// Copyright 2014 The Kyua Authors. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "engine/scheduler.hpp" extern "C" { #include } #include #include #include #include #include #include "engine/config.hpp" #include "engine/exceptions.hpp" #include "engine/execenv/execenv.hpp" #include "engine/requirements.hpp" #include "model/context.hpp" #include "model/metadata.hpp" #include "model/test_case.hpp" #include "model/test_program.hpp" #include "model/test_result.hpp" #include "utils/config/tree.ipp" #include "utils/datetime.hpp" #include "utils/defs.hpp" #include "utils/env.hpp" #include "utils/format/macros.hpp" #include "utils/fs/directory.hpp" #include "utils/fs/exceptions.hpp" #include "utils/fs/operations.hpp" #include "utils/fs/path.hpp" #include "utils/logging/macros.hpp" #include "utils/noncopyable.hpp" #include "utils/optional.ipp" #include "utils/passwd.hpp" #include "utils/process/executor.ipp" #include "utils/process/status.hpp" #include "utils/sanity.hpp" #include "utils/stacktrace.hpp" #include "utils/stream.hpp" #include "utils/text/operations.ipp" namespace config = utils::config; namespace datetime = utils::datetime; namespace execenv = engine::execenv; namespace executor = utils::process::executor; namespace fs = utils::fs; namespace logging = utils::logging; namespace passwd = utils::passwd; namespace process = utils::process; namespace scheduler = engine::scheduler; namespace text = utils::text; using utils::none; using utils::optional; /// Timeout for the test case cleanup operation. /// /// TODO(jmmv): This is here only for testing purposes. Maybe we should expose /// this setting as part of the user_config. datetime::delta scheduler::cleanup_timeout(60, 0); /// Timeout for the test case execenv cleanup operation. datetime::delta scheduler::execenv_cleanup_timeout(60, 0); /// Timeout for the test case listing operation. /// /// TODO(jmmv): This is here only for testing purposes. Maybe we should expose /// this setting as part of the user_config. datetime::delta scheduler::list_timeout(300, 0); namespace { /// Magic exit status to indicate that the test case was probably skipped. /// /// The test case was only skipped if and only if we return this exit code and /// we find the skipped_cookie file on disk. static const int exit_skipped = 84; /// Text file containing the skip reason for the test case. /// /// This will only be present within unique_work_directory if the test case /// exited with the exit_skipped code. However, there is no guarantee that the /// file is there (say if the test really decided to exit with code exit_skipped /// on its own). static const char* skipped_cookie = "skipped.txt"; /// Mapping of interface names to interface definitions. typedef std::map< std::string, std::shared_ptr< scheduler::interface > > interfaces_map; /// Mapping of interface names to interface definitions. /// /// Use register_interface() to add an entry to this global table. static interfaces_map interfaces; /// Scans the contents of a directory and appends the file listing to a file. /// /// \param dir_path The directory to scan. /// \param output_file The file to which to append the listing. /// /// \throw engine::error If there are problems listing the files. static void append_files_listing(const fs::path& dir_path, const fs::path& output_file) { std::ofstream output(output_file.c_str(), std::ios::app); if (!output) throw engine::error(F("Failed to open output file %s for append") % output_file); try { std::set < std::string > names; const fs::directory dir(dir_path); for (fs::directory::const_iterator iter = dir.begin(); iter != dir.end(); ++iter) { if (iter->name != "." && iter->name != "..") names.insert(iter->name); } if (!names.empty()) { output << "Files left in work directory after failure: " << text::join(names, ", ") << '\n'; } } catch (const fs::error& e) { throw engine::error(F("Cannot append files listing to %s: %s") % output_file % e.what()); } } /// Maintenance data held while a test is being executed. /// /// This data structure exists from the moment when a test is executed via /// scheduler::spawn_test() or scheduler::impl::spawn_cleanup() to when it is /// cleaned up with result_handle::cleanup(). /// /// This is a base data type intended to be extended for the test and cleanup /// cases so that each contains only the relevant data. struct exec_data : utils::noncopyable { /// Test program data for this test case. const model::test_program_ptr test_program; /// Name of the test case. const std::string test_case_name; /// Constructor. /// /// \param test_program_ Test program data for this test case. /// \param test_case_name_ Name of the test case. exec_data(const model::test_program_ptr test_program_, const std::string& test_case_name_) : test_program(test_program_), test_case_name(test_case_name_) { } /// Destructor. virtual ~exec_data(void) { } }; /// Maintenance data held while a test is being executed. struct test_exec_data : public exec_data { /// Test program-specific execution interface. const std::shared_ptr< scheduler::interface > interface; /// User configuration passed to the execution of the test. We need this /// here to recover it later when chaining the execution of a cleanup /// routine (if any). const config::tree user_config; /// Whether this test case still needs to have its cleanup routine executed. /// /// This is set externally when the cleanup routine is actually invoked to /// denote that no further attempts shall be made at cleaning this up. bool needs_cleanup; /// Whether this test case still needs to have its execenv cleanup executed. /// /// This is set externally when the cleanup routine is actually invoked to /// denote that no further attempts shall be made at cleaning this up. bool needs_execenv_cleanup; /// Original PID of the test case subprocess. /// /// This is used for the cleanup upon termination by a signal, to reap the /// leftovers and form missing exit_handle. pid_t pid; /// The exit_handle for this test once it has completed. /// /// This is set externally when the test case has finished, as we need this /// information to invoke the followup cleanup routine in the right context, /// as indicated by needs_cleanup. optional< executor::exit_handle > exit_handle; /// Constructor. /// /// \param test_program_ Test program data for this test case. /// \param test_case_name_ Name of the test case. /// \param interface_ Test program-specific execution interface. /// \param user_config_ User configuration passed to the test. test_exec_data(const model::test_program_ptr test_program_, const std::string& test_case_name_, const std::shared_ptr< scheduler::interface > interface_, const config::tree& user_config_, const pid_t pid_) : exec_data(test_program_, test_case_name_), interface(interface_), user_config(user_config_), pid(pid_) { const model::test_case& test_case = test_program->find(test_case_name); needs_cleanup = test_case.get_metadata().has_cleanup(); needs_execenv_cleanup = test_case.get_metadata().has_execenv(); } }; /// Maintenance data held while a test cleanup routine is being executed. /// /// Instances of this object are related to a previous test_exec_data, as /// cleanup routines can only exist once the test has been run. struct cleanup_exec_data : public exec_data { /// The exit handle of the test. This is necessary so that we can return /// the correct exit_handle to the user of the scheduler. executor::exit_handle body_exit_handle; /// The final result of the test's body. This is necessary to compute the /// right return value for a test with a cleanup routine: the body result is /// respected if it is a "bad" result; else the result of the cleanup /// routine is used if it has failed. model::test_result body_result; /// Constructor. /// /// \param test_program_ Test program data for this test case. /// \param test_case_name_ Name of the test case. /// \param body_exit_handle_ If not none, exit handle of the body /// corresponding to the cleanup routine represented by this exec_data. /// \param body_result_ If not none, result of the body corresponding to the /// cleanup routine represented by this exec_data. cleanup_exec_data(const model::test_program_ptr test_program_, const std::string& test_case_name_, const executor::exit_handle& body_exit_handle_, const model::test_result& body_result_) : exec_data(test_program_, test_case_name_), body_exit_handle(body_exit_handle_), body_result(body_result_) { } }; /// Maintenance data held while a test execenv cleanup is being executed. /// /// Instances of this object are related to a previous test_exec_data, as /// cleanup routines can only exist once the test has been run. struct execenv_exec_data : public exec_data { /// The exit handle of the test. This is necessary so that we can return /// the correct exit_handle to the user of the scheduler. executor::exit_handle body_exit_handle; /// The final result of the test's body. This is necessary to compute the /// right return value for a test with a cleanup routine: the body result is /// respected if it is a "bad" result; else the result of the cleanup /// routine is used if it has failed. model::test_result body_result; /// Constructor. /// /// \param test_program_ Test program data for this test case. /// \param test_case_name_ Name of the test case. /// \param body_exit_handle_ If not none, exit handle of the body /// corresponding to the cleanup routine represented by this exec_data. /// \param body_result_ If not none, result of the body corresponding to the /// cleanup routine represented by this exec_data. execenv_exec_data(const model::test_program_ptr test_program_, const std::string& test_case_name_, const executor::exit_handle& body_exit_handle_, const model::test_result& body_result_) : exec_data(test_program_, test_case_name_), body_exit_handle(body_exit_handle_), body_result(body_result_) { } }; /// Shared pointer to exec_data. /// /// We require this because we want exec_data to not be copyable, and thus we /// cannot just store it in the map without move constructors. typedef std::shared_ptr< exec_data > exec_data_ptr; /// Mapping of active PIDs to their maintenance data. typedef std::map< int, exec_data_ptr > exec_data_map; /// Enforces a test program to hold an absolute path. /// /// TODO(jmmv): This function (which is a pretty ugly hack) exists because we /// want the interface hooks to receive a test_program as their argument. /// However, those hooks run after the test program has been isolated, which /// means that the current directory has changed since when the test_program /// objects were created. This causes the absolute_path() method of /// test_program to return bogus values if the internal representation of their /// path is relative. We should fix somehow: maybe making the fs module grab /// its "current_path" view at program startup time; or maybe by grabbing the /// current path at test_program creation time; or maybe something else. /// /// \param program The test program to modify. /// /// \return A new test program whose internal paths are absolute. static model::test_program force_absolute_paths(const model::test_program program) { const std::string& relative = program.relative_path().str(); const std::string absolute = program.absolute_path().str(); const std::string root = absolute.substr( 0, absolute.length() - relative.length()); return model::test_program( program.interface_name(), program.relative_path(), fs::path(root), program.test_suite_name(), program.get_metadata(), program.test_cases()); } /// Functor to list the test cases of a test program. class list_test_cases { /// Interface of the test program to execute. std::shared_ptr< scheduler::interface > _interface; /// Test program to execute. const model::test_program _test_program; /// User-provided configuration variables. const config::tree& _user_config; public: /// Constructor. /// /// \param interface Interface of the test program to execute. /// \param test_program Test program to execute. /// \param user_config User-provided configuration variables. list_test_cases( const std::shared_ptr< scheduler::interface > interface, const model::test_program* test_program, const config::tree& user_config) : _interface(interface), _test_program(force_absolute_paths(*test_program)), _user_config(user_config) { } /// Body of the subprocess. void operator()(const fs::path& /* control_directory */) { const config::properties_map vars = scheduler::generate_config( _user_config, _test_program.test_suite_name()); _interface->exec_list(_test_program, vars); } }; /// Functor to execute a test program in a child process. class run_test_program { /// Interface of the test program to execute. std::shared_ptr< scheduler::interface > _interface; /// Test program to execute. const model::test_program _test_program; /// Name of the test case to execute. const std::string& _test_case_name; /// User-provided configuration variables. const config::tree& _user_config; /// Verifies if the test case needs to be skipped or not. /// /// We could very well run this on the scheduler parent process before /// issuing the fork. However, doing this here in the child process is /// better for two reasons: first, it allows us to continue using the simple /// spawn/wait abstraction of the scheduler; and, second, we parallelize the /// requirements checks among tests. /// /// \post If the test's preconditions are not met, the caller process is /// terminated with a special exit code and a "skipped cookie" is written to /// the disk with the reason for the failure. /// /// \param skipped_cookie_path File to create with the skip reason details /// if this test is skipped. void do_requirements_check(const fs::path& skipped_cookie_path) { const model::test_case& test_case = _test_program.find( _test_case_name); const std::string skip_reason = engine::check_reqs( test_case.get_metadata(), _user_config, _test_program.test_suite_name(), fs::current_path()); if (skip_reason.empty()) return; std::ofstream output(skipped_cookie_path.c_str()); if (!output) { std::perror((F("Failed to open %s for write") % skipped_cookie_path).str().c_str()); std::abort(); } output << skip_reason; output.close(); // Abruptly terminate the process. We don't want to run any destructors // inherited from the parent process by mistake, which could, for // example, delete our own control files! ::_exit(exit_skipped); } public: /// Constructor. /// /// \param interface Interface of the test program to execute. /// \param test_program Test program to execute. /// \param test_case_name Name of the test case to execute. /// \param user_config User-provided configuration variables. run_test_program( const std::shared_ptr< scheduler::interface > interface, const model::test_program_ptr test_program, const std::string& test_case_name, const config::tree& user_config) : _interface(interface), _test_program(force_absolute_paths(*test_program)), _test_case_name(test_case_name), _user_config(user_config) { } /// Body of the subprocess. /// /// \param control_directory The testcase directory where files will be /// read from. void operator()(const fs::path& control_directory) { const model::test_case& test_case = _test_program.find( _test_case_name); if (test_case.fake_result()) ::_exit(EXIT_SUCCESS); do_requirements_check(control_directory / skipped_cookie); const config::properties_map vars = scheduler::generate_config( _user_config, _test_program.test_suite_name()); _interface->exec_test(_test_program, _test_case_name, vars, control_directory); } }; /// Functor to execute a test program in a child process. class run_test_cleanup { /// Interface of the test program to execute. std::shared_ptr< scheduler::interface > _interface; /// Test program to execute. const model::test_program _test_program; /// Name of the test case to execute. const std::string& _test_case_name; /// User-provided configuration variables. const config::tree& _user_config; public: /// Constructor. /// /// \param interface Interface of the test program to execute. /// \param test_program Test program to execute. /// \param test_case_name Name of the test case to execute. /// \param user_config User-provided configuration variables. run_test_cleanup( const std::shared_ptr< scheduler::interface > interface, const model::test_program_ptr test_program, const std::string& test_case_name, const config::tree& user_config) : _interface(interface), _test_program(force_absolute_paths(*test_program)), _test_case_name(test_case_name), _user_config(user_config) { } /// Body of the subprocess. /// /// \param control_directory The testcase directory where cleanup will be /// run from. void operator()(const fs::path& control_directory) { const config::properties_map vars = scheduler::generate_config( _user_config, _test_program.test_suite_name()); _interface->exec_cleanup(_test_program, _test_case_name, vars, control_directory); } }; /// Functor to execute a test execenv cleanup in a child process. class run_execenv_cleanup { /// Test program to execute. const model::test_program _test_program; /// Name of the test case to execute. const std::string& _test_case_name; public: /// Constructor. /// /// \param test_program Test program to execute. /// \param test_case_name Name of the test case to execute. run_execenv_cleanup( const model::test_program_ptr test_program, const std::string& test_case_name) : _test_program(force_absolute_paths(*test_program)), _test_case_name(test_case_name) { } /// Body of the subprocess. /// /// \param control_directory The testcase directory where cleanup will be /// run from. void operator()(const fs::path& /* control_directory */) { auto e = execenv::get(_test_program, _test_case_name); e->cleanup(); } }; /// Obtains the right scheduler interface for a given test program. /// /// \param name The name of the interface of the test program. /// /// \return An scheduler interface. std::shared_ptr< scheduler::interface > find_interface(const std::string& name) { const interfaces_map::const_iterator iter = interfaces.find(name); PRE(interfaces.find(name) != interfaces.end()); return (*iter).second; } } // anonymous namespace void scheduler::interface::exec_cleanup( const model::test_program& /* test_program */, const std::string& /* test_case_name */, const config::properties_map& /* vars */, const utils::fs::path& /* control_directory */) const { // Most test interfaces do not support standalone cleanup routines so // provide a default implementation that does nothing. UNREACHABLE_MSG("exec_cleanup not implemented for an interface that " "supports standalone cleanup routines"); } /// Internal implementation of a lazy_test_program. struct engine::scheduler::lazy_test_program::impl : utils::noncopyable { /// Whether the test cases list has been yet loaded or not. bool _loaded; /// User configuration to pass to the test program list operation. config::tree _user_config; /// Scheduler context to use to load test cases. scheduler::scheduler_handle& _scheduler_handle; /// Constructor. /// /// \param user_config_ User configuration to pass to the test program list /// operation. /// \param scheduler_handle_ Scheduler context to use when loading test /// cases. impl(const config::tree& user_config_, scheduler::scheduler_handle& scheduler_handle_) : _loaded(false), _user_config(user_config_), _scheduler_handle(scheduler_handle_) { } }; /// Constructs a new test program. /// /// \param interface_name_ Name of the test program interface. /// \param binary_ The name of the test program binary relative to root_. /// \param root_ The root of the test suite containing the test program. /// \param test_suite_name_ The name of the test suite this program belongs to. /// \param md_ Metadata of the test program. /// \param user_config_ User configuration to pass to the scheduler. /// \param scheduler_handle_ Scheduler context to use to load test cases. scheduler::lazy_test_program::lazy_test_program( const std::string& interface_name_, const fs::path& binary_, const fs::path& root_, const std::string& test_suite_name_, const model::metadata& md_, const config::tree& user_config_, scheduler::scheduler_handle& scheduler_handle_) : test_program(interface_name_, binary_, root_, test_suite_name_, md_, model::test_cases_map()), _pimpl(new impl(user_config_, scheduler_handle_)) { } /// Gets or loads the list of test cases from the test program. /// /// \return The list of test cases provided by the test program. const model::test_cases_map& scheduler::lazy_test_program::test_cases(void) const { _pimpl->_scheduler_handle.check_interrupt(); if (!_pimpl->_loaded) { const model::test_cases_map tcs = _pimpl->_scheduler_handle.list_tests( this, _pimpl->_user_config); // Due to the restrictions on when set_test_cases() may be called (as a // way to lazily initialize the test cases list before it is ever // returned), this cast is valid. const_cast< scheduler::lazy_test_program* >(this)->set_test_cases(tcs); _pimpl->_loaded = true; _pimpl->_scheduler_handle.check_interrupt(); } INV(_pimpl->_loaded); return test_program::test_cases(); } /// Internal implementation for the result_handle class. struct engine::scheduler::result_handle::bimpl : utils::noncopyable { /// Generic executor exit handle for this result handle. executor::exit_handle generic; /// Mutable pointer to the corresponding scheduler state. /// /// This object references a member of the scheduler_handle that yielded /// this result_handle instance. We need this direct access to clean up /// after ourselves when the result is destroyed. exec_data_map& all_exec_data; /// Constructor. /// /// \param generic_ Generic executor exit handle for this result handle. /// \param [in,out] all_exec_data_ Global object keeping track of all active /// executions for an scheduler. This is a pointer to a member of the /// scheduler_handle object. bimpl(const executor::exit_handle generic_, exec_data_map& all_exec_data_) : generic(generic_), all_exec_data(all_exec_data_) { } /// Destructor. ~bimpl(void) { LD(F("Removing %s from all_exec_data") % generic.original_pid()); all_exec_data.erase(generic.original_pid()); } }; /// Constructor. /// /// \param pbimpl Constructed internal implementation. scheduler::result_handle::result_handle(std::shared_ptr< bimpl > pbimpl) : _pbimpl(pbimpl) { } /// Destructor. scheduler::result_handle::~result_handle(void) { } /// Cleans up the test case results. /// /// This function should be called explicitly as it provides the means to /// control any exceptions raised during cleanup. Do not rely on the destructor /// to clean things up. /// /// \throw engine::error If the cleanup fails, especially due to the inability /// to remove the work directory. void scheduler::result_handle::cleanup(void) { _pbimpl->generic.cleanup(); } /// Returns the original PID corresponding to this result. /// /// \return An exec_handle. int scheduler::result_handle::original_pid(void) const { return _pbimpl->generic.original_pid(); } /// Returns the timestamp of when spawn_test was called. /// /// \return A timestamp. const datetime::timestamp& scheduler::result_handle::start_time(void) const { return _pbimpl->generic.start_time(); } /// Returns the timestamp of when wait_any_test returned this object. /// /// \return A timestamp. const datetime::timestamp& scheduler::result_handle::end_time(void) const { return _pbimpl->generic.end_time(); } /// Returns the path to the test-specific work directory. /// /// This is guaranteed to be clear of files created by the scheduler. /// /// \return The path to a directory that exists until cleanup() is called. fs::path scheduler::result_handle::work_directory(void) const { return _pbimpl->generic.work_directory(); } /// Returns the path to the test's stdout file. /// /// \return The path to a file that exists until cleanup() is called. const fs::path& scheduler::result_handle::stdout_file(void) const { return _pbimpl->generic.stdout_file(); } /// Returns the path to the test's stderr file. /// /// \return The path to a file that exists until cleanup() is called. const fs::path& scheduler::result_handle::stderr_file(void) const { return _pbimpl->generic.stderr_file(); } /// Internal implementation for the test_result_handle class. struct engine::scheduler::test_result_handle::impl : utils::noncopyable { /// Test program data for this test case. model::test_program_ptr test_program; /// Name of the test case. std::string test_case_name; /// The actual result of the test execution. const model::test_result test_result; /// Constructor. /// /// \param test_program_ Test program data for this test case. /// \param test_case_name_ Name of the test case. /// \param test_result_ The actual result of the test execution. impl(const model::test_program_ptr test_program_, const std::string& test_case_name_, const model::test_result& test_result_) : test_program(test_program_), test_case_name(test_case_name_), test_result(test_result_) { } }; /// Constructor. /// /// \param pbimpl Constructed internal implementation for the base object. /// \param pimpl Constructed internal implementation. scheduler::test_result_handle::test_result_handle( std::shared_ptr< bimpl > pbimpl, std::shared_ptr< impl > pimpl) : result_handle(pbimpl), _pimpl(pimpl) { } /// Destructor. scheduler::test_result_handle::~test_result_handle(void) { } /// Returns the test program that yielded this result. /// /// \return A test program. const model::test_program_ptr scheduler::test_result_handle::test_program(void) const { return _pimpl->test_program; } /// Returns the name of the test case that yielded this result. /// /// \return A test case name const std::string& scheduler::test_result_handle::test_case_name(void) const { return _pimpl->test_case_name; } /// Returns the actual result of the test execution. /// /// \return A test result. const model::test_result& scheduler::test_result_handle::test_result(void) const { return _pimpl->test_result; } /// Internal implementation for the scheduler_handle. struct engine::scheduler::scheduler_handle::impl : utils::noncopyable { /// Generic executor instance encapsulated by this one. executor::executor_handle generic; /// Mapping of exec handles to the data required at run time. exec_data_map all_exec_data; /// Collection of test_exec_data objects. typedef std::vector< const test_exec_data* > test_exec_data_vector; /// Constructor. impl(void) : generic(executor::setup()) { } /// Destructor. /// /// This runs any pending cleanup routines, which should only happen if the /// scheduler is abruptly terminated (aka if a signal is received). ~impl(void) { const test_exec_data_vector tests_data = tests_needing_cleanup(); for (test_exec_data_vector::const_iterator iter = tests_data.begin(); iter != tests_data.end(); ++iter) { const test_exec_data* test_data = *iter; try { sync_cleanup(test_data); } catch (const std::runtime_error& e) { LW(F("Failed to run cleanup routine for %s:%s on abrupt " "termination") % test_data->test_program->relative_path() % test_data->test_case_name); } } const test_exec_data_vector td = tests_needing_execenv_cleanup(); for (test_exec_data_vector::const_iterator iter = td.begin(); iter != td.end(); ++iter) { const test_exec_data* test_data = *iter; try { sync_execenv_cleanup(test_data); } catch (const std::runtime_error& e) { LW(F("Failed to run execenv cleanup routine for %s:%s on abrupt " "termination") % test_data->test_program->relative_path() % test_data->test_case_name); } } } /// Finds any pending exec_datas that correspond to tests needing cleanup. /// /// \return The collection of test_exec_data objects that have their /// needs_cleanup property set to true. test_exec_data_vector tests_needing_cleanup(void) { test_exec_data_vector tests_data; for (exec_data_map::const_iterator iter = all_exec_data.begin(); iter != all_exec_data.end(); ++iter) { const exec_data_ptr data = (*iter).second; try { test_exec_data* test_data = &dynamic_cast< test_exec_data& >( *data.get()); if (test_data->needs_cleanup) { tests_data.push_back(test_data); test_data->needs_cleanup = false; if (!test_data->exit_handle) test_data->exit_handle = generic.reap(test_data->pid); } } catch (const std::bad_cast& e) { // Do nothing for cleanup_exec_data objects. } } return tests_data; } /// Finds any pending exec_datas that correspond to tests needing execenv /// cleanup. /// /// \return The collection of test_exec_data objects that have their /// specific execenv property set. test_exec_data_vector tests_needing_execenv_cleanup(void) { test_exec_data_vector tests_data; for (exec_data_map::const_iterator iter = all_exec_data.begin(); iter != all_exec_data.end(); ++iter) { const exec_data_ptr data = (*iter).second; try { test_exec_data* test_data = &dynamic_cast< test_exec_data& >( *data.get()); if (test_data->needs_execenv_cleanup) { tests_data.push_back(test_data); test_data->needs_execenv_cleanup = false; if (!test_data->exit_handle) test_data->exit_handle = generic.reap(test_data->pid); } } catch (const std::bad_cast& e) { // Do nothing for other objects. } } return tests_data; } /// Cleans up a single test case synchronously. /// /// \param test_data The data of the previously executed test case to be /// cleaned up. void sync_cleanup(const test_exec_data* test_data) { // The message in this result should never be seen by the user, but use // something reasonable just in case it leaks and we need to pinpoint // the call site. model::test_result result(model::test_result_broken, "Test case died abruptly"); const executor::exec_handle cleanup_handle = spawn_cleanup( test_data->test_program, test_data->test_case_name, test_data->user_config, test_data->exit_handle.get(), result); generic.wait(cleanup_handle); } /// Forks and executes a test case cleanup routine asynchronously. /// /// \param test_program The container test program. /// \param test_case_name The name of the test case to run. /// \param user_config User-provided configuration variables. /// \param body_handle The exit handle of the test case's corresponding /// body. The cleanup will be executed in the same context. /// \param body_result The result of the test case's corresponding body. /// /// \return A handle for the background operation. Used to match the result /// of the execution returned by wait_any() with this invocation. executor::exec_handle spawn_cleanup(const model::test_program_ptr test_program, const std::string& test_case_name, const config::tree& user_config, const executor::exit_handle& body_handle, const model::test_result& body_result) { generic.check_interrupt(); const std::shared_ptr< scheduler::interface > interface = find_interface(test_program->interface_name()); LI(F("Spawning %s:%s (cleanup)") % test_program->absolute_path() % test_case_name); const executor::exec_handle handle = generic.spawn_followup( run_test_cleanup(interface, test_program, test_case_name, user_config), body_handle, cleanup_timeout); const exec_data_ptr data(new cleanup_exec_data( test_program, test_case_name, body_handle, body_result)); LD(F("Inserting %s into all_exec_data (cleanup)") % handle.pid()); INV_MSG(all_exec_data.find(handle.pid()) == all_exec_data.end(), F("PID %s already in all_exec_data; not properly cleaned " "up or reused too fast") % handle.pid());; all_exec_data.insert(exec_data_map::value_type(handle.pid(), data)); return handle; } /// Cleans up a single test case execenv synchronously. /// /// \param test_data The data of the previously executed test case to be /// cleaned up. void sync_execenv_cleanup(const test_exec_data* test_data) { // The message in this result should never be seen by the user, but use // something reasonable just in case it leaks and we need to pinpoint // the call site. model::test_result result(model::test_result_broken, "Test case died abruptly"); const executor::exec_handle cleanup_handle = spawn_execenv_cleanup( test_data->test_program, test_data->test_case_name, test_data->exit_handle.get(), result); generic.wait(cleanup_handle); } /// Forks and executes a test case execenv cleanup asynchronously. /// /// \param test_program The container test program. /// \param test_case_name The name of the test case to run. /// \param body_handle The exit handle of the test case's corresponding /// body. The cleanup will be executed in the same context. /// \param body_result The result of the test case's corresponding body. /// /// \return A handle for the background operation. Used to match the result /// of the execution returned by wait_any() with this invocation. executor::exec_handle spawn_execenv_cleanup(const model::test_program_ptr test_program, const std::string& test_case_name, const executor::exit_handle& body_handle, const model::test_result& body_result) { generic.check_interrupt(); LI(F("Spawning %s:%s (execenv cleanup)") % test_program->absolute_path() % test_case_name); const executor::exec_handle handle = generic.spawn_followup( run_execenv_cleanup(test_program, test_case_name), body_handle, execenv_cleanup_timeout); const exec_data_ptr data(new execenv_exec_data( test_program, test_case_name, body_handle, body_result)); LD(F("Inserting %s into all_exec_data (execenv cleanup)") % handle.pid()); INV_MSG(all_exec_data.find(handle.pid()) == all_exec_data.end(), F("PID %s already in all_exec_data; not properly cleaned " "up or reused too fast") % handle.pid());; all_exec_data.insert(exec_data_map::value_type(handle.pid(), data)); return handle; } }; /// Constructor. scheduler::scheduler_handle::scheduler_handle(void) : _pimpl(new impl()) { } /// Destructor. scheduler::scheduler_handle::~scheduler_handle(void) { } /// Queries the path to the root of the work directory for all tests. /// /// \return A path. const fs::path& scheduler::scheduler_handle::root_work_directory(void) const { return _pimpl->generic.root_work_directory(); } /// Cleans up the scheduler state. /// /// This function should be called explicitly as it provides the means to /// control any exceptions raised during cleanup. Do not rely on the destructor /// to clean things up. /// /// \throw engine::error If there are problems cleaning up the scheduler. void scheduler::scheduler_handle::cleanup(void) { _pimpl->generic.cleanup(); } /// Checks if the given interface name is valid. /// /// \param name The name of the interface to validate. /// /// \throw engine::error If the given interface is not supported. void scheduler::ensure_valid_interface(const std::string& name) { if (interfaces.find(name) == interfaces.end()) throw engine::error(F("Unsupported test interface '%s'") % name); } /// Registers a new interface. /// /// \param name The name of the interface. Must not have yet been registered. /// \param spec Interface specification. void scheduler::register_interface(const std::string& name, const std::shared_ptr< interface > spec) { PRE(interfaces.find(name) == interfaces.end()); interfaces.insert(interfaces_map::value_type(name, spec)); } /// Returns the names of all registered interfaces. /// /// \return A collection of interface names. std::set< std::string > scheduler::registered_interface_names(void) { std::set< std::string > names; for (interfaces_map::const_iterator iter = interfaces.begin(); iter != interfaces.end(); ++iter) { names.insert((*iter).first); } return names; } /// Initializes the scheduler. /// /// \pre This function can only be called if there is no other scheduler_handle /// object alive. /// /// \return A handle to the operations of the scheduler. scheduler::scheduler_handle scheduler::setup(void) { return scheduler_handle(); } /// Retrieves the list of test cases from a test program. /// /// This operation is currently synchronous. /// /// This operation should never throw. Any errors during the processing of the /// test case list are subsumed into a single test case in the return value that /// represents the failed retrieval. /// /// \param test_program The test program from which to obtain the list of test /// cases. /// \param user_config User-provided configuration variables. /// /// \return The list of test cases. model::test_cases_map scheduler::scheduler_handle::list_tests( const model::test_program* test_program, const config::tree& user_config) { _pimpl->generic.check_interrupt(); const std::shared_ptr< scheduler::interface > interface = find_interface( test_program->interface_name()); try { const executor::exec_handle exec_handle = _pimpl->generic.spawn( list_test_cases(interface, test_program, user_config), list_timeout, none); executor::exit_handle exit_handle = _pimpl->generic.wait(exec_handle); const model::test_cases_map test_cases = interface->parse_list( exit_handle.status(), exit_handle.stdout_file(), exit_handle.stderr_file()); exit_handle.cleanup(); if (test_cases.empty()) throw std::runtime_error("Empty test cases list"); return test_cases; } catch (const std::runtime_error& e) { // TODO(jmmv): This is a very ugly workaround for the fact that we // cannot report failures at the test-program level. LW(F("Failed to load test cases list: %s") % e.what()); model::test_cases_map fake_test_cases; fake_test_cases.insert(model::test_cases_map::value_type( "__test_cases_list__", model::test_case( "__test_cases_list__", "Represents the correct processing of the test cases list", model::test_result(model::test_result_broken, e.what())))); return fake_test_cases; } } /// Forks and executes a test case asynchronously. /// /// Note that the caller needn't know if the test has a cleanup routine or not. /// If there indeed is a cleanup routine, we trigger it at wait_any() time. /// /// \param test_program The container test program. /// \param test_case_name The name of the test case to run. /// \param user_config User-provided configuration variables. /// /// \return A handle for the background operation. Used to match the result of /// the execution returned by wait_any() with this invocation. scheduler::exec_handle scheduler::scheduler_handle::spawn_test( const model::test_program_ptr test_program, const std::string& test_case_name, const config::tree& user_config) { _pimpl->generic.check_interrupt(); const std::shared_ptr< scheduler::interface > interface = find_interface( test_program->interface_name()); LI(F("Spawning %s:%s") % test_program->absolute_path() % test_case_name); const model::test_case& test_case = test_program->find(test_case_name); optional< passwd::user > unprivileged_user; if (user_config.is_set("unprivileged_user") && test_case.get_metadata().required_user() == "unprivileged") { unprivileged_user = user_config.lookup< engine::user_node >( "unprivileged_user"); } const executor::exec_handle handle = _pimpl->generic.spawn( run_test_program(interface, test_program, test_case_name, user_config), test_case.get_metadata().timeout(), unprivileged_user); const exec_data_ptr data(new test_exec_data( test_program, test_case_name, interface, user_config, handle.pid())); LD(F("Inserting %s into all_exec_data") % handle.pid()); INV_MSG( _pimpl->all_exec_data.find(handle.pid()) == _pimpl->all_exec_data.end(), F("PID %s already in all_exec_data; not cleaned up or reused too fast") % handle.pid());; _pimpl->all_exec_data.insert(exec_data_map::value_type(handle.pid(), data)); return handle.pid(); } /// Waits for completion of any forked test case. /// /// Note that if the terminated test case has a cleanup routine, this function /// is the one in charge of spawning the cleanup routine asynchronously. /// /// \return The result of the execution of a subprocess. This is a dynamically /// allocated object because the scheduler can spawn subprocesses of various /// types and, at wait time, we don't know upfront what we are going to get. scheduler::result_handle_ptr scheduler::scheduler_handle::wait_any(void) { _pimpl->generic.check_interrupt(); executor::exit_handle handle = _pimpl->generic.wait_any(); const exec_data_map::iterator iter = _pimpl->all_exec_data.find( handle.original_pid()); exec_data_ptr data = (*iter).second; utils::dump_stacktrace_if_available(data->test_program->absolute_path(), _pimpl->generic, handle); optional< model::test_result > result; // test itself try { test_exec_data* test_data = &dynamic_cast< test_exec_data& >( *data.get()); LD(F("Got %s from all_exec_data") % handle.original_pid()); test_data->exit_handle = handle; const model::test_case& test_case = test_data->test_program->find( test_data->test_case_name); result = test_case.fake_result(); if (!result && handle.status() && handle.status().get().exited() && handle.status().get().exitstatus() == exit_skipped) { // If the test's process terminated with our magic "exit_skipped" // status, there are two cases to handle. The first is the case // where the "skipped cookie" exists, in which case we never got to // actually invoke the test program; if that's the case, handle it // here. The second case is where the test case actually decided to // exit with the "exit_skipped" status; in that case, just fall back // to the regular status handling. const fs::path skipped_cookie_path = handle.control_directory() / skipped_cookie; std::ifstream input(skipped_cookie_path.c_str()); if (input) { result = model::test_result(model::test_result_skipped, utils::read_stream(input)); input.close(); // If we determined that the test needs to be skipped, we do not // want to run the cleanup routine because doing so could result // in errors. However, we still want to run the cleanup routine // if the test's body reports a skip (because actions could have // already been taken). test_data->needs_cleanup = false; test_data->needs_execenv_cleanup = false; } } if (!result) { result = test_data->interface->compute_result( handle.status(), handle.control_directory(), handle.stdout_file(), handle.stderr_file()); } INV(result); if (!result.get().good()) { append_files_listing(handle.work_directory(), handle.stderr_file()); } if (test_data->needs_cleanup) { INV(test_case.get_metadata().has_cleanup()); // The test body has completed and we have processed it. If there // is a cleanup routine, trigger it now and wait for any other test // completion. The caller never knows about cleanup routines. _pimpl->spawn_cleanup(test_data->test_program, test_data->test_case_name, test_data->user_config, handle, result.get()); // TODO(jmmv): Chaining this call is ugly. We'd be better off by // looping over terminated processes until we got a result suitable // for user consumption. For the time being this is good enough and // not a problem because the call chain won't get big: the majority // of test cases do not have cleanup routines. return wait_any(); } if (test_data->needs_execenv_cleanup) { INV(test_case.get_metadata().has_execenv()); _pimpl->spawn_execenv_cleanup(test_data->test_program, test_data->test_case_name, handle, result.get()); test_data->needs_execenv_cleanup = false; return wait_any(); } } catch (const std::bad_cast& e) { // ok, let's check for another type } // test cleanup try { const cleanup_exec_data* cleanup_data = &dynamic_cast< const cleanup_exec_data& >(*data.get()); LD(F("Got %s from all_exec_data (cleanup)") % handle.original_pid()); // Handle the completion of cleanup subprocesses internally: the caller // is not aware that these exist so, when we return, we must return the // data for the original test that triggered this routine. For example, // because the caller wants to see the exact same exec_handle that was // returned by spawn_test. const model::test_result& body_result = cleanup_data->body_result; if (body_result.good()) { if (!handle.status()) { result = model::test_result(model::test_result_broken, "Test case cleanup timed out"); } else { if (!handle.status().get().exited() || handle.status().get().exitstatus() != EXIT_SUCCESS) { result = model::test_result( model::test_result_broken, "Test case cleanup did not terminate successfully"); } else { result = body_result; } } } else { result = body_result; } // Untrack the cleanup process. This must be done explicitly because we // do not create a result_handle object for the cleanup, and that is the // one in charge of doing so in the regular (non-cleanup) case. LD(F("Removing %s from all_exec_data (cleanup) in favor of %s") % handle.original_pid() % cleanup_data->body_exit_handle.original_pid()); _pimpl->all_exec_data.erase(handle.original_pid()); handle = cleanup_data->body_exit_handle; const exec_data_map::iterator it = _pimpl->all_exec_data.find( handle.original_pid()); if (it != _pimpl->all_exec_data.end()) { exec_data_ptr d = (*it).second; test_exec_data* test_data = &dynamic_cast< test_exec_data& >( *d.get()); const model::test_case& test_case = cleanup_data->test_program->find(cleanup_data->test_case_name); test_data->needs_cleanup = false; if (test_data->needs_execenv_cleanup) { INV(test_case.get_metadata().has_execenv()); _pimpl->spawn_execenv_cleanup(cleanup_data->test_program, cleanup_data->test_case_name, handle, result.get()); test_data->needs_execenv_cleanup = false; return wait_any(); } } } catch (const std::bad_cast& e) { // ok, let's check for another type } // execenv cleanup try { const execenv_exec_data* execenv_data = &dynamic_cast< const execenv_exec_data& >(*data.get()); LD(F("Got %s from all_exec_data (execenv cleanup)") % handle.original_pid()); const model::test_result& body_result = execenv_data->body_result; if (body_result.good()) { if (!handle.status()) { result = model::test_result(model::test_result_broken, "Test case execenv cleanup timed out"); } else { if (!handle.status().get().exited() || handle.status().get().exitstatus() != EXIT_SUCCESS) { result = model::test_result( model::test_result_broken, "Test case execenv cleanup did not terminate successfully"); // ? } else { result = body_result; } } } else { result = body_result; } LD(F("Removing %s from all_exec_data (execenv cleanup) in favor of %s") % handle.original_pid() % execenv_data->body_exit_handle.original_pid()); _pimpl->all_exec_data.erase(handle.original_pid()); handle = execenv_data->body_exit_handle; } catch (const std::bad_cast& e) { // ok, it was one of the types above } INV(result); std::shared_ptr< result_handle::bimpl > result_handle_bimpl( new result_handle::bimpl(handle, _pimpl->all_exec_data)); std::shared_ptr< test_result_handle::impl > test_result_handle_impl( new test_result_handle::impl( data->test_program, data->test_case_name, result.get())); return result_handle_ptr(new test_result_handle(result_handle_bimpl, test_result_handle_impl)); } /// Forks and executes a test case synchronously for debugging. /// /// \pre No other processes should be in execution by the scheduler. /// /// \param test_program The container test program. /// \param test_case_name The name of the test case to run. /// \param user_config User-provided configuration variables. /// \param stdout_target File to which to write the stdout of the test case. /// \param stderr_target File to which to write the stderr of the test case. /// /// \return The result of the execution of the test. scheduler::result_handle_ptr scheduler::scheduler_handle::debug_test( const model::test_program_ptr test_program, const std::string& test_case_name, const config::tree& user_config, const fs::path& stdout_target, const fs::path& stderr_target) { const exec_handle exec_handle = spawn_test( test_program, test_case_name, user_config); result_handle_ptr result_handle = wait_any(); // TODO(jmmv): We need to do this while the subprocess is alive. This is // important for debugging purposes, as we should see the contents of stdout // or stderr as they come in. // // Unfortunately, we cannot do so. We cannot just read and block from a // file, waiting for further output to appear... as this only works on pipes // or sockets. We need a better interface for this whole thing. { std::auto_ptr< std::ostream > output = utils::open_ostream( stdout_target); *output << utils::read_file(result_handle->stdout_file()); } { std::auto_ptr< std::ostream > output = utils::open_ostream( stderr_target); *output << utils::read_file(result_handle->stderr_file()); } INV(result_handle->original_pid() == exec_handle); return result_handle; } /// Checks if an interrupt has fired. /// /// Calls to this function should be sprinkled in strategic places through the /// code protected by an interrupts_handler object. /// /// This is just a wrapper over signals::check_interrupt() to avoid leaking this /// dependency to the caller. /// /// \throw signals::interrupted_error If there has been an interrupt. void scheduler::scheduler_handle::check_interrupt(void) const { _pimpl->generic.check_interrupt(); } /// Queries the current execution context. /// /// \return The queried context. model::context scheduler::current_context(void) { return model::context(fs::current_path(), utils::getallenv()); } /// Generates the set of configuration variables for a test program. /// /// \param user_config The configuration variables provided by the user. /// \param test_suite The name of the test suite. /// /// \return The mapping of configuration variables for the test program. config::properties_map scheduler::generate_config(const config::tree& user_config, const std::string& test_suite) { config::properties_map props; try { props = user_config.all_properties(F("test_suites.%s") % test_suite, true); } catch (const config::unknown_key_error& unused_error) { // Ignore: not all test suites have entries in the configuration. } // TODO(jmmv): This is a hack that exists for the ATF interface only, so it // should be moved there. if (user_config.is_set("unprivileged_user")) { const passwd::user& user = user_config.lookup< engine::user_node >("unprivileged_user"); props["unprivileged-user"] = user.name; } return props; }