//===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the C++ related Decl classes. // //===----------------------------------------------------------------------===// #include "clang/AST/DeclCXX.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/ASTUnresolvedSet.h" #include "clang/AST/Attr.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/LambdaCapture.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/ODRHash.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/UnresolvedSet.h" #include "clang/Basic/Diagnostic.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include using namespace clang; //===----------------------------------------------------------------------===// // Decl Allocation/Deallocation Method Implementations //===----------------------------------------------------------------------===// void AccessSpecDecl::anchor() {} AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) AccessSpecDecl(EmptyShell()); } void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { ExternalASTSource *Source = C.getExternalSource(); assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); assert(Source && "getFromExternalSource with no external source"); for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) I.setDecl(cast(Source->GetExternalDecl( reinterpret_cast(I.getDecl()) >> 2))); Impl.Decls.setLazy(false); } CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), HasPrivateFields(false), HasProtectedFields(false), HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), HasOnlyCMembers(true), HasInitMethod(false), HasInClassInitializer(false), HasUninitializedReferenceMember(false), HasUninitializedFields(false), HasInheritedConstructor(false), HasInheritedDefaultConstructor(false), HasInheritedAssignment(false), NeedOverloadResolutionForCopyConstructor(false), NeedOverloadResolutionForMoveConstructor(false), NeedOverloadResolutionForCopyAssignment(false), NeedOverloadResolutionForMoveAssignment(false), NeedOverloadResolutionForDestructor(false), DefaultedCopyConstructorIsDeleted(false), DefaultedMoveConstructorIsDeleted(false), DefaultedCopyAssignmentIsDeleted(false), DefaultedMoveAssignmentIsDeleted(false), DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), HasTrivialSpecialMembersForCall(SMF_All), DeclaredNonTrivialSpecialMembers(0), DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), HasConstexprNonCopyMoveConstructor(false), HasDefaultedDefaultConstructor(false), DefaultedDefaultConstructorIsConstexpr(true), HasConstexprDefaultConstructor(false), DefaultedDestructorIsConstexpr(true), HasNonLiteralTypeFieldsOrBases(false), StructuralIfLiteral(true), UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), ImplicitCopyConstructorCanHaveConstParamForVBase(true), ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), ImplicitCopyAssignmentHasConstParam(true), HasDeclaredCopyConstructorWithConstParam(false), HasDeclaredCopyAssignmentWithConstParam(false), IsAnyDestructorNoReturn(false), IsLambda(false), IsParsingBaseSpecifiers(false), ComputedVisibleConversions(false), HasODRHash(false), Definition(D) {} CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { return Bases.get(Definition->getASTContext().getExternalSource()); } CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { return VBases.get(Definition->getASTContext().getExternalSource()); } CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl) : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), DefinitionData(PrevDecl ? PrevDecl->DefinitionData : nullptr) {} CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl, bool DelayTypeCreation) { auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl); R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); // FIXME: DelayTypeCreation seems like such a hack if (!DelayTypeCreation) C.getTypeDeclType(R, PrevDecl); return R; } CXXRecordDecl * CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, unsigned DependencyKind, bool IsGeneric, LambdaCaptureDefault CaptureDefault) { auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc, nullptr, nullptr); R->setBeingDefined(true); R->DefinitionData = new (C) struct LambdaDefinitionData( R, Info, DependencyKind, IsGeneric, CaptureDefault); R->setMayHaveOutOfDateDef(false); R->setImplicit(true); C.getTypeDeclType(R, /*PrevDecl=*/nullptr); return R; } CXXRecordDecl * CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { auto *R = new (C, ID) CXXRecordDecl( CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), nullptr, nullptr); R->setMayHaveOutOfDateDef(false); return R; } /// Determine whether a class has a repeated base class. This is intended for /// use when determining if a class is standard-layout, so makes no attempt to /// handle virtual bases. static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { llvm::SmallPtrSet SeenBaseTypes; SmallVector WorkList = {StartRD}; while (!WorkList.empty()) { const CXXRecordDecl *RD = WorkList.pop_back_val(); if (RD->getTypeForDecl()->isDependentType()) continue; for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { if (!SeenBaseTypes.insert(B).second) return true; WorkList.push_back(B); } } } return false; } void CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases) { ASTContext &C = getASTContext(); if (!data().Bases.isOffset() && data().NumBases > 0) C.Deallocate(data().getBases()); if (NumBases) { if (!C.getLangOpts().CPlusPlus17) { // C++ [dcl.init.aggr]p1: // An aggregate is [...] a class with [...] no base classes [...]. data().Aggregate = false; } // C++ [class]p4: // A POD-struct is an aggregate class... data().PlainOldData = false; } // The set of seen virtual base types. llvm::SmallPtrSet SeenVBaseTypes; // The virtual bases of this class. SmallVector VBases; data().Bases = new(C) CXXBaseSpecifier [NumBases]; data().NumBases = NumBases; for (unsigned i = 0; i < NumBases; ++i) { data().getBases()[i] = *Bases[i]; // Keep track of inherited vbases for this base class. const CXXBaseSpecifier *Base = Bases[i]; QualType BaseType = Base->getType(); // Skip dependent types; we can't do any checking on them now. if (BaseType->isDependentType()) continue; auto *BaseClassDecl = cast(BaseType->castAs()->getDecl()); // C++2a [class]p7: // A standard-layout class is a class that: // [...] // -- has all non-static data members and bit-fields in the class and // its base classes first declared in the same class if (BaseClassDecl->data().HasBasesWithFields || !BaseClassDecl->field_empty()) { if (data().HasBasesWithFields) // Two bases have members or bit-fields: not standard-layout. data().IsStandardLayout = false; data().HasBasesWithFields = true; } // C++11 [class]p7: // A standard-layout class is a class that: // -- [...] has [...] at most one base class with non-static data // members if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || BaseClassDecl->hasDirectFields()) { if (data().HasBasesWithNonStaticDataMembers) data().IsCXX11StandardLayout = false; data().HasBasesWithNonStaticDataMembers = true; } if (!BaseClassDecl->isEmpty()) { // C++14 [meta.unary.prop]p4: // T is a class type [...] with [...] no base class B for which // is_empty::value is false. data().Empty = false; } // C++1z [dcl.init.agg]p1: // An aggregate is a class with [...] no private or protected base classes if (Base->getAccessSpecifier() != AS_public) { data().Aggregate = false; // C++20 [temp.param]p7: // A structural type is [...] a literal class type with [...] all base // classes [...] public data().StructuralIfLiteral = false; } // C++ [class.virtual]p1: // A class that declares or inherits a virtual function is called a // polymorphic class. if (BaseClassDecl->isPolymorphic()) { data().Polymorphic = true; // An aggregate is a class with [...] no virtual functions. data().Aggregate = false; } // C++0x [class]p7: // A standard-layout class is a class that: [...] // -- has no non-standard-layout base classes if (!BaseClassDecl->isStandardLayout()) data().IsStandardLayout = false; if (!BaseClassDecl->isCXX11StandardLayout()) data().IsCXX11StandardLayout = false; // Record if this base is the first non-literal field or base. if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C)) data().HasNonLiteralTypeFieldsOrBases = true; // Now go through all virtual bases of this base and add them. for (const auto &VBase : BaseClassDecl->vbases()) { // Add this base if it's not already in the list. if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) { VBases.push_back(&VBase); // C++11 [class.copy]p8: // The implicitly-declared copy constructor for a class X will have // the form 'X::X(const X&)' if each [...] virtual base class B of X // has a copy constructor whose first parameter is of type // 'const B&' or 'const volatile B&' [...] if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) if (!VBaseDecl->hasCopyConstructorWithConstParam()) data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; // C++1z [dcl.init.agg]p1: // An aggregate is a class with [...] no virtual base classes data().Aggregate = false; } } if (Base->isVirtual()) { // Add this base if it's not already in the list. if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second) VBases.push_back(Base); // C++14 [meta.unary.prop] is_empty: // T is a class type, but not a union type, with ... no virtual base // classes data().Empty = false; // C++1z [dcl.init.agg]p1: // An aggregate is a class with [...] no virtual base classes data().Aggregate = false; // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: // A [default constructor, copy/move constructor, or copy/move assignment // operator for a class X] is trivial [...] if: // -- class X has [...] no virtual base classes data().HasTrivialSpecialMembers &= SMF_Destructor; data().HasTrivialSpecialMembersForCall &= SMF_Destructor; // C++0x [class]p7: // A standard-layout class is a class that: [...] // -- has [...] no virtual base classes data().IsStandardLayout = false; data().IsCXX11StandardLayout = false; // C++20 [dcl.constexpr]p3: // In the definition of a constexpr function [...] // -- if the function is a constructor or destructor, // its class shall not have any virtual base classes data().DefaultedDefaultConstructorIsConstexpr = false; data().DefaultedDestructorIsConstexpr = false; // C++1z [class.copy]p8: // The implicitly-declared copy constructor for a class X will have // the form 'X::X(const X&)' if each potentially constructed subobject // has a copy constructor whose first parameter is of type // 'const B&' or 'const volatile B&' [...] if (!BaseClassDecl->hasCopyConstructorWithConstParam()) data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; } else { // C++ [class.ctor]p5: // A default constructor is trivial [...] if: // -- all the direct base classes of its class have trivial default // constructors. if (!BaseClassDecl->hasTrivialDefaultConstructor()) data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; // C++0x [class.copy]p13: // A copy/move constructor for class X is trivial if [...] // [...] // -- the constructor selected to copy/move each direct base class // subobject is trivial, and if (!BaseClassDecl->hasTrivialCopyConstructor()) data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; // If the base class doesn't have a simple move constructor, we'll eagerly // declare it and perform overload resolution to determine which function // it actually calls. If it does have a simple move constructor, this // check is correct. if (!BaseClassDecl->hasTrivialMoveConstructor()) data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; // C++0x [class.copy]p27: // A copy/move assignment operator for class X is trivial if [...] // [...] // -- the assignment operator selected to copy/move each direct base // class subobject is trivial, and if (!BaseClassDecl->hasTrivialCopyAssignment()) data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; // If the base class doesn't have a simple move assignment, we'll eagerly // declare it and perform overload resolution to determine which function // it actually calls. If it does have a simple move assignment, this // check is correct. if (!BaseClassDecl->hasTrivialMoveAssignment()) data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; // C++11 [class.ctor]p6: // If that user-written default constructor would satisfy the // requirements of a constexpr constructor, the implicitly-defined // default constructor is constexpr. if (!BaseClassDecl->hasConstexprDefaultConstructor()) data().DefaultedDefaultConstructorIsConstexpr = false; // C++1z [class.copy]p8: // The implicitly-declared copy constructor for a class X will have // the form 'X::X(const X&)' if each potentially constructed subobject // has a copy constructor whose first parameter is of type // 'const B&' or 'const volatile B&' [...] if (!BaseClassDecl->hasCopyConstructorWithConstParam()) data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; } // C++ [class.ctor]p3: // A destructor is trivial if all the direct base classes of its class // have trivial destructors. if (!BaseClassDecl->hasTrivialDestructor()) data().HasTrivialSpecialMembers &= ~SMF_Destructor; if (!BaseClassDecl->hasTrivialDestructorForCall()) data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; if (!BaseClassDecl->hasIrrelevantDestructor()) data().HasIrrelevantDestructor = false; if (BaseClassDecl->isAnyDestructorNoReturn()) data().IsAnyDestructorNoReturn = true; // C++11 [class.copy]p18: // The implicitly-declared copy assignment operator for a class X will // have the form 'X& X::operator=(const X&)' if each direct base class B // of X has a copy assignment operator whose parameter is of type 'const // B&', 'const volatile B&', or 'B' [...] if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) data().ImplicitCopyAssignmentHasConstParam = false; // A class has an Objective-C object member if... or any of its bases // has an Objective-C object member. if (BaseClassDecl->hasObjectMember()) setHasObjectMember(true); if (BaseClassDecl->hasVolatileMember()) setHasVolatileMember(true); if (BaseClassDecl->getArgPassingRestrictions() == RecordDecl::APK_CanNeverPassInRegs) setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); // Keep track of the presence of mutable fields. if (BaseClassDecl->hasMutableFields()) data().HasMutableFields = true; if (BaseClassDecl->hasUninitializedReferenceMember()) data().HasUninitializedReferenceMember = true; if (!BaseClassDecl->allowConstDefaultInit()) data().HasUninitializedFields = true; addedClassSubobject(BaseClassDecl); } // C++2a [class]p7: // A class S is a standard-layout class if it: // -- has at most one base class subobject of any given type // // Note that we only need to check this for classes with more than one base // class. If there's only one base class, and it's standard layout, then // we know there are no repeated base classes. if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this)) data().IsStandardLayout = false; if (VBases.empty()) { data().IsParsingBaseSpecifiers = false; return; } // Create base specifier for any direct or indirect virtual bases. data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; data().NumVBases = VBases.size(); for (int I = 0, E = VBases.size(); I != E; ++I) { QualType Type = VBases[I]->getType(); if (!Type->isDependentType()) addedClassSubobject(Type->getAsCXXRecordDecl()); data().getVBases()[I] = *VBases[I]; } data().IsParsingBaseSpecifiers = false; } unsigned CXXRecordDecl::getODRHash() const { assert(hasDefinition() && "ODRHash only for records with definitions"); // Previously calculated hash is stored in DefinitionData. if (DefinitionData->HasODRHash) return DefinitionData->ODRHash; // Only calculate hash on first call of getODRHash per record. ODRHash Hash; Hash.AddCXXRecordDecl(getDefinition()); DefinitionData->HasODRHash = true; DefinitionData->ODRHash = Hash.CalculateHash(); return DefinitionData->ODRHash; } void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { // C++11 [class.copy]p11: // A defaulted copy/move constructor for a class X is defined as // deleted if X has: // -- a direct or virtual base class B that cannot be copied/moved [...] // -- a non-static data member of class type M (or array thereof) // that cannot be copied or moved [...] if (!Subobj->hasSimpleCopyConstructor()) data().NeedOverloadResolutionForCopyConstructor = true; if (!Subobj->hasSimpleMoveConstructor()) data().NeedOverloadResolutionForMoveConstructor = true; // C++11 [class.copy]p23: // A defaulted copy/move assignment operator for a class X is defined as // deleted if X has: // -- a direct or virtual base class B that cannot be copied/moved [...] // -- a non-static data member of class type M (or array thereof) // that cannot be copied or moved [...] if (!Subobj->hasSimpleCopyAssignment()) data().NeedOverloadResolutionForCopyAssignment = true; if (!Subobj->hasSimpleMoveAssignment()) data().NeedOverloadResolutionForMoveAssignment = true; // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: // A defaulted [ctor or dtor] for a class X is defined as // deleted if X has: // -- any direct or virtual base class [...] has a type with a destructor // that is deleted or inaccessible from the defaulted [ctor or dtor]. // -- any non-static data member has a type with a destructor // that is deleted or inaccessible from the defaulted [ctor or dtor]. if (!Subobj->hasSimpleDestructor()) { data().NeedOverloadResolutionForCopyConstructor = true; data().NeedOverloadResolutionForMoveConstructor = true; data().NeedOverloadResolutionForDestructor = true; } // C++2a [dcl.constexpr]p4: // The definition of a constexpr destructor [shall] satisfy the // following requirement: // -- for every subobject of class type or (possibly multi-dimensional) // array thereof, that class type shall have a constexpr destructor if (!Subobj->hasConstexprDestructor()) data().DefaultedDestructorIsConstexpr = false; // C++20 [temp.param]p7: // A structural type is [...] a literal class type [for which] the types // of all base classes and non-static data members are structural types or // (possibly multi-dimensional) array thereof if (!Subobj->data().StructuralIfLiteral) data().StructuralIfLiteral = false; } bool CXXRecordDecl::hasConstexprDestructor() const { auto *Dtor = getDestructor(); return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); } bool CXXRecordDecl::hasAnyDependentBases() const { if (!isDependentContext()) return false; return !forallBases([](const CXXRecordDecl *) { return true; }); } bool CXXRecordDecl::isTriviallyCopyable() const { // C++0x [class]p5: // A trivially copyable class is a class that: // -- has no non-trivial copy constructors, if (hasNonTrivialCopyConstructor()) return false; // -- has no non-trivial move constructors, if (hasNonTrivialMoveConstructor()) return false; // -- has no non-trivial copy assignment operators, if (hasNonTrivialCopyAssignment()) return false; // -- has no non-trivial move assignment operators, and if (hasNonTrivialMoveAssignment()) return false; // -- has a trivial destructor. if (!hasTrivialDestructor()) return false; return true; } void CXXRecordDecl::markedVirtualFunctionPure() { // C++ [class.abstract]p2: // A class is abstract if it has at least one pure virtual function. data().Abstract = true; } bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( ASTContext &Ctx, const CXXRecordDecl *XFirst) { if (!getNumBases()) return false; llvm::SmallPtrSet Bases; llvm::SmallPtrSet M; SmallVector WorkList; // Visit a type that we have determined is an element of M(S). auto Visit = [&](const CXXRecordDecl *RD) -> bool { RD = RD->getCanonicalDecl(); // C++2a [class]p8: // A class S is a standard-layout class if it [...] has no element of the // set M(S) of types as a base class. // // If we find a subobject of an empty type, it might also be a base class, // so we'll need to walk the base classes to check. if (!RD->data().HasBasesWithFields) { // Walk the bases the first time, stopping if we find the type. Build a // set of them so we don't need to walk them again. if (Bases.empty()) { bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool { Base = Base->getCanonicalDecl(); if (RD == Base) return false; Bases.insert(Base); return true; }); if (RDIsBase) return true; } else { if (Bases.count(RD)) return true; } } if (M.insert(RD).second) WorkList.push_back(RD); return false; }; if (Visit(XFirst)) return true; while (!WorkList.empty()) { const CXXRecordDecl *X = WorkList.pop_back_val(); // FIXME: We don't check the bases of X. That matches the standard, but // that sure looks like a wording bug. // -- If X is a non-union class type with a non-static data member // [recurse to each field] that is either of zero size or is the // first non-static data member of X // -- If X is a union type, [recurse to union members] bool IsFirstField = true; for (auto *FD : X->fields()) { // FIXME: Should we really care about the type of the first non-static // data member of a non-union if there are preceding unnamed bit-fields? if (FD->isUnnamedBitfield()) continue; if (!IsFirstField && !FD->isZeroSize(Ctx)) continue; // -- If X is n array type, [visit the element type] QualType T = Ctx.getBaseElementType(FD->getType()); if (auto *RD = T->getAsCXXRecordDecl()) if (Visit(RD)) return true; if (!X->isUnion()) IsFirstField = false; } } return false; } bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { assert(isLambda() && "not a lambda"); // C++2a [expr.prim.lambda.capture]p11: // The closure type associated with a lambda-expression has no default // constructor if the lambda-expression has a lambda-capture and a // defaulted default constructor otherwise. It has a deleted copy // assignment operator if the lambda-expression has a lambda-capture and // defaulted copy and move assignment operators otherwise. // // C++17 [expr.prim.lambda]p21: // The closure type associated with a lambda-expression has no default // constructor and a deleted copy assignment operator. if (getLambdaCaptureDefault() != LCD_None || capture_size() != 0) return false; return getASTContext().getLangOpts().CPlusPlus20; } void CXXRecordDecl::addedMember(Decl *D) { if (!D->isImplicit() && !isa(D) && !isa(D) && (!isa(D) || cast(D)->getTagKind() == TTK_Class || cast(D)->getTagKind() == TTK_Interface)) data().HasOnlyCMembers = false; // Ignore friends and invalid declarations. if (D->getFriendObjectKind() || D->isInvalidDecl()) return; auto *FunTmpl = dyn_cast(D); if (FunTmpl) D = FunTmpl->getTemplatedDecl(); // FIXME: Pass NamedDecl* to addedMember? Decl *DUnderlying = D; if (auto *ND = dyn_cast(DUnderlying)) { DUnderlying = ND->getUnderlyingDecl(); if (auto *UnderlyingFunTmpl = dyn_cast(DUnderlying)) DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); } if (const auto *Method = dyn_cast(D)) { if (Method->isVirtual()) { // C++ [dcl.init.aggr]p1: // An aggregate is an array or a class with [...] no virtual functions. data().Aggregate = false; // C++ [class]p4: // A POD-struct is an aggregate class... data().PlainOldData = false; // C++14 [meta.unary.prop]p4: // T is a class type [...] with [...] no virtual member functions... data().Empty = false; // C++ [class.virtual]p1: // A class that declares or inherits a virtual function is called a // polymorphic class. data().Polymorphic = true; // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: // A [default constructor, copy/move constructor, or copy/move // assignment operator for a class X] is trivial [...] if: // -- class X has no virtual functions [...] data().HasTrivialSpecialMembers &= SMF_Destructor; data().HasTrivialSpecialMembersForCall &= SMF_Destructor; // C++0x [class]p7: // A standard-layout class is a class that: [...] // -- has no virtual functions data().IsStandardLayout = false; data().IsCXX11StandardLayout = false; } } // Notify the listener if an implicit member was added after the definition // was completed. if (!isBeingDefined() && D->isImplicit()) if (ASTMutationListener *L = getASTMutationListener()) L->AddedCXXImplicitMember(data().Definition, D); // The kind of special member this declaration is, if any. unsigned SMKind = 0; // Handle constructors. if (const auto *Constructor = dyn_cast(D)) { if (Constructor->isInheritingConstructor()) { // Ignore constructor shadow declarations. They are lazily created and // so shouldn't affect any properties of the class. } else { if (!Constructor->isImplicit()) { // Note that we have a user-declared constructor. data().UserDeclaredConstructor = true; const TargetInfo &TI = getASTContext().getTargetInfo(); if ((!Constructor->isDeleted() && !Constructor->isDefaulted()) || !TI.areDefaultedSMFStillPOD(getLangOpts())) { // C++ [class]p4: // A POD-struct is an aggregate class [...] // Since the POD bit is meant to be C++03 POD-ness, clear it even if // the type is technically an aggregate in C++0x since it wouldn't be // in 03. data().PlainOldData = false; } } if (Constructor->isDefaultConstructor()) { SMKind |= SMF_DefaultConstructor; if (Constructor->isUserProvided()) data().UserProvidedDefaultConstructor = true; if (Constructor->isConstexpr()) data().HasConstexprDefaultConstructor = true; if (Constructor->isDefaulted()) data().HasDefaultedDefaultConstructor = true; } if (!FunTmpl) { unsigned Quals; if (Constructor->isCopyConstructor(Quals)) { SMKind |= SMF_CopyConstructor; if (Quals & Qualifiers::Const) data().HasDeclaredCopyConstructorWithConstParam = true; } else if (Constructor->isMoveConstructor()) SMKind |= SMF_MoveConstructor; } // C++11 [dcl.init.aggr]p1: DR1518 // An aggregate is an array or a class with no user-provided [or] // explicit [...] constructors // C++20 [dcl.init.aggr]p1: // An aggregate is an array or a class with no user-declared [...] // constructors if (getASTContext().getLangOpts().CPlusPlus20 ? !Constructor->isImplicit() : (Constructor->isUserProvided() || Constructor->isExplicit())) data().Aggregate = false; } } // Handle constructors, including those inherited from base classes. if (const auto *Constructor = dyn_cast(DUnderlying)) { // Record if we see any constexpr constructors which are neither copy // nor move constructors. // C++1z [basic.types]p10: // [...] has at least one constexpr constructor or constructor template // (possibly inherited from a base class) that is not a copy or move // constructor [...] if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) data().HasConstexprNonCopyMoveConstructor = true; if (!isa(D) && Constructor->isDefaultConstructor()) data().HasInheritedDefaultConstructor = true; } // Handle member functions. if (const auto *Method = dyn_cast(D)) { if (isa(D)) SMKind |= SMF_Destructor; if (Method->isCopyAssignmentOperator()) { SMKind |= SMF_CopyAssignment; const auto *ParamTy = Method->getParamDecl(0)->getType()->getAs(); if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) data().HasDeclaredCopyAssignmentWithConstParam = true; } if (Method->isMoveAssignmentOperator()) SMKind |= SMF_MoveAssignment; // Keep the list of conversion functions up-to-date. if (auto *Conversion = dyn_cast(D)) { // FIXME: We use the 'unsafe' accessor for the access specifier here, // because Sema may not have set it yet. That's really just a misdesign // in Sema. However, LLDB *will* have set the access specifier correctly, // and adds declarations after the class is technically completed, // so completeDefinition()'s overriding of the access specifiers doesn't // work. AccessSpecifier AS = Conversion->getAccessUnsafe(); if (Conversion->getPrimaryTemplate()) { // We don't record specializations. } else { ASTContext &Ctx = getASTContext(); ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx); NamedDecl *Primary = FunTmpl ? cast(FunTmpl) : cast(Conversion); if (Primary->getPreviousDecl()) Conversions.replace(cast(Primary->getPreviousDecl()), Primary, AS); else Conversions.addDecl(Ctx, Primary, AS); } } if (SMKind) { // If this is the first declaration of a special member, we no longer have // an implicit trivial special member. data().HasTrivialSpecialMembers &= data().DeclaredSpecialMembers | ~SMKind; data().HasTrivialSpecialMembersForCall &= data().DeclaredSpecialMembers | ~SMKind; // Note when we have declared a declared special member, and suppress the // implicit declaration of this special member. data().DeclaredSpecialMembers |= SMKind; if (!Method->isImplicit()) { data().UserDeclaredSpecialMembers |= SMKind; const TargetInfo &TI = getASTContext().getTargetInfo(); if ((!Method->isDeleted() && !Method->isDefaulted() && SMKind != SMF_MoveAssignment) || !TI.areDefaultedSMFStillPOD(getLangOpts())) { // C++03 [class]p4: // A POD-struct is an aggregate class that has [...] no user-defined // copy assignment operator and no user-defined destructor. // // Since the POD bit is meant to be C++03 POD-ness, and in C++03, // aggregates could not have any constructors, clear it even for an // explicitly defaulted or deleted constructor. // type is technically an aggregate in C++0x since it wouldn't be in // 03. // // Also, a user-declared move assignment operator makes a class // non-POD. This is an extension in C++03. data().PlainOldData = false; } } // When instantiating a class, we delay updating the destructor and // triviality properties of the class until selecting a destructor and // computing the eligibility of its special member functions. This is // because there might be function constraints that we need to evaluate // and compare later in the instantiation. if (!Method->isIneligibleOrNotSelected()) { addedEligibleSpecialMemberFunction(Method, SMKind); } } return; } // Handle non-static data members. if (const auto *Field = dyn_cast(D)) { ASTContext &Context = getASTContext(); // C++2a [class]p7: // A standard-layout class is a class that: // [...] // -- has all non-static data members and bit-fields in the class and // its base classes first declared in the same class if (data().HasBasesWithFields) data().IsStandardLayout = false; // C++ [class.bit]p2: // A declaration for a bit-field that omits the identifier declares an // unnamed bit-field. Unnamed bit-fields are not members and cannot be // initialized. if (Field->isUnnamedBitfield()) { // C++ [meta.unary.prop]p4: [LWG2358] // T is a class type [...] with [...] no unnamed bit-fields of non-zero // length if (data().Empty && !Field->isZeroLengthBitField(Context) && Context.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6) data().Empty = false; return; } // C++11 [class]p7: // A standard-layout class is a class that: // -- either has no non-static data members in the most derived class // [...] or has no base classes with non-static data members if (data().HasBasesWithNonStaticDataMembers) data().IsCXX11StandardLayout = false; // C++ [dcl.init.aggr]p1: // An aggregate is an array or a class (clause 9) with [...] no // private or protected non-static data members (clause 11). // // A POD must be an aggregate. if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { data().Aggregate = false; data().PlainOldData = false; // C++20 [temp.param]p7: // A structural type is [...] a literal class type [for which] all // non-static data members are public data().StructuralIfLiteral = false; } // Track whether this is the first field. We use this when checking // whether the class is standard-layout below. bool IsFirstField = !data().HasPrivateFields && !data().HasProtectedFields && !data().HasPublicFields; // C++0x [class]p7: // A standard-layout class is a class that: // [...] // -- has the same access control for all non-static data members, switch (D->getAccess()) { case AS_private: data().HasPrivateFields = true; break; case AS_protected: data().HasProtectedFields = true; break; case AS_public: data().HasPublicFields = true; break; case AS_none: llvm_unreachable("Invalid access specifier"); }; if ((data().HasPrivateFields + data().HasProtectedFields + data().HasPublicFields) > 1) { data().IsStandardLayout = false; data().IsCXX11StandardLayout = false; } // Keep track of the presence of mutable fields. if (Field->isMutable()) { data().HasMutableFields = true; // C++20 [temp.param]p7: // A structural type is [...] a literal class type [for which] all // non-static data members are public data().StructuralIfLiteral = false; } // C++11 [class.union]p8, DR1460: // If X is a union, a non-static data member of X that is not an anonymous // union is a variant member of X. if (isUnion() && !Field->isAnonymousStructOrUnion()) data().HasVariantMembers = true; // C++0x [class]p9: // A POD struct is a class that is both a trivial class and a // standard-layout class, and has no non-static data members of type // non-POD struct, non-POD union (or array of such types). // // Automatic Reference Counting: the presence of a member of Objective-C pointer type // that does not explicitly have no lifetime makes the class a non-POD. QualType T = Context.getBaseElementType(Field->getType()); if (T->isObjCRetainableType() || T.isObjCGCStrong()) { if (T.hasNonTrivialObjCLifetime()) { // Objective-C Automatic Reference Counting: // If a class has a non-static data member of Objective-C pointer // type (or array thereof), it is a non-POD type and its // default constructor (if any), copy constructor, move constructor, // copy assignment operator, move assignment operator, and destructor are // non-trivial. setHasObjectMember(true); struct DefinitionData &Data = data(); Data.PlainOldData = false; Data.HasTrivialSpecialMembers = 0; // __strong or __weak fields do not make special functions non-trivial // for the purpose of calls. Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) data().HasTrivialSpecialMembersForCall = 0; // Structs with __weak fields should never be passed directly. if (LT == Qualifiers::OCL_Weak) setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); Data.HasIrrelevantDestructor = false; if (isUnion()) { data().DefaultedCopyConstructorIsDeleted = true; data().DefaultedMoveConstructorIsDeleted = true; data().DefaultedCopyAssignmentIsDeleted = true; data().DefaultedMoveAssignmentIsDeleted = true; data().DefaultedDestructorIsDeleted = true; data().NeedOverloadResolutionForCopyConstructor = true; data().NeedOverloadResolutionForMoveConstructor = true; data().NeedOverloadResolutionForCopyAssignment = true; data().NeedOverloadResolutionForMoveAssignment = true; data().NeedOverloadResolutionForDestructor = true; } } else if (!Context.getLangOpts().ObjCAutoRefCount) { setHasObjectMember(true); } } else if (!T.isCXX98PODType(Context)) data().PlainOldData = false; if (T->isReferenceType()) { if (!Field->hasInClassInitializer()) data().HasUninitializedReferenceMember = true; // C++0x [class]p7: // A standard-layout class is a class that: // -- has no non-static data members of type [...] reference, data().IsStandardLayout = false; data().IsCXX11StandardLayout = false; // C++1z [class.copy.ctor]p10: // A defaulted copy constructor for a class X is defined as deleted if X has: // -- a non-static data member of rvalue reference type if (T->isRValueReferenceType()) data().DefaultedCopyConstructorIsDeleted = true; } if (!Field->hasInClassInitializer() && !Field->isMutable()) { if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) data().HasUninitializedFields = true; } else { data().HasUninitializedFields = true; } } // Record if this field is the first non-literal or volatile field or base. if (!T->isLiteralType(Context) || T.isVolatileQualified()) data().HasNonLiteralTypeFieldsOrBases = true; if (Field->hasInClassInitializer() || (Field->isAnonymousStructOrUnion() && Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { data().HasInClassInitializer = true; // C++11 [class]p5: // A default constructor is trivial if [...] no non-static data member // of its class has a brace-or-equal-initializer. data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; // C++11 [dcl.init.aggr]p1: // An aggregate is a [...] class with [...] no // brace-or-equal-initializers for non-static data members. // // This rule was removed in C++14. if (!getASTContext().getLangOpts().CPlusPlus14) data().Aggregate = false; // C++11 [class]p10: // A POD struct is [...] a trivial class. data().PlainOldData = false; } // C++11 [class.copy]p23: // A defaulted copy/move assignment operator for a class X is defined // as deleted if X has: // -- a non-static data member of reference type if (T->isReferenceType()) { data().DefaultedCopyAssignmentIsDeleted = true; data().DefaultedMoveAssignmentIsDeleted = true; } // Bitfields of length 0 are also zero-sized, but we already bailed out for // those because they are always unnamed. bool IsZeroSize = Field->isZeroSize(Context); if (const auto *RecordTy = T->getAs()) { auto *FieldRec = cast(RecordTy->getDecl()); if (FieldRec->getDefinition()) { addedClassSubobject(FieldRec); // We may need to perform overload resolution to determine whether a // field can be moved if it's const or volatile qualified. if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { // We need to care about 'const' for the copy constructor because an // implicit copy constructor might be declared with a non-const // parameter. data().NeedOverloadResolutionForCopyConstructor = true; data().NeedOverloadResolutionForMoveConstructor = true; data().NeedOverloadResolutionForCopyAssignment = true; data().NeedOverloadResolutionForMoveAssignment = true; } // C++11 [class.ctor]p5, C++11 [class.copy]p11: // A defaulted [special member] for a class X is defined as // deleted if: // -- X is a union-like class that has a variant member with a // non-trivial [corresponding special member] if (isUnion()) { if (FieldRec->hasNonTrivialCopyConstructor()) data().DefaultedCopyConstructorIsDeleted = true; if (FieldRec->hasNonTrivialMoveConstructor()) data().DefaultedMoveConstructorIsDeleted = true; if (FieldRec->hasNonTrivialCopyAssignment()) data().DefaultedCopyAssignmentIsDeleted = true; if (FieldRec->hasNonTrivialMoveAssignment()) data().DefaultedMoveAssignmentIsDeleted = true; if (FieldRec->hasNonTrivialDestructor()) data().DefaultedDestructorIsDeleted = true; } // For an anonymous union member, our overload resolution will perform // overload resolution for its members. if (Field->isAnonymousStructOrUnion()) { data().NeedOverloadResolutionForCopyConstructor |= FieldRec->data().NeedOverloadResolutionForCopyConstructor; data().NeedOverloadResolutionForMoveConstructor |= FieldRec->data().NeedOverloadResolutionForMoveConstructor; data().NeedOverloadResolutionForCopyAssignment |= FieldRec->data().NeedOverloadResolutionForCopyAssignment; data().NeedOverloadResolutionForMoveAssignment |= FieldRec->data().NeedOverloadResolutionForMoveAssignment; data().NeedOverloadResolutionForDestructor |= FieldRec->data().NeedOverloadResolutionForDestructor; } // C++0x [class.ctor]p5: // A default constructor is trivial [...] if: // -- for all the non-static data members of its class that are of // class type (or array thereof), each such class has a trivial // default constructor. if (!FieldRec->hasTrivialDefaultConstructor()) data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; // C++0x [class.copy]p13: // A copy/move constructor for class X is trivial if [...] // [...] // -- for each non-static data member of X that is of class type (or // an array thereof), the constructor selected to copy/move that // member is trivial; if (!FieldRec->hasTrivialCopyConstructor()) data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; if (!FieldRec->hasTrivialCopyConstructorForCall()) data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; // If the field doesn't have a simple move constructor, we'll eagerly // declare the move constructor for this class and we'll decide whether // it's trivial then. if (!FieldRec->hasTrivialMoveConstructor()) data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; if (!FieldRec->hasTrivialMoveConstructorForCall()) data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; // C++0x [class.copy]p27: // A copy/move assignment operator for class X is trivial if [...] // [...] // -- for each non-static data member of X that is of class type (or // an array thereof), the assignment operator selected to // copy/move that member is trivial; if (!FieldRec->hasTrivialCopyAssignment()) data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; // If the field doesn't have a simple move assignment, we'll eagerly // declare the move assignment for this class and we'll decide whether // it's trivial then. if (!FieldRec->hasTrivialMoveAssignment()) data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; if (!FieldRec->hasTrivialDestructor()) data().HasTrivialSpecialMembers &= ~SMF_Destructor; if (!FieldRec->hasTrivialDestructorForCall()) data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; if (!FieldRec->hasIrrelevantDestructor()) data().HasIrrelevantDestructor = false; if (FieldRec->isAnyDestructorNoReturn()) data().IsAnyDestructorNoReturn = true; if (FieldRec->hasObjectMember()) setHasObjectMember(true); if (FieldRec->hasVolatileMember()) setHasVolatileMember(true); if (FieldRec->getArgPassingRestrictions() == RecordDecl::APK_CanNeverPassInRegs) setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); // C++0x [class]p7: // A standard-layout class is a class that: // -- has no non-static data members of type non-standard-layout // class (or array of such types) [...] if (!FieldRec->isStandardLayout()) data().IsStandardLayout = false; if (!FieldRec->isCXX11StandardLayout()) data().IsCXX11StandardLayout = false; // C++2a [class]p7: // A standard-layout class is a class that: // [...] // -- has no element of the set M(S) of types as a base class. if (data().IsStandardLayout && (isUnion() || IsFirstField || IsZeroSize) && hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec)) data().IsStandardLayout = false; // C++11 [class]p7: // A standard-layout class is a class that: // -- has no base classes of the same type as the first non-static // data member if (data().IsCXX11StandardLayout && IsFirstField) { // FIXME: We should check all base classes here, not just direct // base classes. for (const auto &BI : bases()) { if (Context.hasSameUnqualifiedType(BI.getType(), T)) { data().IsCXX11StandardLayout = false; break; } } } // Keep track of the presence of mutable fields. if (FieldRec->hasMutableFields()) data().HasMutableFields = true; if (Field->isMutable()) { // Our copy constructor/assignment might call something other than // the subobject's copy constructor/assignment if it's mutable and of // class type. data().NeedOverloadResolutionForCopyConstructor = true; data().NeedOverloadResolutionForCopyAssignment = true; } // C++11 [class.copy]p13: // If the implicitly-defined constructor would satisfy the // requirements of a constexpr constructor, the implicitly-defined // constructor is constexpr. // C++11 [dcl.constexpr]p4: // -- every constructor involved in initializing non-static data // members [...] shall be a constexpr constructor if (!Field->hasInClassInitializer() && !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) // The standard requires any in-class initializer to be a constant // expression. We consider this to be a defect. data().DefaultedDefaultConstructorIsConstexpr = false; // C++11 [class.copy]p8: // The implicitly-declared copy constructor for a class X will have // the form 'X::X(const X&)' if each potentially constructed subobject // of a class type M (or array thereof) has a copy constructor whose // first parameter is of type 'const M&' or 'const volatile M&'. if (!FieldRec->hasCopyConstructorWithConstParam()) data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; // C++11 [class.copy]p18: // The implicitly-declared copy assignment oeprator for a class X will // have the form 'X& X::operator=(const X&)' if [...] for all the // non-static data members of X that are of a class type M (or array // thereof), each such class type has a copy assignment operator whose // parameter is of type 'const M&', 'const volatile M&' or 'M'. if (!FieldRec->hasCopyAssignmentWithConstParam()) data().ImplicitCopyAssignmentHasConstParam = false; if (FieldRec->hasUninitializedReferenceMember() && !Field->hasInClassInitializer()) data().HasUninitializedReferenceMember = true; // C++11 [class.union]p8, DR1460: // a non-static data member of an anonymous union that is a member of // X is also a variant member of X. if (FieldRec->hasVariantMembers() && Field->isAnonymousStructOrUnion()) data().HasVariantMembers = true; } } else { // Base element type of field is a non-class type. if (!T->isLiteralType(Context) || (!Field->hasInClassInitializer() && !isUnion() && !Context.getLangOpts().CPlusPlus20)) data().DefaultedDefaultConstructorIsConstexpr = false; // C++11 [class.copy]p23: // A defaulted copy/move assignment operator for a class X is defined // as deleted if X has: // -- a non-static data member of const non-class type (or array // thereof) if (T.isConstQualified()) { data().DefaultedCopyAssignmentIsDeleted = true; data().DefaultedMoveAssignmentIsDeleted = true; } // C++20 [temp.param]p7: // A structural type is [...] a literal class type [for which] the // types of all non-static data members are structural types or // (possibly multidimensional) array thereof // We deal with class types elsewhere. if (!T->isStructuralType()) data().StructuralIfLiteral = false; } // C++14 [meta.unary.prop]p4: // T is a class type [...] with [...] no non-static data members other // than subobjects of zero size if (data().Empty && !IsZeroSize) data().Empty = false; } // Handle using declarations of conversion functions. if (auto *Shadow = dyn_cast(D)) { if (Shadow->getDeclName().getNameKind() == DeclarationName::CXXConversionFunctionName) { ASTContext &Ctx = getASTContext(); data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess()); } } if (const auto *Using = dyn_cast(D)) { if (Using->getDeclName().getNameKind() == DeclarationName::CXXConstructorName) { data().HasInheritedConstructor = true; // C++1z [dcl.init.aggr]p1: // An aggregate is [...] a class [...] with no inherited constructors data().Aggregate = false; } if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) data().HasInheritedAssignment = true; } } void CXXRecordDecl::addedSelectedDestructor(CXXDestructorDecl *DD) { DD->setIneligibleOrNotSelected(false); addedEligibleSpecialMemberFunction(DD, SMF_Destructor); } void CXXRecordDecl::addedEligibleSpecialMemberFunction(const CXXMethodDecl *MD, unsigned SMKind) { // FIXME: We shouldn't change DeclaredNonTrivialSpecialMembers if `MD` is // a function template, but this needs CWG attention before we break ABI. // See https://github.com/llvm/llvm-project/issues/59206 if (const auto *DD = dyn_cast(MD)) { if (DD->isUserProvided()) data().HasIrrelevantDestructor = false; // If the destructor is explicitly defaulted and not trivial or not public // or if the destructor is deleted, we clear HasIrrelevantDestructor in // finishedDefaultedOrDeletedMember. // C++11 [class.dtor]p5: // A destructor is trivial if [...] the destructor is not virtual. if (DD->isVirtual()) { data().HasTrivialSpecialMembers &= ~SMF_Destructor; data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; } if (DD->isNoReturn()) data().IsAnyDestructorNoReturn = true; } if (!MD->isImplicit() && !MD->isUserProvided()) { // This method is user-declared but not user-provided. We can't work // out whether it's trivial yet (not until we get to the end of the // class). We'll handle this method in // finishedDefaultedOrDeletedMember. } else if (MD->isTrivial()) { data().HasTrivialSpecialMembers |= SMKind; data().HasTrivialSpecialMembersForCall |= SMKind; } else if (MD->isTrivialForCall()) { data().HasTrivialSpecialMembersForCall |= SMKind; data().DeclaredNonTrivialSpecialMembers |= SMKind; } else { data().DeclaredNonTrivialSpecialMembers |= SMKind; // If this is a user-provided function, do not set // DeclaredNonTrivialSpecialMembersForCall here since we don't know // yet whether the method would be considered non-trivial for the // purpose of calls (attribute "trivial_abi" can be dropped from the // class later, which can change the special method's triviality). if (!MD->isUserProvided()) data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; } } void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { assert(!D->isImplicit() && !D->isUserProvided()); // The kind of special member this declaration is, if any. unsigned SMKind = 0; if (const auto *Constructor = dyn_cast(D)) { if (Constructor->isDefaultConstructor()) { SMKind |= SMF_DefaultConstructor; if (Constructor->isConstexpr()) data().HasConstexprDefaultConstructor = true; } if (Constructor->isCopyConstructor()) SMKind |= SMF_CopyConstructor; else if (Constructor->isMoveConstructor()) SMKind |= SMF_MoveConstructor; else if (Constructor->isConstexpr()) // We may now know that the constructor is constexpr. data().HasConstexprNonCopyMoveConstructor = true; } else if (isa(D)) { SMKind |= SMF_Destructor; if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) data().HasIrrelevantDestructor = false; } else if (D->isCopyAssignmentOperator()) SMKind |= SMF_CopyAssignment; else if (D->isMoveAssignmentOperator()) SMKind |= SMF_MoveAssignment; // Update which trivial / non-trivial special members we have. // addedMember will have skipped this step for this member. if (!D->isIneligibleOrNotSelected()) { if (D->isTrivial()) data().HasTrivialSpecialMembers |= SMKind; else data().DeclaredNonTrivialSpecialMembers |= SMKind; } } void CXXRecordDecl::LambdaDefinitionData::AddCaptureList(ASTContext &Ctx, Capture *CaptureList) { Captures.push_back(CaptureList); if (Captures.size() == 2) { // The TinyPtrVector member now needs destruction. Ctx.addDestruction(&Captures); } } void CXXRecordDecl::setCaptures(ASTContext &Context, ArrayRef Captures) { CXXRecordDecl::LambdaDefinitionData &Data = getLambdaData(); // Copy captures. Data.NumCaptures = Captures.size(); Data.NumExplicitCaptures = 0; auto *ToCapture = (LambdaCapture *)Context.Allocate(sizeof(LambdaCapture) * Captures.size()); Data.AddCaptureList(Context, ToCapture); for (unsigned I = 0, N = Captures.size(); I != N; ++I) { if (Captures[I].isExplicit()) ++Data.NumExplicitCaptures; *ToCapture++ = Captures[I]; } if (!lambdaIsDefaultConstructibleAndAssignable()) Data.DefaultedCopyAssignmentIsDeleted = true; } void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { unsigned SMKind = 0; if (const auto *Constructor = dyn_cast(D)) { if (Constructor->isCopyConstructor()) SMKind = SMF_CopyConstructor; else if (Constructor->isMoveConstructor()) SMKind = SMF_MoveConstructor; } else if (isa(D)) SMKind = SMF_Destructor; if (D->isTrivialForCall()) data().HasTrivialSpecialMembersForCall |= SMKind; else data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; } bool CXXRecordDecl::isCLike() const { if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface || !TemplateOrInstantiation.isNull()) return false; if (!hasDefinition()) return true; return isPOD() && data().HasOnlyCMembers; } bool CXXRecordDecl::isGenericLambda() const { if (!isLambda()) return false; return getLambdaData().IsGenericLambda; } #ifndef NDEBUG static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { for (auto *D : R) if (!declaresSameEntity(D, R.front())) return false; return true; } #endif static NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { if (!RD.isLambda()) return nullptr; DeclarationName Name = RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); DeclContext::lookup_result Calls = RD.lookup(Name); assert(!Calls.empty() && "Missing lambda call operator!"); assert(allLookupResultsAreTheSame(Calls) && "More than one lambda call operator!"); return Calls.front(); } FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); return dyn_cast_or_null(CallOp); } CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); if (CallOp == nullptr) return nullptr; if (const auto *CallOpTmpl = dyn_cast(CallOp)) return cast(CallOpTmpl->getTemplatedDecl()); return cast(CallOp); } CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { CXXMethodDecl *CallOp = getLambdaCallOperator(); CallingConv CC = CallOp->getType()->castAs()->getCallConv(); return getLambdaStaticInvoker(CC); } static DeclContext::lookup_result getLambdaStaticInvokers(const CXXRecordDecl &RD) { assert(RD.isLambda() && "Must be a lambda"); DeclarationName Name = &RD.getASTContext().Idents.get(getLambdaStaticInvokerName()); return RD.lookup(Name); } static CXXMethodDecl *getInvokerAsMethod(NamedDecl *ND) { if (const auto *InvokerTemplate = dyn_cast(ND)) return cast(InvokerTemplate->getTemplatedDecl()); return cast(ND); } CXXMethodDecl *CXXRecordDecl::getLambdaStaticInvoker(CallingConv CC) const { if (!isLambda()) return nullptr; DeclContext::lookup_result Invoker = getLambdaStaticInvokers(*this); for (NamedDecl *ND : Invoker) { const auto *FTy = cast(ND->getAsFunction())->getType()->castAs(); if (FTy->getCallConv() == CC) return getInvokerAsMethod(ND); } return nullptr; } void CXXRecordDecl::getCaptureFields( llvm::DenseMap &Captures, FieldDecl *&ThisCapture) const { Captures.clear(); ThisCapture = nullptr; LambdaDefinitionData &Lambda = getLambdaData(); for (const LambdaCapture *List : Lambda.Captures) { RecordDecl::field_iterator Field = field_begin(); for (const LambdaCapture *C = List, *CEnd = C + Lambda.NumCaptures; C != CEnd; ++C, ++Field) { if (C->capturesThis()) ThisCapture = *Field; else if (C->capturesVariable()) Captures[C->getCapturedVar()] = *Field; } assert(Field == field_end()); } } TemplateParameterList * CXXRecordDecl::getGenericLambdaTemplateParameterList() const { if (!isGenericLambda()) return nullptr; CXXMethodDecl *CallOp = getLambdaCallOperator(); if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) return Tmpl->getTemplateParameters(); return nullptr; } ArrayRef CXXRecordDecl::getLambdaExplicitTemplateParameters() const { TemplateParameterList *List = getGenericLambdaTemplateParameterList(); if (!List) return {}; assert(std::is_partitioned(List->begin(), List->end(), [](const NamedDecl *D) { return !D->isImplicit(); }) && "Explicit template params should be ordered before implicit ones"); const auto ExplicitEnd = llvm::partition_point( *List, [](const NamedDecl *D) { return !D->isImplicit(); }); return llvm::ArrayRef(List->begin(), ExplicitEnd); } Decl *CXXRecordDecl::getLambdaContextDecl() const { assert(isLambda() && "Not a lambda closure type!"); ExternalASTSource *Source = getParentASTContext().getExternalSource(); return getLambdaData().ContextDecl.get(Source); } void CXXRecordDecl::setDeviceLambdaManglingNumber(unsigned Num) const { assert(isLambda() && "Not a lambda closure type!"); if (Num) getASTContext().DeviceLambdaManglingNumbers[this] = Num; } unsigned CXXRecordDecl::getDeviceLambdaManglingNumber() const { assert(isLambda() && "Not a lambda closure type!"); auto I = getASTContext().DeviceLambdaManglingNumbers.find(this); if (I != getASTContext().DeviceLambdaManglingNumbers.end()) return I->second; return 0; } static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { QualType T = cast(Conv->getUnderlyingDecl()->getAsFunction()) ->getConversionType(); return Context.getCanonicalType(T); } /// Collect the visible conversions of a base class. /// /// \param Record a base class of the class we're considering /// \param InVirtual whether this base class is a virtual base (or a base /// of a virtual base) /// \param Access the access along the inheritance path to this base /// \param ParentHiddenTypes the conversions provided by the inheritors /// of this base /// \param Output the set to which to add conversions from non-virtual bases /// \param VOutput the set to which to add conversions from virtual bases /// \param HiddenVBaseCs the set of conversions which were hidden in a /// virtual base along some inheritance path static void CollectVisibleConversions( ASTContext &Context, const CXXRecordDecl *Record, bool InVirtual, AccessSpecifier Access, const llvm::SmallPtrSet &ParentHiddenTypes, ASTUnresolvedSet &Output, UnresolvedSetImpl &VOutput, llvm::SmallPtrSet &HiddenVBaseCs) { // The set of types which have conversions in this class or its // subclasses. As an optimization, we don't copy the derived set // unless it might change. const llvm::SmallPtrSet *HiddenTypes = &ParentHiddenTypes; llvm::SmallPtrSet HiddenTypesBuffer; // Collect the direct conversions and figure out which conversions // will be hidden in the subclasses. CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); if (ConvI != ConvE) { HiddenTypesBuffer = ParentHiddenTypes; HiddenTypes = &HiddenTypesBuffer; for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { CanQualType ConvType(GetConversionType(Context, I.getDecl())); bool Hidden = ParentHiddenTypes.count(ConvType); if (!Hidden) HiddenTypesBuffer.insert(ConvType); // If this conversion is hidden and we're in a virtual base, // remember that it's hidden along some inheritance path. if (Hidden && InVirtual) HiddenVBaseCs.insert(cast(I.getDecl()->getCanonicalDecl())); // If this conversion isn't hidden, add it to the appropriate output. else if (!Hidden) { AccessSpecifier IAccess = CXXRecordDecl::MergeAccess(Access, I.getAccess()); if (InVirtual) VOutput.addDecl(I.getDecl(), IAccess); else Output.addDecl(Context, I.getDecl(), IAccess); } } } // Collect information recursively from any base classes. for (const auto &I : Record->bases()) { const auto *RT = I.getType()->getAs(); if (!RT) continue; AccessSpecifier BaseAccess = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier()); bool BaseInVirtual = InVirtual || I.isVirtual(); auto *Base = cast(RT->getDecl()); CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, *HiddenTypes, Output, VOutput, HiddenVBaseCs); } } /// Collect the visible conversions of a class. /// /// This would be extremely straightforward if it weren't for virtual /// bases. It might be worth special-casing that, really. static void CollectVisibleConversions(ASTContext &Context, const CXXRecordDecl *Record, ASTUnresolvedSet &Output) { // The collection of all conversions in virtual bases that we've // found. These will be added to the output as long as they don't // appear in the hidden-conversions set. UnresolvedSet<8> VBaseCs; // The set of conversions in virtual bases that we've determined to // be hidden. llvm::SmallPtrSet HiddenVBaseCs; // The set of types hidden by classes derived from this one. llvm::SmallPtrSet HiddenTypes; // Go ahead and collect the direct conversions and add them to the // hidden-types set. CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); Output.append(Context, ConvI, ConvE); for (; ConvI != ConvE; ++ConvI) HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl())); // Recursively collect conversions from base classes. for (const auto &I : Record->bases()) { const auto *RT = I.getType()->getAs(); if (!RT) continue; CollectVisibleConversions(Context, cast(RT->getDecl()), I.isVirtual(), I.getAccessSpecifier(), HiddenTypes, Output, VBaseCs, HiddenVBaseCs); } // Add any unhidden conversions provided by virtual bases. for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); I != E; ++I) { if (!HiddenVBaseCs.count(cast(I.getDecl()->getCanonicalDecl()))) Output.addDecl(Context, I.getDecl(), I.getAccess()); } } /// getVisibleConversionFunctions - get all conversion functions visible /// in current class; including conversion function templates. llvm::iterator_range CXXRecordDecl::getVisibleConversionFunctions() const { ASTContext &Ctx = getASTContext(); ASTUnresolvedSet *Set; if (bases_begin() == bases_end()) { // If root class, all conversions are visible. Set = &data().Conversions.get(Ctx); } else { Set = &data().VisibleConversions.get(Ctx); // If visible conversion list is not evaluated, evaluate it. if (!data().ComputedVisibleConversions) { CollectVisibleConversions(Ctx, this, *Set); data().ComputedVisibleConversions = true; } } return llvm::make_range(Set->begin(), Set->end()); } void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { // This operation is O(N) but extremely rare. Sema only uses it to // remove UsingShadowDecls in a class that were followed by a direct // declaration, e.g.: // class A : B { // using B::operator int; // operator int(); // }; // This is uncommon by itself and even more uncommon in conjunction // with sufficiently large numbers of directly-declared conversions // that asymptotic behavior matters. ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext()); for (unsigned I = 0, E = Convs.size(); I != E; ++I) { if (Convs[I].getDecl() == ConvDecl) { Convs.erase(I); assert(!llvm::is_contained(Convs, ConvDecl) && "conversion was found multiple times in unresolved set"); return; } } llvm_unreachable("conversion not found in set!"); } CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) return cast(MSInfo->getInstantiatedFrom()); return nullptr; } MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { return TemplateOrInstantiation.dyn_cast(); } void CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, TemplateSpecializationKind TSK) { assert(TemplateOrInstantiation.isNull() && "Previous template or instantiation?"); assert(!isa(this)); TemplateOrInstantiation = new (getASTContext()) MemberSpecializationInfo(RD, TSK); } ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { return TemplateOrInstantiation.dyn_cast(); } void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { TemplateOrInstantiation = Template; } TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ if (const auto *Spec = dyn_cast(this)) return Spec->getSpecializationKind(); if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) return MSInfo->getTemplateSpecializationKind(); return TSK_Undeclared; } void CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { if (auto *Spec = dyn_cast(this)) { Spec->setSpecializationKind(TSK); return; } if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { MSInfo->setTemplateSpecializationKind(TSK); return; } llvm_unreachable("Not a class template or member class specialization"); } const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { auto GetDefinitionOrSelf = [](const CXXRecordDecl *D) -> const CXXRecordDecl * { if (auto *Def = D->getDefinition()) return Def; return D; }; // If it's a class template specialization, find the template or partial // specialization from which it was instantiated. if (auto *TD = dyn_cast(this)) { auto From = TD->getInstantiatedFrom(); if (auto *CTD = From.dyn_cast()) { while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { if (NewCTD->isMemberSpecialization()) break; CTD = NewCTD; } return GetDefinitionOrSelf(CTD->getTemplatedDecl()); } if (auto *CTPSD = From.dyn_cast()) { while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { if (NewCTPSD->isMemberSpecialization()) break; CTPSD = NewCTPSD; } return GetDefinitionOrSelf(CTPSD); } } if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { const CXXRecordDecl *RD = this; while (auto *NewRD = RD->getInstantiatedFromMemberClass()) RD = NewRD; return GetDefinitionOrSelf(RD); } } assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && "couldn't find pattern for class template instantiation"); return nullptr; } CXXDestructorDecl *CXXRecordDecl::getDestructor() const { ASTContext &Context = getASTContext(); QualType ClassType = Context.getTypeDeclType(this); DeclarationName Name = Context.DeclarationNames.getCXXDestructorName( Context.getCanonicalType(ClassType)); DeclContext::lookup_result R = lookup(Name); // If a destructor was marked as not selected, we skip it. We don't always // have a selected destructor: dependent types, unnamed structs. for (auto *Decl : R) { auto* DD = dyn_cast(Decl); if (DD && !DD->isIneligibleOrNotSelected()) return DD; } return nullptr; } static bool isDeclContextInNamespace(const DeclContext *DC) { while (!DC->isTranslationUnit()) { if (DC->isNamespace()) return true; DC = DC->getParent(); } return false; } bool CXXRecordDecl::isInterfaceLike() const { assert(hasDefinition() && "checking for interface-like without a definition"); // All __interfaces are inheritently interface-like. if (isInterface()) return true; // Interface-like types cannot have a user declared constructor, destructor, // friends, VBases, conversion functions, or fields. Additionally, lambdas // cannot be interface types. if (isLambda() || hasUserDeclaredConstructor() || hasUserDeclaredDestructor() || !field_empty() || hasFriends() || getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) return false; // No interface-like type can have a method with a definition. for (const auto *const Method : methods()) if (Method->isDefined() && !Method->isImplicit()) return false; // Check "Special" types. const auto *Uuid = getAttr(); // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an // extern C++ block directly in the TU. These are only valid if in one // of these two situations. if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && !isDeclContextInNamespace(getDeclContext()) && ((getName() == "IUnknown" && Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") || (getName() == "IDispatch" && Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) { if (getNumBases() > 0) return false; return true; } // FIXME: Any access specifiers is supposed to make this no longer interface // like. // If this isn't a 'special' type, it must have a single interface-like base. if (getNumBases() != 1) return false; const auto BaseSpec = *bases_begin(); if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) return false; const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); if (Base->isInterface() || !Base->isInterfaceLike()) return false; return true; } void CXXRecordDecl::completeDefinition() { completeDefinition(nullptr); } void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { RecordDecl::completeDefinition(); // If the class may be abstract (but hasn't been marked as such), check for // any pure final overriders. if (mayBeAbstract()) { CXXFinalOverriderMap MyFinalOverriders; if (!FinalOverriders) { getFinalOverriders(MyFinalOverriders); FinalOverriders = &MyFinalOverriders; } bool Done = false; for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), MEnd = FinalOverriders->end(); M != MEnd && !Done; ++M) { for (OverridingMethods::iterator SO = M->second.begin(), SOEnd = M->second.end(); SO != SOEnd && !Done; ++SO) { assert(SO->second.size() > 0 && "All virtual functions have overriding virtual functions"); // C++ [class.abstract]p4: // A class is abstract if it contains or inherits at least one // pure virtual function for which the final overrider is pure // virtual. if (SO->second.front().Method->isPure()) { data().Abstract = true; Done = true; break; } } } } // Set access bits correctly on the directly-declared conversions. for (conversion_iterator I = conversion_begin(), E = conversion_end(); I != E; ++I) I.setAccess((*I)->getAccess()); } bool CXXRecordDecl::mayBeAbstract() const { if (data().Abstract || isInvalidDecl() || !data().Polymorphic || isDependentContext()) return false; for (const auto &B : bases()) { const auto *BaseDecl = cast(B.getType()->castAs()->getDecl()); if (BaseDecl->isAbstract()) return true; } return false; } bool CXXRecordDecl::isEffectivelyFinal() const { auto *Def = getDefinition(); if (!Def) return false; if (Def->hasAttr()) return true; if (const auto *Dtor = Def->getDestructor()) if (Dtor->hasAttr()) return true; return false; } void CXXDeductionGuideDecl::anchor() {} bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { if ((getKind() != Other.getKind() || getKind() == ExplicitSpecKind::Unresolved)) { if (getKind() == ExplicitSpecKind::Unresolved && Other.getKind() == ExplicitSpecKind::Unresolved) { ODRHash SelfHash, OtherHash; SelfHash.AddStmt(getExpr()); OtherHash.AddStmt(Other.getExpr()); return SelfHash.CalculateHash() == OtherHash.CalculateHash(); } else return false; } return true; } ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { switch (Function->getDeclKind()) { case Decl::Kind::CXXConstructor: return cast(Function)->getExplicitSpecifier(); case Decl::Kind::CXXConversion: return cast(Function)->getExplicitSpecifier(); case Decl::Kind::CXXDeductionGuide: return cast(Function)->getExplicitSpecifier(); default: return {}; } } CXXDeductionGuideDecl * CXXDeductionGuideDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, SourceLocation EndLocation, CXXConstructorDecl *Ctor) { return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T, TInfo, EndLocation, Ctor); } CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) CXXDeductionGuideDecl( C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(), QualType(), nullptr, SourceLocation(), nullptr); } RequiresExprBodyDecl *RequiresExprBodyDecl::Create( ASTContext &C, DeclContext *DC, SourceLocation StartLoc) { return new (C, DC) RequiresExprBodyDecl(C, DC, StartLoc); } RequiresExprBodyDecl *RequiresExprBodyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) RequiresExprBodyDecl(C, nullptr, SourceLocation()); } void CXXMethodDecl::anchor() {} bool CXXMethodDecl::isStatic() const { const CXXMethodDecl *MD = getCanonicalDecl(); if (MD->getStorageClass() == SC_Static) return true; OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); return isStaticOverloadedOperator(OOK); } static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, const CXXMethodDecl *BaseMD) { for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) return true; if (recursivelyOverrides(MD, BaseMD)) return true; } return false; } CXXMethodDecl * CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, bool MayBeBase) { if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) return this; // Lookup doesn't work for destructors, so handle them separately. if (isa(this)) { CXXMethodDecl *MD = RD->getDestructor(); if (MD) { if (recursivelyOverrides(MD, this)) return MD; if (MayBeBase && recursivelyOverrides(this, MD)) return MD; } return nullptr; } for (auto *ND : RD->lookup(getDeclName())) { auto *MD = dyn_cast(ND); if (!MD) continue; if (recursivelyOverrides(MD, this)) return MD; if (MayBeBase && recursivelyOverrides(this, MD)) return MD; } return nullptr; } CXXMethodDecl * CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase) { if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) return MD; llvm::SmallVector FinalOverriders; auto AddFinalOverrider = [&](CXXMethodDecl *D) { // If this function is overridden by a candidate final overrider, it is not // a final overrider. for (CXXMethodDecl *OtherD : FinalOverriders) { if (declaresSameEntity(D, OtherD) || recursivelyOverrides(OtherD, D)) return; } // Other candidate final overriders might be overridden by this function. llvm::erase_if(FinalOverriders, [&](CXXMethodDecl *OtherD) { return recursivelyOverrides(D, OtherD); }); FinalOverriders.push_back(D); }; for (const auto &I : RD->bases()) { const RecordType *RT = I.getType()->getAs(); if (!RT) continue; const auto *Base = cast(RT->getDecl()); if (CXXMethodDecl *D = this->getCorrespondingMethodInClass(Base)) AddFinalOverrider(D); } return FinalOverriders.size() == 1 ? FinalOverriders.front() : nullptr; } CXXMethodDecl * CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin, bool isInline, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause) { return new (C, RD) CXXMethodDecl( CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin, isInline, ConstexprKind, EndLocation, TrailingRequiresClause); } CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) CXXMethodDecl( CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified, SourceLocation(), nullptr); } CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, bool IsAppleKext) { assert(isVirtual() && "this method is expected to be virtual"); // When building with -fapple-kext, all calls must go through the vtable since // the kernel linker can do runtime patching of vtables. if (IsAppleKext) return nullptr; // If the member function is marked 'final', we know that it can't be // overridden and can therefore devirtualize it unless it's pure virtual. if (hasAttr()) return isPure() ? nullptr : this; // If Base is unknown, we cannot devirtualize. if (!Base) return nullptr; // If the base expression (after skipping derived-to-base conversions) is a // class prvalue, then we can devirtualize. Base = Base->getBestDynamicClassTypeExpr(); if (Base->isPRValue() && Base->getType()->isRecordType()) return this; // If we don't even know what we would call, we can't devirtualize. const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); if (!BestDynamicDecl) return nullptr; // There may be a method corresponding to MD in a derived class. CXXMethodDecl *DevirtualizedMethod = getCorrespondingMethodInClass(BestDynamicDecl); // If there final overrider in the dynamic type is ambiguous, we can't // devirtualize this call. if (!DevirtualizedMethod) return nullptr; // If that method is pure virtual, we can't devirtualize. If this code is // reached, the result would be UB, not a direct call to the derived class // function, and we can't assume the derived class function is defined. if (DevirtualizedMethod->isPure()) return nullptr; // If that method is marked final, we can devirtualize it. if (DevirtualizedMethod->hasAttr()) return DevirtualizedMethod; // Similarly, if the class itself or its destructor is marked 'final', // the class can't be derived from and we can therefore devirtualize the // member function call. if (BestDynamicDecl->isEffectivelyFinal()) return DevirtualizedMethod; if (const auto *DRE = dyn_cast(Base)) { if (const auto *VD = dyn_cast(DRE->getDecl())) if (VD->getType()->isRecordType()) // This is a record decl. We know the type and can devirtualize it. return DevirtualizedMethod; return nullptr; } // We can devirtualize calls on an object accessed by a class member access // expression, since by C++11 [basic.life]p6 we know that it can't refer to // a derived class object constructed in the same location. if (const auto *ME = dyn_cast(Base)) { const ValueDecl *VD = ME->getMemberDecl(); return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; } // Likewise for calls on an object accessed by a (non-reference) pointer to // member access. if (auto *BO = dyn_cast(Base)) { if (BO->isPtrMemOp()) { auto *MPT = BO->getRHS()->getType()->castAs(); if (MPT->getPointeeType()->isRecordType()) return DevirtualizedMethod; } } // We can't devirtualize the call. return nullptr; } bool CXXMethodDecl::isUsualDeallocationFunction( SmallVectorImpl &PreventedBy) const { assert(PreventedBy.empty() && "PreventedBy is expected to be empty"); if (getOverloadedOperator() != OO_Delete && getOverloadedOperator() != OO_Array_Delete) return false; // C++ [basic.stc.dynamic.deallocation]p2: // A template instance is never a usual deallocation function, // regardless of its signature. if (getPrimaryTemplate()) return false; // C++ [basic.stc.dynamic.deallocation]p2: // If a class T has a member deallocation function named operator delete // with exactly one parameter, then that function is a usual (non-placement) // deallocation function. [...] if (getNumParams() == 1) return true; unsigned UsualParams = 1; // C++ P0722: // A destroying operator delete is a usual deallocation function if // removing the std::destroying_delete_t parameter and changing the // first parameter type from T* to void* results in the signature of // a usual deallocation function. if (isDestroyingOperatorDelete()) ++UsualParams; // C++ <=14 [basic.stc.dynamic.deallocation]p2: // [...] If class T does not declare such an operator delete but does // declare a member deallocation function named operator delete with // exactly two parameters, the second of which has type std::size_t (18.1), // then this function is a usual deallocation function. // // C++17 says a usual deallocation function is one with the signature // (void* [, size_t] [, std::align_val_t] [, ...]) // and all such functions are usual deallocation functions. It's not clear // that allowing varargs functions was intentional. ASTContext &Context = getASTContext(); if (UsualParams < getNumParams() && Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(), Context.getSizeType())) ++UsualParams; if (UsualParams < getNumParams() && getParamDecl(UsualParams)->getType()->isAlignValT()) ++UsualParams; if (UsualParams != getNumParams()) return false; // In C++17 onwards, all potential usual deallocation functions are actual // usual deallocation functions. Honor this behavior when post-C++14 // deallocation functions are offered as extensions too. // FIXME(EricWF): Destroying Delete should be a language option. How do we // handle when destroying delete is used prior to C++17? if (Context.getLangOpts().CPlusPlus17 || Context.getLangOpts().AlignedAllocation || isDestroyingOperatorDelete()) return true; // This function is a usual deallocation function if there are no // single-parameter deallocation functions of the same kind. DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); bool Result = true; for (const auto *D : R) { if (const auto *FD = dyn_cast(D)) { if (FD->getNumParams() == 1) { PreventedBy.push_back(FD); Result = false; } } } return Result; } bool CXXMethodDecl::isCopyAssignmentOperator() const { // C++0x [class.copy]p17: // A user-declared copy assignment operator X::operator= is a non-static // non-template member function of class X with exactly one parameter of // type X, X&, const X&, volatile X& or const volatile X&. if (/*operator=*/getOverloadedOperator() != OO_Equal || /*non-static*/ isStatic() || /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || getNumParams() != 1) return false; QualType ParamType = getParamDecl(0)->getType(); if (const auto *Ref = ParamType->getAs()) ParamType = Ref->getPointeeType(); ASTContext &Context = getASTContext(); QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(getParent())); return Context.hasSameUnqualifiedType(ClassType, ParamType); } bool CXXMethodDecl::isMoveAssignmentOperator() const { // C++0x [class.copy]p19: // A user-declared move assignment operator X::operator= is a non-static // non-template member function of class X with exactly one parameter of type // X&&, const X&&, volatile X&&, or const volatile X&&. if (getOverloadedOperator() != OO_Equal || isStatic() || getPrimaryTemplate() || getDescribedFunctionTemplate() || getNumParams() != 1) return false; QualType ParamType = getParamDecl(0)->getType(); if (!ParamType->isRValueReferenceType()) return false; ParamType = ParamType->getPointeeType(); ASTContext &Context = getASTContext(); QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(getParent())); return Context.hasSameUnqualifiedType(ClassType, ParamType); } void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { assert(MD->isCanonicalDecl() && "Method is not canonical!"); assert(!MD->getParent()->isDependentContext() && "Can't add an overridden method to a class template!"); assert(MD->isVirtual() && "Method is not virtual!"); getASTContext().addOverriddenMethod(this, MD); } CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { if (isa(this)) return nullptr; return getASTContext().overridden_methods_begin(this); } CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { if (isa(this)) return nullptr; return getASTContext().overridden_methods_end(this); } unsigned CXXMethodDecl::size_overridden_methods() const { if (isa(this)) return 0; return getASTContext().overridden_methods_size(this); } CXXMethodDecl::overridden_method_range CXXMethodDecl::overridden_methods() const { if (isa(this)) return overridden_method_range(nullptr, nullptr); return getASTContext().overridden_methods(this); } static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, const CXXRecordDecl *Decl) { QualType ClassTy = C.getTypeDeclType(Decl); return C.getQualifiedType(ClassTy, FPT->getMethodQuals()); } QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, const CXXRecordDecl *Decl) { ASTContext &C = Decl->getASTContext(); QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); return C.getPointerType(ObjectTy); } QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT, const CXXRecordDecl *Decl) { ASTContext &C = Decl->getASTContext(); return ::getThisObjectType(C, FPT, Decl); } QualType CXXMethodDecl::getThisType() const { // C++ 9.3.2p1: The type of this in a member function of a class X is X*. // If the member function is declared const, the type of this is const X*, // if the member function is declared volatile, the type of this is // volatile X*, and if the member function is declared const volatile, // the type of this is const volatile X*. assert(isInstance() && "No 'this' for static methods!"); return CXXMethodDecl::getThisType(getType()->castAs(), getParent()); } QualType CXXMethodDecl::getThisObjectType() const { // Ditto getThisType. assert(isInstance() && "No 'this' for static methods!"); return CXXMethodDecl::getThisObjectType( getType()->castAs(), getParent()); } bool CXXMethodDecl::hasInlineBody() const { // If this function is a template instantiation, look at the template from // which it was instantiated. const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); if (!CheckFn) CheckFn = this; const FunctionDecl *fn; return CheckFn->isDefined(fn) && !fn->isOutOfLine() && (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); } bool CXXMethodDecl::isLambdaStaticInvoker() const { const CXXRecordDecl *P = getParent(); return P->isLambda() && getDeclName().isIdentifier() && getName() == getLambdaStaticInvokerName(); } CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual, SourceLocation L, Expr *Init, SourceLocation R, SourceLocation EllipsisLoc) : Initializee(TInfo), Init(Init), MemberOrEllipsisLocation(EllipsisLoc), LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), IsWritten(false), SourceOrder(0) {} CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R) : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), IsWritten(false), SourceOrder(0) {} CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R) : Initializee(Member), Init(Init), MemberOrEllipsisLocation(MemberLoc), LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), IsWritten(false), SourceOrder(0) {} CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, SourceLocation L, Expr *Init, SourceLocation R) : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { return Context.getAllocator() .identifyKnownAlignedObject(this); } TypeLoc CXXCtorInitializer::getBaseClassLoc() const { if (isBaseInitializer()) return Initializee.get()->getTypeLoc(); else return {}; } const Type *CXXCtorInitializer::getBaseClass() const { if (isBaseInitializer()) return Initializee.get()->getType().getTypePtr(); else return nullptr; } SourceLocation CXXCtorInitializer::getSourceLocation() const { if (isInClassMemberInitializer()) return getAnyMember()->getLocation(); if (isAnyMemberInitializer()) return getMemberLocation(); if (const auto *TSInfo = Initializee.get()) return TSInfo->getTypeLoc().getBeginLoc(); return {}; } SourceRange CXXCtorInitializer::getSourceRange() const { if (isInClassMemberInitializer()) { FieldDecl *D = getAnyMember(); if (Expr *I = D->getInClassInitializer()) return I->getSourceRange(); return {}; } return SourceRange(getSourceLocation(), getRParenLoc()); } CXXConstructorDecl::CXXConstructorDecl( ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited, Expr *TrailingRequiresClause) : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, SC_None, UsesFPIntrin, isInline, ConstexprKind, SourceLocation(), TrailingRequiresClause) { setNumCtorInitializers(0); setInheritingConstructor(static_cast(Inherited)); setImplicit(isImplicitlyDeclared); CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; if (Inherited) *getTrailingObjects() = Inherited; setExplicitSpecifier(ES); } void CXXConstructorDecl::anchor() {} CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, unsigned ID, uint64_t AllocKind) { bool hasTrailingExplicit = static_cast(AllocKind & TAKHasTailExplicit); bool isInheritingConstructor = static_cast(AllocKind & TAKInheritsConstructor); unsigned Extra = additionalSizeToAlloc( isInheritingConstructor, hasTrailingExplicit); auto *Result = new (C, ID, Extra) CXXConstructorDecl( C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, ExplicitSpecifier(), false, false, false, ConstexprSpecKind::Unspecified, InheritedConstructor(), nullptr); Result->setInheritingConstructor(isInheritingConstructor); Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = hasTrailingExplicit; Result->setExplicitSpecifier(ExplicitSpecifier()); return Result; } CXXConstructorDecl *CXXConstructorDecl::Create( ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, ExplicitSpecifier ES, bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited, Expr *TrailingRequiresClause) { assert(NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName && "Name must refer to a constructor"); unsigned Extra = additionalSizeToAlloc( Inherited ? 1 : 0, ES.getExpr() ? 1 : 0); return new (C, RD, Extra) CXXConstructorDecl( C, RD, StartLoc, NameInfo, T, TInfo, ES, UsesFPIntrin, isInline, isImplicitlyDeclared, ConstexprKind, Inherited, TrailingRequiresClause); } CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { return CtorInitializers.get(getASTContext().getExternalSource()); } CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { assert(isDelegatingConstructor() && "Not a delegating constructor!"); Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); if (const auto *Construct = dyn_cast(E)) return Construct->getConstructor(); return nullptr; } bool CXXConstructorDecl::isDefaultConstructor() const { // C++ [class.default.ctor]p1: // A default constructor for a class X is a constructor of class X for // which each parameter that is not a function parameter pack has a default // argument (including the case of a constructor with no parameters) return getMinRequiredArguments() == 0; } bool CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { return isCopyOrMoveConstructor(TypeQuals) && getParamDecl(0)->getType()->isLValueReferenceType(); } bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { return isCopyOrMoveConstructor(TypeQuals) && getParamDecl(0)->getType()->isRValueReferenceType(); } /// Determine whether this is a copy or move constructor. bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { // C++ [class.copy]p2: // A non-template constructor for class X is a copy constructor // if its first parameter is of type X&, const X&, volatile X& or // const volatile X&, and either there are no other parameters // or else all other parameters have default arguments (8.3.6). // C++0x [class.copy]p3: // A non-template constructor for class X is a move constructor if its // first parameter is of type X&&, const X&&, volatile X&&, or // const volatile X&&, and either there are no other parameters or else // all other parameters have default arguments. if (!hasOneParamOrDefaultArgs() || getPrimaryTemplate() != nullptr || getDescribedFunctionTemplate() != nullptr) return false; const ParmVarDecl *Param = getParamDecl(0); // Do we have a reference type? const auto *ParamRefType = Param->getType()->getAs(); if (!ParamRefType) return false; // Is it a reference to our class type? ASTContext &Context = getASTContext(); CanQualType PointeeType = Context.getCanonicalType(ParamRefType->getPointeeType()); CanQualType ClassTy = Context.getCanonicalType(Context.getTagDeclType(getParent())); if (PointeeType.getUnqualifiedType() != ClassTy) return false; // FIXME: other qualifiers? // We have a copy or move constructor. TypeQuals = PointeeType.getCVRQualifiers(); return true; } bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { // C++ [class.conv.ctor]p1: // A constructor declared without the function-specifier explicit // that can be called with a single parameter specifies a // conversion from the type of its first parameter to the type of // its class. Such a constructor is called a converting // constructor. if (isExplicit() && !AllowExplicit) return false; // FIXME: This has nothing to do with the definition of converting // constructor, but is convenient for how we use this function in overload // resolution. return getNumParams() == 0 ? getType()->castAs()->isVariadic() : getMinRequiredArguments() <= 1; } bool CXXConstructorDecl::isSpecializationCopyingObject() const { if (!hasOneParamOrDefaultArgs() || getDescribedFunctionTemplate() != nullptr) return false; const ParmVarDecl *Param = getParamDecl(0); ASTContext &Context = getASTContext(); CanQualType ParamType = Context.getCanonicalType(Param->getType()); // Is it the same as our class type? CanQualType ClassTy = Context.getCanonicalType(Context.getTagDeclType(getParent())); if (ParamType.getUnqualifiedType() != ClassTy) return false; return true; } void CXXDestructorDecl::anchor() {} CXXDestructorDecl * CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) CXXDestructorDecl( C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, false, false, false, ConstexprSpecKind::Unspecified, nullptr); } CXXDestructorDecl *CXXDestructorDecl::Create( ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) { assert(NameInfo.getName().getNameKind() == DeclarationName::CXXDestructorName && "Name must refer to a destructor"); return new (C, RD) CXXDestructorDecl( C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, isImplicitlyDeclared, ConstexprKind, TrailingRequiresClause); } void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { auto *First = cast(getFirstDecl()); if (OD && !First->OperatorDelete) { First->OperatorDelete = OD; First->OperatorDeleteThisArg = ThisArg; if (auto *L = getASTMutationListener()) L->ResolvedOperatorDelete(First, OD, ThisArg); } } void CXXConversionDecl::anchor() {} CXXConversionDecl * CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) CXXConversionDecl( C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, false, false, ExplicitSpecifier(), ConstexprSpecKind::Unspecified, SourceLocation(), nullptr); } CXXConversionDecl *CXXConversionDecl::Create( ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool UsesFPIntrin, bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause) { assert(NameInfo.getName().getNameKind() == DeclarationName::CXXConversionFunctionName && "Name must refer to a conversion function"); return new (C, RD) CXXConversionDecl( C, RD, StartLoc, NameInfo, T, TInfo, UsesFPIntrin, isInline, ES, ConstexprKind, EndLocation, TrailingRequiresClause); } bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { return isImplicit() && getParent()->isLambda() && getConversionType()->isBlockPointerType(); } LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, SourceLocation LangLoc, LanguageIDs lang, bool HasBraces) : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { setLanguage(lang); LinkageSpecDeclBits.HasBraces = HasBraces; } void LinkageSpecDecl::anchor() {} LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation ExternLoc, SourceLocation LangLoc, LanguageIDs Lang, bool HasBraces) { return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); } LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(), SourceLocation(), lang_c, false); } void UsingDirectiveDecl::anchor() {} UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, SourceLocation NamespaceLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Used, DeclContext *CommonAncestor) { if (auto *NS = dyn_cast_or_null(Used)) Used = NS->getOriginalNamespace(); return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, IdentLoc, Used, CommonAncestor); } UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), SourceLocation(), nullptr, nullptr); } NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { if (auto *NA = dyn_cast_or_null(NominatedNamespace)) return NA->getNamespace(); return cast_or_null(NominatedNamespace); } NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, NamespaceDecl *PrevDecl, bool Nested) : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), redeclarable_base(C), LocStart(StartLoc) { unsigned Flags = 0; if (Inline) Flags |= F_Inline; if (Nested) Flags |= F_Nested; AnonOrFirstNamespaceAndFlags = {nullptr, Flags}; setPreviousDecl(PrevDecl); if (PrevDecl) AnonOrFirstNamespaceAndFlags.setPointer(PrevDecl->getOriginalNamespace()); } NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, bool Inline, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, NamespaceDecl *PrevDecl, bool Nested) { return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, PrevDecl, Nested); } NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), SourceLocation(), nullptr, nullptr, false); } NamespaceDecl *NamespaceDecl::getOriginalNamespace() { if (isFirstDecl()) return this; return AnonOrFirstNamespaceAndFlags.getPointer(); } const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const { if (isFirstDecl()) return this; return AnonOrFirstNamespaceAndFlags.getPointer(); } bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); } NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { return getNextRedeclaration(); } NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { return getPreviousDecl(); } NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { return getMostRecentDecl(); } void NamespaceAliasDecl::anchor() {} NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { return getNextRedeclaration(); } NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { return getPreviousDecl(); } NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { return getMostRecentDecl(); } NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Namespace) { // FIXME: Preserve the aliased namespace as written. if (auto *NS = dyn_cast_or_null(Namespace)) Namespace = NS->getOriginalNamespace(); return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, QualifierLoc, IdentLoc, Namespace); } NamespaceAliasDecl * NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), SourceLocation(), nullptr, NestedNameSpecifierLoc(), SourceLocation(), nullptr); } void LifetimeExtendedTemporaryDecl::anchor() {} /// Retrieve the storage duration for the materialized temporary. StorageDuration LifetimeExtendedTemporaryDecl::getStorageDuration() const { const ValueDecl *ExtendingDecl = getExtendingDecl(); if (!ExtendingDecl) return SD_FullExpression; // FIXME: This is not necessarily correct for a temporary materialized // within a default initializer. if (isa(ExtendingDecl)) return SD_Automatic; // FIXME: This only works because storage class specifiers are not allowed // on decomposition declarations. if (isa(ExtendingDecl)) return ExtendingDecl->getDeclContext()->isFunctionOrMethod() ? SD_Automatic : SD_Static; return cast(ExtendingDecl)->getStorageDuration(); } APValue *LifetimeExtendedTemporaryDecl::getOrCreateValue(bool MayCreate) const { assert(getStorageDuration() == SD_Static && "don't need to cache the computed value for this temporary"); if (MayCreate && !Value) { Value = (new (getASTContext()) APValue); getASTContext().addDestruction(Value); } assert(Value && "may not be null"); return Value; } void UsingShadowDecl::anchor() {} UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc, DeclarationName Name, BaseUsingDecl *Introducer, NamedDecl *Target) : NamedDecl(K, DC, Loc, Name), redeclarable_base(C), UsingOrNextShadow(Introducer) { if (Target) { assert(!isa(Target)); setTargetDecl(Target); } setImplicit(); } UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), redeclarable_base(C) {} UsingShadowDecl * UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); } BaseUsingDecl *UsingShadowDecl::getIntroducer() const { const UsingShadowDecl *Shadow = this; while (const auto *NextShadow = dyn_cast(Shadow->UsingOrNextShadow)) Shadow = NextShadow; return cast(Shadow->UsingOrNextShadow); } void ConstructorUsingShadowDecl::anchor() {} ConstructorUsingShadowDecl * ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target, bool IsVirtual) { return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, IsVirtual); } ConstructorUsingShadowDecl * ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); } CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { return getIntroducer()->getQualifier()->getAsRecordDecl(); } void BaseUsingDecl::anchor() {} void BaseUsingDecl::addShadowDecl(UsingShadowDecl *S) { assert(!llvm::is_contained(shadows(), S) && "declaration already in set"); assert(S->getIntroducer() == this); if (FirstUsingShadow.getPointer()) S->UsingOrNextShadow = FirstUsingShadow.getPointer(); FirstUsingShadow.setPointer(S); } void BaseUsingDecl::removeShadowDecl(UsingShadowDecl *S) { assert(llvm::is_contained(shadows(), S) && "declaration not in set"); assert(S->getIntroducer() == this); // Remove S from the shadow decl chain. This is O(n) but hopefully rare. if (FirstUsingShadow.getPointer() == S) { FirstUsingShadow.setPointer( dyn_cast(S->UsingOrNextShadow)); S->UsingOrNextShadow = this; return; } UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); while (Prev->UsingOrNextShadow != S) Prev = cast(Prev->UsingOrNextShadow); Prev->UsingOrNextShadow = S->UsingOrNextShadow; S->UsingOrNextShadow = this; } void UsingDecl::anchor() {} UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, bool HasTypename) { return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); } UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UsingDecl(nullptr, SourceLocation(), NestedNameSpecifierLoc(), DeclarationNameInfo(), false); } SourceRange UsingDecl::getSourceRange() const { SourceLocation Begin = isAccessDeclaration() ? getQualifierLoc().getBeginLoc() : UsingLocation; return SourceRange(Begin, getNameInfo().getEndLoc()); } void UsingEnumDecl::anchor() {} UsingEnumDecl *UsingEnumDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, SourceLocation EL, SourceLocation NL, TypeSourceInfo *EnumType) { assert(isa(EnumType->getType()->getAsTagDecl())); return new (C, DC) UsingEnumDecl(DC, EnumType->getType()->getAsTagDecl()->getDeclName(), UL, EL, NL, EnumType); } UsingEnumDecl *UsingEnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UsingEnumDecl(nullptr, DeclarationName(), SourceLocation(), SourceLocation(), SourceLocation(), nullptr); } SourceRange UsingEnumDecl::getSourceRange() const { return SourceRange(UsingLocation, EnumType->getTypeLoc().getEndLoc()); } void UsingPackDecl::anchor() {} UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, NamedDecl *InstantiatedFrom, ArrayRef UsingDecls) { size_t Extra = additionalSizeToAlloc(UsingDecls.size()); return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); } UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumExpansions) { size_t Extra = additionalSizeToAlloc(NumExpansions); auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, std::nullopt); Result->NumExpansions = NumExpansions; auto *Trail = Result->getTrailingObjects(); for (unsigned I = 0; I != NumExpansions; ++I) new (Trail + I) NamedDecl*(nullptr); return Result; } void UnresolvedUsingValueDecl::anchor() {} UnresolvedUsingValueDecl * UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc) { return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, QualifierLoc, NameInfo, EllipsisLoc); } UnresolvedUsingValueDecl * UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), SourceLocation(), NestedNameSpecifierLoc(), DeclarationNameInfo(), SourceLocation()); } SourceRange UnresolvedUsingValueDecl::getSourceRange() const { SourceLocation Begin = isAccessDeclaration() ? getQualifierLoc().getBeginLoc() : UsingLocation; return SourceRange(Begin, getNameInfo().getEndLoc()); } void UnresolvedUsingTypenameDecl::anchor() {} UnresolvedUsingTypenameDecl * UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TargetNameLoc, DeclarationName TargetName, SourceLocation EllipsisLoc) { return new (C, DC) UnresolvedUsingTypenameDecl( DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, TargetName.getAsIdentifierInfo(), EllipsisLoc); } UnresolvedUsingTypenameDecl * UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UnresolvedUsingTypenameDecl( nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), SourceLocation(), nullptr, SourceLocation()); } UnresolvedUsingIfExistsDecl * UnresolvedUsingIfExistsDecl::Create(ASTContext &Ctx, DeclContext *DC, SourceLocation Loc, DeclarationName Name) { return new (Ctx, DC) UnresolvedUsingIfExistsDecl(DC, Loc, Name); } UnresolvedUsingIfExistsDecl * UnresolvedUsingIfExistsDecl::CreateDeserialized(ASTContext &Ctx, unsigned ID) { return new (Ctx, ID) UnresolvedUsingIfExistsDecl(nullptr, SourceLocation(), DeclarationName()); } UnresolvedUsingIfExistsDecl::UnresolvedUsingIfExistsDecl(DeclContext *DC, SourceLocation Loc, DeclarationName Name) : NamedDecl(Decl::UnresolvedUsingIfExists, DC, Loc, Name) {} void UnresolvedUsingIfExistsDecl::anchor() {} void StaticAssertDecl::anchor() {} StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StaticAssertLoc, Expr *AssertExpr, StringLiteral *Message, SourceLocation RParenLoc, bool Failed) { return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, RParenLoc, Failed); } StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, nullptr, SourceLocation(), false); } VarDecl *ValueDecl::getPotentiallyDecomposedVarDecl() { assert((isa(this)) && "expected a VarDecl or a BindingDecl"); if (auto *Var = llvm::dyn_cast(this)) return Var; if (auto *BD = llvm::dyn_cast(this)) return llvm::dyn_cast(BD->getDecomposedDecl()); return nullptr; } void BindingDecl::anchor() {} BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id) { return new (C, DC) BindingDecl(DC, IdLoc, Id); } BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr); } VarDecl *BindingDecl::getHoldingVar() const { Expr *B = getBinding(); if (!B) return nullptr; auto *DRE = dyn_cast(B->IgnoreImplicit()); if (!DRE) return nullptr; auto *VD = cast(DRE->getDecl()); assert(VD->isImplicit() && "holding var for binding decl not implicit"); return VD; } void DecompositionDecl::anchor() {} DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation LSquareLoc, QualType T, TypeSourceInfo *TInfo, StorageClass SC, ArrayRef Bindings) { size_t Extra = additionalSizeToAlloc(Bindings.size()); return new (C, DC, Extra) DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); } DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumBindings) { size_t Extra = additionalSizeToAlloc(NumBindings); auto *Result = new (C, ID, Extra) DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), QualType(), nullptr, StorageClass(), std::nullopt); // Set up and clean out the bindings array. Result->NumBindings = NumBindings; auto *Trail = Result->getTrailingObjects(); for (unsigned I = 0; I != NumBindings; ++I) new (Trail + I) BindingDecl*(nullptr); return Result; } void DecompositionDecl::printName(llvm::raw_ostream &OS, const PrintingPolicy &Policy) const { OS << '['; bool Comma = false; for (const auto *B : bindings()) { if (Comma) OS << ", "; B->printName(OS, Policy); Comma = true; } OS << ']'; } void MSPropertyDecl::anchor() {} MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, TypeSourceInfo *TInfo, SourceLocation StartL, IdentifierInfo *Getter, IdentifierInfo *Setter) { return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); } MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), DeclarationName(), QualType(), nullptr, SourceLocation(), nullptr, nullptr); } void MSGuidDecl::anchor() {} MSGuidDecl::MSGuidDecl(DeclContext *DC, QualType T, Parts P) : ValueDecl(Decl::MSGuid, DC, SourceLocation(), DeclarationName(), T), PartVal(P) {} MSGuidDecl *MSGuidDecl::Create(const ASTContext &C, QualType T, Parts P) { DeclContext *DC = C.getTranslationUnitDecl(); return new (C, DC) MSGuidDecl(DC, T, P); } MSGuidDecl *MSGuidDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) MSGuidDecl(nullptr, QualType(), Parts()); } void MSGuidDecl::printName(llvm::raw_ostream &OS, const PrintingPolicy &) const { OS << llvm::format("GUID{%08" PRIx32 "-%04" PRIx16 "-%04" PRIx16 "-", PartVal.Part1, PartVal.Part2, PartVal.Part3); unsigned I = 0; for (uint8_t Byte : PartVal.Part4And5) { OS << llvm::format("%02" PRIx8, Byte); if (++I == 2) OS << '-'; } OS << '}'; } /// Determine if T is a valid 'struct _GUID' of the shape that we expect. static bool isValidStructGUID(ASTContext &Ctx, QualType T) { // FIXME: We only need to check this once, not once each time we compute a // GUID APValue. using MatcherRef = llvm::function_ref; auto IsInt = [&Ctx](unsigned N) { return [&Ctx, N](QualType T) { return T->isUnsignedIntegerOrEnumerationType() && Ctx.getIntWidth(T) == N; }; }; auto IsArray = [&Ctx](MatcherRef Elem, unsigned N) { return [&Ctx, Elem, N](QualType T) { const ConstantArrayType *CAT = Ctx.getAsConstantArrayType(T); return CAT && CAT->getSize() == N && Elem(CAT->getElementType()); }; }; auto IsStruct = [](std::initializer_list Fields) { return [Fields](QualType T) { const RecordDecl *RD = T->getAsRecordDecl(); if (!RD || RD->isUnion()) return false; RD = RD->getDefinition(); if (!RD) return false; if (auto *CXXRD = dyn_cast(RD)) if (CXXRD->getNumBases()) return false; auto MatcherIt = Fields.begin(); for (const FieldDecl *FD : RD->fields()) { if (FD->isUnnamedBitfield()) continue; if (FD->isBitField() || MatcherIt == Fields.end() || !(*MatcherIt)(FD->getType())) return false; ++MatcherIt; } return MatcherIt == Fields.end(); }; }; // We expect an {i32, i16, i16, [8 x i8]}. return IsStruct({IsInt(32), IsInt(16), IsInt(16), IsArray(IsInt(8), 8)})(T); } APValue &MSGuidDecl::getAsAPValue() const { if (APVal.isAbsent() && isValidStructGUID(getASTContext(), getType())) { using llvm::APInt; using llvm::APSInt; APVal = APValue(APValue::UninitStruct(), 0, 4); APVal.getStructField(0) = APValue(APSInt(APInt(32, PartVal.Part1), true)); APVal.getStructField(1) = APValue(APSInt(APInt(16, PartVal.Part2), true)); APVal.getStructField(2) = APValue(APSInt(APInt(16, PartVal.Part3), true)); APValue &Arr = APVal.getStructField(3) = APValue(APValue::UninitArray(), 8, 8); for (unsigned I = 0; I != 8; ++I) { Arr.getArrayInitializedElt(I) = APValue(APSInt(APInt(8, PartVal.Part4And5[I]), true)); } // Register this APValue to be destroyed if necessary. (Note that the // MSGuidDecl destructor is never run.) getASTContext().addDestruction(&APVal); } return APVal; } void UnnamedGlobalConstantDecl::anchor() {} UnnamedGlobalConstantDecl::UnnamedGlobalConstantDecl(const ASTContext &C, DeclContext *DC, QualType Ty, const APValue &Val) : ValueDecl(Decl::UnnamedGlobalConstant, DC, SourceLocation(), DeclarationName(), Ty), Value(Val) { // Cleanup the embedded APValue if required (note that our destructor is never // run) if (Value.needsCleanup()) C.addDestruction(&Value); } UnnamedGlobalConstantDecl * UnnamedGlobalConstantDecl::Create(const ASTContext &C, QualType T, const APValue &Value) { DeclContext *DC = C.getTranslationUnitDecl(); return new (C, DC) UnnamedGlobalConstantDecl(C, DC, T, Value); } UnnamedGlobalConstantDecl * UnnamedGlobalConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) UnnamedGlobalConstantDecl(C, nullptr, QualType(), APValue()); } void UnnamedGlobalConstantDecl::printName(llvm::raw_ostream &OS, const PrintingPolicy &) const { OS << "unnamed-global-constant"; } static const char *getAccessName(AccessSpecifier AS) { switch (AS) { case AS_none: llvm_unreachable("Invalid access specifier!"); case AS_public: return "public"; case AS_private: return "private"; case AS_protected: return "protected"; } llvm_unreachable("Invalid access specifier!"); } const StreamingDiagnostic &clang::operator<<(const StreamingDiagnostic &DB, AccessSpecifier AS) { return DB << getAccessName(AS); }