#define JEMALLOC_C_ #include "jemalloc/internal/jemalloc_internal.h" /******************************************************************************/ /* Data. */ malloc_tsd_data(, arenas, arena_t *, NULL) malloc_tsd_data(, thread_allocated, thread_allocated_t, THREAD_ALLOCATED_INITIALIZER) /* Work around : */ const char *__malloc_options_1_0 = NULL; __sym_compat(_malloc_options, __malloc_options_1_0, FBSD_1.0); /* Runtime configuration options. */ const char *je_malloc_conf; bool opt_abort = #ifdef JEMALLOC_DEBUG true #else false #endif ; bool opt_junk = #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL)) true #else false #endif ; size_t opt_quarantine = ZU(0); bool opt_redzone = false; bool opt_utrace = false; bool opt_valgrind = false; bool opt_xmalloc = false; bool opt_zero = false; size_t opt_narenas = 0; unsigned ncpus; malloc_mutex_t arenas_lock; arena_t **arenas; unsigned narenas_total; unsigned narenas_auto; /* Set to true once the allocator has been initialized. */ static bool malloc_initialized = false; #ifdef JEMALLOC_THREADED_INIT /* Used to let the initializing thread recursively allocate. */ # define NO_INITIALIZER ((unsigned long)0) # define INITIALIZER pthread_self() # define IS_INITIALIZER (malloc_initializer == pthread_self()) static pthread_t malloc_initializer = NO_INITIALIZER; #else # define NO_INITIALIZER false # define INITIALIZER true # define IS_INITIALIZER malloc_initializer static bool malloc_initializer = NO_INITIALIZER; #endif /* Used to avoid initialization races. */ #ifdef _WIN32 static malloc_mutex_t init_lock; JEMALLOC_ATTR(constructor) static void WINAPI _init_init_lock(void) { malloc_mutex_init(&init_lock); } #ifdef _MSC_VER # pragma section(".CRT$XCU", read) JEMALLOC_SECTION(".CRT$XCU") JEMALLOC_ATTR(used) static const void (WINAPI *init_init_lock)(void) = _init_init_lock; #endif #else static malloc_mutex_t init_lock = MALLOC_MUTEX_INITIALIZER; #endif typedef struct { void *p; /* Input pointer (as in realloc(p, s)). */ size_t s; /* Request size. */ void *r; /* Result pointer. */ } malloc_utrace_t; #ifdef JEMALLOC_UTRACE # define UTRACE(a, b, c) do { \ if (opt_utrace) { \ int utrace_serrno = errno; \ malloc_utrace_t ut; \ ut.p = (a); \ ut.s = (b); \ ut.r = (c); \ utrace(&ut, sizeof(ut)); \ errno = utrace_serrno; \ } \ } while (0) #else # define UTRACE(a, b, c) #endif /******************************************************************************/ /* * Function prototypes for static functions that are referenced prior to * definition. */ static bool malloc_init_hard(void); /******************************************************************************/ /* * Begin miscellaneous support functions. */ /* Create a new arena and insert it into the arenas array at index ind. */ arena_t * arenas_extend(unsigned ind) { arena_t *ret; ret = (arena_t *)base_alloc(sizeof(arena_t)); if (ret != NULL && arena_new(ret, ind) == false) { arenas[ind] = ret; return (ret); } /* Only reached if there is an OOM error. */ /* * OOM here is quite inconvenient to propagate, since dealing with it * would require a check for failure in the fast path. Instead, punt * by using arenas[0]. In practice, this is an extremely unlikely * failure. */ malloc_write(": Error initializing arena\n"); if (opt_abort) abort(); return (arenas[0]); } /* Slow path, called only by choose_arena(). */ arena_t * choose_arena_hard(void) { arena_t *ret; if (narenas_auto > 1) { unsigned i, choose, first_null; choose = 0; first_null = narenas_auto; malloc_mutex_lock(&arenas_lock); assert(arenas[0] != NULL); for (i = 1; i < narenas_auto; i++) { if (arenas[i] != NULL) { /* * Choose the first arena that has the lowest * number of threads assigned to it. */ if (arenas[i]->nthreads < arenas[choose]->nthreads) choose = i; } else if (first_null == narenas_auto) { /* * Record the index of the first uninitialized * arena, in case all extant arenas are in use. * * NB: It is possible for there to be * discontinuities in terms of initialized * versus uninitialized arenas, due to the * "thread.arena" mallctl. */ first_null = i; } } if (arenas[choose]->nthreads == 0 || first_null == narenas_auto) { /* * Use an unloaded arena, or the least loaded arena if * all arenas are already initialized. */ ret = arenas[choose]; } else { /* Initialize a new arena. */ ret = arenas_extend(first_null); } ret->nthreads++; malloc_mutex_unlock(&arenas_lock); } else { ret = arenas[0]; malloc_mutex_lock(&arenas_lock); ret->nthreads++; malloc_mutex_unlock(&arenas_lock); } arenas_tsd_set(&ret); return (ret); } static void stats_print_atexit(void) { if (config_tcache && config_stats) { unsigned narenas, i; /* * Merge stats from extant threads. This is racy, since * individual threads do not lock when recording tcache stats * events. As a consequence, the final stats may be slightly * out of date by the time they are reported, if other threads * continue to allocate. */ for (i = 0, narenas = narenas_total_get(); i < narenas; i++) { arena_t *arena = arenas[i]; if (arena != NULL) { tcache_t *tcache; /* * tcache_stats_merge() locks bins, so if any * code is introduced that acquires both arena * and bin locks in the opposite order, * deadlocks may result. */ malloc_mutex_lock(&arena->lock); ql_foreach(tcache, &arena->tcache_ql, link) { tcache_stats_merge(tcache, arena); } malloc_mutex_unlock(&arena->lock); } } } je_malloc_stats_print(NULL, NULL, NULL); } /* * End miscellaneous support functions. */ /******************************************************************************/ /* * Begin initialization functions. */ static unsigned malloc_ncpus(void) { long result; #ifdef _WIN32 SYSTEM_INFO si; GetSystemInfo(&si); result = si.dwNumberOfProcessors; #else result = sysconf(_SC_NPROCESSORS_ONLN); #endif return ((result == -1) ? 1 : (unsigned)result); } void arenas_cleanup(void *arg) { arena_t *arena = *(arena_t **)arg; malloc_mutex_lock(&arenas_lock); arena->nthreads--; malloc_mutex_unlock(&arenas_lock); } JEMALLOC_ALWAYS_INLINE_C void malloc_thread_init(void) { /* * TSD initialization can't be safely done as a side effect of * deallocation, because it is possible for a thread to do nothing but * deallocate its TLS data via free(), in which case writing to TLS * would cause write-after-free memory corruption. The quarantine * facility *only* gets used as a side effect of deallocation, so make * a best effort attempt at initializing its TSD by hooking all * allocation events. */ if (config_fill && opt_quarantine) quarantine_alloc_hook(); } JEMALLOC_ALWAYS_INLINE_C bool malloc_init(void) { if (malloc_initialized == false && malloc_init_hard()) return (true); malloc_thread_init(); return (false); } static bool malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p, char const **v_p, size_t *vlen_p) { bool accept; const char *opts = *opts_p; *k_p = opts; for (accept = false; accept == false;) { switch (*opts) { case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': case 'H': case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R': case 'S': case 'T': case 'U': case 'V': case 'W': case 'X': case 'Y': case 'Z': case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': case 'o': case 'p': case 'q': case 'r': case 's': case 't': case 'u': case 'v': case 'w': case 'x': case 'y': case 'z': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '_': opts++; break; case ':': opts++; *klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p; *v_p = opts; accept = true; break; case '\0': if (opts != *opts_p) { malloc_write(": Conf string ends " "with key\n"); } return (true); default: malloc_write(": Malformed conf string\n"); return (true); } } for (accept = false; accept == false;) { switch (*opts) { case ',': opts++; /* * Look ahead one character here, because the next time * this function is called, it will assume that end of * input has been cleanly reached if no input remains, * but we have optimistically already consumed the * comma if one exists. */ if (*opts == '\0') { malloc_write(": Conf string ends " "with comma\n"); } *vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p; accept = true; break; case '\0': *vlen_p = (uintptr_t)opts - (uintptr_t)*v_p; accept = true; break; default: opts++; break; } } *opts_p = opts; return (false); } static void malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v, size_t vlen) { malloc_printf(": %s: %.*s:%.*s\n", msg, (int)klen, k, (int)vlen, v); } static void malloc_conf_init(void) { unsigned i; char buf[PATH_MAX + 1]; const char *opts, *k, *v; size_t klen, vlen; /* * Automatically configure valgrind before processing options. The * valgrind option remains in jemalloc 3.x for compatibility reasons. */ if (config_valgrind) { opt_valgrind = (RUNNING_ON_VALGRIND != 0) ? true : false; if (config_fill && opt_valgrind) { opt_junk = false; assert(opt_zero == false); opt_quarantine = JEMALLOC_VALGRIND_QUARANTINE_DEFAULT; opt_redzone = true; } if (config_tcache && opt_valgrind) opt_tcache = false; } for (i = 0; i < 3; i++) { /* Get runtime configuration. */ switch (i) { case 0: if (je_malloc_conf != NULL) { /* * Use options that were compiled into the * program. */ opts = je_malloc_conf; } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; case 1: { int linklen = 0; #ifndef _WIN32 int saved_errno = errno; const char *linkname = # ifdef JEMALLOC_PREFIX "/etc/"JEMALLOC_PREFIX"malloc.conf" # else "/etc/malloc.conf" # endif ; /* * Try to use the contents of the "/etc/malloc.conf" * symbolic link's name. */ linklen = readlink(linkname, buf, sizeof(buf) - 1); if (linklen == -1) { /* No configuration specified. */ linklen = 0; /* restore errno */ set_errno(saved_errno); } #endif buf[linklen] = '\0'; opts = buf; break; } case 2: { const char *envname = #ifdef JEMALLOC_PREFIX JEMALLOC_CPREFIX"MALLOC_CONF" #else "MALLOC_CONF" #endif ; if (issetugid() == 0 && (opts = getenv(envname)) != NULL) { /* * Do nothing; opts is already initialized to * the value of the MALLOC_CONF environment * variable. */ } else { /* No configuration specified. */ buf[0] = '\0'; opts = buf; } break; } default: not_reached(); buf[0] = '\0'; opts = buf; } while (*opts != '\0' && malloc_conf_next(&opts, &k, &klen, &v, &vlen) == false) { #define CONF_HANDLE_BOOL(o, n) \ if (sizeof(n)-1 == klen && strncmp(n, k, \ klen) == 0) { \ if (strncmp("true", v, vlen) == 0 && \ vlen == sizeof("true")-1) \ o = true; \ else if (strncmp("false", v, vlen) == \ 0 && vlen == sizeof("false")-1) \ o = false; \ else { \ malloc_conf_error( \ "Invalid conf value", \ k, klen, v, vlen); \ } \ continue; \ } #define CONF_HANDLE_SIZE_T(o, n, min, max, clip) \ if (sizeof(n)-1 == klen && strncmp(n, k, \ klen) == 0) { \ uintmax_t um; \ char *end; \ \ set_errno(0); \ um = malloc_strtoumax(v, &end, 0); \ if (get_errno() != 0 || (uintptr_t)end -\ (uintptr_t)v != vlen) { \ malloc_conf_error( \ "Invalid conf value", \ k, klen, v, vlen); \ } else if (clip) { \ if (min != 0 && um < min) \ o = min; \ else if (um > max) \ o = max; \ else \ o = um; \ } else { \ if ((min != 0 && um < min) || \ um > max) { \ malloc_conf_error( \ "Out-of-range " \ "conf value", \ k, klen, v, vlen); \ } else \ o = um; \ } \ continue; \ } #define CONF_HANDLE_SSIZE_T(o, n, min, max) \ if (sizeof(n)-1 == klen && strncmp(n, k, \ klen) == 0) { \ long l; \ char *end; \ \ set_errno(0); \ l = strtol(v, &end, 0); \ if (get_errno() != 0 || (uintptr_t)end -\ (uintptr_t)v != vlen) { \ malloc_conf_error( \ "Invalid conf value", \ k, klen, v, vlen); \ } else if (l < (ssize_t)min || l > \ (ssize_t)max) { \ malloc_conf_error( \ "Out-of-range conf value", \ k, klen, v, vlen); \ } else \ o = l; \ continue; \ } #define CONF_HANDLE_CHAR_P(o, n, d) \ if (sizeof(n)-1 == klen && strncmp(n, k, \ klen) == 0) { \ size_t cpylen = (vlen <= \ sizeof(o)-1) ? vlen : \ sizeof(o)-1; \ strncpy(o, v, cpylen); \ o[cpylen] = '\0'; \ continue; \ } CONF_HANDLE_BOOL(opt_abort, "abort") /* * Chunks always require at least one header page, plus * one data page in the absence of redzones, or three * pages in the presence of redzones. In order to * simplify options processing, fix the limit based on * config_fill. */ CONF_HANDLE_SIZE_T(opt_lg_chunk, "lg_chunk", LG_PAGE + (config_fill ? 2 : 1), (sizeof(size_t) << 3) - 1, true) if (strncmp("dss", k, klen) == 0) { int i; bool match = false; for (i = 0; i < dss_prec_limit; i++) { if (strncmp(dss_prec_names[i], v, vlen) == 0) { if (chunk_dss_prec_set(i)) { malloc_conf_error( "Error setting dss", k, klen, v, vlen); } else { opt_dss = dss_prec_names[i]; match = true; break; } } } if (match == false) { malloc_conf_error("Invalid conf value", k, klen, v, vlen); } continue; } CONF_HANDLE_SIZE_T(opt_narenas, "narenas", 1, SIZE_T_MAX, false) CONF_HANDLE_SSIZE_T(opt_lg_dirty_mult, "lg_dirty_mult", -1, (sizeof(size_t) << 3) - 1) CONF_HANDLE_BOOL(opt_stats_print, "stats_print") if (config_fill) { CONF_HANDLE_BOOL(opt_junk, "junk") CONF_HANDLE_SIZE_T(opt_quarantine, "quarantine", 0, SIZE_T_MAX, false) CONF_HANDLE_BOOL(opt_redzone, "redzone") CONF_HANDLE_BOOL(opt_zero, "zero") } if (config_utrace) { CONF_HANDLE_BOOL(opt_utrace, "utrace") } if (config_valgrind) { CONF_HANDLE_BOOL(opt_valgrind, "valgrind") } if (config_xmalloc) { CONF_HANDLE_BOOL(opt_xmalloc, "xmalloc") } if (config_tcache) { CONF_HANDLE_BOOL(opt_tcache, "tcache") CONF_HANDLE_SSIZE_T(opt_lg_tcache_max, "lg_tcache_max", -1, (sizeof(size_t) << 3) - 1) } if (config_prof) { CONF_HANDLE_BOOL(opt_prof, "prof") CONF_HANDLE_CHAR_P(opt_prof_prefix, "prof_prefix", "jeprof") CONF_HANDLE_BOOL(opt_prof_active, "prof_active") CONF_HANDLE_SSIZE_T(opt_lg_prof_sample, "lg_prof_sample", 0, (sizeof(uint64_t) << 3) - 1) CONF_HANDLE_BOOL(opt_prof_accum, "prof_accum") CONF_HANDLE_SSIZE_T(opt_lg_prof_interval, "lg_prof_interval", -1, (sizeof(uint64_t) << 3) - 1) CONF_HANDLE_BOOL(opt_prof_gdump, "prof_gdump") CONF_HANDLE_BOOL(opt_prof_final, "prof_final") CONF_HANDLE_BOOL(opt_prof_leak, "prof_leak") } malloc_conf_error("Invalid conf pair", k, klen, v, vlen); #undef CONF_HANDLE_BOOL #undef CONF_HANDLE_SIZE_T #undef CONF_HANDLE_SSIZE_T #undef CONF_HANDLE_CHAR_P } } } static bool malloc_init_hard(void) { arena_t *init_arenas[1]; malloc_mutex_lock(&init_lock); if (malloc_initialized || IS_INITIALIZER) { /* * Another thread initialized the allocator before this one * acquired init_lock, or this thread is the initializing * thread, and it is recursively allocating. */ malloc_mutex_unlock(&init_lock); return (false); } #ifdef JEMALLOC_THREADED_INIT if (malloc_initializer != NO_INITIALIZER && IS_INITIALIZER == false) { /* Busy-wait until the initializing thread completes. */ do { malloc_mutex_unlock(&init_lock); CPU_SPINWAIT; malloc_mutex_lock(&init_lock); } while (malloc_initialized == false); malloc_mutex_unlock(&init_lock); return (false); } #endif malloc_initializer = INITIALIZER; malloc_tsd_boot(); if (config_prof) prof_boot0(); malloc_conf_init(); if (opt_stats_print) { /* Print statistics at exit. */ if (atexit(stats_print_atexit) != 0) { malloc_write(": Error in atexit()\n"); if (opt_abort) abort(); } } if (base_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (chunk_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (ctl_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (config_prof) prof_boot1(); arena_boot(); if (config_tcache && tcache_boot0()) { malloc_mutex_unlock(&init_lock); return (true); } if (huge_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (malloc_mutex_init(&arenas_lock)) { malloc_mutex_unlock(&init_lock); return (true); } /* * Create enough scaffolding to allow recursive allocation in * malloc_ncpus(). */ narenas_total = narenas_auto = 1; arenas = init_arenas; memset(arenas, 0, sizeof(arena_t *) * narenas_auto); /* * Initialize one arena here. The rest are lazily created in * choose_arena_hard(). */ arenas_extend(0); if (arenas[0] == NULL) { malloc_mutex_unlock(&init_lock); return (true); } /* Initialize allocation counters before any allocations can occur. */ if (config_stats && thread_allocated_tsd_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (arenas_tsd_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (config_tcache && tcache_boot1()) { malloc_mutex_unlock(&init_lock); return (true); } if (config_fill && quarantine_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (config_prof && prof_boot2()) { malloc_mutex_unlock(&init_lock); return (true); } malloc_mutex_unlock(&init_lock); /**********************************************************************/ /* Recursive allocation may follow. */ ncpus = malloc_ncpus(); #if (!defined(JEMALLOC_MUTEX_INIT_CB) && !defined(JEMALLOC_ZONE) \ && !defined(_WIN32)) /* LinuxThreads's pthread_atfork() allocates. */ if (pthread_atfork(jemalloc_prefork, jemalloc_postfork_parent, jemalloc_postfork_child) != 0) { malloc_write(": Error in pthread_atfork()\n"); if (opt_abort) abort(); } #endif /* Done recursively allocating. */ /**********************************************************************/ malloc_mutex_lock(&init_lock); if (mutex_boot()) { malloc_mutex_unlock(&init_lock); return (true); } if (opt_narenas == 0) { /* * For SMP systems, create more than one arena per CPU by * default. */ if (ncpus > 1) opt_narenas = ncpus << 2; else opt_narenas = 1; } narenas_auto = opt_narenas; /* * Make sure that the arenas array can be allocated. In practice, this * limit is enough to allow the allocator to function, but the ctl * machinery will fail to allocate memory at far lower limits. */ if (narenas_auto > chunksize / sizeof(arena_t *)) { narenas_auto = chunksize / sizeof(arena_t *); malloc_printf(": Reducing narenas to limit (%d)\n", narenas_auto); } narenas_total = narenas_auto; /* Allocate and initialize arenas. */ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas_total); if (arenas == NULL) { malloc_mutex_unlock(&init_lock); return (true); } /* * Zero the array. In practice, this should always be pre-zeroed, * since it was just mmap()ed, but let's be sure. */ memset(arenas, 0, sizeof(arena_t *) * narenas_total); /* Copy the pointer to the one arena that was already initialized. */ arenas[0] = init_arenas[0]; malloc_initialized = true; malloc_mutex_unlock(&init_lock); return (false); } /* * End initialization functions. */ /******************************************************************************/ /* * Begin malloc(3)-compatible functions. */ static void * imalloc_prof_sample(size_t usize, prof_thr_cnt_t *cnt) { void *p; if (cnt == NULL) return (NULL); if (prof_promote && usize <= SMALL_MAXCLASS) { p = imalloc(SMALL_MAXCLASS+1); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else p = imalloc(usize); return (p); } JEMALLOC_ALWAYS_INLINE_C void * imalloc_prof(size_t usize, prof_thr_cnt_t *cnt) { void *p; if ((uintptr_t)cnt != (uintptr_t)1U) p = imalloc_prof_sample(usize, cnt); else p = imalloc(usize); if (p == NULL) return (NULL); prof_malloc(p, usize, cnt); return (p); } /* * MALLOC_BODY() is a macro rather than a function because its contents are in * the fast path, but inlining would cause reliability issues when determining * how many frames to discard from heap profiling backtraces. */ #define MALLOC_BODY(ret, size, usize) do { \ if (malloc_init()) \ ret = NULL; \ else { \ if (config_prof && opt_prof) { \ prof_thr_cnt_t *cnt; \ \ usize = s2u(size); \ /* \ * Call PROF_ALLOC_PREP() here rather than in \ * imalloc_prof() so that imalloc_prof() can be \ * inlined without introducing uncertainty \ * about the number of backtrace frames to \ * ignore. imalloc_prof() is in the fast path \ * when heap profiling is enabled, so inlining \ * is critical to performance. (For \ * consistency all callers of PROF_ALLOC_PREP() \ * are structured similarly, even though e.g. \ * realloc() isn't called enough for inlining \ * to be critical.) \ */ \ PROF_ALLOC_PREP(1, usize, cnt); \ ret = imalloc_prof(usize, cnt); \ } else { \ if (config_stats || (config_valgrind && \ opt_valgrind)) \ usize = s2u(size); \ ret = imalloc(size); \ } \ } \ } while (0) void * je_malloc(size_t size) { void *ret; size_t usize JEMALLOC_CC_SILENCE_INIT(0); if (size == 0) size = 1; MALLOC_BODY(ret, size, usize); if (ret == NULL) { if (config_xmalloc && opt_xmalloc) { malloc_write(": Error in malloc(): " "out of memory\n"); abort(); } set_errno(ENOMEM); } if (config_stats && ret != NULL) { assert(usize == isalloc(ret, config_prof)); thread_allocated_tsd_get()->allocated += usize; } UTRACE(0, size, ret); JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, usize, false); return (ret); } static void * imemalign_prof_sample(size_t alignment, size_t usize, prof_thr_cnt_t *cnt) { void *p; if (cnt == NULL) return (NULL); if (prof_promote && usize <= SMALL_MAXCLASS) { assert(sa2u(SMALL_MAXCLASS+1, alignment) != 0); p = ipalloc(sa2u(SMALL_MAXCLASS+1, alignment), alignment, false); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else p = ipalloc(usize, alignment, false); return (p); } JEMALLOC_ALWAYS_INLINE_C void * imemalign_prof(size_t alignment, size_t usize, prof_thr_cnt_t *cnt) { void *p; if ((uintptr_t)cnt != (uintptr_t)1U) p = imemalign_prof_sample(alignment, usize, cnt); else p = ipalloc(usize, alignment, false); if (p == NULL) return (NULL); prof_malloc(p, usize, cnt); return (p); } JEMALLOC_ATTR(nonnull(1)) #ifdef JEMALLOC_PROF /* * Avoid any uncertainty as to how many backtrace frames to ignore in * PROF_ALLOC_PREP(). */ JEMALLOC_NOINLINE #endif static int imemalign(void **memptr, size_t alignment, size_t size, size_t min_alignment) { int ret; size_t usize; void *result; assert(min_alignment != 0); if (malloc_init()) { result = NULL; goto label_oom; } else { if (size == 0) size = 1; /* Make sure that alignment is a large enough power of 2. */ if (((alignment - 1) & alignment) != 0 || (alignment < min_alignment)) { if (config_xmalloc && opt_xmalloc) { malloc_write(": Error allocating " "aligned memory: invalid alignment\n"); abort(); } result = NULL; ret = EINVAL; goto label_return; } usize = sa2u(size, alignment); if (usize == 0) { result = NULL; goto label_oom; } if (config_prof && opt_prof) { prof_thr_cnt_t *cnt; PROF_ALLOC_PREP(2, usize, cnt); result = imemalign_prof(alignment, usize, cnt); } else result = ipalloc(usize, alignment, false); if (result == NULL) goto label_oom; } *memptr = result; ret = 0; label_return: if (config_stats && result != NULL) { assert(usize == isalloc(result, config_prof)); thread_allocated_tsd_get()->allocated += usize; } UTRACE(0, size, result); return (ret); label_oom: assert(result == NULL); if (config_xmalloc && opt_xmalloc) { malloc_write(": Error allocating aligned memory: " "out of memory\n"); abort(); } ret = ENOMEM; goto label_return; } int je_posix_memalign(void **memptr, size_t alignment, size_t size) { int ret = imemalign(memptr, alignment, size, sizeof(void *)); JEMALLOC_VALGRIND_MALLOC(ret == 0, *memptr, isalloc(*memptr, config_prof), false); return (ret); } void * je_aligned_alloc(size_t alignment, size_t size) { void *ret; int err; if ((err = imemalign(&ret, alignment, size, 1)) != 0) { ret = NULL; set_errno(err); } JEMALLOC_VALGRIND_MALLOC(err == 0, ret, isalloc(ret, config_prof), false); return (ret); } static void * icalloc_prof_sample(size_t usize, prof_thr_cnt_t *cnt) { void *p; if (cnt == NULL) return (NULL); if (prof_promote && usize <= SMALL_MAXCLASS) { p = icalloc(SMALL_MAXCLASS+1); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else p = icalloc(usize); return (p); } JEMALLOC_ALWAYS_INLINE_C void * icalloc_prof(size_t usize, prof_thr_cnt_t *cnt) { void *p; if ((uintptr_t)cnt != (uintptr_t)1U) p = icalloc_prof_sample(usize, cnt); else p = icalloc(usize); if (p == NULL) return (NULL); prof_malloc(p, usize, cnt); return (p); } void * je_calloc(size_t num, size_t size) { void *ret; size_t num_size; size_t usize JEMALLOC_CC_SILENCE_INIT(0); if (malloc_init()) { num_size = 0; ret = NULL; goto label_return; } num_size = num * size; if (num_size == 0) { if (num == 0 || size == 0) num_size = 1; else { ret = NULL; goto label_return; } /* * Try to avoid division here. We know that it isn't possible to * overflow during multiplication if neither operand uses any of the * most significant half of the bits in a size_t. */ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) && (num_size / size != num)) { /* size_t overflow. */ ret = NULL; goto label_return; } if (config_prof && opt_prof) { prof_thr_cnt_t *cnt; usize = s2u(num_size); PROF_ALLOC_PREP(1, usize, cnt); ret = icalloc_prof(usize, cnt); } else { if (config_stats || (config_valgrind && opt_valgrind)) usize = s2u(num_size); ret = icalloc(num_size); } label_return: if (ret == NULL) { if (config_xmalloc && opt_xmalloc) { malloc_write(": Error in calloc(): out of " "memory\n"); abort(); } set_errno(ENOMEM); } if (config_stats && ret != NULL) { assert(usize == isalloc(ret, config_prof)); thread_allocated_tsd_get()->allocated += usize; } UTRACE(0, num_size, ret); JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, usize, true); return (ret); } static void * irealloc_prof_sample(void *oldptr, size_t usize, prof_thr_cnt_t *cnt) { void *p; if (cnt == NULL) return (NULL); if (prof_promote && usize <= SMALL_MAXCLASS) { p = iralloc(oldptr, SMALL_MAXCLASS+1, 0, 0, false); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else p = iralloc(oldptr, usize, 0, 0, false); return (p); } JEMALLOC_ALWAYS_INLINE_C void * irealloc_prof(void *oldptr, size_t old_usize, size_t usize, prof_thr_cnt_t *cnt) { void *p; prof_ctx_t *old_ctx; old_ctx = prof_ctx_get(oldptr); if ((uintptr_t)cnt != (uintptr_t)1U) p = irealloc_prof_sample(oldptr, usize, cnt); else p = iralloc(oldptr, usize, 0, 0, false); if (p == NULL) return (NULL); prof_realloc(p, usize, cnt, old_usize, old_ctx); return (p); } JEMALLOC_INLINE_C void ifree(void *ptr) { size_t usize; UNUSED size_t rzsize JEMALLOC_CC_SILENCE_INIT(0); assert(ptr != NULL); assert(malloc_initialized || IS_INITIALIZER); if (config_prof && opt_prof) { usize = isalloc(ptr, config_prof); prof_free(ptr, usize); } else if (config_stats || config_valgrind) usize = isalloc(ptr, config_prof); if (config_stats) thread_allocated_tsd_get()->deallocated += usize; if (config_valgrind && opt_valgrind) rzsize = p2rz(ptr); iqalloc(ptr); JEMALLOC_VALGRIND_FREE(ptr, rzsize); } void * je_realloc(void *ptr, size_t size) { void *ret; size_t usize JEMALLOC_CC_SILENCE_INIT(0); size_t old_usize = 0; UNUSED size_t old_rzsize JEMALLOC_CC_SILENCE_INIT(0); if (size == 0) { if (ptr != NULL) { /* realloc(ptr, 0) is equivalent to free(ptr). */ UTRACE(ptr, 0, 0); ifree(ptr); return (NULL); } size = 1; } if (ptr != NULL) { assert(malloc_initialized || IS_INITIALIZER); malloc_thread_init(); if ((config_prof && opt_prof) || config_stats || (config_valgrind && opt_valgrind)) old_usize = isalloc(ptr, config_prof); if (config_valgrind && opt_valgrind) old_rzsize = config_prof ? p2rz(ptr) : u2rz(old_usize); if (config_prof && opt_prof) { prof_thr_cnt_t *cnt; usize = s2u(size); PROF_ALLOC_PREP(1, usize, cnt); ret = irealloc_prof(ptr, old_usize, usize, cnt); } else { if (config_stats || (config_valgrind && opt_valgrind)) usize = s2u(size); ret = iralloc(ptr, size, 0, 0, false); } } else { /* realloc(NULL, size) is equivalent to malloc(size). */ MALLOC_BODY(ret, size, usize); } if (ret == NULL) { if (config_xmalloc && opt_xmalloc) { malloc_write(": Error in realloc(): " "out of memory\n"); abort(); } set_errno(ENOMEM); } if (config_stats && ret != NULL) { thread_allocated_t *ta; assert(usize == isalloc(ret, config_prof)); ta = thread_allocated_tsd_get(); ta->allocated += usize; ta->deallocated += old_usize; } UTRACE(ptr, size, ret); JEMALLOC_VALGRIND_REALLOC(ret, usize, ptr, old_usize, old_rzsize, false); return (ret); } void je_free(void *ptr) { UTRACE(ptr, 0, 0); if (ptr != NULL) ifree(ptr); } /* * End malloc(3)-compatible functions. */ /******************************************************************************/ /* * Begin non-standard override functions. */ #ifdef JEMALLOC_OVERRIDE_MEMALIGN void * je_memalign(size_t alignment, size_t size) { void *ret JEMALLOC_CC_SILENCE_INIT(NULL); imemalign(&ret, alignment, size, 1); JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, size, false); return (ret); } #endif #ifdef JEMALLOC_OVERRIDE_VALLOC void * je_valloc(size_t size) { void *ret JEMALLOC_CC_SILENCE_INIT(NULL); imemalign(&ret, PAGE, size, 1); JEMALLOC_VALGRIND_MALLOC(ret != NULL, ret, size, false); return (ret); } #endif /* * is_malloc(je_malloc) is some macro magic to detect if jemalloc_defs.h has * #define je_malloc malloc */ #define malloc_is_malloc 1 #define is_malloc_(a) malloc_is_ ## a #define is_malloc(a) is_malloc_(a) #if ((is_malloc(je_malloc) == 1) && defined(__GLIBC__) && !defined(__UCLIBC__)) /* * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible * to inconsistently reference libc's malloc(3)-compatible functions * (https://bugzilla.mozilla.org/show_bug.cgi?id=493541). * * These definitions interpose hooks in glibc. The functions are actually * passed an extra argument for the caller return address, which will be * ignored. */ JEMALLOC_EXPORT void (* __free_hook)(void *ptr) = je_free; JEMALLOC_EXPORT void *(* __malloc_hook)(size_t size) = je_malloc; JEMALLOC_EXPORT void *(* __realloc_hook)(void *ptr, size_t size) = je_realloc; JEMALLOC_EXPORT void *(* __memalign_hook)(size_t alignment, size_t size) = je_memalign; #endif /* * End non-standard override functions. */ /******************************************************************************/ /* * Begin non-standard functions. */ JEMALLOC_ALWAYS_INLINE_C void * imallocx(size_t usize, size_t alignment, bool zero, bool try_tcache, arena_t *arena) { assert(usize == ((alignment == 0) ? s2u(usize) : sa2u(usize, alignment))); if (alignment != 0) return (ipalloct(usize, alignment, zero, try_tcache, arena)); else if (zero) return (icalloct(usize, try_tcache, arena)); else return (imalloct(usize, try_tcache, arena)); } static void * imallocx_prof_sample(size_t usize, size_t alignment, bool zero, bool try_tcache, arena_t *arena, prof_thr_cnt_t *cnt) { void *p; if (cnt == NULL) return (NULL); if (prof_promote && usize <= SMALL_MAXCLASS) { size_t usize_promoted = (alignment == 0) ? s2u(SMALL_MAXCLASS+1) : sa2u(SMALL_MAXCLASS+1, alignment); assert(usize_promoted != 0); p = imallocx(usize_promoted, alignment, zero, try_tcache, arena); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else p = imallocx(usize, alignment, zero, try_tcache, arena); return (p); } JEMALLOC_ALWAYS_INLINE_C void * imallocx_prof(size_t usize, size_t alignment, bool zero, bool try_tcache, arena_t *arena, prof_thr_cnt_t *cnt) { void *p; if ((uintptr_t)cnt != (uintptr_t)1U) { p = imallocx_prof_sample(usize, alignment, zero, try_tcache, arena, cnt); } else p = imallocx(usize, alignment, zero, try_tcache, arena); if (p == NULL) return (NULL); prof_malloc(p, usize, cnt); return (p); } void * je_mallocx(size_t size, int flags) { void *p; size_t usize; size_t alignment = (ZU(1) << (flags & MALLOCX_LG_ALIGN_MASK) & (SIZE_T_MAX-1)); bool zero = flags & MALLOCX_ZERO; unsigned arena_ind = ((unsigned)(flags >> 8)) - 1; arena_t *arena; bool try_tcache; assert(size != 0); if (malloc_init()) goto label_oom; if (arena_ind != UINT_MAX) { arena = arenas[arena_ind]; try_tcache = false; } else { arena = NULL; try_tcache = true; } usize = (alignment == 0) ? s2u(size) : sa2u(size, alignment); assert(usize != 0); if (config_prof && opt_prof) { prof_thr_cnt_t *cnt; PROF_ALLOC_PREP(1, usize, cnt); p = imallocx_prof(usize, alignment, zero, try_tcache, arena, cnt); } else p = imallocx(usize, alignment, zero, try_tcache, arena); if (p == NULL) goto label_oom; if (config_stats) { assert(usize == isalloc(p, config_prof)); thread_allocated_tsd_get()->allocated += usize; } UTRACE(0, size, p); JEMALLOC_VALGRIND_MALLOC(true, p, usize, zero); return (p); label_oom: if (config_xmalloc && opt_xmalloc) { malloc_write(": Error in mallocx(): out of memory\n"); abort(); } UTRACE(0, size, 0); return (NULL); } static void * irallocx_prof_sample(void *oldptr, size_t size, size_t alignment, size_t usize, bool zero, bool try_tcache_alloc, bool try_tcache_dalloc, arena_t *arena, prof_thr_cnt_t *cnt) { void *p; if (cnt == NULL) return (NULL); if (prof_promote && usize <= SMALL_MAXCLASS) { p = iralloct(oldptr, SMALL_MAXCLASS+1, (SMALL_MAXCLASS+1 >= size) ? 0 : size - (SMALL_MAXCLASS+1), alignment, zero, try_tcache_alloc, try_tcache_dalloc, arena); if (p == NULL) return (NULL); arena_prof_promoted(p, usize); } else { p = iralloct(oldptr, size, 0, alignment, zero, try_tcache_alloc, try_tcache_dalloc, arena); } return (p); } JEMALLOC_ALWAYS_INLINE_C void * irallocx_prof(void *oldptr, size_t old_usize, size_t size, size_t alignment, size_t *usize, bool zero, bool try_tcache_alloc, bool try_tcache_dalloc, arena_t *arena, prof_thr_cnt_t *cnt) { void *p; prof_ctx_t *old_ctx; old_ctx = prof_ctx_get(oldptr); if ((uintptr_t)cnt != (uintptr_t)1U) p = irallocx_prof_sample(oldptr, size, alignment, *usize, zero, try_tcache_alloc, try_tcache_dalloc, arena, cnt); else { p = iralloct(oldptr, size, 0, alignment, zero, try_tcache_alloc, try_tcache_dalloc, arena); } if (p == NULL) return (NULL); if (p == oldptr && alignment != 0) { /* * The allocation did not move, so it is possible that the size * class is smaller than would guarantee the requested * alignment, and that the alignment constraint was * serendipitously satisfied. Additionally, old_usize may not * be the same as the current usize because of in-place large * reallocation. Therefore, query the actual value of usize. */ *usize = isalloc(p, config_prof); } prof_realloc(p, *usize, cnt, old_usize, old_ctx); return (p); } void * je_rallocx(void *ptr, size_t size, int flags) { void *p; size_t usize, old_usize; UNUSED size_t old_rzsize JEMALLOC_CC_SILENCE_INIT(0); size_t alignment = (ZU(1) << (flags & MALLOCX_LG_ALIGN_MASK) & (SIZE_T_MAX-1)); bool zero = flags & MALLOCX_ZERO; unsigned arena_ind = ((unsigned)(flags >> 8)) - 1; bool try_tcache_alloc, try_tcache_dalloc; arena_t *arena; assert(ptr != NULL); assert(size != 0); assert(malloc_initialized || IS_INITIALIZER); malloc_thread_init(); if (arena_ind != UINT_MAX) { arena_chunk_t *chunk; try_tcache_alloc = false; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); try_tcache_dalloc = (chunk == ptr || chunk->arena != arenas[arena_ind]); arena = arenas[arena_ind]; } else { try_tcache_alloc = true; try_tcache_dalloc = true; arena = NULL; } if ((config_prof && opt_prof) || config_stats || (config_valgrind && opt_valgrind)) old_usize = isalloc(ptr, config_prof); if (config_valgrind && opt_valgrind) old_rzsize = u2rz(old_usize); if (config_prof && opt_prof) { prof_thr_cnt_t *cnt; usize = (alignment == 0) ? s2u(size) : sa2u(size, alignment); assert(usize != 0); PROF_ALLOC_PREP(1, usize, cnt); p = irallocx_prof(ptr, old_usize, size, alignment, &usize, zero, try_tcache_alloc, try_tcache_dalloc, arena, cnt); if (p == NULL) goto label_oom; } else { p = iralloct(ptr, size, 0, alignment, zero, try_tcache_alloc, try_tcache_dalloc, arena); if (p == NULL) goto label_oom; if (config_stats || (config_valgrind && opt_valgrind)) usize = isalloc(p, config_prof); } if (config_stats) { thread_allocated_t *ta; ta = thread_allocated_tsd_get(); ta->allocated += usize; ta->deallocated += old_usize; } UTRACE(ptr, size, p); JEMALLOC_VALGRIND_REALLOC(p, usize, ptr, old_usize, old_rzsize, zero); return (p); label_oom: if (config_xmalloc && opt_xmalloc) { malloc_write(": Error in rallocx(): out of memory\n"); abort(); } UTRACE(ptr, size, 0); return (NULL); } JEMALLOC_ALWAYS_INLINE_C size_t ixallocx_helper(void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, bool zero, arena_t *arena) { size_t usize; if (ixalloc(ptr, size, extra, alignment, zero)) return (old_usize); usize = isalloc(ptr, config_prof); return (usize); } static size_t ixallocx_prof_sample(void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, size_t max_usize, bool zero, arena_t *arena, prof_thr_cnt_t *cnt) { size_t usize; if (cnt == NULL) return (old_usize); /* Use minimum usize to determine whether promotion may happen. */ if (prof_promote && ((alignment == 0) ? s2u(size) : sa2u(size, alignment)) <= SMALL_MAXCLASS) { if (ixalloc(ptr, SMALL_MAXCLASS+1, (SMALL_MAXCLASS+1 >= size+extra) ? 0 : size+extra - (SMALL_MAXCLASS+1), alignment, zero)) return (old_usize); usize = isalloc(ptr, config_prof); if (max_usize < PAGE) arena_prof_promoted(ptr, usize); } else { usize = ixallocx_helper(ptr, old_usize, size, extra, alignment, zero, arena); } return (usize); } JEMALLOC_ALWAYS_INLINE_C size_t ixallocx_prof(void *ptr, size_t old_usize, size_t size, size_t extra, size_t alignment, size_t max_usize, bool zero, arena_t *arena, prof_thr_cnt_t *cnt) { size_t usize; prof_ctx_t *old_ctx; old_ctx = prof_ctx_get(ptr); if ((uintptr_t)cnt != (uintptr_t)1U) { usize = ixallocx_prof_sample(ptr, old_usize, size, extra, alignment, zero, max_usize, arena, cnt); } else { usize = ixallocx_helper(ptr, old_usize, size, extra, alignment, zero, arena); } if (usize == old_usize) return (usize); prof_realloc(ptr, usize, cnt, old_usize, old_ctx); return (usize); } size_t je_xallocx(void *ptr, size_t size, size_t extra, int flags) { size_t usize, old_usize; UNUSED size_t old_rzsize JEMALLOC_CC_SILENCE_INIT(0); size_t alignment = (ZU(1) << (flags & MALLOCX_LG_ALIGN_MASK) & (SIZE_T_MAX-1)); bool zero = flags & MALLOCX_ZERO; unsigned arena_ind = ((unsigned)(flags >> 8)) - 1; arena_t *arena; assert(ptr != NULL); assert(size != 0); assert(SIZE_T_MAX - size >= extra); assert(malloc_initialized || IS_INITIALIZER); malloc_thread_init(); if (arena_ind != UINT_MAX) arena = arenas[arena_ind]; else arena = NULL; old_usize = isalloc(ptr, config_prof); if (config_valgrind && opt_valgrind) old_rzsize = u2rz(old_usize); if (config_prof && opt_prof) { prof_thr_cnt_t *cnt; /* * usize isn't knowable before ixalloc() returns when extra is * non-zero. Therefore, compute its maximum possible value and * use that in PROF_ALLOC_PREP() to decide whether to capture a * backtrace. prof_realloc() will use the actual usize to * decide whether to sample. */ size_t max_usize = (alignment == 0) ? s2u(size+extra) : sa2u(size+extra, alignment); PROF_ALLOC_PREP(1, max_usize, cnt); usize = ixallocx_prof(ptr, old_usize, size, extra, alignment, max_usize, zero, arena, cnt); } else { usize = ixallocx_helper(ptr, old_usize, size, extra, alignment, zero, arena); } if (usize == old_usize) goto label_not_resized; if (config_stats) { thread_allocated_t *ta; ta = thread_allocated_tsd_get(); ta->allocated += usize; ta->deallocated += old_usize; } JEMALLOC_VALGRIND_REALLOC(ptr, usize, ptr, old_usize, old_rzsize, zero); label_not_resized: UTRACE(ptr, size, ptr); return (usize); } size_t je_sallocx(const void *ptr, int flags) { size_t usize; assert(malloc_initialized || IS_INITIALIZER); malloc_thread_init(); if (config_ivsalloc) usize = ivsalloc(ptr, config_prof); else { assert(ptr != NULL); usize = isalloc(ptr, config_prof); } return (usize); } void je_dallocx(void *ptr, int flags) { size_t usize; UNUSED size_t rzsize JEMALLOC_CC_SILENCE_INIT(0); unsigned arena_ind = ((unsigned)(flags >> 8)) - 1; bool try_tcache; assert(ptr != NULL); assert(malloc_initialized || IS_INITIALIZER); if (arena_ind != UINT_MAX) { arena_chunk_t *chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); try_tcache = (chunk == ptr || chunk->arena != arenas[arena_ind]); } else try_tcache = true; UTRACE(ptr, 0, 0); if (config_stats || config_valgrind) usize = isalloc(ptr, config_prof); if (config_prof && opt_prof) { if (config_stats == false && config_valgrind == false) usize = isalloc(ptr, config_prof); prof_free(ptr, usize); } if (config_stats) thread_allocated_tsd_get()->deallocated += usize; if (config_valgrind && opt_valgrind) rzsize = p2rz(ptr); iqalloct(ptr, try_tcache); JEMALLOC_VALGRIND_FREE(ptr, rzsize); } size_t je_nallocx(size_t size, int flags) { size_t usize; size_t alignment = (ZU(1) << (flags & MALLOCX_LG_ALIGN_MASK) & (SIZE_T_MAX-1)); assert(size != 0); if (malloc_init()) return (0); usize = (alignment == 0) ? s2u(size) : sa2u(size, alignment); assert(usize != 0); return (usize); } int je_mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { if (malloc_init()) return (EAGAIN); return (ctl_byname(name, oldp, oldlenp, newp, newlen)); } int je_mallctlnametomib(const char *name, size_t *mibp, size_t *miblenp) { if (malloc_init()) return (EAGAIN); return (ctl_nametomib(name, mibp, miblenp)); } int je_mallctlbymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp, void *newp, size_t newlen) { if (malloc_init()) return (EAGAIN); return (ctl_bymib(mib, miblen, oldp, oldlenp, newp, newlen)); } void je_malloc_stats_print(void (*write_cb)(void *, const char *), void *cbopaque, const char *opts) { stats_print(write_cb, cbopaque, opts); } size_t je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr) { size_t ret; assert(malloc_initialized || IS_INITIALIZER); malloc_thread_init(); if (config_ivsalloc) ret = ivsalloc(ptr, config_prof); else ret = (ptr != NULL) ? isalloc(ptr, config_prof) : 0; return (ret); } /* * End non-standard functions. */ /******************************************************************************/ /* * Begin experimental functions. */ #ifdef JEMALLOC_EXPERIMENTAL int je_allocm(void **ptr, size_t *rsize, size_t size, int flags) { void *p; assert(ptr != NULL); p = je_mallocx(size, flags); if (p == NULL) return (ALLOCM_ERR_OOM); if (rsize != NULL) *rsize = isalloc(p, config_prof); *ptr = p; return (ALLOCM_SUCCESS); } int je_rallocm(void **ptr, size_t *rsize, size_t size, size_t extra, int flags) { int ret; bool no_move = flags & ALLOCM_NO_MOVE; assert(ptr != NULL); assert(*ptr != NULL); assert(size != 0); assert(SIZE_T_MAX - size >= extra); if (no_move) { size_t usize = je_xallocx(*ptr, size, extra, flags); ret = (usize >= size) ? ALLOCM_SUCCESS : ALLOCM_ERR_NOT_MOVED; if (rsize != NULL) *rsize = usize; } else { void *p = je_rallocx(*ptr, size+extra, flags); if (p != NULL) { *ptr = p; ret = ALLOCM_SUCCESS; } else ret = ALLOCM_ERR_OOM; if (rsize != NULL) *rsize = isalloc(*ptr, config_prof); } return (ret); } int je_sallocm(const void *ptr, size_t *rsize, int flags) { assert(rsize != NULL); *rsize = je_sallocx(ptr, flags); return (ALLOCM_SUCCESS); } int je_dallocm(void *ptr, int flags) { je_dallocx(ptr, flags); return (ALLOCM_SUCCESS); } int je_nallocm(size_t *rsize, size_t size, int flags) { size_t usize; usize = je_nallocx(size, flags); if (usize == 0) return (ALLOCM_ERR_OOM); if (rsize != NULL) *rsize = usize; return (ALLOCM_SUCCESS); } #endif /* * End experimental functions. */ /******************************************************************************/ /* * The following functions are used by threading libraries for protection of * malloc during fork(). */ /* * If an application creates a thread before doing any allocation in the main * thread, then calls fork(2) in the main thread followed by memory allocation * in the child process, a race can occur that results in deadlock within the * child: the main thread may have forked while the created thread had * partially initialized the allocator. Ordinarily jemalloc prevents * fork/malloc races via the following functions it registers during * initialization using pthread_atfork(), but of course that does no good if * the allocator isn't fully initialized at fork time. The following library * constructor is a partial solution to this problem. It may still possible to * trigger the deadlock described above, but doing so would involve forking via * a library constructor that runs before jemalloc's runs. */ JEMALLOC_ATTR(constructor) static void jemalloc_constructor(void) { malloc_init(); } #ifndef JEMALLOC_MUTEX_INIT_CB void jemalloc_prefork(void) #else JEMALLOC_EXPORT void _malloc_prefork(void) #endif { unsigned i; #ifdef JEMALLOC_MUTEX_INIT_CB if (malloc_initialized == false) return; #endif assert(malloc_initialized); /* Acquire all mutexes in a safe order. */ ctl_prefork(); prof_prefork(); malloc_mutex_prefork(&arenas_lock); for (i = 0; i < narenas_total; i++) { if (arenas[i] != NULL) arena_prefork(arenas[i]); } chunk_prefork(); base_prefork(); huge_prefork(); } #ifndef JEMALLOC_MUTEX_INIT_CB void jemalloc_postfork_parent(void) #else JEMALLOC_EXPORT void _malloc_postfork(void) #endif { unsigned i; #ifdef JEMALLOC_MUTEX_INIT_CB if (malloc_initialized == false) return; #endif assert(malloc_initialized); /* Release all mutexes, now that fork() has completed. */ huge_postfork_parent(); base_postfork_parent(); chunk_postfork_parent(); for (i = 0; i < narenas_total; i++) { if (arenas[i] != NULL) arena_postfork_parent(arenas[i]); } malloc_mutex_postfork_parent(&arenas_lock); prof_postfork_parent(); ctl_postfork_parent(); } void jemalloc_postfork_child(void) { unsigned i; assert(malloc_initialized); /* Release all mutexes, now that fork() has completed. */ huge_postfork_child(); base_postfork_child(); chunk_postfork_child(); for (i = 0; i < narenas_total; i++) { if (arenas[i] != NULL) arena_postfork_child(arenas[i]); } malloc_mutex_postfork_child(&arenas_lock); prof_postfork_child(); ctl_postfork_child(); } void _malloc_first_thread(void) { (void)malloc_mutex_first_thread(); } /******************************************************************************/ /* * The following functions are used for TLS allocation/deallocation in static * binaries on FreeBSD. The primary difference between these and i[mcd]alloc() * is that these avoid accessing TLS variables. */ static void * a0alloc(size_t size, bool zero) { if (malloc_init()) return (NULL); if (size == 0) size = 1; if (size <= arena_maxclass) return (arena_malloc(arenas[0], size, zero, false)); else return (huge_malloc(size, zero, huge_dss_prec_get(arenas[0]))); } void * a0malloc(size_t size) { return (a0alloc(size, false)); } void * a0calloc(size_t num, size_t size) { return (a0alloc(num * size, true)); } void a0free(void *ptr) { arena_chunk_t *chunk; if (ptr == NULL) return; chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); if (chunk != ptr) arena_dalloc(chunk->arena, chunk, ptr, false); else huge_dalloc(ptr, true); } /******************************************************************************/