//===- Decl.cpp - Declaration AST Node Implementation ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Decl subclasses. // //===----------------------------------------------------------------------===// #include "clang/AST/Decl.h" #include "Linkage.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTDiagnostic.h" #include "clang/AST/ASTLambda.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/Attr.h" #include "clang/AST/CanonicalType.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclOpenMP.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/ODRHash.h" #include "clang/AST/PrettyDeclStackTrace.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/Redeclarable.h" #include "clang/AST/Stmt.h" #include "clang/AST/TemplateBase.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" #include "clang/Basic/Builtins.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/Linkage.h" #include "clang/Basic/Module.h" #include "clang/Basic/PartialDiagnostic.h" #include "clang/Basic/SanitizerBlacklist.h" #include "clang/Basic/Sanitizers.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Specifiers.h" #include "clang/Basic/TargetCXXABI.h" #include "clang/Basic/TargetInfo.h" #include "clang/Basic/Visibility.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/None.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstring> #include <memory> #include <string> #include <tuple> #include <type_traits> using namespace clang; Decl *clang::getPrimaryMergedDecl(Decl *D) { return D->getASTContext().getPrimaryMergedDecl(D); } void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const { SourceLocation Loc = this->Loc; if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation(); if (Loc.isValid()) { Loc.print(OS, Context.getSourceManager()); OS << ": "; } OS << Message; if (auto *ND = dyn_cast_or_null<NamedDecl>(TheDecl)) { OS << " '"; ND->getNameForDiagnostic(OS, Context.getPrintingPolicy(), true); OS << "'"; } OS << '\n'; } // Defined here so that it can be inlined into its direct callers. bool Decl::isOutOfLine() const { return !getLexicalDeclContext()->Equals(getDeclContext()); } TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx) : Decl(TranslationUnit, nullptr, SourceLocation()), DeclContext(TranslationUnit), Ctx(ctx) {} //===----------------------------------------------------------------------===// // NamedDecl Implementation //===----------------------------------------------------------------------===// // Visibility rules aren't rigorously externally specified, but here // are the basic principles behind what we implement: // // 1. An explicit visibility attribute is generally a direct expression // of the user's intent and should be honored. Only the innermost // visibility attribute applies. If no visibility attribute applies, // global visibility settings are considered. // // 2. There is one caveat to the above: on or in a template pattern, // an explicit visibility attribute is just a default rule, and // visibility can be decreased by the visibility of template // arguments. But this, too, has an exception: an attribute on an // explicit specialization or instantiation causes all the visibility // restrictions of the template arguments to be ignored. // // 3. A variable that does not otherwise have explicit visibility can // be restricted by the visibility of its type. // // 4. A visibility restriction is explicit if it comes from an // attribute (or something like it), not a global visibility setting. // When emitting a reference to an external symbol, visibility // restrictions are ignored unless they are explicit. // // 5. When computing the visibility of a non-type, including a // non-type member of a class, only non-type visibility restrictions // are considered: the 'visibility' attribute, global value-visibility // settings, and a few special cases like __private_extern. // // 6. When computing the visibility of a type, including a type member // of a class, only type visibility restrictions are considered: // the 'type_visibility' attribute and global type-visibility settings. // However, a 'visibility' attribute counts as a 'type_visibility' // attribute on any declaration that only has the former. // // The visibility of a "secondary" entity, like a template argument, // is computed using the kind of that entity, not the kind of the // primary entity for which we are computing visibility. For example, // the visibility of a specialization of either of these templates: // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X); // template <class T, bool (&compare)(T, X)> class matcher; // is restricted according to the type visibility of the argument 'T', // the type visibility of 'bool(&)(T,X)', and the value visibility of // the argument function 'compare'. That 'has_match' is a value // and 'matcher' is a type only matters when looking for attributes // and settings from the immediate context. /// Does this computation kind permit us to consider additional /// visibility settings from attributes and the like? static bool hasExplicitVisibilityAlready(LVComputationKind computation) { return computation.IgnoreExplicitVisibility; } /// Given an LVComputationKind, return one of the same type/value sort /// that records that it already has explicit visibility. static LVComputationKind withExplicitVisibilityAlready(LVComputationKind Kind) { Kind.IgnoreExplicitVisibility = true; return Kind; } static Optional<Visibility> getExplicitVisibility(const NamedDecl *D, LVComputationKind kind) { assert(!kind.IgnoreExplicitVisibility && "asking for explicit visibility when we shouldn't be"); return D->getExplicitVisibility(kind.getExplicitVisibilityKind()); } /// Is the given declaration a "type" or a "value" for the purposes of /// visibility computation? static bool usesTypeVisibility(const NamedDecl *D) { return isa<TypeDecl>(D) || isa<ClassTemplateDecl>(D) || isa<ObjCInterfaceDecl>(D); } /// Does the given declaration have member specialization information, /// and if so, is it an explicit specialization? template <class T> static typename std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type isExplicitMemberSpecialization(const T *D) { if (const MemberSpecializationInfo *member = D->getMemberSpecializationInfo()) { return member->isExplicitSpecialization(); } return false; } /// For templates, this question is easier: a member template can't be /// explicitly instantiated, so there's a single bit indicating whether /// or not this is an explicit member specialization. static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) { return D->isMemberSpecialization(); } /// Given a visibility attribute, return the explicit visibility /// associated with it. template <class T> static Visibility getVisibilityFromAttr(const T *attr) { switch (attr->getVisibility()) { case T::Default: return DefaultVisibility; case T::Hidden: return HiddenVisibility; case T::Protected: return ProtectedVisibility; } llvm_unreachable("bad visibility kind"); } /// Return the explicit visibility of the given declaration. static Optional<Visibility> getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) { // If we're ultimately computing the visibility of a type, look for // a 'type_visibility' attribute before looking for 'visibility'. if (kind == NamedDecl::VisibilityForType) { if (const auto *A = D->getAttr<TypeVisibilityAttr>()) { return getVisibilityFromAttr(A); } } // If this declaration has an explicit visibility attribute, use it. if (const auto *A = D->getAttr<VisibilityAttr>()) { return getVisibilityFromAttr(A); } return None; } LinkageInfo LinkageComputer::getLVForType(const Type &T, LVComputationKind computation) { if (computation.IgnoreAllVisibility) return LinkageInfo(T.getLinkage(), DefaultVisibility, true); return getTypeLinkageAndVisibility(&T); } /// Get the most restrictive linkage for the types in the given /// template parameter list. For visibility purposes, template /// parameters are part of the signature of a template. LinkageInfo LinkageComputer::getLVForTemplateParameterList( const TemplateParameterList *Params, LVComputationKind computation) { LinkageInfo LV; for (const NamedDecl *P : *Params) { // Template type parameters are the most common and never // contribute to visibility, pack or not. if (isa<TemplateTypeParmDecl>(P)) continue; // Non-type template parameters can be restricted by the value type, e.g. // template <enum X> class A { ... }; // We have to be careful here, though, because we can be dealing with // dependent types. if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) { // Handle the non-pack case first. if (!NTTP->isExpandedParameterPack()) { if (!NTTP->getType()->isDependentType()) { LV.merge(getLVForType(*NTTP->getType(), computation)); } continue; } // Look at all the types in an expanded pack. for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) { QualType type = NTTP->getExpansionType(i); if (!type->isDependentType()) LV.merge(getTypeLinkageAndVisibility(type)); } continue; } // Template template parameters can be restricted by their // template parameters, recursively. const auto *TTP = cast<TemplateTemplateParmDecl>(P); // Handle the non-pack case first. if (!TTP->isExpandedParameterPack()) { LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(), computation)); continue; } // Look at all expansions in an expanded pack. for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters(); i != n; ++i) { LV.merge(getLVForTemplateParameterList( TTP->getExpansionTemplateParameters(i), computation)); } } return LV; } static const Decl *getOutermostFuncOrBlockContext(const Decl *D) { const Decl *Ret = nullptr; const DeclContext *DC = D->getDeclContext(); while (DC->getDeclKind() != Decl::TranslationUnit) { if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC)) Ret = cast<Decl>(DC); DC = DC->getParent(); } return Ret; } /// Get the most restrictive linkage for the types and /// declarations in the given template argument list. /// /// Note that we don't take an LVComputationKind because we always /// want to honor the visibility of template arguments in the same way. LinkageInfo LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args, LVComputationKind computation) { LinkageInfo LV; for (const TemplateArgument &Arg : Args) { switch (Arg.getKind()) { case TemplateArgument::Null: case TemplateArgument::Integral: case TemplateArgument::Expression: continue; case TemplateArgument::Type: LV.merge(getLVForType(*Arg.getAsType(), computation)); continue; case TemplateArgument::Declaration: { const NamedDecl *ND = Arg.getAsDecl(); assert(!usesTypeVisibility(ND)); LV.merge(getLVForDecl(ND, computation)); continue; } case TemplateArgument::NullPtr: LV.merge(getTypeLinkageAndVisibility(Arg.getNullPtrType())); continue; case TemplateArgument::Template: case TemplateArgument::TemplateExpansion: if (TemplateDecl *Template = Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()) LV.merge(getLVForDecl(Template, computation)); continue; case TemplateArgument::Pack: LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation)); continue; } llvm_unreachable("bad template argument kind"); } return LV; } LinkageInfo LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs, LVComputationKind computation) { return getLVForTemplateArgumentList(TArgs.asArray(), computation); } static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn, const FunctionTemplateSpecializationInfo *specInfo) { // Include visibility from the template parameters and arguments // only if this is not an explicit instantiation or specialization // with direct explicit visibility. (Implicit instantiations won't // have a direct attribute.) if (!specInfo->isExplicitInstantiationOrSpecialization()) return true; return !fn->hasAttr<VisibilityAttr>(); } /// Merge in template-related linkage and visibility for the given /// function template specialization. /// /// We don't need a computation kind here because we can assume /// LVForValue. /// /// \param[out] LV the computation to use for the parent void LinkageComputer::mergeTemplateLV( LinkageInfo &LV, const FunctionDecl *fn, const FunctionTemplateSpecializationInfo *specInfo, LVComputationKind computation) { bool considerVisibility = shouldConsiderTemplateVisibility(fn, specInfo); // Merge information from the template parameters. FunctionTemplateDecl *temp = specInfo->getTemplate(); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility); // Merge information from the template arguments. const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments; LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); LV.mergeMaybeWithVisibility(argsLV, considerVisibility); } /// Does the given declaration have a direct visibility attribute /// that would match the given rules? static bool hasDirectVisibilityAttribute(const NamedDecl *D, LVComputationKind computation) { if (computation.IgnoreAllVisibility) return false; return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) || D->hasAttr<VisibilityAttr>(); } /// Should we consider visibility associated with the template /// arguments and parameters of the given class template specialization? static bool shouldConsiderTemplateVisibility( const ClassTemplateSpecializationDecl *spec, LVComputationKind computation) { // Include visibility from the template parameters and arguments // only if this is not an explicit instantiation or specialization // with direct explicit visibility (and note that implicit // instantiations won't have a direct attribute). // // Furthermore, we want to ignore template parameters and arguments // for an explicit specialization when computing the visibility of a // member thereof with explicit visibility. // // This is a bit complex; let's unpack it. // // An explicit class specialization is an independent, top-level // declaration. As such, if it or any of its members has an // explicit visibility attribute, that must directly express the // user's intent, and we should honor it. The same logic applies to // an explicit instantiation of a member of such a thing. // Fast path: if this is not an explicit instantiation or // specialization, we always want to consider template-related // visibility restrictions. if (!spec->isExplicitInstantiationOrSpecialization()) return true; // This is the 'member thereof' check. if (spec->isExplicitSpecialization() && hasExplicitVisibilityAlready(computation)) return false; return !hasDirectVisibilityAttribute(spec, computation); } /// Merge in template-related linkage and visibility for the given /// class template specialization. void LinkageComputer::mergeTemplateLV( LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec, LVComputationKind computation) { bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); // Merge information from the template parameters, but ignore // visibility if we're only considering template arguments. ClassTemplateDecl *temp = spec->getSpecializedTemplate(); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility && !hasExplicitVisibilityAlready(computation)); // Merge information from the template arguments. We ignore // template-argument visibility if we've got an explicit // instantiation with a visibility attribute. const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); if (considerVisibility) LV.mergeVisibility(argsLV); LV.mergeExternalVisibility(argsLV); } /// Should we consider visibility associated with the template /// arguments and parameters of the given variable template /// specialization? As usual, follow class template specialization /// logic up to initialization. static bool shouldConsiderTemplateVisibility( const VarTemplateSpecializationDecl *spec, LVComputationKind computation) { // Include visibility from the template parameters and arguments // only if this is not an explicit instantiation or specialization // with direct explicit visibility (and note that implicit // instantiations won't have a direct attribute). if (!spec->isExplicitInstantiationOrSpecialization()) return true; // An explicit variable specialization is an independent, top-level // declaration. As such, if it has an explicit visibility attribute, // that must directly express the user's intent, and we should honor // it. if (spec->isExplicitSpecialization() && hasExplicitVisibilityAlready(computation)) return false; return !hasDirectVisibilityAttribute(spec, computation); } /// Merge in template-related linkage and visibility for the given /// variable template specialization. As usual, follow class template /// specialization logic up to initialization. void LinkageComputer::mergeTemplateLV(LinkageInfo &LV, const VarTemplateSpecializationDecl *spec, LVComputationKind computation) { bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation); // Merge information from the template parameters, but ignore // visibility if we're only considering template arguments. VarTemplateDecl *temp = spec->getSpecializedTemplate(); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility && !hasExplicitVisibilityAlready(computation)); // Merge information from the template arguments. We ignore // template-argument visibility if we've got an explicit // instantiation with a visibility attribute. const TemplateArgumentList &templateArgs = spec->getTemplateArgs(); LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation); if (considerVisibility) LV.mergeVisibility(argsLV); LV.mergeExternalVisibility(argsLV); } static bool useInlineVisibilityHidden(const NamedDecl *D) { // FIXME: we should warn if -fvisibility-inlines-hidden is used with c. const LangOptions &Opts = D->getASTContext().getLangOpts(); if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden) return false; const auto *FD = dyn_cast<FunctionDecl>(D); if (!FD) return false; TemplateSpecializationKind TSK = TSK_Undeclared; if (FunctionTemplateSpecializationInfo *spec = FD->getTemplateSpecializationInfo()) { TSK = spec->getTemplateSpecializationKind(); } else if (MemberSpecializationInfo *MSI = FD->getMemberSpecializationInfo()) { TSK = MSI->getTemplateSpecializationKind(); } const FunctionDecl *Def = nullptr; // InlineVisibilityHidden only applies to definitions, and // isInlined() only gives meaningful answers on definitions // anyway. return TSK != TSK_ExplicitInstantiationDeclaration && TSK != TSK_ExplicitInstantiationDefinition && FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>(); } template <typename T> static bool isFirstInExternCContext(T *D) { const T *First = D->getFirstDecl(); return First->isInExternCContext(); } static bool isSingleLineLanguageLinkage(const Decl &D) { if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext())) if (!SD->hasBraces()) return true; return false; } /// Determine whether D is declared in the purview of a named module. static bool isInModulePurview(const NamedDecl *D) { if (auto *M = D->getOwningModule()) return M->isModulePurview(); return false; } static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) { // FIXME: Handle isModulePrivate. switch (D->getModuleOwnershipKind()) { case Decl::ModuleOwnershipKind::Unowned: case Decl::ModuleOwnershipKind::ModulePrivate: return false; case Decl::ModuleOwnershipKind::Visible: case Decl::ModuleOwnershipKind::VisibleWhenImported: return isInModulePurview(D); } llvm_unreachable("unexpected module ownership kind"); } static LinkageInfo getInternalLinkageFor(const NamedDecl *D) { // Internal linkage declarations within a module interface unit are modeled // as "module-internal linkage", which means that they have internal linkage // formally but can be indirectly accessed from outside the module via inline // functions and templates defined within the module. if (isInModulePurview(D)) return LinkageInfo(ModuleInternalLinkage, DefaultVisibility, false); return LinkageInfo::internal(); } static LinkageInfo getExternalLinkageFor(const NamedDecl *D) { // C++ Modules TS [basic.link]/6.8: // - A name declared at namespace scope that does not have internal linkage // by the previous rules and that is introduced by a non-exported // declaration has module linkage. if (isInModulePurview(D) && !isExportedFromModuleInterfaceUnit( cast<NamedDecl>(D->getCanonicalDecl()))) return LinkageInfo(ModuleLinkage, DefaultVisibility, false); return LinkageInfo::external(); } static StorageClass getStorageClass(const Decl *D) { if (auto *TD = dyn_cast<TemplateDecl>(D)) D = TD->getTemplatedDecl(); if (D) { if (auto *VD = dyn_cast<VarDecl>(D)) return VD->getStorageClass(); if (auto *FD = dyn_cast<FunctionDecl>(D)) return FD->getStorageClass(); } return SC_None; } LinkageInfo LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D, LVComputationKind computation, bool IgnoreVarTypeLinkage) { assert(D->getDeclContext()->getRedeclContext()->isFileContext() && "Not a name having namespace scope"); ASTContext &Context = D->getASTContext(); // C++ [basic.link]p3: // A name having namespace scope (3.3.6) has internal linkage if it // is the name of if (getStorageClass(D->getCanonicalDecl()) == SC_Static) { // - a variable, variable template, function, or function template // that is explicitly declared static; or // (This bullet corresponds to C99 6.2.2p3.) return getInternalLinkageFor(D); } if (const auto *Var = dyn_cast<VarDecl>(D)) { // - a non-template variable of non-volatile const-qualified type, unless // - it is explicitly declared extern, or // - it is inline or exported, or // - it was previously declared and the prior declaration did not have // internal linkage // (There is no equivalent in C99.) if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() && !Var->getType().isVolatileQualified() && !Var->isInline() && !isExportedFromModuleInterfaceUnit(Var) && !isa<VarTemplateSpecializationDecl>(Var) && !Var->getDescribedVarTemplate()) { const VarDecl *PrevVar = Var->getPreviousDecl(); if (PrevVar) return getLVForDecl(PrevVar, computation); if (Var->getStorageClass() != SC_Extern && Var->getStorageClass() != SC_PrivateExtern && !isSingleLineLanguageLinkage(*Var)) return getInternalLinkageFor(Var); } for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar; PrevVar = PrevVar->getPreviousDecl()) { if (PrevVar->getStorageClass() == SC_PrivateExtern && Var->getStorageClass() == SC_None) return getDeclLinkageAndVisibility(PrevVar); // Explicitly declared static. if (PrevVar->getStorageClass() == SC_Static) return getInternalLinkageFor(Var); } } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) { // - a data member of an anonymous union. const VarDecl *VD = IFD->getVarDecl(); assert(VD && "Expected a VarDecl in this IndirectFieldDecl!"); return getLVForNamespaceScopeDecl(VD, computation, IgnoreVarTypeLinkage); } assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!"); // FIXME: This gives internal linkage to names that should have no linkage // (those not covered by [basic.link]p6). if (D->isInAnonymousNamespace()) { const auto *Var = dyn_cast<VarDecl>(D); const auto *Func = dyn_cast<FunctionDecl>(D); // FIXME: The check for extern "C" here is not justified by the standard // wording, but we retain it from the pre-DR1113 model to avoid breaking // code. // // C++11 [basic.link]p4: // An unnamed namespace or a namespace declared directly or indirectly // within an unnamed namespace has internal linkage. if ((!Var || !isFirstInExternCContext(Var)) && (!Func || !isFirstInExternCContext(Func))) return getInternalLinkageFor(D); } // Set up the defaults. // C99 6.2.2p5: // If the declaration of an identifier for an object has file // scope and no storage-class specifier, its linkage is // external. LinkageInfo LV = getExternalLinkageFor(D); if (!hasExplicitVisibilityAlready(computation)) { if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) { LV.mergeVisibility(*Vis, true); } else { // If we're declared in a namespace with a visibility attribute, // use that namespace's visibility, and it still counts as explicit. for (const DeclContext *DC = D->getDeclContext(); !isa<TranslationUnitDecl>(DC); DC = DC->getParent()) { const auto *ND = dyn_cast<NamespaceDecl>(DC); if (!ND) continue; if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) { LV.mergeVisibility(*Vis, true); break; } } } // Add in global settings if the above didn't give us direct visibility. if (!LV.isVisibilityExplicit()) { // Use global type/value visibility as appropriate. Visibility globalVisibility = computation.isValueVisibility() ? Context.getLangOpts().getValueVisibilityMode() : Context.getLangOpts().getTypeVisibilityMode(); LV.mergeVisibility(globalVisibility, /*explicit*/ false); // If we're paying attention to global visibility, apply // -finline-visibility-hidden if this is an inline method. if (useInlineVisibilityHidden(D)) LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); } } // C++ [basic.link]p4: // A name having namespace scope that has not been given internal linkage // above and that is the name of // [...bullets...] // has its linkage determined as follows: // - if the enclosing namespace has internal linkage, the name has // internal linkage; [handled above] // - otherwise, if the declaration of the name is attached to a named // module and is not exported, the name has module linkage; // - otherwise, the name has external linkage. // LV is currently set up to handle the last two bullets. // // The bullets are: // - a variable; or if (const auto *Var = dyn_cast<VarDecl>(D)) { // GCC applies the following optimization to variables and static // data members, but not to functions: // // Modify the variable's LV by the LV of its type unless this is // C or extern "C". This follows from [basic.link]p9: // A type without linkage shall not be used as the type of a // variable or function with external linkage unless // - the entity has C language linkage, or // - the entity is declared within an unnamed namespace, or // - the entity is not used or is defined in the same // translation unit. // and [basic.link]p10: // ...the types specified by all declarations referring to a // given variable or function shall be identical... // C does not have an equivalent rule. // // Ignore this if we've got an explicit attribute; the user // probably knows what they're doing. // // Note that we don't want to make the variable non-external // because of this, but unique-external linkage suits us. if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var) && !IgnoreVarTypeLinkage) { LinkageInfo TypeLV = getLVForType(*Var->getType(), computation); if (!isExternallyVisible(TypeLV.getLinkage())) return LinkageInfo::uniqueExternal(); if (!LV.isVisibilityExplicit()) LV.mergeVisibility(TypeLV); } if (Var->getStorageClass() == SC_PrivateExtern) LV.mergeVisibility(HiddenVisibility, true); // Note that Sema::MergeVarDecl already takes care of implementing // C99 6.2.2p4 and propagating the visibility attribute, so we don't have // to do it here. // As per function and class template specializations (below), // consider LV for the template and template arguments. We're at file // scope, so we do not need to worry about nested specializations. if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) { mergeTemplateLV(LV, spec, computation); } // - a function; or } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) { // In theory, we can modify the function's LV by the LV of its // type unless it has C linkage (see comment above about variables // for justification). In practice, GCC doesn't do this, so it's // just too painful to make work. if (Function->getStorageClass() == SC_PrivateExtern) LV.mergeVisibility(HiddenVisibility, true); // Note that Sema::MergeCompatibleFunctionDecls already takes care of // merging storage classes and visibility attributes, so we don't have to // look at previous decls in here. // In C++, then if the type of the function uses a type with // unique-external linkage, it's not legally usable from outside // this translation unit. However, we should use the C linkage // rules instead for extern "C" declarations. if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Function)) { // Only look at the type-as-written. Otherwise, deducing the return type // of a function could change its linkage. QualType TypeAsWritten = Function->getType(); if (TypeSourceInfo *TSI = Function->getTypeSourceInfo()) TypeAsWritten = TSI->getType(); if (!isExternallyVisible(TypeAsWritten->getLinkage())) return LinkageInfo::uniqueExternal(); } // Consider LV from the template and the template arguments. // We're at file scope, so we do not need to worry about nested // specializations. if (FunctionTemplateSpecializationInfo *specInfo = Function->getTemplateSpecializationInfo()) { mergeTemplateLV(LV, Function, specInfo, computation); } // - a named class (Clause 9), or an unnamed class defined in a // typedef declaration in which the class has the typedef name // for linkage purposes (7.1.3); or // - a named enumeration (7.2), or an unnamed enumeration // defined in a typedef declaration in which the enumeration // has the typedef name for linkage purposes (7.1.3); or } else if (const auto *Tag = dyn_cast<TagDecl>(D)) { // Unnamed tags have no linkage. if (!Tag->hasNameForLinkage()) return LinkageInfo::none(); // If this is a class template specialization, consider the // linkage of the template and template arguments. We're at file // scope, so we do not need to worry about nested specializations. if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) { mergeTemplateLV(LV, spec, computation); } // FIXME: This is not part of the C++ standard any more. // - an enumerator belonging to an enumeration with external linkage; or } else if (isa<EnumConstantDecl>(D)) { LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()), computation); if (!isExternalFormalLinkage(EnumLV.getLinkage())) return LinkageInfo::none(); LV.merge(EnumLV); // - a template } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { bool considerVisibility = !hasExplicitVisibilityAlready(computation); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility); // An unnamed namespace or a namespace declared directly or indirectly // within an unnamed namespace has internal linkage. All other namespaces // have external linkage. // // We handled names in anonymous namespaces above. } else if (isa<NamespaceDecl>(D)) { return LV; // By extension, we assign external linkage to Objective-C // interfaces. } else if (isa<ObjCInterfaceDecl>(D)) { // fallout } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { // A typedef declaration has linkage if it gives a type a name for // linkage purposes. if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) return LinkageInfo::none(); } else if (isa<MSGuidDecl>(D)) { // A GUID behaves like an inline variable with external linkage. Fall // through. // Everything not covered here has no linkage. } else { return LinkageInfo::none(); } // If we ended up with non-externally-visible linkage, visibility should // always be default. if (!isExternallyVisible(LV.getLinkage())) return LinkageInfo(LV.getLinkage(), DefaultVisibility, false); // Mark the symbols as hidden when compiling for the device. if (Context.getLangOpts().OpenMP && Context.getLangOpts().OpenMPIsDevice) LV.mergeVisibility(HiddenVisibility, /*newExplicit=*/false); return LV; } LinkageInfo LinkageComputer::getLVForClassMember(const NamedDecl *D, LVComputationKind computation, bool IgnoreVarTypeLinkage) { // Only certain class members have linkage. Note that fields don't // really have linkage, but it's convenient to say they do for the // purposes of calculating linkage of pointer-to-data-member // template arguments. // // Templates also don't officially have linkage, but since we ignore // the C++ standard and look at template arguments when determining // linkage and visibility of a template specialization, we might hit // a template template argument that way. If we do, we need to // consider its linkage. if (!(isa<CXXMethodDecl>(D) || isa<VarDecl>(D) || isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<TagDecl>(D) || isa<TemplateDecl>(D))) return LinkageInfo::none(); LinkageInfo LV; // If we have an explicit visibility attribute, merge that in. if (!hasExplicitVisibilityAlready(computation)) { if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) LV.mergeVisibility(*Vis, true); // If we're paying attention to global visibility, apply // -finline-visibility-hidden if this is an inline method. // // Note that we do this before merging information about // the class visibility. if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D)) LV.mergeVisibility(HiddenVisibility, /*visibilityExplicit=*/false); } // If this class member has an explicit visibility attribute, the only // thing that can change its visibility is the template arguments, so // only look for them when processing the class. LVComputationKind classComputation = computation; if (LV.isVisibilityExplicit()) classComputation = withExplicitVisibilityAlready(computation); LinkageInfo classLV = getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation); // The member has the same linkage as the class. If that's not externally // visible, we don't need to compute anything about the linkage. // FIXME: If we're only computing linkage, can we bail out here? if (!isExternallyVisible(classLV.getLinkage())) return classLV; // Otherwise, don't merge in classLV yet, because in certain cases // we need to completely ignore the visibility from it. // Specifically, if this decl exists and has an explicit attribute. const NamedDecl *explicitSpecSuppressor = nullptr; if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) { // Only look at the type-as-written. Otherwise, deducing the return type // of a function could change its linkage. QualType TypeAsWritten = MD->getType(); if (TypeSourceInfo *TSI = MD->getTypeSourceInfo()) TypeAsWritten = TSI->getType(); if (!isExternallyVisible(TypeAsWritten->getLinkage())) return LinkageInfo::uniqueExternal(); // If this is a method template specialization, use the linkage for // the template parameters and arguments. if (FunctionTemplateSpecializationInfo *spec = MD->getTemplateSpecializationInfo()) { mergeTemplateLV(LV, MD, spec, computation); if (spec->isExplicitSpecialization()) { explicitSpecSuppressor = MD; } else if (isExplicitMemberSpecialization(spec->getTemplate())) { explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl(); } } else if (isExplicitMemberSpecialization(MD)) { explicitSpecSuppressor = MD; } } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) { if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) { mergeTemplateLV(LV, spec, computation); if (spec->isExplicitSpecialization()) { explicitSpecSuppressor = spec; } else { const ClassTemplateDecl *temp = spec->getSpecializedTemplate(); if (isExplicitMemberSpecialization(temp)) { explicitSpecSuppressor = temp->getTemplatedDecl(); } } } else if (isExplicitMemberSpecialization(RD)) { explicitSpecSuppressor = RD; } // Static data members. } else if (const auto *VD = dyn_cast<VarDecl>(D)) { if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD)) mergeTemplateLV(LV, spec, computation); // Modify the variable's linkage by its type, but ignore the // type's visibility unless it's a definition. if (!IgnoreVarTypeLinkage) { LinkageInfo typeLV = getLVForType(*VD->getType(), computation); // FIXME: If the type's linkage is not externally visible, we can // give this static data member UniqueExternalLinkage. if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit()) LV.mergeVisibility(typeLV); LV.mergeExternalVisibility(typeLV); } if (isExplicitMemberSpecialization(VD)) { explicitSpecSuppressor = VD; } // Template members. } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) { bool considerVisibility = (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit() && !hasExplicitVisibilityAlready(computation)); LinkageInfo tempLV = getLVForTemplateParameterList(temp->getTemplateParameters(), computation); LV.mergeMaybeWithVisibility(tempLV, considerVisibility); if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) { if (isExplicitMemberSpecialization(redeclTemp)) { explicitSpecSuppressor = temp->getTemplatedDecl(); } } } // We should never be looking for an attribute directly on a template. assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor)); // If this member is an explicit member specialization, and it has // an explicit attribute, ignore visibility from the parent. bool considerClassVisibility = true; if (explicitSpecSuppressor && // optimization: hasDVA() is true only with explicit visibility. LV.isVisibilityExplicit() && classLV.getVisibility() != DefaultVisibility && hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) { considerClassVisibility = false; } // Finally, merge in information from the class. LV.mergeMaybeWithVisibility(classLV, considerClassVisibility); return LV; } void NamedDecl::anchor() {} bool NamedDecl::isLinkageValid() const { if (!hasCachedLinkage()) return true; Linkage L = LinkageComputer{} .computeLVForDecl(this, LVComputationKind::forLinkageOnly()) .getLinkage(); return L == getCachedLinkage(); } ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const { StringRef name = getName(); if (name.empty()) return SFF_None; if (name.front() == 'C') if (name == "CFStringCreateWithFormat" || name == "CFStringCreateWithFormatAndArguments" || name == "CFStringAppendFormat" || name == "CFStringAppendFormatAndArguments") return SFF_CFString; return SFF_None; } Linkage NamedDecl::getLinkageInternal() const { // We don't care about visibility here, so ask for the cheapest // possible visibility analysis. return LinkageComputer{} .getLVForDecl(this, LVComputationKind::forLinkageOnly()) .getLinkage(); } LinkageInfo NamedDecl::getLinkageAndVisibility() const { return LinkageComputer{}.getDeclLinkageAndVisibility(this); } static Optional<Visibility> getExplicitVisibilityAux(const NamedDecl *ND, NamedDecl::ExplicitVisibilityKind kind, bool IsMostRecent) { assert(!IsMostRecent || ND == ND->getMostRecentDecl()); // Check the declaration itself first. if (Optional<Visibility> V = getVisibilityOf(ND, kind)) return V; // If this is a member class of a specialization of a class template // and the corresponding decl has explicit visibility, use that. if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) { CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass(); if (InstantiatedFrom) return getVisibilityOf(InstantiatedFrom, kind); } // If there wasn't explicit visibility there, and this is a // specialization of a class template, check for visibility // on the pattern. if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND)) { // Walk all the template decl till this point to see if there are // explicit visibility attributes. const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl(); while (TD != nullptr) { auto Vis = getVisibilityOf(TD, kind); if (Vis != None) return Vis; TD = TD->getPreviousDecl(); } return None; } // Use the most recent declaration. if (!IsMostRecent && !isa<NamespaceDecl>(ND)) { const NamedDecl *MostRecent = ND->getMostRecentDecl(); if (MostRecent != ND) return getExplicitVisibilityAux(MostRecent, kind, true); } if (const auto *Var = dyn_cast<VarDecl>(ND)) { if (Var->isStaticDataMember()) { VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember(); if (InstantiatedFrom) return getVisibilityOf(InstantiatedFrom, kind); } if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var)) return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(), kind); return None; } // Also handle function template specializations. if (const auto *fn = dyn_cast<FunctionDecl>(ND)) { // If the function is a specialization of a template with an // explicit visibility attribute, use that. if (FunctionTemplateSpecializationInfo *templateInfo = fn->getTemplateSpecializationInfo()) return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(), kind); // If the function is a member of a specialization of a class template // and the corresponding decl has explicit visibility, use that. FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction(); if (InstantiatedFrom) return getVisibilityOf(InstantiatedFrom, kind); return None; } // The visibility of a template is stored in the templated decl. if (const auto *TD = dyn_cast<TemplateDecl>(ND)) return getVisibilityOf(TD->getTemplatedDecl(), kind); return None; } Optional<Visibility> NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const { return getExplicitVisibilityAux(this, kind, false); } LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC, Decl *ContextDecl, LVComputationKind computation) { // This lambda has its linkage/visibility determined by its owner. const NamedDecl *Owner; if (!ContextDecl) Owner = dyn_cast<NamedDecl>(DC); else if (isa<ParmVarDecl>(ContextDecl)) Owner = dyn_cast<NamedDecl>(ContextDecl->getDeclContext()->getRedeclContext()); else Owner = cast<NamedDecl>(ContextDecl); if (!Owner) return LinkageInfo::none(); // If the owner has a deduced type, we need to skip querying the linkage and // visibility of that type, because it might involve this closure type. The // only effect of this is that we might give a lambda VisibleNoLinkage rather // than NoLinkage when we don't strictly need to, which is benign. auto *VD = dyn_cast<VarDecl>(Owner); LinkageInfo OwnerLV = VD && VD->getType()->getContainedDeducedType() ? computeLVForDecl(Owner, computation, /*IgnoreVarTypeLinkage*/true) : getLVForDecl(Owner, computation); // A lambda never formally has linkage. But if the owner is externally // visible, then the lambda is too. We apply the same rules to blocks. if (!isExternallyVisible(OwnerLV.getLinkage())) return LinkageInfo::none(); return LinkageInfo(VisibleNoLinkage, OwnerLV.getVisibility(), OwnerLV.isVisibilityExplicit()); } LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D, LVComputationKind computation) { if (const auto *Function = dyn_cast<FunctionDecl>(D)) { if (Function->isInAnonymousNamespace() && !isFirstInExternCContext(Function)) return getInternalLinkageFor(Function); // This is a "void f();" which got merged with a file static. if (Function->getCanonicalDecl()->getStorageClass() == SC_Static) return getInternalLinkageFor(Function); LinkageInfo LV; if (!hasExplicitVisibilityAlready(computation)) { if (Optional<Visibility> Vis = getExplicitVisibility(Function, computation)) LV.mergeVisibility(*Vis, true); } // Note that Sema::MergeCompatibleFunctionDecls already takes care of // merging storage classes and visibility attributes, so we don't have to // look at previous decls in here. return LV; } if (const auto *Var = dyn_cast<VarDecl>(D)) { if (Var->hasExternalStorage()) { if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(Var)) return getInternalLinkageFor(Var); LinkageInfo LV; if (Var->getStorageClass() == SC_PrivateExtern) LV.mergeVisibility(HiddenVisibility, true); else if (!hasExplicitVisibilityAlready(computation)) { if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation)) LV.mergeVisibility(*Vis, true); } if (const VarDecl *Prev = Var->getPreviousDecl()) { LinkageInfo PrevLV = getLVForDecl(Prev, computation); if (PrevLV.getLinkage()) LV.setLinkage(PrevLV.getLinkage()); LV.mergeVisibility(PrevLV); } return LV; } if (!Var->isStaticLocal()) return LinkageInfo::none(); } ASTContext &Context = D->getASTContext(); if (!Context.getLangOpts().CPlusPlus) return LinkageInfo::none(); const Decl *OuterD = getOutermostFuncOrBlockContext(D); if (!OuterD || OuterD->isInvalidDecl()) return LinkageInfo::none(); LinkageInfo LV; if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) { if (!BD->getBlockManglingNumber()) return LinkageInfo::none(); LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(), BD->getBlockManglingContextDecl(), computation); } else { const auto *FD = cast<FunctionDecl>(OuterD); if (!FD->isInlined() && !isTemplateInstantiation(FD->getTemplateSpecializationKind())) return LinkageInfo::none(); // If a function is hidden by -fvisibility-inlines-hidden option and // is not explicitly attributed as a hidden function, // we should not make static local variables in the function hidden. LV = getLVForDecl(FD, computation); if (isa<VarDecl>(D) && useInlineVisibilityHidden(FD) && !LV.isVisibilityExplicit()) { assert(cast<VarDecl>(D)->isStaticLocal()); // If this was an implicitly hidden inline method, check again for // explicit visibility on the parent class, and use that for static locals // if present. if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) LV = getLVForDecl(MD->getParent(), computation); if (!LV.isVisibilityExplicit()) { Visibility globalVisibility = computation.isValueVisibility() ? Context.getLangOpts().getValueVisibilityMode() : Context.getLangOpts().getTypeVisibilityMode(); return LinkageInfo(VisibleNoLinkage, globalVisibility, /*visibilityExplicit=*/false); } } } if (!isExternallyVisible(LV.getLinkage())) return LinkageInfo::none(); return LinkageInfo(VisibleNoLinkage, LV.getVisibility(), LV.isVisibilityExplicit()); } LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D, LVComputationKind computation, bool IgnoreVarTypeLinkage) { // Internal_linkage attribute overrides other considerations. if (D->hasAttr<InternalLinkageAttr>()) return getInternalLinkageFor(D); // Objective-C: treat all Objective-C declarations as having external // linkage. switch (D->getKind()) { default: break; // Per C++ [basic.link]p2, only the names of objects, references, // functions, types, templates, namespaces, and values ever have linkage. // // Note that the name of a typedef, namespace alias, using declaration, // and so on are not the name of the corresponding type, namespace, or // declaration, so they do *not* have linkage. case Decl::ImplicitParam: case Decl::Label: case Decl::NamespaceAlias: case Decl::ParmVar: case Decl::Using: case Decl::UsingShadow: case Decl::UsingDirective: return LinkageInfo::none(); case Decl::EnumConstant: // C++ [basic.link]p4: an enumerator has the linkage of its enumeration. if (D->getASTContext().getLangOpts().CPlusPlus) return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation); return LinkageInfo::visible_none(); case Decl::Typedef: case Decl::TypeAlias: // A typedef declaration has linkage if it gives a type a name for // linkage purposes. if (!cast<TypedefNameDecl>(D) ->getAnonDeclWithTypedefName(/*AnyRedecl*/true)) return LinkageInfo::none(); break; case Decl::TemplateTemplateParm: // count these as external case Decl::NonTypeTemplateParm: case Decl::ObjCAtDefsField: case Decl::ObjCCategory: case Decl::ObjCCategoryImpl: case Decl::ObjCCompatibleAlias: case Decl::ObjCImplementation: case Decl::ObjCMethod: case Decl::ObjCProperty: case Decl::ObjCPropertyImpl: case Decl::ObjCProtocol: return getExternalLinkageFor(D); case Decl::CXXRecord: { const auto *Record = cast<CXXRecordDecl>(D); if (Record->isLambda()) { if (Record->hasKnownLambdaInternalLinkage() || !Record->getLambdaManglingNumber()) { // This lambda has no mangling number, so it's internal. return getInternalLinkageFor(D); } return getLVForClosure( Record->getDeclContext()->getRedeclContext(), Record->getLambdaContextDecl(), computation); } break; } } // Handle linkage for namespace-scope names. if (D->getDeclContext()->getRedeclContext()->isFileContext()) return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage); // C++ [basic.link]p5: // In addition, a member function, static data member, a named // class or enumeration of class scope, or an unnamed class or // enumeration defined in a class-scope typedef declaration such // that the class or enumeration has the typedef name for linkage // purposes (7.1.3), has external linkage if the name of the class // has external linkage. if (D->getDeclContext()->isRecord()) return getLVForClassMember(D, computation, IgnoreVarTypeLinkage); // C++ [basic.link]p6: // The name of a function declared in block scope and the name of // an object declared by a block scope extern declaration have // linkage. If there is a visible declaration of an entity with // linkage having the same name and type, ignoring entities // declared outside the innermost enclosing namespace scope, the // block scope declaration declares that same entity and receives // the linkage of the previous declaration. If there is more than // one such matching entity, the program is ill-formed. Otherwise, // if no matching entity is found, the block scope entity receives // external linkage. if (D->getDeclContext()->isFunctionOrMethod()) return getLVForLocalDecl(D, computation); // C++ [basic.link]p6: // Names not covered by these rules have no linkage. return LinkageInfo::none(); } /// getLVForDecl - Get the linkage and visibility for the given declaration. LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D, LVComputationKind computation) { // Internal_linkage attribute overrides other considerations. if (D->hasAttr<InternalLinkageAttr>()) return getInternalLinkageFor(D); if (computation.IgnoreAllVisibility && D->hasCachedLinkage()) return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false); if (llvm::Optional<LinkageInfo> LI = lookup(D, computation)) return *LI; LinkageInfo LV = computeLVForDecl(D, computation); if (D->hasCachedLinkage()) assert(D->getCachedLinkage() == LV.getLinkage()); D->setCachedLinkage(LV.getLinkage()); cache(D, computation, LV); #ifndef NDEBUG // In C (because of gnu inline) and in c++ with microsoft extensions an // static can follow an extern, so we can have two decls with different // linkages. const LangOptions &Opts = D->getASTContext().getLangOpts(); if (!Opts.CPlusPlus || Opts.MicrosoftExt) return LV; // We have just computed the linkage for this decl. By induction we know // that all other computed linkages match, check that the one we just // computed also does. NamedDecl *Old = nullptr; for (auto I : D->redecls()) { auto *T = cast<NamedDecl>(I); if (T == D) continue; if (!T->isInvalidDecl() && T->hasCachedLinkage()) { Old = T; break; } } assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage()); #endif return LV; } LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) { return getLVForDecl(D, LVComputationKind(usesTypeVisibility(D) ? NamedDecl::VisibilityForType : NamedDecl::VisibilityForValue)); } Module *Decl::getOwningModuleForLinkage(bool IgnoreLinkage) const { Module *M = getOwningModule(); if (!M) return nullptr; switch (M->Kind) { case Module::ModuleMapModule: // Module map modules have no special linkage semantics. return nullptr; case Module::ModuleInterfaceUnit: return M; case Module::GlobalModuleFragment: { // External linkage declarations in the global module have no owning module // for linkage purposes. But internal linkage declarations in the global // module fragment of a particular module are owned by that module for // linkage purposes. if (IgnoreLinkage) return nullptr; bool InternalLinkage; if (auto *ND = dyn_cast<NamedDecl>(this)) InternalLinkage = !ND->hasExternalFormalLinkage(); else { auto *NSD = dyn_cast<NamespaceDecl>(this); InternalLinkage = (NSD && NSD->isAnonymousNamespace()) || isInAnonymousNamespace(); } return InternalLinkage ? M->Parent : nullptr; } case Module::PrivateModuleFragment: // The private module fragment is part of its containing module for linkage // purposes. return M->Parent; } llvm_unreachable("unknown module kind"); } void NamedDecl::printName(raw_ostream &os) const { os << Name; } std::string NamedDecl::getQualifiedNameAsString() const { std::string QualName; llvm::raw_string_ostream OS(QualName); printQualifiedName(OS, getASTContext().getPrintingPolicy()); return OS.str(); } void NamedDecl::printQualifiedName(raw_ostream &OS) const { printQualifiedName(OS, getASTContext().getPrintingPolicy()); } void NamedDecl::printQualifiedName(raw_ostream &OS, const PrintingPolicy &P) const { if (getDeclContext()->isFunctionOrMethod()) { // We do not print '(anonymous)' for function parameters without name. printName(OS); return; } printNestedNameSpecifier(OS, P); if (getDeclName()) OS << *this; else { // Give the printName override a chance to pick a different name before we // fall back to "(anonymous)". SmallString<64> NameBuffer; llvm::raw_svector_ostream NameOS(NameBuffer); printName(NameOS); if (NameBuffer.empty()) OS << "(anonymous)"; else OS << NameBuffer; } } void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const { printNestedNameSpecifier(OS, getASTContext().getPrintingPolicy()); } void NamedDecl::printNestedNameSpecifier(raw_ostream &OS, const PrintingPolicy &P) const { const DeclContext *Ctx = getDeclContext(); // For ObjC methods and properties, look through categories and use the // interface as context. if (auto *MD = dyn_cast<ObjCMethodDecl>(this)) { if (auto *ID = MD->getClassInterface()) Ctx = ID; } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(this)) { if (auto *MD = PD->getGetterMethodDecl()) if (auto *ID = MD->getClassInterface()) Ctx = ID; } else if (auto *ID = dyn_cast<ObjCIvarDecl>(this)) { if (auto *CI = ID->getContainingInterface()) Ctx = CI; } if (Ctx->isFunctionOrMethod()) return; using ContextsTy = SmallVector<const DeclContext *, 8>; ContextsTy Contexts; // Collect named contexts. while (Ctx) { if (isa<NamedDecl>(Ctx)) Contexts.push_back(Ctx); Ctx = Ctx->getParent(); } for (const DeclContext *DC : llvm::reverse(Contexts)) { if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) { OS << Spec->getName(); const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); printTemplateArgumentList(OS, TemplateArgs.asArray(), P); } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) { if (P.SuppressUnwrittenScope && (ND->isAnonymousNamespace() || ND->isInline())) continue; if (ND->isAnonymousNamespace()) { OS << (P.MSVCFormatting ? "`anonymous namespace\'" : "(anonymous namespace)"); } else OS << *ND; } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) { if (!RD->getIdentifier()) OS << "(anonymous " << RD->getKindName() << ')'; else OS << *RD; } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { const FunctionProtoType *FT = nullptr; if (FD->hasWrittenPrototype()) FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>()); OS << *FD << '('; if (FT) { unsigned NumParams = FD->getNumParams(); for (unsigned i = 0; i < NumParams; ++i) { if (i) OS << ", "; OS << FD->getParamDecl(i)->getType().stream(P); } if (FT->isVariadic()) { if (NumParams > 0) OS << ", "; OS << "..."; } } OS << ')'; } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) { // C++ [dcl.enum]p10: Each enum-name and each unscoped // enumerator is declared in the scope that immediately contains // the enum-specifier. Each scoped enumerator is declared in the // scope of the enumeration. // For the case of unscoped enumerator, do not include in the qualified // name any information about its enum enclosing scope, as its visibility // is global. if (ED->isScoped()) OS << *ED; else continue; } else { OS << *cast<NamedDecl>(DC); } OS << "::"; } } void NamedDecl::getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { if (Qualified) printQualifiedName(OS, Policy); else printName(OS); } template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) { return true; } static bool isRedeclarableImpl(...) { return false; } static bool isRedeclarable(Decl::Kind K) { switch (K) { #define DECL(Type, Base) \ case Decl::Type: \ return isRedeclarableImpl((Type##Decl *)nullptr); #define ABSTRACT_DECL(DECL) #include "clang/AST/DeclNodes.inc" } llvm_unreachable("unknown decl kind"); } bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const { assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch"); // Never replace one imported declaration with another; we need both results // when re-exporting. if (OldD->isFromASTFile() && isFromASTFile()) return false; // A kind mismatch implies that the declaration is not replaced. if (OldD->getKind() != getKind()) return false; // For method declarations, we never replace. (Why?) if (isa<ObjCMethodDecl>(this)) return false; // For parameters, pick the newer one. This is either an error or (in // Objective-C) permitted as an extension. if (isa<ParmVarDecl>(this)) return true; // Inline namespaces can give us two declarations with the same // name and kind in the same scope but different contexts; we should // keep both declarations in this case. if (!this->getDeclContext()->getRedeclContext()->Equals( OldD->getDeclContext()->getRedeclContext())) return false; // Using declarations can be replaced if they import the same name from the // same context. if (auto *UD = dyn_cast<UsingDecl>(this)) { ASTContext &Context = getASTContext(); return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) == Context.getCanonicalNestedNameSpecifier( cast<UsingDecl>(OldD)->getQualifier()); } if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) { ASTContext &Context = getASTContext(); return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) == Context.getCanonicalNestedNameSpecifier( cast<UnresolvedUsingValueDecl>(OldD)->getQualifier()); } if (isRedeclarable(getKind())) { if (getCanonicalDecl() != OldD->getCanonicalDecl()) return false; if (IsKnownNewer) return true; // Check whether this is actually newer than OldD. We want to keep the // newer declaration. This loop will usually only iterate once, because // OldD is usually the previous declaration. for (auto D : redecls()) { if (D == OldD) break; // If we reach the canonical declaration, then OldD is not actually older // than this one. // // FIXME: In this case, we should not add this decl to the lookup table. if (D->isCanonicalDecl()) return false; } // It's a newer declaration of the same kind of declaration in the same // scope: we want this decl instead of the existing one. return true; } // In all other cases, we need to keep both declarations in case they have // different visibility. Any attempt to use the name will result in an // ambiguity if more than one is visible. return false; } bool NamedDecl::hasLinkage() const { return getFormalLinkage() != NoLinkage; } NamedDecl *NamedDecl::getUnderlyingDeclImpl() { NamedDecl *ND = this; while (auto *UD = dyn_cast<UsingShadowDecl>(ND)) ND = UD->getTargetDecl(); if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND)) return AD->getClassInterface(); if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND)) return AD->getNamespace(); return ND; } bool NamedDecl::isCXXInstanceMember() const { if (!isCXXClassMember()) return false; const NamedDecl *D = this; if (isa<UsingShadowDecl>(D)) D = cast<UsingShadowDecl>(D)->getTargetDecl(); if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D)) return true; if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction())) return MD->isInstance(); return false; } //===----------------------------------------------------------------------===// // DeclaratorDecl Implementation //===----------------------------------------------------------------------===// template <typename DeclT> static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) { if (decl->getNumTemplateParameterLists() > 0) return decl->getTemplateParameterList(0)->getTemplateLoc(); else return decl->getInnerLocStart(); } SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const { TypeSourceInfo *TSI = getTypeSourceInfo(); if (TSI) return TSI->getTypeLoc().getBeginLoc(); return SourceLocation(); } SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const { TypeSourceInfo *TSI = getTypeSourceInfo(); if (TSI) return TSI->getTypeLoc().getEndLoc(); return SourceLocation(); } void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { if (QualifierLoc) { // Make sure the extended decl info is allocated. if (!hasExtInfo()) { // Save (non-extended) type source info pointer. auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); // Allocate external info struct. DeclInfo = new (getASTContext()) ExtInfo; // Restore savedTInfo into (extended) decl info. getExtInfo()->TInfo = savedTInfo; } // Set qualifier info. getExtInfo()->QualifierLoc = QualifierLoc; } else if (hasExtInfo()) { // Here Qualifier == 0, i.e., we are removing the qualifier (if any). getExtInfo()->QualifierLoc = QualifierLoc; } } void DeclaratorDecl::setTrailingRequiresClause(Expr *TrailingRequiresClause) { assert(TrailingRequiresClause); // Make sure the extended decl info is allocated. if (!hasExtInfo()) { // Save (non-extended) type source info pointer. auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); // Allocate external info struct. DeclInfo = new (getASTContext()) ExtInfo; // Restore savedTInfo into (extended) decl info. getExtInfo()->TInfo = savedTInfo; } // Set requires clause info. getExtInfo()->TrailingRequiresClause = TrailingRequiresClause; } void DeclaratorDecl::setTemplateParameterListsInfo( ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { assert(!TPLists.empty()); // Make sure the extended decl info is allocated. if (!hasExtInfo()) { // Save (non-extended) type source info pointer. auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>(); // Allocate external info struct. DeclInfo = new (getASTContext()) ExtInfo; // Restore savedTInfo into (extended) decl info. getExtInfo()->TInfo = savedTInfo; } // Set the template parameter lists info. getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); } SourceLocation DeclaratorDecl::getOuterLocStart() const { return getTemplateOrInnerLocStart(this); } // Helper function: returns true if QT is or contains a type // having a postfix component. static bool typeIsPostfix(QualType QT) { while (true) { const Type* T = QT.getTypePtr(); switch (T->getTypeClass()) { default: return false; case Type::Pointer: QT = cast<PointerType>(T)->getPointeeType(); break; case Type::BlockPointer: QT = cast<BlockPointerType>(T)->getPointeeType(); break; case Type::MemberPointer: QT = cast<MemberPointerType>(T)->getPointeeType(); break; case Type::LValueReference: case Type::RValueReference: QT = cast<ReferenceType>(T)->getPointeeType(); break; case Type::PackExpansion: QT = cast<PackExpansionType>(T)->getPattern(); break; case Type::Paren: case Type::ConstantArray: case Type::DependentSizedArray: case Type::IncompleteArray: case Type::VariableArray: case Type::FunctionProto: case Type::FunctionNoProto: return true; } } } SourceRange DeclaratorDecl::getSourceRange() const { SourceLocation RangeEnd = getLocation(); if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { // If the declaration has no name or the type extends past the name take the // end location of the type. if (!getDeclName() || typeIsPostfix(TInfo->getType())) RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); } return SourceRange(getOuterLocStart(), RangeEnd); } void QualifierInfo::setTemplateParameterListsInfo( ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { // Free previous template parameters (if any). if (NumTemplParamLists > 0) { Context.Deallocate(TemplParamLists); TemplParamLists = nullptr; NumTemplParamLists = 0; } // Set info on matched template parameter lists (if any). if (!TPLists.empty()) { TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()]; NumTemplParamLists = TPLists.size(); std::copy(TPLists.begin(), TPLists.end(), TemplParamLists); } } //===----------------------------------------------------------------------===// // VarDecl Implementation //===----------------------------------------------------------------------===// const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) { switch (SC) { case SC_None: break; case SC_Auto: return "auto"; case SC_Extern: return "extern"; case SC_PrivateExtern: return "__private_extern__"; case SC_Register: return "register"; case SC_Static: return "static"; } llvm_unreachable("Invalid storage class"); } VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass SC) : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc), redeclarable_base(C) { static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned), "VarDeclBitfields too large!"); static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned), "ParmVarDeclBitfields too large!"); static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned), "NonParmVarDeclBitfields too large!"); AllBits = 0; VarDeclBits.SClass = SC; // Everything else is implicitly initialized to false. } VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL, SourceLocation IdL, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S) { return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S); } VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr, QualType(), nullptr, SC_None); } void VarDecl::setStorageClass(StorageClass SC) { assert(isLegalForVariable(SC)); VarDeclBits.SClass = SC; } VarDecl::TLSKind VarDecl::getTLSKind() const { switch (VarDeclBits.TSCSpec) { case TSCS_unspecified: if (!hasAttr<ThreadAttr>() && !(getASTContext().getLangOpts().OpenMPUseTLS && getASTContext().getTargetInfo().isTLSSupported() && hasAttr<OMPThreadPrivateDeclAttr>())) return TLS_None; return ((getASTContext().getLangOpts().isCompatibleWithMSVC( LangOptions::MSVC2015)) || hasAttr<OMPThreadPrivateDeclAttr>()) ? TLS_Dynamic : TLS_Static; case TSCS___thread: // Fall through. case TSCS__Thread_local: return TLS_Static; case TSCS_thread_local: return TLS_Dynamic; } llvm_unreachable("Unknown thread storage class specifier!"); } SourceRange VarDecl::getSourceRange() const { if (const Expr *Init = getInit()) { SourceLocation InitEnd = Init->getEndLoc(); // If Init is implicit, ignore its source range and fallback on // DeclaratorDecl::getSourceRange() to handle postfix elements. if (InitEnd.isValid() && InitEnd != getLocation()) return SourceRange(getOuterLocStart(), InitEnd); } return DeclaratorDecl::getSourceRange(); } template<typename T> static LanguageLinkage getDeclLanguageLinkage(const T &D) { // C++ [dcl.link]p1: All function types, function names with external linkage, // and variable names with external linkage have a language linkage. if (!D.hasExternalFormalLinkage()) return NoLanguageLinkage; // Language linkage is a C++ concept, but saying that everything else in C has // C language linkage fits the implementation nicely. ASTContext &Context = D.getASTContext(); if (!Context.getLangOpts().CPlusPlus) return CLanguageLinkage; // C++ [dcl.link]p4: A C language linkage is ignored in determining the // language linkage of the names of class members and the function type of // class member functions. const DeclContext *DC = D.getDeclContext(); if (DC->isRecord()) return CXXLanguageLinkage; // If the first decl is in an extern "C" context, any other redeclaration // will have C language linkage. If the first one is not in an extern "C" // context, we would have reported an error for any other decl being in one. if (isFirstInExternCContext(&D)) return CLanguageLinkage; return CXXLanguageLinkage; } template<typename T> static bool isDeclExternC(const T &D) { // Since the context is ignored for class members, they can only have C++ // language linkage or no language linkage. const DeclContext *DC = D.getDeclContext(); if (DC->isRecord()) { assert(D.getASTContext().getLangOpts().CPlusPlus); return false; } return D.getLanguageLinkage() == CLanguageLinkage; } LanguageLinkage VarDecl::getLanguageLinkage() const { return getDeclLanguageLinkage(*this); } bool VarDecl::isExternC() const { return isDeclExternC(*this); } bool VarDecl::isInExternCContext() const { return getLexicalDeclContext()->isExternCContext(); } bool VarDecl::isInExternCXXContext() const { return getLexicalDeclContext()->isExternCXXContext(); } VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); } VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(ASTContext &C) const { if (isThisDeclarationADemotedDefinition()) return DeclarationOnly; // C++ [basic.def]p2: // A declaration is a definition unless [...] it contains the 'extern' // specifier or a linkage-specification and neither an initializer [...], // it declares a non-inline static data member in a class declaration [...], // it declares a static data member outside a class definition and the variable // was defined within the class with the constexpr specifier [...], // C++1y [temp.expl.spec]p15: // An explicit specialization of a static data member or an explicit // specialization of a static data member template is a definition if the // declaration includes an initializer; otherwise, it is a declaration. // // FIXME: How do you declare (but not define) a partial specialization of // a static data member template outside the containing class? if (isStaticDataMember()) { if (isOutOfLine() && !(getCanonicalDecl()->isInline() && getCanonicalDecl()->isConstexpr()) && (hasInit() || // If the first declaration is out-of-line, this may be an // instantiation of an out-of-line partial specialization of a variable // template for which we have not yet instantiated the initializer. (getFirstDecl()->isOutOfLine() ? getTemplateSpecializationKind() == TSK_Undeclared : getTemplateSpecializationKind() != TSK_ExplicitSpecialization) || isa<VarTemplatePartialSpecializationDecl>(this))) return Definition; else if (!isOutOfLine() && isInline()) return Definition; else return DeclarationOnly; } // C99 6.7p5: // A definition of an identifier is a declaration for that identifier that // [...] causes storage to be reserved for that object. // Note: that applies for all non-file-scope objects. // C99 6.9.2p1: // If the declaration of an identifier for an object has file scope and an // initializer, the declaration is an external definition for the identifier if (hasInit()) return Definition; if (hasDefiningAttr()) return Definition; if (const auto *SAA = getAttr<SelectAnyAttr>()) if (!SAA->isInherited()) return Definition; // A variable template specialization (other than a static data member // template or an explicit specialization) is a declaration until we // instantiate its initializer. if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(this)) { if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization && !isa<VarTemplatePartialSpecializationDecl>(VTSD) && !VTSD->IsCompleteDefinition) return DeclarationOnly; } if (hasExternalStorage()) return DeclarationOnly; // [dcl.link] p7: // A declaration directly contained in a linkage-specification is treated // as if it contains the extern specifier for the purpose of determining // the linkage of the declared name and whether it is a definition. if (isSingleLineLanguageLinkage(*this)) return DeclarationOnly; // C99 6.9.2p2: // A declaration of an object that has file scope without an initializer, // and without a storage class specifier or the scs 'static', constitutes // a tentative definition. // No such thing in C++. if (!C.getLangOpts().CPlusPlus && isFileVarDecl()) return TentativeDefinition; // What's left is (in C, block-scope) declarations without initializers or // external storage. These are definitions. return Definition; } VarDecl *VarDecl::getActingDefinition() { DefinitionKind Kind = isThisDeclarationADefinition(); if (Kind != TentativeDefinition) return nullptr; VarDecl *LastTentative = nullptr; VarDecl *First = getFirstDecl(); for (auto I : First->redecls()) { Kind = I->isThisDeclarationADefinition(); if (Kind == Definition) return nullptr; else if (Kind == TentativeDefinition) LastTentative = I; } return LastTentative; } VarDecl *VarDecl::getDefinition(ASTContext &C) { VarDecl *First = getFirstDecl(); for (auto I : First->redecls()) { if (I->isThisDeclarationADefinition(C) == Definition) return I; } return nullptr; } VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const { DefinitionKind Kind = DeclarationOnly; const VarDecl *First = getFirstDecl(); for (auto I : First->redecls()) { Kind = std::max(Kind, I->isThisDeclarationADefinition(C)); if (Kind == Definition) break; } return Kind; } const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const { for (auto I : redecls()) { if (auto Expr = I->getInit()) { D = I; return Expr; } } return nullptr; } bool VarDecl::hasInit() const { if (auto *P = dyn_cast<ParmVarDecl>(this)) if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg()) return false; return !Init.isNull(); } Expr *VarDecl::getInit() { if (!hasInit()) return nullptr; if (auto *S = Init.dyn_cast<Stmt *>()) return cast<Expr>(S); return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value); } Stmt **VarDecl::getInitAddress() { if (auto *ES = Init.dyn_cast<EvaluatedStmt *>()) return &ES->Value; return Init.getAddrOfPtr1(); } VarDecl *VarDecl::getInitializingDeclaration() { VarDecl *Def = nullptr; for (auto I : redecls()) { if (I->hasInit()) return I; if (I->isThisDeclarationADefinition()) { if (isStaticDataMember()) return I; else Def = I; } } return Def; } bool VarDecl::isOutOfLine() const { if (Decl::isOutOfLine()) return true; if (!isStaticDataMember()) return false; // If this static data member was instantiated from a static data member of // a class template, check whether that static data member was defined // out-of-line. if (VarDecl *VD = getInstantiatedFromStaticDataMember()) return VD->isOutOfLine(); return false; } void VarDecl::setInit(Expr *I) { if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) { Eval->~EvaluatedStmt(); getASTContext().Deallocate(Eval); } Init = I; } bool VarDecl::mightBeUsableInConstantExpressions(ASTContext &C) const { const LangOptions &Lang = C.getLangOpts(); if (!Lang.CPlusPlus) return false; // Function parameters are never usable in constant expressions. if (isa<ParmVarDecl>(this)) return false; // In C++11, any variable of reference type can be used in a constant // expression if it is initialized by a constant expression. if (Lang.CPlusPlus11 && getType()->isReferenceType()) return true; // Only const objects can be used in constant expressions in C++. C++98 does // not require the variable to be non-volatile, but we consider this to be a // defect. if (!getType().isConstQualified() || getType().isVolatileQualified()) return false; // In C++, const, non-volatile variables of integral or enumeration types // can be used in constant expressions. if (getType()->isIntegralOrEnumerationType()) return true; // Additionally, in C++11, non-volatile constexpr variables can be used in // constant expressions. return Lang.CPlusPlus11 && isConstexpr(); } bool VarDecl::isUsableInConstantExpressions(ASTContext &Context) const { // C++2a [expr.const]p3: // A variable is usable in constant expressions after its initializing // declaration is encountered... const VarDecl *DefVD = nullptr; const Expr *Init = getAnyInitializer(DefVD); if (!Init || Init->isValueDependent() || getType()->isDependentType()) return false; // ... if it is a constexpr variable, or it is of reference type or of // const-qualified integral or enumeration type, ... if (!DefVD->mightBeUsableInConstantExpressions(Context)) return false; // ... and its initializer is a constant initializer. return DefVD->checkInitIsICE(); } /// Convert the initializer for this declaration to the elaborated EvaluatedStmt /// form, which contains extra information on the evaluated value of the /// initializer. EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const { auto *Eval = Init.dyn_cast<EvaluatedStmt *>(); if (!Eval) { // Note: EvaluatedStmt contains an APValue, which usually holds // resources not allocated from the ASTContext. We need to do some // work to avoid leaking those, but we do so in VarDecl::evaluateValue // where we can detect whether there's anything to clean up or not. Eval = new (getASTContext()) EvaluatedStmt; Eval->Value = Init.get<Stmt *>(); Init = Eval; } return Eval; } APValue *VarDecl::evaluateValue() const { SmallVector<PartialDiagnosticAt, 8> Notes; return evaluateValue(Notes); } APValue *VarDecl::evaluateValue( SmallVectorImpl<PartialDiagnosticAt> &Notes) const { EvaluatedStmt *Eval = ensureEvaluatedStmt(); // We only produce notes indicating why an initializer is non-constant the // first time it is evaluated. FIXME: The notes won't always be emitted the // first time we try evaluation, so might not be produced at all. if (Eval->WasEvaluated) return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated; const auto *Init = cast<Expr>(Eval->Value); assert(!Init->isValueDependent()); if (Eval->IsEvaluating) { // FIXME: Produce a diagnostic for self-initialization. Eval->CheckedICE = true; Eval->IsICE = false; return nullptr; } Eval->IsEvaluating = true; bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(), this, Notes); // Ensure the computed APValue is cleaned up later if evaluation succeeded, // or that it's empty (so that there's nothing to clean up) if evaluation // failed. if (!Result) Eval->Evaluated = APValue(); else if (Eval->Evaluated.needsCleanup()) getASTContext().addDestruction(&Eval->Evaluated); Eval->IsEvaluating = false; Eval->WasEvaluated = true; // In C++11, we have determined whether the initializer was a constant // expression as a side-effect. if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) { Eval->CheckedICE = true; Eval->IsICE = Result && Notes.empty(); } return Result ? &Eval->Evaluated : nullptr; } APValue *VarDecl::getEvaluatedValue() const { if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) if (Eval->WasEvaluated) return &Eval->Evaluated; return nullptr; } bool VarDecl::isInitKnownICE() const { if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) return Eval->CheckedICE; return false; } bool VarDecl::isInitICE() const { assert(isInitKnownICE() && "Check whether we already know that the initializer is an ICE"); return Init.get<EvaluatedStmt *>()->IsICE; } bool VarDecl::checkInitIsICE() const { // Initializers of weak variables are never ICEs. if (isWeak()) return false; EvaluatedStmt *Eval = ensureEvaluatedStmt(); if (Eval->CheckedICE) // We have already checked whether this subexpression is an // integral constant expression. return Eval->IsICE; const auto *Init = cast<Expr>(Eval->Value); assert(!Init->isValueDependent()); // In C++11, evaluate the initializer to check whether it's a constant // expression. if (getASTContext().getLangOpts().CPlusPlus11) { SmallVector<PartialDiagnosticAt, 8> Notes; evaluateValue(Notes); return Eval->IsICE; } // It's an ICE whether or not the definition we found is // out-of-line. See DR 721 and the discussion in Clang PR // 6206 for details. if (Eval->CheckingICE) return false; Eval->CheckingICE = true; Eval->IsICE = Init->isIntegerConstantExpr(getASTContext()); Eval->CheckingICE = false; Eval->CheckedICE = true; return Eval->IsICE; } bool VarDecl::isParameterPack() const { return isa<PackExpansionType>(getType()); } template<typename DeclT> static DeclT *getDefinitionOrSelf(DeclT *D) { assert(D); if (auto *Def = D->getDefinition()) return Def; return D; } bool VarDecl::isEscapingByref() const { return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref; } bool VarDecl::isNonEscapingByref() const { return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref; } VarDecl *VarDecl::getTemplateInstantiationPattern() const { const VarDecl *VD = this; // If this is an instantiated member, walk back to the template from which // it was instantiated. if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) { if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { VD = VD->getInstantiatedFromStaticDataMember(); while (auto *NewVD = VD->getInstantiatedFromStaticDataMember()) VD = NewVD; } } // If it's an instantiated variable template specialization, find the // template or partial specialization from which it was instantiated. if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(VD)) { if (isTemplateInstantiation(VDTemplSpec->getTemplateSpecializationKind())) { auto From = VDTemplSpec->getInstantiatedFrom(); if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) { while (!VTD->isMemberSpecialization()) { auto *NewVTD = VTD->getInstantiatedFromMemberTemplate(); if (!NewVTD) break; VTD = NewVTD; } return getDefinitionOrSelf(VTD->getTemplatedDecl()); } if (auto *VTPSD = From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { while (!VTPSD->isMemberSpecialization()) { auto *NewVTPSD = VTPSD->getInstantiatedFromMember(); if (!NewVTPSD) break; VTPSD = NewVTPSD; } return getDefinitionOrSelf<VarDecl>(VTPSD); } } } // If this is the pattern of a variable template, find where it was // instantiated from. FIXME: Is this necessary? if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) { while (!VarTemplate->isMemberSpecialization()) { auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate(); if (!NewVT) break; VarTemplate = NewVT; } return getDefinitionOrSelf(VarTemplate->getTemplatedDecl()); } if (VD == this) return nullptr; return getDefinitionOrSelf(const_cast<VarDecl*>(VD)); } VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const { if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return cast<VarDecl>(MSI->getInstantiatedFrom()); return nullptr; } TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const { if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) return Spec->getSpecializationKind(); if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return MSI->getTemplateSpecializationKind(); return TSK_Undeclared; } TemplateSpecializationKind VarDecl::getTemplateSpecializationKindForInstantiation() const { if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return MSI->getTemplateSpecializationKind(); if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) return Spec->getSpecializationKind(); return TSK_Undeclared; } SourceLocation VarDecl::getPointOfInstantiation() const { if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) return Spec->getPointOfInstantiation(); if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return MSI->getPointOfInstantiation(); return SourceLocation(); } VarTemplateDecl *VarDecl::getDescribedVarTemplate() const { return getASTContext().getTemplateOrSpecializationInfo(this) .dyn_cast<VarTemplateDecl *>(); } void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) { getASTContext().setTemplateOrSpecializationInfo(this, Template); } bool VarDecl::isKnownToBeDefined() const { const auto &LangOpts = getASTContext().getLangOpts(); // In CUDA mode without relocatable device code, variables of form 'extern // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared // memory pool. These are never undefined variables, even if they appear // inside of an anon namespace or static function. // // With CUDA relocatable device code enabled, these variables don't get // special handling; they're treated like regular extern variables. if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode && hasExternalStorage() && hasAttr<CUDASharedAttr>() && isa<IncompleteArrayType>(getType())) return true; return hasDefinition(); } bool VarDecl::isNoDestroy(const ASTContext &Ctx) const { return hasGlobalStorage() && (hasAttr<NoDestroyAttr>() || (!Ctx.getLangOpts().RegisterStaticDestructors && !hasAttr<AlwaysDestroyAttr>())); } QualType::DestructionKind VarDecl::needsDestruction(const ASTContext &Ctx) const { if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) if (Eval->HasConstantDestruction) return QualType::DK_none; if (isNoDestroy(Ctx)) return QualType::DK_none; return getType().isDestructedType(); } MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const { if (isStaticDataMember()) // FIXME: Remove ? // return getASTContext().getInstantiatedFromStaticDataMember(this); return getASTContext().getTemplateOrSpecializationInfo(this) .dyn_cast<MemberSpecializationInfo *>(); return nullptr; } void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { assert((isa<VarTemplateSpecializationDecl>(this) || getMemberSpecializationInfo()) && "not a variable or static data member template specialization"); if (VarTemplateSpecializationDecl *Spec = dyn_cast<VarTemplateSpecializationDecl>(this)) { Spec->setSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && Spec->getPointOfInstantiation().isInvalid()) { Spec->setPointOfInstantiation(PointOfInstantiation); if (ASTMutationListener *L = getASTContext().getASTMutationListener()) L->InstantiationRequested(this); } } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) { MSI->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSI->getPointOfInstantiation().isInvalid()) { MSI->setPointOfInstantiation(PointOfInstantiation); if (ASTMutationListener *L = getASTContext().getASTMutationListener()) L->InstantiationRequested(this); } } } void VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD, TemplateSpecializationKind TSK) { assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() && "Previous template or instantiation?"); getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK); } //===----------------------------------------------------------------------===// // ParmVarDecl Implementation //===----------------------------------------------------------------------===// ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg) { return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo, S, DefArg); } QualType ParmVarDecl::getOriginalType() const { TypeSourceInfo *TSI = getTypeSourceInfo(); QualType T = TSI ? TSI->getType() : getType(); if (const auto *DT = dyn_cast<DecayedType>(T)) return DT->getOriginalType(); return T; } ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(), nullptr, QualType(), nullptr, SC_None, nullptr); } SourceRange ParmVarDecl::getSourceRange() const { if (!hasInheritedDefaultArg()) { SourceRange ArgRange = getDefaultArgRange(); if (ArgRange.isValid()) return SourceRange(getOuterLocStart(), ArgRange.getEnd()); } // DeclaratorDecl considers the range of postfix types as overlapping with the // declaration name, but this is not the case with parameters in ObjC methods. if (isa<ObjCMethodDecl>(getDeclContext())) return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation()); return DeclaratorDecl::getSourceRange(); } Expr *ParmVarDecl::getDefaultArg() { assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!"); assert(!hasUninstantiatedDefaultArg() && "Default argument is not yet instantiated!"); Expr *Arg = getInit(); if (auto *E = dyn_cast_or_null<FullExpr>(Arg)) return E->getSubExpr(); return Arg; } void ParmVarDecl::setDefaultArg(Expr *defarg) { ParmVarDeclBits.DefaultArgKind = DAK_Normal; Init = defarg; } SourceRange ParmVarDecl::getDefaultArgRange() const { switch (ParmVarDeclBits.DefaultArgKind) { case DAK_None: case DAK_Unparsed: // Nothing we can do here. return SourceRange(); case DAK_Uninstantiated: return getUninstantiatedDefaultArg()->getSourceRange(); case DAK_Normal: if (const Expr *E = getInit()) return E->getSourceRange(); // Missing an actual expression, may be invalid. return SourceRange(); } llvm_unreachable("Invalid default argument kind."); } void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) { ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated; Init = arg; } Expr *ParmVarDecl::getUninstantiatedDefaultArg() { assert(hasUninstantiatedDefaultArg() && "Wrong kind of initialization expression!"); return cast_or_null<Expr>(Init.get<Stmt *>()); } bool ParmVarDecl::hasDefaultArg() const { // FIXME: We should just return false for DAK_None here once callers are // prepared for the case that we encountered an invalid default argument and // were unable to even build an invalid expression. return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() || !Init.isNull(); } void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) { getASTContext().setParameterIndex(this, parameterIndex); ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel; } unsigned ParmVarDecl::getParameterIndexLarge() const { return getASTContext().getParameterIndex(this); } //===----------------------------------------------------------------------===// // FunctionDecl Implementation //===----------------------------------------------------------------------===// FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo, StartLoc), DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0), EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) { assert(T.isNull() || T->isFunctionType()); FunctionDeclBits.SClass = S; FunctionDeclBits.IsInline = isInlineSpecified; FunctionDeclBits.IsInlineSpecified = isInlineSpecified; FunctionDeclBits.IsVirtualAsWritten = false; FunctionDeclBits.IsPure = false; FunctionDeclBits.HasInheritedPrototype = false; FunctionDeclBits.HasWrittenPrototype = true; FunctionDeclBits.IsDeleted = false; FunctionDeclBits.IsTrivial = false; FunctionDeclBits.IsTrivialForCall = false; FunctionDeclBits.IsDefaulted = false; FunctionDeclBits.IsExplicitlyDefaulted = false; FunctionDeclBits.HasDefaultedFunctionInfo = false; FunctionDeclBits.HasImplicitReturnZero = false; FunctionDeclBits.IsLateTemplateParsed = false; FunctionDeclBits.ConstexprKind = ConstexprKind; FunctionDeclBits.InstantiationIsPending = false; FunctionDeclBits.UsesSEHTry = false; FunctionDeclBits.UsesFPIntrin = false; FunctionDeclBits.HasSkippedBody = false; FunctionDeclBits.WillHaveBody = false; FunctionDeclBits.IsMultiVersion = false; FunctionDeclBits.IsCopyDeductionCandidate = false; FunctionDeclBits.HasODRHash = false; if (TrailingRequiresClause) setTrailingRequiresClause(TrailingRequiresClause); } void FunctionDecl::getNameForDiagnostic( raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const { NamedDecl::getNameForDiagnostic(OS, Policy, Qualified); const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs(); if (TemplateArgs) printTemplateArgumentList(OS, TemplateArgs->asArray(), Policy); } bool FunctionDecl::isVariadic() const { if (const auto *FT = getType()->getAs<FunctionProtoType>()) return FT->isVariadic(); return false; } FunctionDecl::DefaultedFunctionInfo * FunctionDecl::DefaultedFunctionInfo::Create(ASTContext &Context, ArrayRef<DeclAccessPair> Lookups) { DefaultedFunctionInfo *Info = new (Context.Allocate( totalSizeToAlloc<DeclAccessPair>(Lookups.size()), std::max(alignof(DefaultedFunctionInfo), alignof(DeclAccessPair)))) DefaultedFunctionInfo; Info->NumLookups = Lookups.size(); std::uninitialized_copy(Lookups.begin(), Lookups.end(), Info->getTrailingObjects<DeclAccessPair>()); return Info; } void FunctionDecl::setDefaultedFunctionInfo(DefaultedFunctionInfo *Info) { assert(!FunctionDeclBits.HasDefaultedFunctionInfo && "already have this"); assert(!Body && "can't replace function body with defaulted function info"); FunctionDeclBits.HasDefaultedFunctionInfo = true; DefaultedInfo = Info; } FunctionDecl::DefaultedFunctionInfo * FunctionDecl::getDefaultedFunctionInfo() const { return FunctionDeclBits.HasDefaultedFunctionInfo ? DefaultedInfo : nullptr; } bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const { for (auto I : redecls()) { if (I->doesThisDeclarationHaveABody()) { Definition = I; return true; } } return false; } bool FunctionDecl::hasTrivialBody() const { Stmt *S = getBody(); if (!S) { // Since we don't have a body for this function, we don't know if it's // trivial or not. return false; } if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty()) return true; return false; } bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const { for (auto I : redecls()) { if (I->isThisDeclarationADefinition()) { Definition = I; return true; } } return false; } Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const { if (!hasBody(Definition)) return nullptr; assert(!Definition->FunctionDeclBits.HasDefaultedFunctionInfo && "definition should not have a body"); if (Definition->Body) return Definition->Body.get(getASTContext().getExternalSource()); return nullptr; } void FunctionDecl::setBody(Stmt *B) { FunctionDeclBits.HasDefaultedFunctionInfo = false; Body = LazyDeclStmtPtr(B); if (B) EndRangeLoc = B->getEndLoc(); } void FunctionDecl::setPure(bool P) { FunctionDeclBits.IsPure = P; if (P) if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext())) Parent->markedVirtualFunctionPure(); } template<std::size_t Len> static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) { IdentifierInfo *II = ND->getIdentifier(); return II && II->isStr(Str); } bool FunctionDecl::isMain() const { const TranslationUnitDecl *tunit = dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); return tunit && !tunit->getASTContext().getLangOpts().Freestanding && isNamed(this, "main"); } bool FunctionDecl::isMSVCRTEntryPoint() const { const TranslationUnitDecl *TUnit = dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()); if (!TUnit) return false; // Even though we aren't really targeting MSVCRT if we are freestanding, // semantic analysis for these functions remains the same. // MSVCRT entry points only exist on MSVCRT targets. if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT()) return false; // Nameless functions like constructors cannot be entry points. if (!getIdentifier()) return false; return llvm::StringSwitch<bool>(getName()) .Cases("main", // an ANSI console app "wmain", // a Unicode console App "WinMain", // an ANSI GUI app "wWinMain", // a Unicode GUI app "DllMain", // a DLL true) .Default(false); } bool FunctionDecl::isReservedGlobalPlacementOperator() const { assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName); assert(getDeclName().getCXXOverloadedOperator() == OO_New || getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_New || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete); if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) return false; const auto *proto = getType()->castAs<FunctionProtoType>(); if (proto->getNumParams() != 2 || proto->isVariadic()) return false; ASTContext &Context = cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext()) ->getASTContext(); // The result type and first argument type are constant across all // these operators. The second argument must be exactly void*. return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy); } bool FunctionDecl::isReplaceableGlobalAllocationFunction( Optional<unsigned> *AlignmentParam, bool *IsNothrow) const { if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName) return false; if (getDeclName().getCXXOverloadedOperator() != OO_New && getDeclName().getCXXOverloadedOperator() != OO_Delete && getDeclName().getCXXOverloadedOperator() != OO_Array_New && getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) return false; if (isa<CXXRecordDecl>(getDeclContext())) return false; // This can only fail for an invalid 'operator new' declaration. if (!getDeclContext()->getRedeclContext()->isTranslationUnit()) return false; const auto *FPT = getType()->castAs<FunctionProtoType>(); if (FPT->getNumParams() == 0 || FPT->getNumParams() > 3 || FPT->isVariadic()) return false; // If this is a single-parameter function, it must be a replaceable global // allocation or deallocation function. if (FPT->getNumParams() == 1) return true; unsigned Params = 1; QualType Ty = FPT->getParamType(Params); ASTContext &Ctx = getASTContext(); auto Consume = [&] { ++Params; Ty = Params < FPT->getNumParams() ? FPT->getParamType(Params) : QualType(); }; // In C++14, the next parameter can be a 'std::size_t' for sized delete. bool IsSizedDelete = false; if (Ctx.getLangOpts().SizedDeallocation && (getDeclName().getCXXOverloadedOperator() == OO_Delete || getDeclName().getCXXOverloadedOperator() == OO_Array_Delete) && Ctx.hasSameType(Ty, Ctx.getSizeType())) { IsSizedDelete = true; Consume(); } // In C++17, the next parameter can be a 'std::align_val_t' for aligned // new/delete. if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) { Consume(); if (AlignmentParam) *AlignmentParam = Params; } // Finally, if this is not a sized delete, the final parameter can // be a 'const std::nothrow_t&'. if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) { Ty = Ty->getPointeeType(); if (Ty.getCVRQualifiers() != Qualifiers::Const) return false; if (Ty->isNothrowT()) { if (IsNothrow) *IsNothrow = true; Consume(); } } return Params == FPT->getNumParams(); } bool FunctionDecl::isInlineBuiltinDeclaration() const { if (!getBuiltinID()) return false; const FunctionDecl *Definition; return hasBody(Definition) && Definition->isInlineSpecified(); } bool FunctionDecl::isDestroyingOperatorDelete() const { // C++ P0722: // Within a class C, a single object deallocation function with signature // (T, std::destroying_delete_t, <more params>) // is a destroying operator delete. if (!isa<CXXMethodDecl>(this) || getOverloadedOperator() != OO_Delete || getNumParams() < 2) return false; auto *RD = getParamDecl(1)->getType()->getAsCXXRecordDecl(); return RD && RD->isInStdNamespace() && RD->getIdentifier() && RD->getIdentifier()->isStr("destroying_delete_t"); } LanguageLinkage FunctionDecl::getLanguageLinkage() const { return getDeclLanguageLinkage(*this); } bool FunctionDecl::isExternC() const { return isDeclExternC(*this); } bool FunctionDecl::isInExternCContext() const { if (hasAttr<OpenCLKernelAttr>()) return true; return getLexicalDeclContext()->isExternCContext(); } bool FunctionDecl::isInExternCXXContext() const { return getLexicalDeclContext()->isExternCXXContext(); } bool FunctionDecl::isGlobal() const { if (const auto *Method = dyn_cast<CXXMethodDecl>(this)) return Method->isStatic(); if (getCanonicalDecl()->getStorageClass() == SC_Static) return false; for (const DeclContext *DC = getDeclContext(); DC->isNamespace(); DC = DC->getParent()) { if (const auto *Namespace = cast<NamespaceDecl>(DC)) { if (!Namespace->getDeclName()) return false; break; } } return true; } bool FunctionDecl::isNoReturn() const { if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() || hasAttr<C11NoReturnAttr>()) return true; if (auto *FnTy = getType()->getAs<FunctionType>()) return FnTy->getNoReturnAttr(); return false; } MultiVersionKind FunctionDecl::getMultiVersionKind() const { if (hasAttr<TargetAttr>()) return MultiVersionKind::Target; if (hasAttr<CPUDispatchAttr>()) return MultiVersionKind::CPUDispatch; if (hasAttr<CPUSpecificAttr>()) return MultiVersionKind::CPUSpecific; return MultiVersionKind::None; } bool FunctionDecl::isCPUDispatchMultiVersion() const { return isMultiVersion() && hasAttr<CPUDispatchAttr>(); } bool FunctionDecl::isCPUSpecificMultiVersion() const { return isMultiVersion() && hasAttr<CPUSpecificAttr>(); } bool FunctionDecl::isTargetMultiVersion() const { return isMultiVersion() && hasAttr<TargetAttr>(); } void FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) { redeclarable_base::setPreviousDecl(PrevDecl); if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) { FunctionTemplateDecl *PrevFunTmpl = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr; assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch"); FunTmpl->setPreviousDecl(PrevFunTmpl); } if (PrevDecl && PrevDecl->isInlined()) setImplicitlyInline(true); } FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); } /// Returns a value indicating whether this function corresponds to a builtin /// function. /// /// The function corresponds to a built-in function if it is declared at /// translation scope or within an extern "C" block and its name matches with /// the name of a builtin. The returned value will be 0 for functions that do /// not correspond to a builtin, a value of type \c Builtin::ID if in the /// target-independent range \c [1,Builtin::First), or a target-specific builtin /// value. /// /// \param ConsiderWrapperFunctions If true, we should consider wrapper /// functions as their wrapped builtins. This shouldn't be done in general, but /// it's useful in Sema to diagnose calls to wrappers based on their semantics. unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const { unsigned BuiltinID = 0; if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) { BuiltinID = ABAA->getBuiltinName()->getBuiltinID(); } else if (const auto *A = getAttr<BuiltinAttr>()) { BuiltinID = A->getID(); } if (!BuiltinID) return 0; // If the function is marked "overloadable", it has a different mangled name // and is not the C library function. if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() && !hasAttr<ArmBuiltinAliasAttr>()) return 0; ASTContext &Context = getASTContext(); if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return BuiltinID; // This function has the name of a known C library // function. Determine whether it actually refers to the C library // function or whether it just has the same name. // If this is a static function, it's not a builtin. if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static) return 0; // OpenCL v1.2 s6.9.f - The library functions defined in // the C99 standard headers are not available. if (Context.getLangOpts().OpenCL && Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) return 0; // CUDA does not have device-side standard library. printf and malloc are the // only special cases that are supported by device-side runtime. if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() && !hasAttr<CUDAHostAttr>() && !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) return 0; // As AMDGCN implementation of OpenMP does not have a device-side standard // library, none of the predefined library functions except printf and malloc // should be treated as a builtin i.e. 0 should be returned for them. if (Context.getTargetInfo().getTriple().isAMDGCN() && Context.getLangOpts().OpenMPIsDevice && Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc)) return 0; return BuiltinID; } /// getNumParams - Return the number of parameters this function must have /// based on its FunctionType. This is the length of the ParamInfo array /// after it has been created. unsigned FunctionDecl::getNumParams() const { const auto *FPT = getType()->getAs<FunctionProtoType>(); return FPT ? FPT->getNumParams() : 0; } void FunctionDecl::setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo) { assert(!ParamInfo && "Already has param info!"); assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!"); // Zero params -> null pointer. if (!NewParamInfo.empty()) { ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()]; std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); } } /// getMinRequiredArguments - Returns the minimum number of arguments /// needed to call this function. This may be fewer than the number of /// function parameters, if some of the parameters have default /// arguments (in C++) or are parameter packs (C++11). unsigned FunctionDecl::getMinRequiredArguments() const { if (!getASTContext().getLangOpts().CPlusPlus) return getNumParams(); // Note that it is possible for a parameter with no default argument to // follow a parameter with a default argument. unsigned NumRequiredArgs = 0; unsigned MinParamsSoFar = 0; for (auto *Param : parameters()) { if (!Param->isParameterPack()) { ++MinParamsSoFar; if (!Param->hasDefaultArg()) NumRequiredArgs = MinParamsSoFar; } } return NumRequiredArgs; } bool FunctionDecl::hasOneParamOrDefaultArgs() const { return getNumParams() == 1 || (getNumParams() > 1 && std::all_of(param_begin() + 1, param_end(), [](ParmVarDecl *P) { return P->hasDefaultArg(); })); } /// The combination of the extern and inline keywords under MSVC forces /// the function to be required. /// /// Note: This function assumes that we will only get called when isInlined() /// would return true for this FunctionDecl. bool FunctionDecl::isMSExternInline() const { assert(isInlined() && "expected to get called on an inlined function!"); const ASTContext &Context = getASTContext(); if (!Context.getTargetInfo().getCXXABI().isMicrosoft() && !hasAttr<DLLExportAttr>()) return false; for (const FunctionDecl *FD = getMostRecentDecl(); FD; FD = FD->getPreviousDecl()) if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) return true; return false; } static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) { if (Redecl->getStorageClass() != SC_Extern) return false; for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD; FD = FD->getPreviousDecl()) if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern) return false; return true; } static bool RedeclForcesDefC99(const FunctionDecl *Redecl) { // Only consider file-scope declarations in this test. if (!Redecl->getLexicalDeclContext()->isTranslationUnit()) return false; // Only consider explicit declarations; the presence of a builtin for a // libcall shouldn't affect whether a definition is externally visible. if (Redecl->isImplicit()) return false; if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) return true; // Not an inline definition return false; } /// For a function declaration in C or C++, determine whether this /// declaration causes the definition to be externally visible. /// /// For instance, this determines if adding the current declaration to the set /// of redeclarations of the given functions causes /// isInlineDefinitionExternallyVisible to change from false to true. bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const { assert(!doesThisDeclarationHaveABody() && "Must have a declaration without a body."); ASTContext &Context = getASTContext(); if (Context.getLangOpts().MSVCCompat) { const FunctionDecl *Definition; if (hasBody(Definition) && Definition->isInlined() && redeclForcesDefMSVC(this)) return true; } if (Context.getLangOpts().CPlusPlus) return false; if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { // With GNU inlining, a declaration with 'inline' but not 'extern', forces // an externally visible definition. // // FIXME: What happens if gnu_inline gets added on after the first // declaration? if (!isInlineSpecified() || getStorageClass() == SC_Extern) return false; const FunctionDecl *Prev = this; bool FoundBody = false; while ((Prev = Prev->getPreviousDecl())) { FoundBody |= Prev->doesThisDeclarationHaveABody(); if (Prev->doesThisDeclarationHaveABody()) { // If it's not the case that both 'inline' and 'extern' are // specified on the definition, then it is always externally visible. if (!Prev->isInlineSpecified() || Prev->getStorageClass() != SC_Extern) return false; } else if (Prev->isInlineSpecified() && Prev->getStorageClass() != SC_Extern) { return false; } } return FoundBody; } // C99 6.7.4p6: // [...] If all of the file scope declarations for a function in a // translation unit include the inline function specifier without extern, // then the definition in that translation unit is an inline definition. if (isInlineSpecified() && getStorageClass() != SC_Extern) return false; const FunctionDecl *Prev = this; bool FoundBody = false; while ((Prev = Prev->getPreviousDecl())) { FoundBody |= Prev->doesThisDeclarationHaveABody(); if (RedeclForcesDefC99(Prev)) return false; } return FoundBody; } FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const { const TypeSourceInfo *TSI = getTypeSourceInfo(); return TSI ? TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>() : FunctionTypeLoc(); } SourceRange FunctionDecl::getReturnTypeSourceRange() const { FunctionTypeLoc FTL = getFunctionTypeLoc(); if (!FTL) return SourceRange(); // Skip self-referential return types. const SourceManager &SM = getASTContext().getSourceManager(); SourceRange RTRange = FTL.getReturnLoc().getSourceRange(); SourceLocation Boundary = getNameInfo().getBeginLoc(); if (RTRange.isInvalid() || Boundary.isInvalid() || !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary)) return SourceRange(); return RTRange; } SourceRange FunctionDecl::getParametersSourceRange() const { unsigned NP = getNumParams(); SourceLocation EllipsisLoc = getEllipsisLoc(); if (NP == 0 && EllipsisLoc.isInvalid()) return SourceRange(); SourceLocation Begin = NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc; SourceLocation End = EllipsisLoc.isValid() ? EllipsisLoc : ParamInfo[NP - 1]->getSourceRange().getEnd(); return SourceRange(Begin, End); } SourceRange FunctionDecl::getExceptionSpecSourceRange() const { FunctionTypeLoc FTL = getFunctionTypeLoc(); return FTL ? FTL.getExceptionSpecRange() : SourceRange(); } /// For an inline function definition in C, or for a gnu_inline function /// in C++, determine whether the definition will be externally visible. /// /// Inline function definitions are always available for inlining optimizations. /// However, depending on the language dialect, declaration specifiers, and /// attributes, the definition of an inline function may or may not be /// "externally" visible to other translation units in the program. /// /// In C99, inline definitions are not externally visible by default. However, /// if even one of the global-scope declarations is marked "extern inline", the /// inline definition becomes externally visible (C99 6.7.4p6). /// /// In GNU89 mode, or if the gnu_inline attribute is attached to the function /// definition, we use the GNU semantics for inline, which are nearly the /// opposite of C99 semantics. In particular, "inline" by itself will create /// an externally visible symbol, but "extern inline" will not create an /// externally visible symbol. bool FunctionDecl::isInlineDefinitionExternallyVisible() const { assert((doesThisDeclarationHaveABody() || willHaveBody() || hasAttr<AliasAttr>()) && "Must be a function definition"); assert(isInlined() && "Function must be inline"); ASTContext &Context = getASTContext(); if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) { // Note: If you change the logic here, please change // doesDeclarationForceExternallyVisibleDefinition as well. // // If it's not the case that both 'inline' and 'extern' are // specified on the definition, then this inline definition is // externally visible. if (Context.getLangOpts().CPlusPlus) return false; if (!(isInlineSpecified() && getStorageClass() == SC_Extern)) return true; // If any declaration is 'inline' but not 'extern', then this definition // is externally visible. for (auto Redecl : redecls()) { if (Redecl->isInlineSpecified() && Redecl->getStorageClass() != SC_Extern) return true; } return false; } // The rest of this function is C-only. assert(!Context.getLangOpts().CPlusPlus && "should not use C inline rules in C++"); // C99 6.7.4p6: // [...] If all of the file scope declarations for a function in a // translation unit include the inline function specifier without extern, // then the definition in that translation unit is an inline definition. for (auto Redecl : redecls()) { if (RedeclForcesDefC99(Redecl)) return true; } // C99 6.7.4p6: // An inline definition does not provide an external definition for the // function, and does not forbid an external definition in another // translation unit. return false; } /// getOverloadedOperator - Which C++ overloaded operator this /// function represents, if any. OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const { if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName) return getDeclName().getCXXOverloadedOperator(); else return OO_None; } /// getLiteralIdentifier - The literal suffix identifier this function /// represents, if any. const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const { if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName) return getDeclName().getCXXLiteralIdentifier(); else return nullptr; } FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const { if (TemplateOrSpecialization.isNull()) return TK_NonTemplate; if (TemplateOrSpecialization.is<FunctionTemplateDecl *>()) return TK_FunctionTemplate; if (TemplateOrSpecialization.is<MemberSpecializationInfo *>()) return TK_MemberSpecialization; if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>()) return TK_FunctionTemplateSpecialization; if (TemplateOrSpecialization.is <DependentFunctionTemplateSpecializationInfo*>()) return TK_DependentFunctionTemplateSpecialization; llvm_unreachable("Did we miss a TemplateOrSpecialization type?"); } FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const { if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) return cast<FunctionDecl>(Info->getInstantiatedFrom()); return nullptr; } MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const { if (auto *MSI = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) return MSI; if (auto *FTSI = TemplateOrSpecialization .dyn_cast<FunctionTemplateSpecializationInfo *>()) return FTSI->getMemberSpecializationInfo(); return nullptr; } void FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD, TemplateSpecializationKind TSK) { assert(TemplateOrSpecialization.isNull() && "Member function is already a specialization"); MemberSpecializationInfo *Info = new (C) MemberSpecializationInfo(FD, TSK); TemplateOrSpecialization = Info; } FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const { return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>(); } void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) { assert(TemplateOrSpecialization.isNull() && "Member function is already a specialization"); TemplateOrSpecialization = Template; } bool FunctionDecl::isImplicitlyInstantiable() const { // If the function is invalid, it can't be implicitly instantiated. if (isInvalidDecl()) return false; switch (getTemplateSpecializationKindForInstantiation()) { case TSK_Undeclared: case TSK_ExplicitInstantiationDefinition: case TSK_ExplicitSpecialization: return false; case TSK_ImplicitInstantiation: return true; case TSK_ExplicitInstantiationDeclaration: // Handled below. break; } // Find the actual template from which we will instantiate. const FunctionDecl *PatternDecl = getTemplateInstantiationPattern(); bool HasPattern = false; if (PatternDecl) HasPattern = PatternDecl->hasBody(PatternDecl); // C++0x [temp.explicit]p9: // Except for inline functions, other explicit instantiation declarations // have the effect of suppressing the implicit instantiation of the entity // to which they refer. if (!HasPattern || !PatternDecl) return true; return PatternDecl->isInlined(); } bool FunctionDecl::isTemplateInstantiation() const { // FIXME: Remove this, it's not clear what it means. (Which template // specialization kind?) return clang::isTemplateInstantiation(getTemplateSpecializationKind()); } FunctionDecl * FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const { // If this is a generic lambda call operator specialization, its // instantiation pattern is always its primary template's pattern // even if its primary template was instantiated from another // member template (which happens with nested generic lambdas). // Since a lambda's call operator's body is transformed eagerly, // we don't have to go hunting for a prototype definition template // (i.e. instantiated-from-member-template) to use as an instantiation // pattern. if (isGenericLambdaCallOperatorSpecialization( dyn_cast<CXXMethodDecl>(this))) { assert(getPrimaryTemplate() && "not a generic lambda call operator?"); return getDefinitionOrSelf(getPrimaryTemplate()->getTemplatedDecl()); } if (MemberSpecializationInfo *Info = getMemberSpecializationInfo()) { if (ForDefinition && !clang::isTemplateInstantiation(Info->getTemplateSpecializationKind())) return nullptr; return getDefinitionOrSelf(cast<FunctionDecl>(Info->getInstantiatedFrom())); } if (ForDefinition && !clang::isTemplateInstantiation(getTemplateSpecializationKind())) return nullptr; if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) { // If we hit a point where the user provided a specialization of this // template, we're done looking. while (!ForDefinition || !Primary->isMemberSpecialization()) { auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate(); if (!NewPrimary) break; Primary = NewPrimary; } return getDefinitionOrSelf(Primary->getTemplatedDecl()); } return nullptr; } FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast<FunctionTemplateSpecializationInfo*>()) { return Info->getTemplate(); } return nullptr; } FunctionTemplateSpecializationInfo * FunctionDecl::getTemplateSpecializationInfo() const { return TemplateOrSpecialization .dyn_cast<FunctionTemplateSpecializationInfo *>(); } const TemplateArgumentList * FunctionDecl::getTemplateSpecializationArgs() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast<FunctionTemplateSpecializationInfo*>()) { return Info->TemplateArguments; } return nullptr; } const ASTTemplateArgumentListInfo * FunctionDecl::getTemplateSpecializationArgsAsWritten() const { if (FunctionTemplateSpecializationInfo *Info = TemplateOrSpecialization .dyn_cast<FunctionTemplateSpecializationInfo*>()) { return Info->TemplateArgumentsAsWritten; } return nullptr; } void FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C, FunctionTemplateDecl *Template, const TemplateArgumentList *TemplateArgs, void *InsertPos, TemplateSpecializationKind TSK, const TemplateArgumentListInfo *TemplateArgsAsWritten, SourceLocation PointOfInstantiation) { assert((TemplateOrSpecialization.isNull() || TemplateOrSpecialization.is<MemberSpecializationInfo *>()) && "Member function is already a specialization"); assert(TSK != TSK_Undeclared && "Must specify the type of function template specialization"); assert((TemplateOrSpecialization.isNull() || TSK == TSK_ExplicitSpecialization) && "Member specialization must be an explicit specialization"); FunctionTemplateSpecializationInfo *Info = FunctionTemplateSpecializationInfo::Create( C, this, Template, TSK, TemplateArgs, TemplateArgsAsWritten, PointOfInstantiation, TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()); TemplateOrSpecialization = Info; Template->addSpecialization(Info, InsertPos); } void FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context, const UnresolvedSetImpl &Templates, const TemplateArgumentListInfo &TemplateArgs) { assert(TemplateOrSpecialization.isNull()); DependentFunctionTemplateSpecializationInfo *Info = DependentFunctionTemplateSpecializationInfo::Create(Context, Templates, TemplateArgs); TemplateOrSpecialization = Info; } DependentFunctionTemplateSpecializationInfo * FunctionDecl::getDependentSpecializationInfo() const { return TemplateOrSpecialization .dyn_cast<DependentFunctionTemplateSpecializationInfo *>(); } DependentFunctionTemplateSpecializationInfo * DependentFunctionTemplateSpecializationInfo::Create( ASTContext &Context, const UnresolvedSetImpl &Ts, const TemplateArgumentListInfo &TArgs) { void *Buffer = Context.Allocate( totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>( TArgs.size(), Ts.size())); return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs); } DependentFunctionTemplateSpecializationInfo:: DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts, const TemplateArgumentListInfo &TArgs) : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) { NumTemplates = Ts.size(); NumArgs = TArgs.size(); FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>(); for (unsigned I = 0, E = Ts.size(); I != E; ++I) TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl()); TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>(); for (unsigned I = 0, E = TArgs.size(); I != E; ++I) new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]); } TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const { // For a function template specialization, query the specialization // information object. if (FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization .dyn_cast<FunctionTemplateSpecializationInfo *>()) return FTSInfo->getTemplateSpecializationKind(); if (MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) return MSInfo->getTemplateSpecializationKind(); return TSK_Undeclared; } TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKindForInstantiation() const { // This is the same as getTemplateSpecializationKind(), except that for a // function that is both a function template specialization and a member // specialization, we prefer the member specialization information. Eg: // // template<typename T> struct A { // template<typename U> void f() {} // template<> void f<int>() {} // }; // // For A<int>::f<int>(): // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization // * getTemplateSpecializationKindForInstantiation() will return // TSK_ImplicitInstantiation // // This reflects the facts that A<int>::f<int> is an explicit specialization // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated // from A::f<int> if a definition is needed. if (FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization .dyn_cast<FunctionTemplateSpecializationInfo *>()) { if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo()) return MSInfo->getTemplateSpecializationKind(); return FTSInfo->getTemplateSpecializationKind(); } if (MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>()) return MSInfo->getTemplateSpecializationKind(); return TSK_Undeclared; } void FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { if (FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast< FunctionTemplateSpecializationInfo*>()) { FTSInfo->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && FTSInfo->getPointOfInstantiation().isInvalid()) { FTSInfo->setPointOfInstantiation(PointOfInstantiation); if (ASTMutationListener *L = getASTContext().getASTMutationListener()) L->InstantiationRequested(this); } } else if (MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) { MSInfo->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSInfo->getPointOfInstantiation().isInvalid()) { MSInfo->setPointOfInstantiation(PointOfInstantiation); if (ASTMutationListener *L = getASTContext().getASTMutationListener()) L->InstantiationRequested(this); } } else llvm_unreachable("Function cannot have a template specialization kind"); } SourceLocation FunctionDecl::getPointOfInstantiation() const { if (FunctionTemplateSpecializationInfo *FTSInfo = TemplateOrSpecialization.dyn_cast< FunctionTemplateSpecializationInfo*>()) return FTSInfo->getPointOfInstantiation(); else if (MemberSpecializationInfo *MSInfo = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) return MSInfo->getPointOfInstantiation(); return SourceLocation(); } bool FunctionDecl::isOutOfLine() const { if (Decl::isOutOfLine()) return true; // If this function was instantiated from a member function of a // class template, check whether that member function was defined out-of-line. if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) { const FunctionDecl *Definition; if (FD->hasBody(Definition)) return Definition->isOutOfLine(); } // If this function was instantiated from a function template, // check whether that function template was defined out-of-line. if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) { const FunctionDecl *Definition; if (FunTmpl->getTemplatedDecl()->hasBody(Definition)) return Definition->isOutOfLine(); } return false; } SourceRange FunctionDecl::getSourceRange() const { return SourceRange(getOuterLocStart(), EndRangeLoc); } unsigned FunctionDecl::getMemoryFunctionKind() const { IdentifierInfo *FnInfo = getIdentifier(); if (!FnInfo) return 0; // Builtin handling. switch (getBuiltinID()) { case Builtin::BI__builtin_memset: case Builtin::BI__builtin___memset_chk: case Builtin::BImemset: return Builtin::BImemset; case Builtin::BI__builtin_memcpy: case Builtin::BI__builtin___memcpy_chk: case Builtin::BImemcpy: return Builtin::BImemcpy; case Builtin::BI__builtin_mempcpy: case Builtin::BI__builtin___mempcpy_chk: case Builtin::BImempcpy: return Builtin::BImempcpy; case Builtin::BI__builtin_memmove: case Builtin::BI__builtin___memmove_chk: case Builtin::BImemmove: return Builtin::BImemmove; case Builtin::BIstrlcpy: case Builtin::BI__builtin___strlcpy_chk: return Builtin::BIstrlcpy; case Builtin::BIstrlcat: case Builtin::BI__builtin___strlcat_chk: return Builtin::BIstrlcat; case Builtin::BI__builtin_memcmp: case Builtin::BImemcmp: return Builtin::BImemcmp; case Builtin::BI__builtin_bcmp: case Builtin::BIbcmp: return Builtin::BIbcmp; case Builtin::BI__builtin_strncpy: case Builtin::BI__builtin___strncpy_chk: case Builtin::BIstrncpy: return Builtin::BIstrncpy; case Builtin::BI__builtin_strncmp: case Builtin::BIstrncmp: return Builtin::BIstrncmp; case Builtin::BI__builtin_strncasecmp: case Builtin::BIstrncasecmp: return Builtin::BIstrncasecmp; case Builtin::BI__builtin_strncat: case Builtin::BI__builtin___strncat_chk: case Builtin::BIstrncat: return Builtin::BIstrncat; case Builtin::BI__builtin_strndup: case Builtin::BIstrndup: return Builtin::BIstrndup; case Builtin::BI__builtin_strlen: case Builtin::BIstrlen: return Builtin::BIstrlen; case Builtin::BI__builtin_bzero: case Builtin::BIbzero: return Builtin::BIbzero; default: if (isExternC()) { if (FnInfo->isStr("memset")) return Builtin::BImemset; else if (FnInfo->isStr("memcpy")) return Builtin::BImemcpy; else if (FnInfo->isStr("mempcpy")) return Builtin::BImempcpy; else if (FnInfo->isStr("memmove")) return Builtin::BImemmove; else if (FnInfo->isStr("memcmp")) return Builtin::BImemcmp; else if (FnInfo->isStr("bcmp")) return Builtin::BIbcmp; else if (FnInfo->isStr("strncpy")) return Builtin::BIstrncpy; else if (FnInfo->isStr("strncmp")) return Builtin::BIstrncmp; else if (FnInfo->isStr("strncasecmp")) return Builtin::BIstrncasecmp; else if (FnInfo->isStr("strncat")) return Builtin::BIstrncat; else if (FnInfo->isStr("strndup")) return Builtin::BIstrndup; else if (FnInfo->isStr("strlen")) return Builtin::BIstrlen; else if (FnInfo->isStr("bzero")) return Builtin::BIbzero; } break; } return 0; } unsigned FunctionDecl::getODRHash() const { assert(hasODRHash()); return ODRHash; } unsigned FunctionDecl::getODRHash() { if (hasODRHash()) return ODRHash; if (auto *FT = getInstantiatedFromMemberFunction()) { setHasODRHash(true); ODRHash = FT->getODRHash(); return ODRHash; } class ODRHash Hash; Hash.AddFunctionDecl(this); setHasODRHash(true); ODRHash = Hash.CalculateHash(); return ODRHash; } //===----------------------------------------------------------------------===// // FieldDecl Implementation //===----------------------------------------------------------------------===// FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable, InClassInitStyle InitStyle) { return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo, BW, Mutable, InitStyle); } FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(), SourceLocation(), nullptr, QualType(), nullptr, nullptr, false, ICIS_NoInit); } bool FieldDecl::isAnonymousStructOrUnion() const { if (!isImplicit() || getDeclName()) return false; if (const auto *Record = getType()->getAs<RecordType>()) return Record->getDecl()->isAnonymousStructOrUnion(); return false; } unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const { assert(isBitField() && "not a bitfield"); return getBitWidth()->EvaluateKnownConstInt(Ctx).getZExtValue(); } bool FieldDecl::isZeroLengthBitField(const ASTContext &Ctx) const { return isUnnamedBitfield() && !getBitWidth()->isValueDependent() && getBitWidthValue(Ctx) == 0; } bool FieldDecl::isZeroSize(const ASTContext &Ctx) const { if (isZeroLengthBitField(Ctx)) return true; // C++2a [intro.object]p7: // An object has nonzero size if it // -- is not a potentially-overlapping subobject, or if (!hasAttr<NoUniqueAddressAttr>()) return false; // -- is not of class type, or const auto *RT = getType()->getAs<RecordType>(); if (!RT) return false; const RecordDecl *RD = RT->getDecl()->getDefinition(); if (!RD) { assert(isInvalidDecl() && "valid field has incomplete type"); return false; } // -- [has] virtual member functions or virtual base classes, or // -- has subobjects of nonzero size or bit-fields of nonzero length const auto *CXXRD = cast<CXXRecordDecl>(RD); if (!CXXRD->isEmpty()) return false; // Otherwise, [...] the circumstances under which the object has zero size // are implementation-defined. // FIXME: This might be Itanium ABI specific; we don't yet know what the MS // ABI will do. return true; } unsigned FieldDecl::getFieldIndex() const { const FieldDecl *Canonical = getCanonicalDecl(); if (Canonical != this) return Canonical->getFieldIndex(); if (CachedFieldIndex) return CachedFieldIndex - 1; unsigned Index = 0; const RecordDecl *RD = getParent()->getDefinition(); assert(RD && "requested index for field of struct with no definition"); for (auto *Field : RD->fields()) { Field->getCanonicalDecl()->CachedFieldIndex = Index + 1; ++Index; } assert(CachedFieldIndex && "failed to find field in parent"); return CachedFieldIndex - 1; } SourceRange FieldDecl::getSourceRange() const { const Expr *FinalExpr = getInClassInitializer(); if (!FinalExpr) FinalExpr = getBitWidth(); if (FinalExpr) return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc()); return DeclaratorDecl::getSourceRange(); } void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) { assert((getParent()->isLambda() || getParent()->isCapturedRecord()) && "capturing type in non-lambda or captured record."); assert(InitStorage.getInt() == ISK_NoInit && InitStorage.getPointer() == nullptr && "bit width, initializer or captured type already set"); InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType), ISK_CapturedVLAType); } //===----------------------------------------------------------------------===// // TagDecl Implementation //===----------------------------------------------------------------------===// TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl, SourceLocation StartL) : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C), TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) { assert((DK != Enum || TK == TTK_Enum) && "EnumDecl not matched with TTK_Enum"); setPreviousDecl(PrevDecl); setTagKind(TK); setCompleteDefinition(false); setBeingDefined(false); setEmbeddedInDeclarator(false); setFreeStanding(false); setCompleteDefinitionRequired(false); } SourceLocation TagDecl::getOuterLocStart() const { return getTemplateOrInnerLocStart(this); } SourceRange TagDecl::getSourceRange() const { SourceLocation RBraceLoc = BraceRange.getEnd(); SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation(); return SourceRange(getOuterLocStart(), E); } TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); } void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) { TypedefNameDeclOrQualifier = TDD; if (const Type *T = getTypeForDecl()) { (void)T; assert(T->isLinkageValid()); } assert(isLinkageValid()); } void TagDecl::startDefinition() { setBeingDefined(true); if (auto *D = dyn_cast<CXXRecordDecl>(this)) { struct CXXRecordDecl::DefinitionData *Data = new (getASTContext()) struct CXXRecordDecl::DefinitionData(D); for (auto I : redecls()) cast<CXXRecordDecl>(I)->DefinitionData = Data; } } void TagDecl::completeDefinition() { assert((!isa<CXXRecordDecl>(this) || cast<CXXRecordDecl>(this)->hasDefinition()) && "definition completed but not started"); setCompleteDefinition(true); setBeingDefined(false); if (ASTMutationListener *L = getASTMutationListener()) L->CompletedTagDefinition(this); } TagDecl *TagDecl::getDefinition() const { if (isCompleteDefinition()) return const_cast<TagDecl *>(this); // If it's possible for us to have an out-of-date definition, check now. if (mayHaveOutOfDateDef()) { if (IdentifierInfo *II = getIdentifier()) { if (II->isOutOfDate()) { updateOutOfDate(*II); } } } if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this)) return CXXRD->getDefinition(); for (auto R : redecls()) if (R->isCompleteDefinition()) return R; return nullptr; } void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) { if (QualifierLoc) { // Make sure the extended qualifier info is allocated. if (!hasExtInfo()) TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; // Set qualifier info. getExtInfo()->QualifierLoc = QualifierLoc; } else { // Here Qualifier == 0, i.e., we are removing the qualifier (if any). if (hasExtInfo()) { if (getExtInfo()->NumTemplParamLists == 0) { getASTContext().Deallocate(getExtInfo()); TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr; } else getExtInfo()->QualifierLoc = QualifierLoc; } } } void TagDecl::setTemplateParameterListsInfo( ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) { assert(!TPLists.empty()); // Make sure the extended decl info is allocated. if (!hasExtInfo()) // Allocate external info struct. TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo; // Set the template parameter lists info. getExtInfo()->setTemplateParameterListsInfo(Context, TPLists); } //===----------------------------------------------------------------------===// // EnumDecl Implementation //===----------------------------------------------------------------------===// EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, bool Scoped, bool ScopedUsingClassTag, bool Fixed) : TagDecl(Enum, TTK_Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) { assert(Scoped || !ScopedUsingClassTag); IntegerType = nullptr; setNumPositiveBits(0); setNumNegativeBits(0); setScoped(Scoped); setScopedUsingClassTag(ScopedUsingClassTag); setFixed(Fixed); setHasODRHash(false); ODRHash = 0; } void EnumDecl::anchor() {} EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl, bool IsScoped, bool IsScopedUsingClassTag, bool IsFixed) { auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl, IsScoped, IsScopedUsingClassTag, IsFixed); Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); C.getTypeDeclType(Enum, PrevDecl); return Enum; } EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) { EnumDecl *Enum = new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(), nullptr, nullptr, false, false, false); Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules); return Enum; } SourceRange EnumDecl::getIntegerTypeRange() const { if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo()) return TI->getTypeLoc().getSourceRange(); return SourceRange(); } void EnumDecl::completeDefinition(QualType NewType, QualType NewPromotionType, unsigned NumPositiveBits, unsigned NumNegativeBits) { assert(!isCompleteDefinition() && "Cannot redefine enums!"); if (!IntegerType) IntegerType = NewType.getTypePtr(); PromotionType = NewPromotionType; setNumPositiveBits(NumPositiveBits); setNumNegativeBits(NumNegativeBits); TagDecl::completeDefinition(); } bool EnumDecl::isClosed() const { if (const auto *A = getAttr<EnumExtensibilityAttr>()) return A->getExtensibility() == EnumExtensibilityAttr::Closed; return true; } bool EnumDecl::isClosedFlag() const { return isClosed() && hasAttr<FlagEnumAttr>(); } bool EnumDecl::isClosedNonFlag() const { return isClosed() && !hasAttr<FlagEnumAttr>(); } TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const { if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) return MSI->getTemplateSpecializationKind(); return TSK_Undeclared; } void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK, SourceLocation PointOfInstantiation) { MemberSpecializationInfo *MSI = getMemberSpecializationInfo(); assert(MSI && "Not an instantiated member enumeration?"); MSI->setTemplateSpecializationKind(TSK); if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() && MSI->getPointOfInstantiation().isInvalid()) MSI->setPointOfInstantiation(PointOfInstantiation); } EnumDecl *EnumDecl::getTemplateInstantiationPattern() const { if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { EnumDecl *ED = getInstantiatedFromMemberEnum(); while (auto *NewED = ED->getInstantiatedFromMemberEnum()) ED = NewED; return getDefinitionOrSelf(ED); } } assert(!isTemplateInstantiation(getTemplateSpecializationKind()) && "couldn't find pattern for enum instantiation"); return nullptr; } EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const { if (SpecializationInfo) return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom()); return nullptr; } void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED, TemplateSpecializationKind TSK) { assert(!SpecializationInfo && "Member enum is already a specialization"); SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK); } unsigned EnumDecl::getODRHash() { if (hasODRHash()) return ODRHash; class ODRHash Hash; Hash.AddEnumDecl(this); setHasODRHash(true); ODRHash = Hash.CalculateHash(); return ODRHash; } //===----------------------------------------------------------------------===// // RecordDecl Implementation //===----------------------------------------------------------------------===// RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl *PrevDecl) : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) { assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!"); setHasFlexibleArrayMember(false); setAnonymousStructOrUnion(false); setHasObjectMember(false); setHasVolatileMember(false); setHasLoadedFieldsFromExternalStorage(false); setNonTrivialToPrimitiveDefaultInitialize(false); setNonTrivialToPrimitiveCopy(false); setNonTrivialToPrimitiveDestroy(false); setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false); setHasNonTrivialToPrimitiveDestructCUnion(false); setHasNonTrivialToPrimitiveCopyCUnion(false); setParamDestroyedInCallee(false); setArgPassingRestrictions(APK_CanPassInRegs); } RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, RecordDecl* PrevDecl) { RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl); R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); C.getTypeDeclType(R, PrevDecl); return R; } RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { RecordDecl *R = new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), nullptr, nullptr); R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); return R; } bool RecordDecl::isInjectedClassName() const { return isImplicit() && getDeclName() && getDeclContext()->isRecord() && cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName(); } bool RecordDecl::isLambda() const { if (auto RD = dyn_cast<CXXRecordDecl>(this)) return RD->isLambda(); return false; } bool RecordDecl::isCapturedRecord() const { return hasAttr<CapturedRecordAttr>(); } void RecordDecl::setCapturedRecord() { addAttr(CapturedRecordAttr::CreateImplicit(getASTContext())); } bool RecordDecl::isOrContainsUnion() const { if (isUnion()) return true; if (const RecordDecl *Def = getDefinition()) { for (const FieldDecl *FD : Def->fields()) { const RecordType *RT = FD->getType()->getAs<RecordType>(); if (RT && RT->getDecl()->isOrContainsUnion()) return true; } } return false; } RecordDecl::field_iterator RecordDecl::field_begin() const { if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage()) LoadFieldsFromExternalStorage(); return field_iterator(decl_iterator(FirstDecl)); } /// completeDefinition - Notes that the definition of this type is now /// complete. void RecordDecl::completeDefinition() { assert(!isCompleteDefinition() && "Cannot redefine record!"); TagDecl::completeDefinition(); } /// isMsStruct - Get whether or not this record uses ms_struct layout. /// This which can be turned on with an attribute, pragma, or the /// -mms-bitfields command-line option. bool RecordDecl::isMsStruct(const ASTContext &C) const { return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1; } void RecordDecl::LoadFieldsFromExternalStorage() const { ExternalASTSource *Source = getASTContext().getExternalSource(); assert(hasExternalLexicalStorage() && Source && "No external storage?"); // Notify that we have a RecordDecl doing some initialization. ExternalASTSource::Deserializing TheFields(Source); SmallVector<Decl*, 64> Decls; setHasLoadedFieldsFromExternalStorage(true); Source->FindExternalLexicalDecls(this, [](Decl::Kind K) { return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K); }, Decls); #ifndef NDEBUG // Check that all decls we got were FieldDecls. for (unsigned i=0, e=Decls.size(); i != e; ++i) assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i])); #endif if (Decls.empty()) return; std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls, /*FieldsAlreadyLoaded=*/false); } bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const { ASTContext &Context = getASTContext(); const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask & (SanitizerKind::Address | SanitizerKind::KernelAddress); if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding) return false; const auto &Blacklist = Context.getSanitizerBlacklist(); const auto *CXXRD = dyn_cast<CXXRecordDecl>(this); // We may be able to relax some of these requirements. int ReasonToReject = -1; if (!CXXRD || CXXRD->isExternCContext()) ReasonToReject = 0; // is not C++. else if (CXXRD->hasAttr<PackedAttr>()) ReasonToReject = 1; // is packed. else if (CXXRD->isUnion()) ReasonToReject = 2; // is a union. else if (CXXRD->isTriviallyCopyable()) ReasonToReject = 3; // is trivially copyable. else if (CXXRD->hasTrivialDestructor()) ReasonToReject = 4; // has trivial destructor. else if (CXXRD->isStandardLayout()) ReasonToReject = 5; // is standard layout. else if (Blacklist.isBlacklistedLocation(EnabledAsanMask, getLocation(), "field-padding")) ReasonToReject = 6; // is in an excluded file. else if (Blacklist.isBlacklistedType(EnabledAsanMask, getQualifiedNameAsString(), "field-padding")) ReasonToReject = 7; // The type is excluded. if (EmitRemark) { if (ReasonToReject >= 0) Context.getDiagnostics().Report( getLocation(), diag::remark_sanitize_address_insert_extra_padding_rejected) << getQualifiedNameAsString() << ReasonToReject; else Context.getDiagnostics().Report( getLocation(), diag::remark_sanitize_address_insert_extra_padding_accepted) << getQualifiedNameAsString(); } return ReasonToReject < 0; } const FieldDecl *RecordDecl::findFirstNamedDataMember() const { for (const auto *I : fields()) { if (I->getIdentifier()) return I; if (const auto *RT = I->getType()->getAs<RecordType>()) if (const FieldDecl *NamedDataMember = RT->getDecl()->findFirstNamedDataMember()) return NamedDataMember; } // We didn't find a named data member. return nullptr; } //===----------------------------------------------------------------------===// // BlockDecl Implementation //===----------------------------------------------------------------------===// BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc) : Decl(Block, DC, CaretLoc), DeclContext(Block) { setIsVariadic(false); setCapturesCXXThis(false); setBlockMissingReturnType(true); setIsConversionFromLambda(false); setDoesNotEscape(false); setCanAvoidCopyToHeap(false); } void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) { assert(!ParamInfo && "Already has param info!"); // Zero params -> null pointer. if (!NewParamInfo.empty()) { NumParams = NewParamInfo.size(); ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()]; std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo); } } void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures, bool CapturesCXXThis) { this->setCapturesCXXThis(CapturesCXXThis); this->NumCaptures = Captures.size(); if (Captures.empty()) { this->Captures = nullptr; return; } this->Captures = Captures.copy(Context).data(); } bool BlockDecl::capturesVariable(const VarDecl *variable) const { for (const auto &I : captures()) // Only auto vars can be captured, so no redeclaration worries. if (I.getVariable() == variable) return true; return false; } SourceRange BlockDecl::getSourceRange() const { return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation()); } //===----------------------------------------------------------------------===// // Other Decl Allocation/Deallocation Method Implementations //===----------------------------------------------------------------------===// void TranslationUnitDecl::anchor() {} TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) { return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C); } void PragmaCommentDecl::anchor() {} PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation CommentLoc, PragmaMSCommentKind CommentKind, StringRef Arg) { PragmaCommentDecl *PCD = new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1)) PragmaCommentDecl(DC, CommentLoc, CommentKind); memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size()); PCD->getTrailingObjects<char>()[Arg.size()] = '\0'; return PCD; } PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C, unsigned ID, unsigned ArgSize) { return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1)) PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown); } void PragmaDetectMismatchDecl::anchor() {} PragmaDetectMismatchDecl * PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC, SourceLocation Loc, StringRef Name, StringRef Value) { size_t ValueStart = Name.size() + 1; PragmaDetectMismatchDecl *PDMD = new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1)) PragmaDetectMismatchDecl(DC, Loc, ValueStart); memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size()); PDMD->getTrailingObjects<char>()[Name.size()] = '\0'; memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(), Value.size()); PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0'; return PDMD; } PragmaDetectMismatchDecl * PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize) { return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1)) PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0); } void ExternCContextDecl::anchor() {} ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C, TranslationUnitDecl *DC) { return new (C, DC) ExternCContextDecl(DC); } void LabelDecl::anchor() {} LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II) { return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL); } LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II, SourceLocation GnuLabelL) { assert(GnuLabelL != IdentL && "Use this only for GNU local labels"); return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL); } LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr, SourceLocation()); } void LabelDecl::setMSAsmLabel(StringRef Name) { char *Buffer = new (getASTContext(), 1) char[Name.size() + 1]; memcpy(Buffer, Name.data(), Name.size()); Buffer[Name.size()] = '\0'; MSAsmName = Buffer; } void ValueDecl::anchor() {} bool ValueDecl::isWeak() const { for (const auto *I : attrs()) if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I)) return true; return isWeakImported(); } void ImplicitParamDecl::anchor() {} ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id, QualType Type, ImplicitParamKind ParamKind) { return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind); } ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type, ImplicitParamKind ParamKind) { return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind); } ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other); } FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified, bool hasWrittenPrototype, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause) { FunctionDecl *New = new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, isInlineSpecified, ConstexprKind, TrailingRequiresClause); New->setHasWrittenPrototype(hasWrittenPrototype); return New; } FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, SC_None, false, CSK_unspecified, nullptr); } BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { return new (C, DC) BlockDecl(DC, L); } BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) BlockDecl(nullptr, SourceLocation()); } CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams) : Decl(Captured, DC, SourceLocation()), DeclContext(Captured), NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {} CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC, unsigned NumParams) { return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) CapturedDecl(DC, NumParams); } CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumParams) { return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams)) CapturedDecl(nullptr, NumParams); } Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); } void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); } bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); } void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); } EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD, SourceLocation L, IdentifierInfo *Id, QualType T, Expr *E, const llvm::APSInt &V) { return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V); } EnumConstantDecl * EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr, QualType(), nullptr, llvm::APSInt()); } void IndirectFieldDecl::anchor() {} IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, MutableArrayRef<NamedDecl *> CH) : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()), ChainingSize(CH.size()) { // In C++, indirect field declarations conflict with tag declarations in the // same scope, so add them to IDNS_Tag so that tag redeclaration finds them. if (C.getLangOpts().CPlusPlus) IdentifierNamespace |= IDNS_Tag; } IndirectFieldDecl * IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L, IdentifierInfo *Id, QualType T, llvm::MutableArrayRef<NamedDecl *> CH) { return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH); } IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(), DeclarationName(), QualType(), None); } SourceRange EnumConstantDecl::getSourceRange() const { SourceLocation End = getLocation(); if (Init) End = Init->getEndLoc(); return SourceRange(getLocation(), End); } void TypeDecl::anchor() {} TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo) { return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo); } void TypedefNameDecl::anchor() {} TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const { if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) { auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl(); auto *ThisTypedef = this; if (AnyRedecl && OwningTypedef) { OwningTypedef = OwningTypedef->getCanonicalDecl(); ThisTypedef = ThisTypedef->getCanonicalDecl(); } if (OwningTypedef == ThisTypedef) return TT->getDecl(); } return nullptr; } bool TypedefNameDecl::isTransparentTagSlow() const { auto determineIsTransparent = [&]() { if (auto *TT = getUnderlyingType()->getAs<TagType>()) { if (auto *TD = TT->getDecl()) { if (TD->getName() != getName()) return false; SourceLocation TTLoc = getLocation(); SourceLocation TDLoc = TD->getLocation(); if (!TTLoc.isMacroID() || !TDLoc.isMacroID()) return false; SourceManager &SM = getASTContext().getSourceManager(); return SM.getSpellingLoc(TTLoc) == SM.getSpellingLoc(TDLoc); } } return false; }; bool isTransparent = determineIsTransparent(); MaybeModedTInfo.setInt((isTransparent << 1) | 1); return isTransparent; } TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(), nullptr, nullptr); } TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, TypeSourceInfo *TInfo) { return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo); } TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(), SourceLocation(), nullptr, nullptr); } SourceRange TypedefDecl::getSourceRange() const { SourceLocation RangeEnd = getLocation(); if (TypeSourceInfo *TInfo = getTypeSourceInfo()) { if (typeIsPostfix(TInfo->getType())) RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); } return SourceRange(getBeginLoc(), RangeEnd); } SourceRange TypeAliasDecl::getSourceRange() const { SourceLocation RangeEnd = getBeginLoc(); if (TypeSourceInfo *TInfo = getTypeSourceInfo()) RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd(); return SourceRange(getBeginLoc(), RangeEnd); } void FileScopeAsmDecl::anchor() {} FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC, StringLiteral *Str, SourceLocation AsmLoc, SourceLocation RParenLoc) { return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc); } FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(), SourceLocation()); } void EmptyDecl::anchor() {} EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) { return new (C, DC) EmptyDecl(DC, L); } EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) EmptyDecl(nullptr, SourceLocation()); } //===----------------------------------------------------------------------===// // ImportDecl Implementation //===----------------------------------------------------------------------===// /// Retrieve the number of module identifiers needed to name the given /// module. static unsigned getNumModuleIdentifiers(Module *Mod) { unsigned Result = 1; while (Mod->Parent) { Mod = Mod->Parent; ++Result; } return Result; } ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef<SourceLocation> IdentifierLocs) : Decl(Import, DC, StartLoc), ImportedModule(Imported), NextLocalImportAndComplete(nullptr, true) { assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size()); auto *StoredLocs = getTrailingObjects<SourceLocation>(); std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(), StoredLocs); } ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, Module *Imported, SourceLocation EndLoc) : Decl(Import, DC, StartLoc), ImportedModule(Imported), NextLocalImportAndComplete(nullptr, false) { *getTrailingObjects<SourceLocation>() = EndLoc; } ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, ArrayRef<SourceLocation> IdentifierLocs) { return new (C, DC, additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size())) ImportDecl(DC, StartLoc, Imported, IdentifierLocs); } ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, Module *Imported, SourceLocation EndLoc) { ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1)) ImportDecl(DC, StartLoc, Imported, EndLoc); Import->setImplicit(); return Import; } ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumLocations) { return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations)) ImportDecl(EmptyShell()); } ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const { if (!isImportComplete()) return None; const auto *StoredLocs = getTrailingObjects<SourceLocation>(); return llvm::makeArrayRef(StoredLocs, getNumModuleIdentifiers(getImportedModule())); } SourceRange ImportDecl::getSourceRange() const { if (!isImportComplete()) return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>()); return SourceRange(getLocation(), getIdentifierLocs().back()); } //===----------------------------------------------------------------------===// // ExportDecl Implementation //===----------------------------------------------------------------------===// void ExportDecl::anchor() {} ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation ExportLoc) { return new (C, DC) ExportDecl(DC, ExportLoc); } ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) ExportDecl(nullptr, SourceLocation()); }