { E = ExprNode; continue; } if (auto *PE = dyn_cast(ExprNode)) { if (PE->getSourceRange() == C->getSourceRange()) { E = PE; continue; } } ExprNode = ExprNode->IgnoreParenImpCasts(); if (ExprNode->getSourceRange() == SR) E = ExprNode; } } return E; } bool Expr::isDefaultArgument() const { const Expr *E = this; if (const MaterializeTemporaryExpr *M = dyn_cast(E)) E = M->getSubExpr(); while (const ImplicitCastExpr *ICE = dyn_cast(E)) E = ICE->getSubExprAsWritten(); return isa(E); } /// Skip over any no-op casts and any temporary-binding /// expressions. static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { if (const MaterializeTemporaryExpr *M = dyn_cast(E)) E = M->getSubExpr(); while (const ImplicitCastExpr *ICE = dyn_cast(E)) { if (ICE->getCastKind() == CK_NoOp) E = ICE->getSubExpr(); else break; } while (const CXXBindTemporaryExpr *BE = dyn_cast(E)) E = BE->getSubExpr(); while (const ImplicitCastExpr *ICE = dyn_cast(E)) { if (ICE->getCastKind() == CK_NoOp) E = ICE->getSubExpr(); else break; } return E->IgnoreParens(); } /// isTemporaryObject - Determines if this expression produces a /// temporary of the given class type. bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy))) return false; const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this); // Temporaries are by definition pr-values of class type. if (!E->Classify(C).isPRValue()) { // In this context, property reference is a message call and is pr-value. if (!isa(E)) return false; } // Black-list a few cases which yield pr-values of class type that don't // refer to temporaries of that type: // - implicit derived-to-base conversions if (isa(E)) { switch (cast(E)->getCastKind()) { case CK_DerivedToBase: case CK_UncheckedDerivedToBase: return false; default: break; } } // - member expressions (all) if (isa(E)) return false; if (const BinaryOperator *BO = dyn_cast(E)) if (BO->isPtrMemOp()) return false; // - opaque values (all) if (isa(E)) return false; return true; } bool Expr::isImplicitCXXThis() const { const Expr *E = this; // Strip away parentheses and casts we don't care about. while (true) { if (const ParenExpr *Paren = dyn_cast(E)) { E = Paren->getSubExpr(); continue; } if (const ImplicitCastExpr *ICE = dyn_cast(E)) { if (ICE->getCastKind() == CK_NoOp || ICE->getCastKind() == CK_LValueToRValue || ICE->getCastKind() == CK_DerivedToBase || ICE->getCastKind() == CK_UncheckedDerivedToBase) { E = ICE->getSubExpr(); continue; } } if (const UnaryOperator* UnOp = dyn_cast(E)) { if (UnOp->getOpcode() == UO_Extension) { E = UnOp->getSubExpr(); continue; } } if (const MaterializeTemporaryExpr *M = dyn_cast(E)) { E = M->getSubExpr(); continue; } break; } if (const CXXThisExpr *This = dyn_cast(E)) return This->isImplicit(); return false; } /// hasAnyTypeDependentArguments - Determines if any of the expressions /// in Exprs is type-dependent. bool Expr::hasAnyTypeDependentArguments(ArrayRef Exprs) { for (unsigned I = 0; I < Exprs.size(); ++I) if (Exprs[I]->isTypeDependent()) return true; return false; } bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, const Expr **Culprit) const { assert(!isValueDependent() && "Expression evaluator can't be called on a dependent expression."); // This function is attempting whether an expression is an initializer // which can be evaluated at compile-time. It very closely parallels // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it // will lead to unexpected results. Like ConstExprEmitter, it falls back // to isEvaluatable most of the time. // // If we ever capture reference-binding directly in the AST, we can // kill the second parameter. if (IsForRef) { EvalResult Result; if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) return true; if (Culprit) *Culprit = this; return false; } switch (getStmtClass()) { default: break; case Stmt::ExprWithCleanupsClass: return cast(this)->getSubExpr()->isConstantInitializer( Ctx, IsForRef, Culprit); case StringLiteralClass: case ObjCEncodeExprClass: return true; case CXXTemporaryObjectExprClass: case CXXConstructExprClass: { const CXXConstructExpr *CE = cast(this); if (CE->getConstructor()->isTrivial() && CE->getConstructor()->getParent()->hasTrivialDestructor()) { // Trivial default constructor if (!CE->getNumArgs()) return true; // Trivial copy constructor assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument"); return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit); } break; } case ConstantExprClass: { // FIXME: We should be able to return "true" here, but it can lead to extra // error messages. E.g. in Sema/array-init.c. const Expr *Exp = cast(this)->getSubExpr(); return Exp->isConstantInitializer(Ctx, false, Culprit); } case CompoundLiteralExprClass: { // This handles gcc's extension that allows global initializers like // "struct x {int x;} x = (struct x) {};". // FIXME: This accepts other cases it shouldn't! const Expr *Exp = cast(this)->getInitializer(); return Exp->isConstantInitializer(Ctx, false, Culprit); } case DesignatedInitUpdateExprClass: { const DesignatedInitUpdateExpr *DIUE = cast(this); return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) && DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit); } case InitListExprClass: { const InitListExpr *ILE = cast(this); assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form"); if (ILE->getType()->isArrayType()) { unsigned numInits = ILE->getNumInits(); for (unsigned i = 0; i < numInits; i++) { if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit)) return false; } return true; } if (ILE->getType()->isRecordType()) { unsigned ElementNo = 0; RecordDecl *RD = ILE->getType()->castAs()->getDecl(); for (const auto *Field : RD->fields()) { // If this is a union, skip all the fields that aren't being initialized. if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) continue; // Don't emit anonymous bitfields, they just affect layout. if (Field->isUnnamedBitfield()) continue; if (ElementNo < ILE->getNumInits()) { const Expr *Elt = ILE->getInit(ElementNo++); if (Field->isBitField()) { // Bitfields have to evaluate to an integer. EvalResult Result; if (!Elt->EvaluateAsInt(Result, Ctx)) { if (Culprit) *Culprit = Elt; return false; } } else { bool RefType = Field->getType()->isReferenceType(); if (!Elt->isConstantInitializer(Ctx, RefType, Culprit)) return false; } } } return true; } break; } case ImplicitValueInitExprClass: case NoInitExprClass: return true; case ParenExprClass: return cast(this)->getSubExpr() ->isConstantInitializer(Ctx, IsForRef, Culprit); case GenericSelectionExprClass: return cast(this)->getResultExpr() ->isConstantInitializer(Ctx, IsForRef, Culprit); case ChooseExprClass: if (cast(this)->isConditionDependent()) { if (Culprit) *Culprit = this; return false; } return cast(this)->getChosenSubExpr() ->isConstantInitializer(Ctx, IsForRef, Culprit); case UnaryOperatorClass: { const UnaryOperator* Exp = cast(this); if (Exp->getOpcode() == UO_Extension) return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); break; } case CXXFunctionalCastExprClass: case CXXStaticCastExprClass: case ImplicitCastExprClass: case CStyleCastExprClass: case ObjCBridgedCastExprClass: case CXXDynamicCastExprClass: case CXXReinterpretCastExprClass: case CXXAddrspaceCastExprClass: case CXXConstCastExprClass: { const CastExpr *CE = cast(this); // Handle misc casts we want to ignore. if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue || CE->getCastKind() == CK_ToUnion || CE->getCastKind() == CK_ConstructorConversion || CE->getCastKind() == CK_NonAtomicToAtomic || CE->getCastKind() == CK_AtomicToNonAtomic || CE->getCastKind() == CK_IntToOCLSampler) return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit); break; } case MaterializeTemporaryExprClass: return cast(this) ->getSubExpr() ->isConstantInitializer(Ctx, false, Culprit); case SubstNonTypeTemplateParmExprClass: return cast(this)->getReplacement() ->isConstantInitializer(Ctx, false, Culprit); case CXXDefaultArgExprClass: return cast(this)->getExpr() ->isConstantInitializer(Ctx, false, Culprit); case CXXDefaultInitExprClass: return cast(this)->getExpr() ->isConstantInitializer(Ctx, false, Culprit); } // Allow certain forms of UB in constant initializers: signed integer // overflow and floating-point division by zero. We'll give a warning on // these, but they're common enough that we have to accept them. if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior)) return true; if (Culprit) *Culprit = this; return false; } bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { const FunctionDecl* FD = getDirectCallee(); if (!FD || (FD->getBuiltinID() != Builtin::BI__assume && FD->getBuiltinID() != Builtin::BI__builtin_assume)) return false; const Expr* Arg = getArg(0); bool ArgVal; return !Arg->isValueDependent() && Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal; } namespace { /// Look for any side effects within a Stmt. class SideEffectFinder : public ConstEvaluatedExprVisitor { typedef ConstEvaluatedExprVisitor Inherited; const bool IncludePossibleEffects; bool HasSideEffects; public: explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) : Inherited(Context), IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } bool hasSideEffects() const { return HasSideEffects; } void VisitDecl(const Decl *D) { if (!D) return; // We assume the caller checks subexpressions (eg, the initializer, VLA // bounds) for side-effects on our behalf. if (auto *VD = dyn_cast(D)) { // Registering a destructor is a side-effect. if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && VD->needsDestruction(Context)) HasSideEffects = true; } } void VisitDeclStmt(const DeclStmt *DS) { for (auto *D : DS->decls()) VisitDecl(D); Inherited::VisitDeclStmt(DS); } void VisitExpr(const Expr *E) { if (!HasSideEffects && E->HasSideEffects(Context, IncludePossibleEffects)) HasSideEffects = true; } }; } bool Expr::HasSideEffects(const ASTContext &Ctx, bool IncludePossibleEffects) const { // In circumstances where we care about definite side effects instead of // potential side effects, we want to ignore expressions that are part of a // macro expansion as a potential side effect. if (!IncludePossibleEffects && getExprLoc().isMacroID()) return false; if (isInstantiationDependent()) return IncludePossibleEffects; switch (getStmtClass()) { case NoStmtClass: #define ABSTRACT_STMT(Type) #define STMT(Type, Base) case Type##Class: #define EXPR(Type, Base) #include "clang/AST/StmtNodes.inc" llvm_unreachable("unexpected Expr kind"); case DependentScopeDeclRefExprClass: case CXXUnresolvedConstructExprClass: case CXXDependentScopeMemberExprClass: case UnresolvedLookupExprClass: case UnresolvedMemberExprClass: case PackExpansionExprClass: case SubstNonTypeTemplateParmPackExprClass: case FunctionParmPackExprClass: case TypoExprClass: case RecoveryExprClass: case CXXFoldExprClass: llvm_unreachable("shouldn't see dependent / unresolved nodes here"); case DeclRefExprClass: case ObjCIvarRefExprClass: case PredefinedExprClass: case IntegerLiteralClass: case FixedPointLiteralClass: case FloatingLiteralClass: case ImaginaryLiteralClass: case StringLiteralClass: case CharacterLiteralClass: case OffsetOfExprClass: case ImplicitValueInitExprClass: case UnaryExprOrTypeTraitExprClass: case AddrLabelExprClass: case GNUNullExprClass: case ArrayInitIndexExprClass: case NoInitExprClass: case CXXBoolLiteralExprClass: case CXXNullPtrLiteralExprClass: case CXXThisExprClass: case CXXScalarValueInitExprClass: case TypeTraitExprClass: case ArrayTypeTraitExprClass: case ExpressionTraitExprClass: case CXXNoexceptExprClass: case SizeOfPackExprClass: case ObjCStringLiteralClass: case ObjCEncodeExprClass: case ObjCBoolLiteralExprClass: case ObjCAvailabilityCheckExprClass: case CXXUuidofExprClass: case OpaqueValueExprClass: case SourceLocExprClass: case ConceptSpecializationExprClass: case RequiresExprClass: // These never have a side-effect. return false; case ConstantExprClass: // FIXME: Move this into the "return false;" block above. return cast(this)->getSubExpr()->HasSideEffects( Ctx, IncludePossibleEffects); case CallExprClass: case CXXOperatorCallExprClass: case CXXMemberCallExprClass: case CUDAKernelCallExprClass: case UserDefinedLiteralClass: { // We don't know a call definitely has side effects, except for calls // to pure/const functions that definitely don't. // If the call itself is considered side-effect free, check the operands. const Decl *FD = cast(this)->getCalleeDecl(); bool IsPure = FD && (FD->hasAttr() || FD->hasAttr()); if (IsPure || !IncludePossibleEffects) break; return true; } case BlockExprClass: case CXXBindTemporaryExprClass: if (!IncludePossibleEffects) break; return true; case MSPropertyRefExprClass: case MSPropertySubscriptExprClass: case CompoundAssignOperatorClass: case VAArgExprClass: case AtomicExprClass: case CXXThrowExprClass: case CXXNewExprClass: case CXXDeleteExprClass: case CoawaitExprClass: case DependentCoawaitExprClass: case CoyieldExprClass: // These always have a side-effect. return true; case StmtExprClass: { // StmtExprs have a side-effect if any substatement does. SideEffectFinder Finder(Ctx, IncludePossibleEffects); Finder.Visit(cast(this)->getSubStmt()); return Finder.hasSideEffects(); } case ExprWithCleanupsClass: if (IncludePossibleEffects) if (cast(this)->cleanupsHaveSideEffects()) return true; break; case ParenExprClass: case ArraySubscriptExprClass: case MatrixSubscriptExprClass: case OMPArraySectionExprClass: case OMPArrayShapingExprClass: case OMPIteratorExprClass: case MemberExprClass: case ConditionalOperatorClass: case BinaryConditionalOperatorClass: case CompoundLiteralExprClass: case ExtVectorElementExprClass: case DesignatedInitExprClass: case DesignatedInitUpdateExprClass: case ArrayInitLoopExprClass: case ParenListExprClass: case CXXPseudoDestructorExprClass: case CXXRewrittenBinaryOperatorClass: case CXXStdInitializerListExprClass: case SubstNonTypeTemplateParmExprClass: case MaterializeTemporaryExprClass: case ShuffleVectorExprClass: case ConvertVectorExprClass: case AsTypeExprClass: // These have a side-effect if any subexpression does. break; case UnaryOperatorClass: if (cast(this)->isIncrementDecrementOp()) return true; break; case BinaryOperatorClass: if (cast(this)->isAssignmentOp()) return true; break; case InitListExprClass: // FIXME: The children for an InitListExpr doesn't include the array filler. if (const Expr *E = cast(this)->getArrayFiller()) if (E->HasSideEffects(Ctx, IncludePossibleEffects)) return true; break; case GenericSelectionExprClass: return cast(this)->getResultExpr()-> HasSideEffects(Ctx, IncludePossibleEffects); case ChooseExprClass: return cast(this)->getChosenSubExpr()->HasSideEffects( Ctx, IncludePossibleEffects); case CXXDefaultArgExprClass: return cast(this)->getExpr()->HasSideEffects( Ctx, IncludePossibleEffects); case CXXDefaultInitExprClass: { const FieldDecl *FD = cast(this)->getField(); if (const Expr *E = FD->getInClassInitializer()) return E->HasSideEffects(Ctx, IncludePossibleEffects); // If we've not yet parsed the initializer, assume it has side-effects. return true; } case CXXDynamicCastExprClass: { // A dynamic_cast expression has side-effects if it can throw. const CXXDynamicCastExpr *DCE = cast(this); if (DCE->getTypeAsWritten()->isReferenceType() && DCE->getCastKind() == CK_Dynamic) return true; } LLVM_FALLTHROUGH; case ImplicitCastExprClass: case CStyleCastExprClass: case CXXStaticCastExprClass: case CXXReinterpretCastExprClass: case CXXConstCastExprClass: case CXXAddrspaceCastExprClass: case CXXFunctionalCastExprClass: case BuiltinBitCastExprClass: { // While volatile reads are side-effecting in both C and C++, we treat them // as having possible (not definite) side-effects. This allows idiomatic // code to behave without warning, such as sizeof(*v) for a volatile- // qualified pointer. if (!IncludePossibleEffects) break; const CastExpr *CE = cast(this); if (CE->getCastKind() == CK_LValueToRValue && CE->getSubExpr()->getType().isVolatileQualified()) return true; break; } case CXXTypeidExprClass: // typeid might throw if its subexpression is potentially-evaluated, so has // side-effects in that case whether or not its subexpression does. return cast(this)->isPotentiallyEvaluated(); case CXXConstructExprClass: case CXXTemporaryObjectExprClass: { const CXXConstructExpr *CE = cast(this); if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) return true; // A trivial constructor does not add any side-effects of its own. Just look // at its arguments. break; } case CXXInheritedCtorInitExprClass: { const auto *ICIE = cast(this); if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) return true; break; } case LambdaExprClass: { const LambdaExpr *LE = cast(this); for (Expr *E : LE->capture_inits()) if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) return true; return false; } case PseudoObjectExprClass: { // Only look for side-effects in the semantic form, and look past // OpaqueValueExpr bindings in that form. const PseudoObjectExpr *PO = cast(this); for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), E = PO->semantics_end(); I != E; ++I) { const Expr *Subexpr = *I; if (const OpaqueValueExpr *OVE = dyn_cast(Subexpr)) Subexpr = OVE->getSourceExpr(); if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) return true; } return false; } case ObjCBoxedExprClass: case ObjCArrayLiteralClass: case ObjCDictionaryLiteralClass: case ObjCSelectorExprClass: case ObjCProtocolExprClass: case ObjCIsaExprClass: case ObjCIndirectCopyRestoreExprClass: case ObjCSubscriptRefExprClass: case ObjCBridgedCastExprClass: case ObjCMessageExprClass: case ObjCPropertyRefExprClass: // FIXME: Classify these cases better. if (IncludePossibleEffects) return true; break; } // Recurse to children. for (const Stmt *SubStmt : children()) if (SubStmt && cast(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) return true; return false; } namespace { /// Look for a call to a non-trivial function within an expression. class NonTrivialCallFinder : public ConstEvaluatedExprVisitor { typedef ConstEvaluatedExprVisitor Inherited; bool NonTrivial; public: explicit NonTrivialCallFinder(const ASTContext &Context) : Inherited(Context), NonTrivial(false) { } bool hasNonTrivialCall() const { return NonTrivial; } void VisitCallExpr(const CallExpr *E) { if (const CXXMethodDecl *Method = dyn_cast_or_null(E->getCalleeDecl())) { if (Method->isTrivial()) { // Recurse to children of the call. Inherited::VisitStmt(E); return; } } NonTrivial = true; } void VisitCXXConstructExpr(const CXXConstructExpr *E) { if (E->getConstructor()->isTrivial()) { // Recurse to children of the call. Inherited::VisitStmt(E); return; } NonTrivial = true; } void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { if (E->getTemporary()->getDestructor()->isTrivial()) { Inherited::VisitStmt(E); return; } NonTrivial = true; } }; } bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { NonTrivialCallFinder Finder(Ctx); Finder.Visit(this); return Finder.hasNonTrivialCall(); } /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null /// pointer constant or not, as well as the specific kind of constant detected. /// Null pointer constants can be integer constant expressions with the /// value zero, casts of zero to void*, nullptr (C++0X), or __null /// (a GNU extension). Expr::NullPointerConstantKind Expr::isNullPointerConstant(ASTContext &Ctx, NullPointerConstantValueDependence NPC) const { if (isValueDependent() && (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { switch (NPC) { case NPC_NeverValueDependent: llvm_unreachable("Unexpected value dependent expression!"); case NPC_ValueDependentIsNull: if (isTypeDependent() || getType()->isIntegralType(Ctx)) return NPCK_ZeroExpression; else return NPCK_NotNull; case NPC_ValueDependentIsNotNull: return NPCK_NotNull; } } // Strip off a cast to void*, if it exists. Except in C++. if (const ExplicitCastExpr *CE = dyn_cast(this)) { if (!Ctx.getLangOpts().CPlusPlus) { // Check that it is a cast to void*. if (const PointerType *PT = CE->getType()->getAs()) { QualType Pointee = PT->getPointeeType(); Qualifiers Qs = Pointee.getQualifiers(); // Only (void*)0 or equivalent are treated as nullptr. If pointee type // has non-default address space it is not treated as nullptr. // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr // since it cannot be assigned to a pointer to constant address space. if ((Ctx.getLangOpts().OpenCLVersion >= 200 && Pointee.getAddressSpace() == LangAS::opencl_generic) || (Ctx.getLangOpts().OpenCL && Ctx.getLangOpts().OpenCLVersion < 200 && Pointee.getAddressSpace() == LangAS::opencl_private)) Qs.removeAddressSpace(); if (Pointee->isVoidType() && Qs.empty() && // to void* CE->getSubExpr()->getType()->isIntegerType()) // from int return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); } } } else if (const ImplicitCastExpr *ICE = dyn_cast(this)) { // Ignore the ImplicitCastExpr type entirely. return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); } else if (const ParenExpr *PE = dyn_cast(this)) { // Accept ((void*)0) as a null pointer constant, as many other // implementations do. return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); } else if (const GenericSelectionExpr *GE = dyn_cast(this)) { if (GE->isResultDependent()) return NPCK_NotNull; return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); } else if (const ChooseExpr *CE = dyn_cast(this)) { if (CE->isConditionDependent()) return NPCK_NotNull; return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); } else if (const CXXDefaultArgExpr *DefaultArg = dyn_cast(this)) { // See through default argument expressions. return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); } else if (const CXXDefaultInitExpr *DefaultInit = dyn_cast(this)) { // See through default initializer expressions. return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); } else if (isa(this)) { // The GNU __null extension is always a null pointer constant. return NPCK_GNUNull; } else if (const MaterializeTemporaryExpr *M = dyn_cast(this)) { return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); } else if (const OpaqueValueExpr *OVE = dyn_cast(this)) { if (const Expr *Source = OVE->getSourceExpr()) return Source->isNullPointerConstant(Ctx, NPC); } // If the expression has no type information, it cannot be a null pointer // constant. if (getType().isNull()) return NPCK_NotNull; // C++11 nullptr_t is always a null pointer constant. if (getType()->isNullPtrType()) return NPCK_CXX11_nullptr; if (const RecordType *UT = getType()->getAsUnionType()) if (!Ctx.getLangOpts().CPlusPlus11 && UT && UT->getDecl()->hasAttr()) if (const CompoundLiteralExpr *CLE = dyn_cast(this)){ const Expr *InitExpr = CLE->getInitializer(); if (const InitListExpr *ILE = dyn_cast(InitExpr)) return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC); } // This expression must be an integer type. if (!getType()->isIntegerType() || (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) return NPCK_NotNull; if (Ctx.getLangOpts().CPlusPlus11) { // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with // value zero or a prvalue of type std::nullptr_t. // Microsoft mode permits C++98 rules reflecting MSVC behavior. const IntegerLiteral *Lit = dyn_cast(this); if (Lit && !Lit->getValue()) return NPCK_ZeroLiteral; else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) return NPCK_NotNull; } else { // If we have an integer constant expression, we need to *evaluate* it and // test for the value 0. if (!isIntegerConstantExpr(Ctx)) return NPCK_NotNull; } if (EvaluateKnownConstInt(Ctx) != 0) return NPCK_NotNull; if (isa(this)) return NPCK_ZeroLiteral; return NPCK_ZeroExpression; } /// If this expression is an l-value for an Objective C /// property, find the underlying property reference expression. const ObjCPropertyRefExpr *Expr::getObjCProperty() const { const Expr *E = this; while (true) { assert((E->getValueKind() == VK_LValue && E->getObjectKind() == OK_ObjCProperty) && "expression is not a property reference"); E = E->IgnoreParenCasts(); if (const BinaryOperator *BO = dyn_cast(E)) { if (BO->getOpcode() == BO_Comma) { E = BO->getRHS(); continue; } } break; } return cast(E); } bool Expr::isObjCSelfExpr() const { const Expr *E = IgnoreParenImpCasts(); const DeclRefExpr *DRE = dyn_cast(E); if (!DRE) return false; const ImplicitParamDecl *Param = dyn_cast(DRE->getDecl()); if (!Param) return false; const ObjCMethodDecl *M = dyn_cast(Param->getDeclContext()); if (!M) return false; return M->getSelfDecl() == Param; } FieldDecl *Expr::getSourceBitField() { Expr *E = this->IgnoreParens(); while (ImplicitCastExpr *ICE = dyn_cast(E)) { if (ICE->getCastKind() == CK_LValueToRValue || (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp)) E = ICE->getSubExpr()->IgnoreParens(); else break; } if (MemberExpr *MemRef = dyn_cast(E)) if (FieldDecl *Field = dyn_cast(MemRef->getMemberDecl())) if (Field->isBitField()) return Field; if (ObjCIvarRefExpr *IvarRef = dyn_cast(E)) { FieldDecl *Ivar = IvarRef->getDecl(); if (Ivar->isBitField()) return Ivar; } if (DeclRefExpr *DeclRef = dyn_cast(E)) { if (FieldDecl *Field = dyn_cast(DeclRef->getDecl())) if (Field->isBitField()) return Field; if (BindingDecl *BD = dyn_cast(DeclRef->getDecl())) if (Expr *E = BD->getBinding()) return E->getSourceBitField(); } if (BinaryOperator *BinOp = dyn_cast(E)) { if (BinOp->isAssignmentOp() && BinOp->getLHS()) return BinOp->getLHS()->getSourceBitField(); if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) return BinOp->getRHS()->getSourceBitField(); } if (UnaryOperator *UnOp = dyn_cast(E)) if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) return UnOp->getSubExpr()->getSourceBitField(); return nullptr; } bool Expr::refersToVectorElement() const { // FIXME: Why do we not just look at the ObjectKind here? const Expr *E = this->IgnoreParens(); while (const ImplicitCastExpr *ICE = dyn_cast(E)) { if (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp) E = ICE->getSubExpr()->IgnoreParens(); else break; } if (const ArraySubscriptExpr *ASE = dyn_cast(E)) return ASE->getBase()->getType()->isVectorType(); if (isa(E)) return true; if (auto *DRE = dyn_cast(E)) if (auto *BD = dyn_cast(DRE->getDecl())) if (auto *E = BD->getBinding()) return E->refersToVectorElement(); return false; } bool Expr::refersToGlobalRegisterVar() const { const Expr *E = this->IgnoreParenImpCasts(); if (const DeclRefExpr *DRE = dyn_cast(E)) if (const auto *VD = dyn_cast(DRE->getDecl())) if (VD->getStorageClass() == SC_Register && VD->hasAttr() && !VD->isLocalVarDecl()) return true; return false; } bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { E1 = E1->IgnoreParens(); E2 = E2->IgnoreParens(); if (E1->getStmtClass() != E2->getStmtClass()) return false; switch (E1->getStmtClass()) { default: return false; case CXXThisExprClass: return true; case DeclRefExprClass: { // DeclRefExpr without an ImplicitCastExpr can happen for integral // template parameters. const auto *DRE1 = cast(E1); const auto *DRE2 = cast(E2); return DRE1->isRValue() && DRE2->isRValue() && DRE1->getDecl() == DRE2->getDecl(); } case ImplicitCastExprClass: { // Peel off implicit casts. while (true) { const auto *ICE1 = dyn_cast(E1); const auto *ICE2 = dyn_cast(E2); if (!ICE1 || !ICE2) return false; if (ICE1->getCastKind() != ICE2->getCastKind()) return false; E1 = ICE1->getSubExpr()->IgnoreParens(); E2 = ICE2->getSubExpr()->IgnoreParens(); // The final cast must be one of these types. if (ICE1->getCastKind() == CK_LValueToRValue || ICE1->getCastKind() == CK_ArrayToPointerDecay || ICE1->getCastKind() == CK_FunctionToPointerDecay) { break; } } const auto *DRE1 = dyn_cast(E1); const auto *DRE2 = dyn_cast(E2); if (DRE1 && DRE2) return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl()); const auto *Ivar1 = dyn_cast(E1); const auto *Ivar2 = dyn_cast(E2); if (Ivar1 && Ivar2) { return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl()); } const auto *Array1 = dyn_cast(E1); const auto *Array2 = dyn_cast(E2); if (Array1 && Array2) { if (!isSameComparisonOperand(Array1->getBase(), Array2->getBase())) return false; auto Idx1 = Array1->getIdx(); auto Idx2 = Array2->getIdx(); const auto Integer1 = dyn_cast(Idx1); const auto Integer2 = dyn_cast(Idx2); if (Integer1 && Integer2) { if (!llvm::APInt::isSameValue(Integer1->getValue(), Integer2->getValue())) return false; } else { if (!isSameComparisonOperand(Idx1, Idx2)) return false; } return true; } // Walk the MemberExpr chain. while (isa(E1) && isa(E2)) { const auto *ME1 = cast(E1); const auto *ME2 = cast(E2); if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl())) return false; if (const auto *D = dyn_cast(ME1->getMemberDecl())) if (D->isStaticDataMember()) return true; E1 = ME1->getBase()->IgnoreParenImpCasts(); E2 = ME2->getBase()->IgnoreParenImpCasts(); } if (isa(E1) && isa(E2)) return true; // A static member variable can end the MemberExpr chain with either // a MemberExpr or a DeclRefExpr. auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { if (const auto *DRE = dyn_cast(E)) return DRE->getDecl(); if (const auto *ME = dyn_cast(E)) return ME->getMemberDecl(); return nullptr; }; const ValueDecl *VD1 = getAnyDecl(E1); const ValueDecl *VD2 = getAnyDecl(E2); return declaresSameEntity(VD1, VD2); } } } /// isArrow - Return true if the base expression is a pointer to vector, /// return false if the base expression is a vector. bool ExtVectorElementExpr::isArrow() const { return getBase()->getType()->isPointerType(); } unsigned ExtVectorElementExpr::getNumElements() const { if (const VectorType *VT = getType()->getAs()) return VT->getNumElements(); return 1; } /// containsDuplicateElements - Return true if any element access is repeated. bool ExtVectorElementExpr::containsDuplicateElements() const { // FIXME: Refactor this code to an accessor on the AST node which returns the // "type" of component access, and share with code below and in Sema. StringRef Comp = Accessor->getName(); // Halving swizzles do not contain duplicate elements. if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd") return false; // Advance past s-char prefix on hex swizzles. if (Comp[0] == 's' || Comp[0] == 'S') Comp = Comp.substr(1); for (unsigned i = 0, e = Comp.size(); i != e; ++i) if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos) return true; return false; } /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. void ExtVectorElementExpr::getEncodedElementAccess( SmallVectorImpl &Elts) const { StringRef Comp = Accessor->getName(); bool isNumericAccessor = false; if (Comp[0] == 's' || Comp[0] == 'S') { Comp = Comp.substr(1); isNumericAccessor = true; } bool isHi = Comp == "hi"; bool isLo = Comp == "lo"; bool isEven = Comp == "even"; bool isOdd = Comp == "odd"; for (unsigned i = 0, e = getNumElements(); i != e; ++i) { uint64_t Index; if (isHi) Index = e + i; else if (isLo) Index = i; else if (isEven) Index = 2 * i; else if (isOdd) Index = 2 * i + 1; else Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor); Elts.push_back(Index); } } ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef args, QualType Type, SourceLocation BLoc, SourceLocation RP) : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary), BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) { SubExprs = new (C) Stmt*[args.size()]; for (unsigned i = 0; i != args.size(); i++) SubExprs[i] = args[i]; setDependence(computeDependence(this)); } void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef Exprs) { if (SubExprs) C.Deallocate(SubExprs); this->NumExprs = Exprs.size(); SubExprs = new (C) Stmt*[NumExprs]; memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size()); } GenericSelectionExpr::GenericSelectionExpr( const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, ArrayRef AssocTypes, ArrayRef AssocExprs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, unsigned ResultIndex) : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), AssocExprs[ResultIndex]->getValueKind(), AssocExprs[ResultIndex]->getObjectKind()), NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { assert(AssocTypes.size() == AssocExprs.size() && "Must have the same number of association expressions" " and TypeSourceInfo!"); assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!"); GenericSelectionExprBits.GenericLoc = GenericLoc; getTrailingObjects()[ControllingIndex] = ControllingExpr; std::copy(AssocExprs.begin(), AssocExprs.end(), getTrailingObjects() + AssocExprStartIndex); std::copy(AssocTypes.begin(), AssocTypes.end(), getTrailingObjects()); setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); } GenericSelectionExpr::GenericSelectionExpr( const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, ArrayRef AssocTypes, ArrayRef AssocExprs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) : Expr(GenericSelectionExprClass, Context.DependentTy, VK_RValue, OK_Ordinary), NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { assert(AssocTypes.size() == AssocExprs.size() && "Must have the same number of association expressions" " and TypeSourceInfo!"); GenericSelectionExprBits.GenericLoc = GenericLoc; getTrailingObjects()[ControllingIndex] = ControllingExpr; std::copy(AssocExprs.begin(), AssocExprs.end(), getTrailingObjects() + AssocExprStartIndex); std::copy(AssocTypes.begin(), AssocTypes.end(), getTrailingObjects()); setDependence(computeDependence(this, ContainsUnexpandedParameterPack)); } GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} GenericSelectionExpr *GenericSelectionExpr::Create( const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, ArrayRef AssocTypes, ArrayRef AssocExprs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { unsigned NumAssocs = AssocExprs.size(); void *Mem = Context.Allocate( totalSizeToAlloc(1 + NumAssocs, NumAssocs), alignof(GenericSelectionExpr)); return new (Mem) GenericSelectionExpr( Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); } GenericSelectionExpr *GenericSelectionExpr::Create( const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, ArrayRef AssocTypes, ArrayRef AssocExprs, SourceLocation DefaultLoc, SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) { unsigned NumAssocs = AssocExprs.size(); void *Mem = Context.Allocate( totalSizeToAlloc(1 + NumAssocs, NumAssocs), alignof(GenericSelectionExpr)); return new (Mem) GenericSelectionExpr( Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, RParenLoc, ContainsUnexpandedParameterPack); } GenericSelectionExpr * GenericSelectionExpr::CreateEmpty(const ASTContext &Context, unsigned NumAssocs) { void *Mem = Context.Allocate( totalSizeToAlloc(1 + NumAssocs, NumAssocs), alignof(GenericSelectionExpr)); return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); } //===----------------------------------------------------------------------===// // DesignatedInitExpr //===----------------------------------------------------------------------===// IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { assert(Kind == FieldDesignator && "Only valid on a field designator"); if (Field.NameOrField & 0x01) return reinterpret_cast(Field.NameOrField&~0x01); else return getField()->getIdentifier(); } DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, llvm::ArrayRef Designators, SourceLocation EqualOrColonLoc, bool GNUSyntax, ArrayRef IndexExprs, Expr *Init) : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), Init->getObjectKind()), EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { this->Designators = new (C) Designator[NumDesignators]; // Record the initializer itself. child_iterator Child = child_begin(); *Child++ = Init; // Copy the designators and their subexpressions, computing // value-dependence along the way. unsigned IndexIdx = 0; for (unsigned I = 0; I != NumDesignators; ++I) { this->Designators[I] = Designators[I]; if (this->Designators[I].isArrayDesignator()) { // Copy the index expressions into permanent storage. *Child++ = IndexExprs[IndexIdx++]; } else if (this->Designators[I].isArrayRangeDesignator()) { // Copy the start/end expressions into permanent storage. *Child++ = IndexExprs[IndexIdx++]; *Child++ = IndexExprs[IndexIdx++]; } } assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions"); setDependence(computeDependence(this)); } DesignatedInitExpr * DesignatedInitExpr::Create(const ASTContext &C, llvm::ArrayRef Designators, ArrayRef IndexExprs, SourceLocation ColonOrEqualLoc, bool UsesColonSyntax, Expr *Init) { void *Mem = C.Allocate(totalSizeToAlloc(IndexExprs.size() + 1), alignof(DesignatedInitExpr)); return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, ColonOrEqualLoc, UsesColonSyntax, IndexExprs, Init); } DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, unsigned NumIndexExprs) { void *Mem = C.Allocate(totalSizeToAlloc(NumIndexExprs + 1), alignof(DesignatedInitExpr)); return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); } void DesignatedInitExpr::setDesignators(const ASTContext &C, const Designator *Desigs, unsigned NumDesigs) { Designators = new (C) Designator[NumDesigs]; NumDesignators = NumDesigs; for (unsigned I = 0; I != NumDesigs; ++I) Designators[I] = Desigs[I]; } SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const { DesignatedInitExpr *DIE = const_cast(this); if (size() == 1) return DIE->getDesignator(0)->getSourceRange(); return SourceRange(DIE->getDesignator(0)->getBeginLoc(), DIE->getDesignator(size() - 1)->getEndLoc()); } SourceLocation DesignatedInitExpr::getBeginLoc() const { SourceLocation StartLoc; auto *DIE = const_cast(this); Designator &First = *DIE->getDesignator(0); if (First.isFieldDesignator()) { if (GNUSyntax) StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc); else StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc); } else StartLoc = SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc); return StartLoc; } SourceLocation DesignatedInitExpr::getEndLoc() const { return getInit()->getEndLoc(); } Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { assert(D.Kind == Designator::ArrayDesignator && "Requires array designator"); return getSubExpr(D.ArrayOrRange.Index + 1); } Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { assert(D.Kind == Designator::ArrayRangeDesignator && "Requires array range designator"); return getSubExpr(D.ArrayOrRange.Index + 1); } Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { assert(D.Kind == Designator::ArrayRangeDesignator && "Requires array range designator"); return getSubExpr(D.ArrayOrRange.Index + 2); } /// Replaces the designator at index @p Idx with the series /// of designators in [First, Last). void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, const Designator *First, const Designator *Last) { unsigned NumNewDesignators = Last - First; if (NumNewDesignators == 0) { std::copy_backward(Designators + Idx + 1, Designators + NumDesignators, Designators + Idx); --NumNewDesignators; return; } else if (NumNewDesignators == 1) { Designators[Idx] = *First; return; } Designator *NewDesignators = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; std::copy(Designators, Designators + Idx, NewDesignators); std::copy(First, Last, NewDesignators + Idx); std::copy(Designators + Idx + 1, Designators + NumDesignators, NewDesignators + Idx + NumNewDesignators); Designators = NewDesignators; NumDesignators = NumDesignators - 1 + NumNewDesignators; } DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc) : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue, OK_Ordinary) { BaseAndUpdaterExprs[0] = baseExpr; InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc); ILE->setType(baseExpr->getType()); BaseAndUpdaterExprs[1] = ILE; // FIXME: this is wrong, set it correctly. setDependence(ExprDependence::None); } SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { return getBase()->getBeginLoc(); } SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { return getBase()->getEndLoc(); } ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef Exprs, SourceLocation RParenLoc) : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary), LParenLoc(LParenLoc), RParenLoc(RParenLoc) { ParenListExprBits.NumExprs = Exprs.size(); for (unsigned I = 0, N = Exprs.size(); I != N; ++I) getTrailingObjects()[I] = Exprs[I]; setDependence(computeDependence(this)); } ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) : Expr(ParenListExprClass, Empty) { ParenListExprBits.NumExprs = NumExprs; } ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, SourceLocation LParenLoc, ArrayRef Exprs, SourceLocation RParenLoc) { void *Mem = Ctx.Allocate(totalSizeToAlloc(Exprs.size()), alignof(ParenListExpr)); return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); } ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumExprs) { void *Mem = Ctx.Allocate(totalSizeToAlloc(NumExprs), alignof(ParenListExpr)); return new (Mem) ParenListExpr(EmptyShell(), NumExprs); } BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures) : Expr(BinaryOperatorClass, ResTy, VK, OK) { BinaryOperatorBits.Opc = opc; assert(!isCompoundAssignmentOp() && "Use CompoundAssignOperator for compound assignments"); BinaryOperatorBits.OpLoc = opLoc; SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); if (BinaryOperatorBits.HasFPFeatures) *getTrailingFPFeatures() = FPFeatures; setDependence(computeDependence(this)); } BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures, bool dead2) : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { BinaryOperatorBits.Opc = opc; assert(isCompoundAssignmentOp() && "Use CompoundAssignOperator for compound assignments"); BinaryOperatorBits.OpLoc = opLoc; SubExprs[LHS] = lhs; SubExprs[RHS] = rhs; BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); if (BinaryOperatorBits.HasFPFeatures) *getTrailingFPFeatures() = FPFeatures; setDependence(computeDependence(this)); } BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); void *Mem = C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); return new (Mem) BinaryOperator(EmptyShell()); } BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures) { bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); void *Mem = C.Allocate(sizeof(BinaryOperator) + Extra, alignof(BinaryOperator)); return new (Mem) BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); } CompoundAssignOperator * CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, alignof(CompoundAssignOperator)); return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); } CompoundAssignOperator * CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy, ExprValueKind VK, ExprObjectKind OK, SourceLocation opLoc, FPOptionsOverride FPFeatures, QualType CompLHSType, QualType CompResultType) { bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); unsigned Extra = sizeOfTrailingObjects(HasFPFeatures); void *Mem = C.Allocate(sizeof(CompoundAssignOperator) + Extra, alignof(CompoundAssignOperator)); return new (Mem) CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, CompLHSType, CompResultType); } UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, bool hasFPFeatures) { void *Mem = C.Allocate(totalSizeToAlloc(hasFPFeatures), alignof(UnaryOperator)); return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); } UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures) : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { UnaryOperatorBits.Opc = opc; UnaryOperatorBits.CanOverflow = CanOverflow; UnaryOperatorBits.Loc = l; UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); setDependence(computeDependence(this)); } UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, Opcode opc, QualType type, ExprValueKind VK, ExprObjectKind OK, SourceLocation l, bool CanOverflow, FPOptionsOverride FPFeatures) { bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); unsigned Size = totalSizeToAlloc(HasFPFeatures); void *Mem = C.Allocate(Size, alignof(UnaryOperator)); return new (Mem) UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); } const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { if (const ExprWithCleanups *ewc = dyn_cast(e)) e = ewc->getSubExpr(); if (const MaterializeTemporaryExpr *m = dyn_cast(e)) e = m->getSubExpr(); e = cast(e)->getArg(0); while (const ImplicitCastExpr *ice = dyn_cast(e)) e = ice->getSubExpr(); return cast(e); } PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, EmptyShell sh, unsigned numSemanticExprs) { void *buffer = Context.Allocate(totalSizeToAlloc(1 + numSemanticExprs), alignof(PseudoObjectExpr)); return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); } PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) : Expr(PseudoObjectExprClass, shell) { PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; } PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, ArrayRef semantics, unsigned resultIndex) { assert(syntax && "no syntactic expression!"); assert(semantics.size() && "no semantic expressions!"); QualType type; ExprValueKind VK; if (resultIndex == NoResult) { type = C.VoidTy; VK = VK_RValue; } else { assert(resultIndex < semantics.size()); type = semantics[resultIndex]->getType(); VK = semantics[resultIndex]->getValueKind(); assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); } void *buffer = C.Allocate(totalSizeToAlloc(semantics.size() + 1), alignof(PseudoObjectExpr)); return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, resultIndex); } PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, Expr *syntax, ArrayRef semantics, unsigned resultIndex) : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; PseudoObjectExprBits.ResultIndex = resultIndex + 1; for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) { Expr *E = (i == 0 ? syntax : semantics[i-1]); getSubExprsBuffer()[i] = E; if (isa(E)) assert(cast(E)->getSourceExpr() != nullptr && "opaque-value semantic expressions for pseudo-object " "operations must have sources"); } setDependence(computeDependence(this)); } //===----------------------------------------------------------------------===// // Child Iterators for iterating over subexpressions/substatements //===----------------------------------------------------------------------===// // UnaryExprOrTypeTraitExpr Stmt::child_range UnaryExprOrTypeTraitExpr::children() { const_child_range CCR = const_cast(this)->children(); return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end())); } Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { // If this is of a type and the type is a VLA type (and not a typedef), the // size expression of the VLA needs to be treated as an executable expression. // Why isn't this weirdness documented better in StmtIterator? if (isArgumentType()) { if (const VariableArrayType *T = dyn_cast(getArgumentType().getTypePtr())) return const_child_range(const_child_iterator(T), const_child_iterator()); return const_child_range(const_child_iterator(), const_child_iterator()); } return const_child_range(&Argument.Ex, &Argument.Ex + 1); } AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef args, QualType t, AtomicOp op, SourceLocation RP) : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary), NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions"); for (unsigned i = 0; i != args.size(); i++) SubExprs[i] = args[i]; setDependence(computeDependence(this)); } unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { switch (Op) { case AO__c11_atomic_init: case AO__opencl_atomic_init: case AO__c11_atomic_load: case AO__atomic_load_n: return 2; case AO__opencl_atomic_load: case AO__c11_atomic_store: case AO__c11_atomic_exchange: case AO__atomic_load: case AO__atomic_store: case AO__atomic_store_n: case AO__atomic_exchange_n: case AO__c11_atomic_fetch_add: case AO__c11_atomic_fetch_sub: case AO__c11_atomic_fetch_and: case AO__c11_atomic_fetch_or: case AO__c11_atomic_fetch_xor: case AO__c11_atomic_fetch_max: case AO__c11_atomic_fetch_min: case AO__atomic_fetch_add: case AO__atomic_fetch_sub: case AO__atomic_fetch_and: case AO__atomic_fetch_or: case AO__atomic_fetch_xor: case AO__atomic_fetch_nand: case AO__atomic_add_fetch: case AO__atomic_sub_fetch: case AO__atomic_and_fetch: case AO__atomic_or_fetch: case AO__atomic_xor_fetch: case AO__atomic_nand_fetch: case AO__atomic_min_fetch: case AO__atomic_max_fetch: case AO__atomic_fetch_min: case AO__atomic_fetch_max: return 3; case AO__opencl_atomic_store: case AO__opencl_atomic_exchange: case AO__opencl_atomic_fetch_add: case AO__opencl_atomic_fetch_sub: case AO__opencl_atomic_fetch_and: case AO__opencl_atomic_fetch_or: case AO__opencl_atomic_fetch_xor: case AO__opencl_atomic_fetch_min: case AO__opencl_atomic_fetch_max: case AO__atomic_exchange: return 4; case AO__c11_atomic_compare_exchange_strong: case AO__c11_atomic_compare_exchange_weak: return 5; case AO__opencl_atomic_compare_exchange_strong: case AO__opencl_atomic_compare_exchange_weak: case AO__atomic_compare_exchange: case AO__atomic_compare_exchange_n: return 6; } llvm_unreachable("unknown atomic op"); } QualType AtomicExpr::getValueType() const { auto T = getPtr()->getType()->castAs()->getPointeeType(); if (auto AT = T->getAs()) return AT->getValueType(); return T; } QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) { unsigned ArraySectionCount = 0; while (auto *OASE = dyn_cast(Base->IgnoreParens())) { Base = OASE->getBase(); ++ArraySectionCount; } while (auto *ASE = dyn_cast(Base->IgnoreParenImpCasts())) { Base = ASE->getBase(); ++ArraySectionCount; } Base = Base->IgnoreParenImpCasts(); auto OriginalTy = Base->getType(); if (auto *DRE = dyn_cast(Base)) if (auto *PVD = dyn_cast(DRE->getDecl())) OriginalTy = PVD->getOriginalType().getNonReferenceType(); for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { if (OriginalTy->isAnyPointerType()) OriginalTy = OriginalTy->getPointeeType(); else { assert (OriginalTy->isArrayType()); OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); } } return OriginalTy; } RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, SourceLocation EndLoc, ArrayRef SubExprs) : Expr(RecoveryExprClass, T.getNonReferenceType(), T->isDependentType() ? VK_LValue : getValueKindForType(T), OK_Ordinary), BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { assert(!T.isNull()); assert(llvm::all_of(SubExprs, [](Expr* E) { return E != nullptr; })); llvm::copy(SubExprs, getTrailingObjects()); setDependence(computeDependence(this)); } RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, SourceLocation EndLoc, ArrayRef SubExprs) { void *Mem = Ctx.Allocate(totalSizeToAlloc(SubExprs.size()), alignof(RecoveryExpr)); return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); } RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { void *Mem = Ctx.Allocate(totalSizeToAlloc(NumSubExprs), alignof(RecoveryExpr)); return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); } void OMPArrayShapingExpr::setDimensions(ArrayRef Dims) { assert( NumDims == Dims.size() && "Preallocated number of dimensions is different from the provided one."); llvm::copy(Dims, getTrailingObjects()); } void OMPArrayShapingExpr::setBracketsRanges(ArrayRef BR) { assert( NumDims == BR.size() && "Preallocated number of dimensions is different from the provided one."); llvm::copy(BR, getTrailingObjects()); } OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, SourceLocation L, SourceLocation R, ArrayRef Dims) : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), RPLoc(R), NumDims(Dims.size()) { setBase(Op); setDimensions(Dims); setDependence(computeDependence(this)); } OMPArrayShapingExpr * OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, SourceLocation L, SourceLocation R, ArrayRef Dims, ArrayRef BracketRanges) { assert(Dims.size() == BracketRanges.size() && "Different number of dimensions and brackets ranges."); void *Mem = Context.Allocate( totalSizeToAlloc(Dims.size() + 1, Dims.size()), alignof(OMPArrayShapingExpr)); auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); E->setBracketsRanges(BracketRanges); return E; } OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, unsigned NumDims) { void *Mem = Context.Allocate( totalSizeToAlloc(NumDims + 1, NumDims), alignof(OMPArrayShapingExpr)); return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); } void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { assert(I < NumIterators && "Idx is greater or equal the number of iterators definitions."); getTrailingObjects()[I] = D; } void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { assert(I < NumIterators && "Idx is greater or equal the number of iterators definitions."); getTrailingObjects< SourceLocation>()[I * static_cast(RangeLocOffset::Total) + static_cast(RangeLocOffset::AssignLoc)] = Loc; } void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, SourceLocation ColonLoc, Expr *End, SourceLocation SecondColonLoc, Expr *Step) { assert(I < NumIterators && "Idx is greater or equal the number of iterators definitions."); getTrailingObjects()[I * static_cast(RangeExprOffset::Total) + static_cast(RangeExprOffset::Begin)] = Begin; getTrailingObjects()[I * static_cast(RangeExprOffset::Total) + static_cast(RangeExprOffset::End)] = End; getTrailingObjects()[I * static_cast(RangeExprOffset::Total) + static_cast(RangeExprOffset::Step)] = Step; getTrailingObjects< SourceLocation>()[I * static_cast(RangeLocOffset::Total) + static_cast(RangeLocOffset::FirstColonLoc)] = ColonLoc; getTrailingObjects< SourceLocation>()[I * static_cast(RangeLocOffset::Total) + static_cast(RangeLocOffset::SecondColonLoc)] = SecondColonLoc; } Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { return getTrailingObjects()[I]; } OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { IteratorRange Res; Res.Begin = getTrailingObjects()[I * static_cast( RangeExprOffset::Total) + static_cast(RangeExprOffset::Begin)]; Res.End = getTrailingObjects()[I * static_cast( RangeExprOffset::Total) + static_cast(RangeExprOffset::End)]; Res.Step = getTrailingObjects()[I * static_cast( RangeExprOffset::Total) + static_cast(RangeExprOffset::Step)]; return Res; } SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { return getTrailingObjects< SourceLocation>()[I * static_cast(RangeLocOffset::Total) + static_cast(RangeLocOffset::AssignLoc)]; } SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { return getTrailingObjects< SourceLocation>()[I * static_cast(RangeLocOffset::Total) + static_cast(RangeLocOffset::FirstColonLoc)]; } SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { return getTrailingObjects< SourceLocation>()[I * static_cast(RangeLocOffset::Total) + static_cast(RangeLocOffset::SecondColonLoc)]; } void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { getTrailingObjects()[I] = D; } OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { return getTrailingObjects()[I]; } const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { return getTrailingObjects()[I]; } OMPIteratorExpr::OMPIteratorExpr( QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, SourceLocation R, ArrayRef Data, ArrayRef Helpers) : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), NumIterators(Data.size()) { for (unsigned I = 0, E = Data.size(); I < E; ++I) { const IteratorDefinition &D = Data[I]; setIteratorDeclaration(I, D.IteratorDecl); setAssignmentLoc(I, D.AssignmentLoc); setIteratorRange(I, D.Range.Begin, D.ColonLoc, D.Range.End, D.SecondColonLoc, D.Range.Step); setHelper(I, Helpers[I]); } setDependence(computeDependence(this)); } OMPIteratorExpr * OMPIteratorExpr::Create(const ASTContext &Context, QualType T, SourceLocation IteratorKwLoc, SourceLocation L, SourceLocation R, ArrayRef Data, ArrayRef Helpers) { assert(Data.size() == Helpers.size() && "Data and helpers must have the same size."); void *Mem = Context.Allocate( totalSizeToAlloc( Data.size(), Data.size() * static_cast(RangeExprOffset::Total), Data.size() * static_cast(RangeLocOffset::Total), Helpers.size()), alignof(OMPIteratorExpr)); return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); } OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, unsigned NumIterators) { void *Mem = Context.Allocate( totalSizeToAlloc( NumIterators, NumIterators * static_cast(RangeExprOffset::Total), NumIterators * static_cast(RangeLocOffset::Total), NumIterators), alignof(OMPIteratorExpr)); return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); }