/*- * Copyright (c) 2009-2015 Kai Wang * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/param.h> #include <sys/queue.h> #include <ar.h> #include <assert.h> #include <ctype.h> #include <dwarf.h> #include <err.h> #include <fcntl.h> #include <gelf.h> #include <getopt.h> #include <libdwarf.h> #include <libelftc.h> #include <libgen.h> #include <stdarg.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #include <unistd.h> #include "_elftc.h" ELFTC_VCSID("$Id: readelf.c 3223 2015-05-25 20:37:57Z emaste $"); /* * readelf(1) options. */ #define RE_AA 0x00000001 #define RE_C 0x00000002 #define RE_DD 0x00000004 #define RE_D 0x00000008 #define RE_G 0x00000010 #define RE_H 0x00000020 #define RE_II 0x00000040 #define RE_I 0x00000080 #define RE_L 0x00000100 #define RE_NN 0x00000200 #define RE_N 0x00000400 #define RE_P 0x00000800 #define RE_R 0x00001000 #define RE_SS 0x00002000 #define RE_S 0x00004000 #define RE_T 0x00008000 #define RE_U 0x00010000 #define RE_VV 0x00020000 #define RE_WW 0x00040000 #define RE_W 0x00080000 #define RE_X 0x00100000 /* * dwarf dump options. */ #define DW_A 0x00000001 #define DW_FF 0x00000002 #define DW_F 0x00000004 #define DW_I 0x00000008 #define DW_LL 0x00000010 #define DW_L 0x00000020 #define DW_M 0x00000040 #define DW_O 0x00000080 #define DW_P 0x00000100 #define DW_RR 0x00000200 #define DW_R 0x00000400 #define DW_S 0x00000800 #define DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \ DW_R | DW_RR | DW_S) /* * readelf(1) run control flags. */ #define DISPLAY_FILENAME 0x0001 /* * Internal data structure for sections. */ struct section { const char *name; /* section name */ Elf_Scn *scn; /* section scn */ uint64_t off; /* section offset */ uint64_t sz; /* section size */ uint64_t entsize; /* section entsize */ uint64_t align; /* section alignment */ uint64_t type; /* section type */ uint64_t flags; /* section flags */ uint64_t addr; /* section virtual addr */ uint32_t link; /* section link ndx */ uint32_t info; /* section info ndx */ }; struct dumpop { union { size_t si; /* section index */ const char *sn; /* section name */ } u; enum { DUMP_BY_INDEX = 0, DUMP_BY_NAME } type; /* dump type */ #define HEX_DUMP 0x0001 #define STR_DUMP 0x0002 int op; /* dump operation */ STAILQ_ENTRY(dumpop) dumpop_list; }; struct symver { const char *name; int type; }; /* * Structure encapsulates the global data for readelf(1). */ struct readelf { const char *filename; /* current processing file. */ int options; /* command line options. */ int flags; /* run control flags. */ int dop; /* dwarf dump options. */ Elf *elf; /* underlying ELF descriptor. */ Elf *ar; /* archive ELF descriptor. */ Dwarf_Debug dbg; /* DWARF handle. */ Dwarf_Half cu_psize; /* DWARF CU pointer size. */ Dwarf_Half cu_osize; /* DWARF CU offset size. */ Dwarf_Half cu_ver; /* DWARF CU version. */ GElf_Ehdr ehdr; /* ELF header. */ int ec; /* ELF class. */ size_t shnum; /* #sections. */ struct section *vd_s; /* Verdef section. */ struct section *vn_s; /* Verneed section. */ struct section *vs_s; /* Versym section. */ uint16_t *vs; /* Versym array. */ int vs_sz; /* Versym array size. */ struct symver *ver; /* Version array. */ int ver_sz; /* Size of version array. */ struct section *sl; /* list of sections. */ STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */ uint64_t (*dw_read)(Elf_Data *, uint64_t *, int); uint64_t (*dw_decode)(uint8_t **, int); }; enum options { OPTION_DEBUG_DUMP }; static struct option longopts[] = { {"all", no_argument, NULL, 'a'}, {"arch-specific", no_argument, NULL, 'A'}, {"archive-index", no_argument, NULL, 'c'}, {"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP}, {"dynamic", no_argument, NULL, 'd'}, {"file-header", no_argument, NULL, 'h'}, {"full-section-name", no_argument, NULL, 'N'}, {"headers", no_argument, NULL, 'e'}, {"help", no_argument, 0, 'H'}, {"hex-dump", required_argument, NULL, 'x'}, {"histogram", no_argument, NULL, 'I'}, {"notes", no_argument, NULL, 'n'}, {"program-headers", no_argument, NULL, 'l'}, {"relocs", no_argument, NULL, 'r'}, {"sections", no_argument, NULL, 'S'}, {"section-headers", no_argument, NULL, 'S'}, {"section-groups", no_argument, NULL, 'g'}, {"section-details", no_argument, NULL, 't'}, {"segments", no_argument, NULL, 'l'}, {"string-dump", required_argument, NULL, 'p'}, {"symbols", no_argument, NULL, 's'}, {"syms", no_argument, NULL, 's'}, {"unwind", no_argument, NULL, 'u'}, {"use-dynamic", no_argument, NULL, 'D'}, {"version-info", no_argument, 0, 'V'}, {"version", no_argument, 0, 'v'}, {"wide", no_argument, 0, 'W'}, {NULL, 0, NULL, 0} }; struct eflags_desc { uint64_t flag; const char *desc; }; struct mips_option { uint64_t flag; const char *desc; }; static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t); static const char *aeabi_adv_simd_arch(uint64_t simd); static const char *aeabi_align_needed(uint64_t an); static const char *aeabi_align_preserved(uint64_t ap); static const char *aeabi_arm_isa(uint64_t ai); static const char *aeabi_cpu_arch(uint64_t arch); static const char *aeabi_cpu_arch_profile(uint64_t pf); static const char *aeabi_div(uint64_t du); static const char *aeabi_enum_size(uint64_t es); static const char *aeabi_fp_16bit_format(uint64_t fp16); static const char *aeabi_fp_arch(uint64_t fp); static const char *aeabi_fp_denormal(uint64_t fd); static const char *aeabi_fp_exceptions(uint64_t fe); static const char *aeabi_fp_hpext(uint64_t fh); static const char *aeabi_fp_number_model(uint64_t fn); static const char *aeabi_fp_optm_goal(uint64_t fog); static const char *aeabi_fp_rounding(uint64_t fr); static const char *aeabi_hardfp(uint64_t hfp); static const char *aeabi_mpext(uint64_t mp); static const char *aeabi_optm_goal(uint64_t og); static const char *aeabi_pcs_config(uint64_t pcs); static const char *aeabi_pcs_got(uint64_t got); static const char *aeabi_pcs_r9(uint64_t r9); static const char *aeabi_pcs_ro(uint64_t ro); static const char *aeabi_pcs_rw(uint64_t rw); static const char *aeabi_pcs_wchar_t(uint64_t wt); static const char *aeabi_t2ee(uint64_t t2ee); static const char *aeabi_thumb_isa(uint64_t ti); static const char *aeabi_fp_user_exceptions(uint64_t fu); static const char *aeabi_unaligned_access(uint64_t ua); static const char *aeabi_vfp_args(uint64_t va); static const char *aeabi_virtual(uint64_t vt); static const char *aeabi_wmmx_arch(uint64_t wmmx); static const char *aeabi_wmmx_args(uint64_t wa); static const char *elf_class(unsigned int class); static const char *elf_endian(unsigned int endian); static const char *elf_machine(unsigned int mach); static const char *elf_osabi(unsigned int abi); static const char *elf_type(unsigned int type); static const char *elf_ver(unsigned int ver); static const char *dt_type(unsigned int mach, unsigned int dtype); static void dump_ar(struct readelf *re, int); static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); static void dump_attributes(struct readelf *re); static uint8_t *dump_compatibility_tag(uint8_t *p); static void dump_dwarf(struct readelf *re); static void dump_dwarf_abbrev(struct readelf *re); static void dump_dwarf_aranges(struct readelf *re); static void dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len); static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level); static void dump_dwarf_frame(struct readelf *re, int alt); static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, Dwarf_Debug dbg); static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra); static void dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt); static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info); static void dump_dwarf_macinfo(struct readelf *re); static void dump_dwarf_line(struct readelf *re); static void dump_dwarf_line_decoded(struct readelf *re); static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr); static void dump_dwarf_loclist(struct readelf *re); static void dump_dwarf_pubnames(struct readelf *re); static void dump_dwarf_ranges(struct readelf *re); static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base); static void dump_dwarf_str(struct readelf *re); static void dump_eflags(struct readelf *re, uint64_t e_flags); static void dump_elf(struct readelf *re); static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab); static void dump_dynamic(struct readelf *re); static void dump_liblist(struct readelf *re); static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe); static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz); static void dump_mips_options(struct readelf *re, struct section *s); static void dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info); static void dump_mips_reginfo(struct readelf *re, struct section *s); static void dump_mips_specific_info(struct readelf *re); static void dump_notes(struct readelf *re); static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off); static void dump_svr4_hash(struct section *s); static void dump_svr4_hash64(struct readelf *re, struct section *s); static void dump_gnu_hash(struct readelf *re, struct section *s); static void dump_hash(struct readelf *re); static void dump_phdr(struct readelf *re); static void dump_ppc_attributes(uint8_t *p, uint8_t *pe); static void dump_section_groups(struct readelf *re); static void dump_symtab(struct readelf *re, int i); static void dump_symtabs(struct readelf *re); static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p); static void dump_ver(struct readelf *re); static void dump_verdef(struct readelf *re, int dump); static void dump_verneed(struct readelf *re, int dump); static void dump_versym(struct readelf *re); static const char *dwarf_reg(unsigned int mach, unsigned int reg); static const char *dwarf_regname(struct readelf *re, unsigned int num); static struct dumpop *find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t); static int get_ent_count(struct section *s, int *ent_count); static char *get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off); static const char *get_string(struct readelf *re, int strtab, size_t off); static const char *get_symbol_name(struct readelf *re, int symtab, int i); static uint64_t get_symbol_value(struct readelf *re, int symtab, int i); static void load_sections(struct readelf *re); static const char *mips_abi_fp(uint64_t fp); static const char *note_type(const char *note_name, unsigned int et, unsigned int nt); static const char *note_type_freebsd(unsigned int nt); static const char *note_type_freebsd_core(unsigned int nt); static const char *note_type_linux_core(unsigned int nt); static const char *note_type_gnu(unsigned int nt); static const char *note_type_netbsd(unsigned int nt); static const char *note_type_openbsd(unsigned int nt); static const char *note_type_unknown(unsigned int nt); static const char *option_kind(uint8_t kind); static const char *phdr_type(unsigned int ptype); static const char *ppc_abi_fp(uint64_t fp); static const char *ppc_abi_vector(uint64_t vec); static const char *r_type(unsigned int mach, unsigned int type); static void readelf_usage(void); static void readelf_version(void); static void search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc); static void search_ver(struct readelf *re); static const char *section_type(unsigned int mach, unsigned int stype); static void set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, Dwarf_Half ver); static const char *st_bind(unsigned int sbind); static const char *st_shndx(unsigned int shndx); static const char *st_type(unsigned int stype); static const char *st_vis(unsigned int svis); static const char *top_tag(unsigned int tag); static void unload_sections(struct readelf *re); static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read); static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read); static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read); static uint64_t _decode_msb(uint8_t **data, int bytes_to_read); static int64_t _decode_sleb128(uint8_t **dp); static uint64_t _decode_uleb128(uint8_t **dp); static struct eflags_desc arm_eflags_desc[] = { {EF_ARM_RELEXEC, "relocatable executable"}, {EF_ARM_HASENTRY, "has entry point"}, {EF_ARM_SYMSARESORTED, "sorted symbol tables"}, {EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"}, {EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"}, {EF_ARM_BE8, "BE8"}, {EF_ARM_LE8, "LE8"}, {EF_ARM_INTERWORK, "interworking enabled"}, {EF_ARM_APCS_26, "uses APCS/26"}, {EF_ARM_APCS_FLOAT, "uses APCS/float"}, {EF_ARM_PIC, "position independent"}, {EF_ARM_ALIGN8, "8 bit structure alignment"}, {EF_ARM_NEW_ABI, "uses new ABI"}, {EF_ARM_OLD_ABI, "uses old ABI"}, {EF_ARM_SOFT_FLOAT, "software FP"}, {EF_ARM_VFP_FLOAT, "VFP"}, {EF_ARM_MAVERICK_FLOAT, "Maverick FP"}, {0, NULL} }; static struct eflags_desc mips_eflags_desc[] = { {EF_MIPS_NOREORDER, "noreorder"}, {EF_MIPS_PIC, "pic"}, {EF_MIPS_CPIC, "cpic"}, {EF_MIPS_UCODE, "ugen_reserved"}, {EF_MIPS_ABI2, "abi2"}, {EF_MIPS_OPTIONS_FIRST, "odk first"}, {EF_MIPS_ARCH_ASE_MDMX, "mdmx"}, {EF_MIPS_ARCH_ASE_M16, "mips16"}, {0, NULL} }; static struct eflags_desc powerpc_eflags_desc[] = { {EF_PPC_EMB, "emb"}, {EF_PPC_RELOCATABLE, "relocatable"}, {EF_PPC_RELOCATABLE_LIB, "relocatable-lib"}, {0, NULL} }; static struct eflags_desc sparc_eflags_desc[] = { {EF_SPARC_32PLUS, "v8+"}, {EF_SPARC_SUN_US1, "ultrasparcI"}, {EF_SPARC_HAL_R1, "halr1"}, {EF_SPARC_SUN_US3, "ultrasparcIII"}, {0, NULL} }; static const char * elf_osabi(unsigned int abi) { static char s_abi[32]; switch(abi) { case ELFOSABI_SYSV: return "SYSV"; case ELFOSABI_HPUX: return "HPUX"; case ELFOSABI_NETBSD: return "NetBSD"; case ELFOSABI_GNU: return "GNU"; case ELFOSABI_HURD: return "HURD"; case ELFOSABI_86OPEN: return "86OPEN"; case ELFOSABI_SOLARIS: return "Solaris"; case ELFOSABI_AIX: return "AIX"; case ELFOSABI_IRIX: return "IRIX"; case ELFOSABI_FREEBSD: return "FreeBSD"; case ELFOSABI_TRU64: return "TRU64"; case ELFOSABI_MODESTO: return "MODESTO"; case ELFOSABI_OPENBSD: return "OpenBSD"; case ELFOSABI_OPENVMS: return "OpenVMS"; case ELFOSABI_NSK: return "NSK"; case ELFOSABI_ARM: return "ARM"; case ELFOSABI_STANDALONE: return "StandAlone"; default: snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi); return (s_abi); } }; static const char * elf_machine(unsigned int mach) { static char s_mach[32]; switch (mach) { case EM_NONE: return "Unknown machine"; case EM_M32: return "AT&T WE32100"; case EM_SPARC: return "Sun SPARC"; case EM_386: return "Intel i386"; case EM_68K: return "Motorola 68000"; case EM_IAMCU: return "Intel MCU"; case EM_88K: return "Motorola 88000"; case EM_860: return "Intel i860"; case EM_MIPS: return "MIPS R3000 Big-Endian only"; case EM_S370: return "IBM System/370"; case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian"; case EM_PARISC: return "HP PA-RISC"; case EM_VPP500: return "Fujitsu VPP500"; case EM_SPARC32PLUS: return "SPARC v8plus"; case EM_960: return "Intel 80960"; case EM_PPC: return "PowerPC 32-bit"; case EM_PPC64: return "PowerPC 64-bit"; case EM_S390: return "IBM System/390"; case EM_V800: return "NEC V800"; case EM_FR20: return "Fujitsu FR20"; case EM_RH32: return "TRW RH-32"; case EM_RCE: return "Motorola RCE"; case EM_ARM: return "ARM"; case EM_SH: return "Hitachi SH"; case EM_SPARCV9: return "SPARC v9 64-bit"; case EM_TRICORE: return "Siemens TriCore embedded processor"; case EM_ARC: return "Argonaut RISC Core"; case EM_H8_300: return "Hitachi H8/300"; case EM_H8_300H: return "Hitachi H8/300H"; case EM_H8S: return "Hitachi H8S"; case EM_H8_500: return "Hitachi H8/500"; case EM_IA_64: return "Intel IA-64 Processor"; case EM_MIPS_X: return "Stanford MIPS-X"; case EM_COLDFIRE: return "Motorola ColdFire"; case EM_68HC12: return "Motorola M68HC12"; case EM_MMA: return "Fujitsu MMA"; case EM_PCP: return "Siemens PCP"; case EM_NCPU: return "Sony nCPU"; case EM_NDR1: return "Denso NDR1 microprocessor"; case EM_STARCORE: return "Motorola Star*Core processor"; case EM_ME16: return "Toyota ME16 processor"; case EM_ST100: return "STMicroelectronics ST100 processor"; case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor"; case EM_X86_64: return "Advanced Micro Devices x86-64"; case EM_PDSP: return "Sony DSP Processor"; case EM_FX66: return "Siemens FX66 microcontroller"; case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller"; case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller"; case EM_68HC16: return "Motorola MC68HC16 microcontroller"; case EM_68HC11: return "Motorola MC68HC11 microcontroller"; case EM_68HC08: return "Motorola MC68HC08 microcontroller"; case EM_68HC05: return "Motorola MC68HC05 microcontroller"; case EM_SVX: return "Silicon Graphics SVx"; case EM_ST19: return "STMicroelectronics ST19 8-bit mc"; case EM_VAX: return "Digital VAX"; case EM_CRIS: return "Axis Communications 32-bit embedded processor"; case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor"; case EM_FIREPATH: return "Element 14 64-bit DSP Processor"; case EM_ZSP: return "LSI Logic 16-bit DSP Processor"; case EM_MMIX: return "Donald Knuth's educational 64-bit proc"; case EM_HUANY: return "Harvard University MI object files"; case EM_PRISM: return "SiTera Prism"; case EM_AVR: return "Atmel AVR 8-bit microcontroller"; case EM_FR30: return "Fujitsu FR30"; case EM_D10V: return "Mitsubishi D10V"; case EM_D30V: return "Mitsubishi D30V"; case EM_V850: return "NEC v850"; case EM_M32R: return "Mitsubishi M32R"; case EM_MN10300: return "Matsushita MN10300"; case EM_MN10200: return "Matsushita MN10200"; case EM_PJ: return "picoJava"; case EM_OPENRISC: return "OpenRISC 32-bit embedded processor"; case EM_ARC_A5: return "ARC Cores Tangent-A5"; case EM_XTENSA: return "Tensilica Xtensa Architecture"; case EM_VIDEOCORE: return "Alphamosaic VideoCore processor"; case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor"; case EM_NS32K: return "National Semiconductor 32000 series"; case EM_TPC: return "Tenor Network TPC processor"; case EM_SNP1K: return "Trebia SNP 1000 processor"; case EM_ST200: return "STMicroelectronics ST200 microcontroller"; case EM_IP2K: return "Ubicom IP2xxx microcontroller family"; case EM_MAX: return "MAX Processor"; case EM_CR: return "National Semiconductor CompactRISC microprocessor"; case EM_F2MC16: return "Fujitsu F2MC16"; case EM_MSP430: return "TI embedded microcontroller msp430"; case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor"; case EM_SE_C33: return "S1C33 Family of Seiko Epson processors"; case EM_SEP: return "Sharp embedded microprocessor"; case EM_ARCA: return "Arca RISC Microprocessor"; case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd"; case EM_AARCH64: return "AArch64"; case EM_RISCV: return "RISC-V"; default: snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach); return (s_mach); } } static const char * elf_class(unsigned int class) { static char s_class[32]; switch (class) { case ELFCLASSNONE: return "none"; case ELFCLASS32: return "ELF32"; case ELFCLASS64: return "ELF64"; default: snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class); return (s_class); } } static const char * elf_endian(unsigned int endian) { static char s_endian[32]; switch (endian) { case ELFDATANONE: return "none"; case ELFDATA2LSB: return "2's complement, little endian"; case ELFDATA2MSB: return "2's complement, big endian"; default: snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian); return (s_endian); } } static const char * elf_type(unsigned int type) { static char s_type[32]; switch (type) { case ET_NONE: return "NONE (None)"; case ET_REL: return "REL (Relocatable file)"; case ET_EXEC: return "EXEC (Executable file)"; case ET_DYN: return "DYN (Shared object file)"; case ET_CORE: return "CORE (Core file)"; default: if (type >= ET_LOPROC) snprintf(s_type, sizeof(s_type), "<proc: %#x>", type); else if (type >= ET_LOOS && type <= ET_HIOS) snprintf(s_type, sizeof(s_type), "<os: %#x>", type); else snprintf(s_type, sizeof(s_type), "<unknown: %#x>", type); return (s_type); } } static const char * elf_ver(unsigned int ver) { static char s_ver[32]; switch (ver) { case EV_CURRENT: return "(current)"; case EV_NONE: return "(none)"; default: snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>", ver); return (s_ver); } } static const char * phdr_type(unsigned int ptype) { static char s_ptype[32]; switch (ptype) { case PT_NULL: return "NULL"; case PT_LOAD: return "LOAD"; case PT_DYNAMIC: return "DYNAMIC"; case PT_INTERP: return "INTERP"; case PT_NOTE: return "NOTE"; case PT_SHLIB: return "SHLIB"; case PT_PHDR: return "PHDR"; case PT_TLS: return "TLS"; case PT_GNU_EH_FRAME: return "GNU_EH_FRAME"; case PT_GNU_STACK: return "GNU_STACK"; case PT_GNU_RELRO: return "GNU_RELRO"; default: if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x", ptype - PT_LOPROC); else if (ptype >= PT_LOOS && ptype <= PT_HIOS) snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x", ptype - PT_LOOS); else snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>", ptype); return (s_ptype); } } static const char * section_type(unsigned int mach, unsigned int stype) { static char s_stype[32]; if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) { switch (mach) { case EM_X86_64: switch (stype) { case SHT_AMD64_UNWIND: return "AMD64_UNWIND"; default: break; } break; case EM_MIPS: case EM_MIPS_RS3_LE: switch (stype) { case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST"; case SHT_MIPS_MSYM: return "MIPS_MSYM"; case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT"; case SHT_MIPS_GPTAB: return "MIPS_GPTAB"; case SHT_MIPS_UCODE: return "MIPS_UCODE"; case SHT_MIPS_DEBUG: return "MIPS_DEBUG"; case SHT_MIPS_REGINFO: return "MIPS_REGINFO"; case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE"; case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM"; case SHT_MIPS_RELD: return "MIPS_RELD"; case SHT_MIPS_IFACE: return "MIPS_IFACE"; case SHT_MIPS_CONTENT: return "MIPS_CONTENT"; case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS"; case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM"; case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST"; case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS"; case SHT_MIPS_DWARF: return "MIPS_DWARF"; case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL"; case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; case SHT_MIPS_EVENTS: return "MIPS_EVENTS"; case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE"; case SHT_MIPS_PIXIE: return "MIPS_PIXIE"; case SHT_MIPS_XLATE: return "MIPS_XLATE"; case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG"; case SHT_MIPS_WHIRL: return "MIPS_WHIRL"; case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION"; case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD"; case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION"; default: break; } break; default: break; } snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x", stype - SHT_LOPROC); return (s_stype); } switch (stype) { case SHT_NULL: return "NULL"; case SHT_PROGBITS: return "PROGBITS"; case SHT_SYMTAB: return "SYMTAB"; case SHT_STRTAB: return "STRTAB"; case SHT_RELA: return "RELA"; case SHT_HASH: return "HASH"; case SHT_DYNAMIC: return "DYNAMIC"; case SHT_NOTE: return "NOTE"; case SHT_NOBITS: return "NOBITS"; case SHT_REL: return "REL"; case SHT_SHLIB: return "SHLIB"; case SHT_DYNSYM: return "DYNSYM"; case SHT_INIT_ARRAY: return "INIT_ARRAY"; case SHT_FINI_ARRAY: return "FINI_ARRAY"; case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY"; case SHT_GROUP: return "GROUP"; case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX"; case SHT_SUNW_dof: return "SUNW_dof"; case SHT_SUNW_cap: return "SUNW_cap"; case SHT_GNU_HASH: return "GNU_HASH"; case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE"; case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR"; case SHT_SUNW_DEBUG: return "SUNW_DEBUG"; case SHT_SUNW_move: return "SUNW_move"; case SHT_SUNW_COMDAT: return "SUNW_COMDAT"; case SHT_SUNW_syminfo: return "SUNW_syminfo"; case SHT_SUNW_verdef: return "SUNW_verdef"; case SHT_SUNW_verneed: return "SUNW_verneed"; case SHT_SUNW_versym: return "SUNW_versym"; default: if (stype >= SHT_LOOS && stype <= SHT_HIOS) snprintf(s_stype, sizeof(s_stype), "LOOS+%#x", stype - SHT_LOOS); else if (stype >= SHT_LOUSER) snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x", stype - SHT_LOUSER); else snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", stype); return (s_stype); } } static const char * dt_type(unsigned int mach, unsigned int dtype) { static char s_dtype[32]; if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) { switch (mach) { case EM_ARM: switch (dtype) { case DT_ARM_SYMTABSZ: return "ARM_SYMTABSZ"; default: break; } break; case EM_MIPS: case EM_MIPS_RS3_LE: switch (dtype) { case DT_MIPS_RLD_VERSION: return "MIPS_RLD_VERSION"; case DT_MIPS_TIME_STAMP: return "MIPS_TIME_STAMP"; case DT_MIPS_ICHECKSUM: return "MIPS_ICHECKSUM"; case DT_MIPS_IVERSION: return "MIPS_IVERSION"; case DT_MIPS_FLAGS: return "MIPS_FLAGS"; case DT_MIPS_BASE_ADDRESS: return "MIPS_BASE_ADDRESS"; case DT_MIPS_CONFLICT: return "MIPS_CONFLICT"; case DT_MIPS_LIBLIST: return "MIPS_LIBLIST"; case DT_MIPS_LOCAL_GOTNO: return "MIPS_LOCAL_GOTNO"; case DT_MIPS_CONFLICTNO: return "MIPS_CONFLICTNO"; case DT_MIPS_LIBLISTNO: return "MIPS_LIBLISTNO"; case DT_MIPS_SYMTABNO: return "MIPS_SYMTABNO"; case DT_MIPS_UNREFEXTNO: return "MIPS_UNREFEXTNO"; case DT_MIPS_GOTSYM: return "MIPS_GOTSYM"; case DT_MIPS_HIPAGENO: return "MIPS_HIPAGENO"; case DT_MIPS_RLD_MAP: return "MIPS_RLD_MAP"; case DT_MIPS_DELTA_CLASS: return "MIPS_DELTA_CLASS"; case DT_MIPS_DELTA_CLASS_NO: return "MIPS_DELTA_CLASS_NO"; case DT_MIPS_DELTA_INSTANCE: return "MIPS_DELTA_INSTANCE"; case DT_MIPS_DELTA_INSTANCE_NO: return "MIPS_DELTA_INSTANCE_NO"; case DT_MIPS_DELTA_RELOC: return "MIPS_DELTA_RELOC"; case DT_MIPS_DELTA_RELOC_NO: return "MIPS_DELTA_RELOC_NO"; case DT_MIPS_DELTA_SYM: return "MIPS_DELTA_SYM"; case DT_MIPS_DELTA_SYM_NO: return "MIPS_DELTA_SYM_NO"; case DT_MIPS_DELTA_CLASSSYM: return "MIPS_DELTA_CLASSSYM"; case DT_MIPS_DELTA_CLASSSYM_NO: return "MIPS_DELTA_CLASSSYM_NO"; case DT_MIPS_CXX_FLAGS: return "MIPS_CXX_FLAGS"; case DT_MIPS_PIXIE_INIT: return "MIPS_PIXIE_INIT"; case DT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB"; case DT_MIPS_LOCALPAGE_GOTIDX: return "MIPS_LOCALPAGE_GOTIDX"; case DT_MIPS_LOCAL_GOTIDX: return "MIPS_LOCAL_GOTIDX"; case DT_MIPS_HIDDEN_GOTIDX: return "MIPS_HIDDEN_GOTIDX"; case DT_MIPS_PROTECTED_GOTIDX: return "MIPS_PROTECTED_GOTIDX"; case DT_MIPS_OPTIONS: return "MIPS_OPTIONS"; case DT_MIPS_INTERFACE: return "MIPS_INTERFACE"; case DT_MIPS_DYNSTR_ALIGN: return "MIPS_DYNSTR_ALIGN"; case DT_MIPS_INTERFACE_SIZE: return "MIPS_INTERFACE_SIZE"; case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: return "MIPS_RLD_TEXT_RESOLVE_ADDR"; case DT_MIPS_PERF_SUFFIX: return "MIPS_PERF_SUFFIX"; case DT_MIPS_COMPACT_SIZE: return "MIPS_COMPACT_SIZE"; case DT_MIPS_GP_VALUE: return "MIPS_GP_VALUE"; case DT_MIPS_AUX_DYNAMIC: return "MIPS_AUX_DYNAMIC"; case DT_MIPS_PLTGOT: return "MIPS_PLTGOT"; case DT_MIPS_RLD_OBJ_UPDATE: return "MIPS_RLD_OBJ_UPDATE"; case DT_MIPS_RWPLT: return "MIPS_RWPLT"; default: break; } break; case EM_SPARC: case EM_SPARC32PLUS: case EM_SPARCV9: switch (dtype) { case DT_SPARC_REGISTER: return "DT_SPARC_REGISTER"; default: break; } break; default: break; } snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); return (s_dtype); } switch (dtype) { case DT_NULL: return "NULL"; case DT_NEEDED: return "NEEDED"; case DT_PLTRELSZ: return "PLTRELSZ"; case DT_PLTGOT: return "PLTGOT"; case DT_HASH: return "HASH"; case DT_STRTAB: return "STRTAB"; case DT_SYMTAB: return "SYMTAB"; case DT_RELA: return "RELA"; case DT_RELASZ: return "RELASZ"; case DT_RELAENT: return "RELAENT"; case DT_STRSZ: return "STRSZ"; case DT_SYMENT: return "SYMENT"; case DT_INIT: return "INIT"; case DT_FINI: return "FINI"; case DT_SONAME: return "SONAME"; case DT_RPATH: return "RPATH"; case DT_SYMBOLIC: return "SYMBOLIC"; case DT_REL: return "REL"; case DT_RELSZ: return "RELSZ"; case DT_RELENT: return "RELENT"; case DT_PLTREL: return "PLTREL"; case DT_DEBUG: return "DEBUG"; case DT_TEXTREL: return "TEXTREL"; case DT_JMPREL: return "JMPREL"; case DT_BIND_NOW: return "BIND_NOW"; case DT_INIT_ARRAY: return "INIT_ARRAY"; case DT_FINI_ARRAY: return "FINI_ARRAY"; case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ"; case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ"; case DT_RUNPATH: return "RUNPATH"; case DT_FLAGS: return "FLAGS"; case DT_PREINIT_ARRAY: return "PREINIT_ARRAY"; case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ"; case DT_MAXPOSTAGS: return "MAXPOSTAGS"; case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY"; case DT_SUNW_RTLDINF: return "SUNW_RTLDINF"; case DT_SUNW_FILTER: return "SUNW_FILTER"; case DT_SUNW_CAP: return "SUNW_CAP"; case DT_CHECKSUM: return "CHECKSUM"; case DT_PLTPADSZ: return "PLTPADSZ"; case DT_MOVEENT: return "MOVEENT"; case DT_MOVESZ: return "MOVESZ"; case DT_FEATURE: return "FEATURE"; case DT_POSFLAG_1: return "POSFLAG_1"; case DT_SYMINSZ: return "SYMINSZ"; case DT_SYMINENT: return "SYMINENT"; case DT_GNU_HASH: return "GNU_HASH"; case DT_GNU_CONFLICT: return "GNU_CONFLICT"; case DT_GNU_LIBLIST: return "GNU_LIBLIST"; case DT_CONFIG: return "CONFIG"; case DT_DEPAUDIT: return "DEPAUDIT"; case DT_AUDIT: return "AUDIT"; case DT_PLTPAD: return "PLTPAD"; case DT_MOVETAB: return "MOVETAB"; case DT_SYMINFO: return "SYMINFO"; case DT_VERSYM: return "VERSYM"; case DT_RELACOUNT: return "RELACOUNT"; case DT_RELCOUNT: return "RELCOUNT"; case DT_FLAGS_1: return "FLAGS_1"; case DT_VERDEF: return "VERDEF"; case DT_VERDEFNUM: return "VERDEFNUM"; case DT_VERNEED: return "VERNEED"; case DT_VERNEEDNUM: return "VERNEEDNUM"; case DT_AUXILIARY: return "AUXILIARY"; case DT_USED: return "USED"; case DT_FILTER: return "FILTER"; case DT_GNU_PRELINKED: return "GNU_PRELINKED"; case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ"; case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ"; default: snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype); return (s_dtype); } } static const char * st_bind(unsigned int sbind) { static char s_sbind[32]; switch (sbind) { case STB_LOCAL: return "LOCAL"; case STB_GLOBAL: return "GLOBAL"; case STB_WEAK: return "WEAK"; default: if (sbind >= STB_LOOS && sbind <= STB_HIOS) return "OS"; else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC) return "PROC"; else snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>", sbind); return (s_sbind); } } static const char * st_type(unsigned int stype) { static char s_stype[32]; switch (stype) { case STT_NOTYPE: return "NOTYPE"; case STT_OBJECT: return "OBJECT"; case STT_FUNC: return "FUNC"; case STT_SECTION: return "SECTION"; case STT_FILE: return "FILE"; case STT_COMMON: return "COMMON"; case STT_TLS: return "TLS"; default: if (stype >= STT_LOOS && stype <= STT_HIOS) snprintf(s_stype, sizeof(s_stype), "OS+%#x", stype - STT_LOOS); else if (stype >= STT_LOPROC && stype <= STT_HIPROC) snprintf(s_stype, sizeof(s_stype), "PROC+%#x", stype - STT_LOPROC); else snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>", stype); return (s_stype); } } static const char * st_vis(unsigned int svis) { static char s_svis[32]; switch(svis) { case STV_DEFAULT: return "DEFAULT"; case STV_INTERNAL: return "INTERNAL"; case STV_HIDDEN: return "HIDDEN"; case STV_PROTECTED: return "PROTECTED"; default: snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis); return (s_svis); } } static const char * st_shndx(unsigned int shndx) { static char s_shndx[32]; switch (shndx) { case SHN_UNDEF: return "UND"; case SHN_ABS: return "ABS"; case SHN_COMMON: return "COM"; default: if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC) return "PRC"; else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS) return "OS"; else snprintf(s_shndx, sizeof(s_shndx), "%u", shndx); return (s_shndx); } } static struct { const char *ln; char sn; int value; } section_flag[] = { {"WRITE", 'W', SHF_WRITE}, {"ALLOC", 'A', SHF_ALLOC}, {"EXEC", 'X', SHF_EXECINSTR}, {"MERGE", 'M', SHF_MERGE}, {"STRINGS", 'S', SHF_STRINGS}, {"INFO LINK", 'I', SHF_INFO_LINK}, {"OS NONCONF", 'O', SHF_OS_NONCONFORMING}, {"GROUP", 'G', SHF_GROUP}, {"TLS", 'T', SHF_TLS}, {NULL, 0, 0} }; static const char * r_type(unsigned int mach, unsigned int type) { switch(mach) { case EM_NONE: return ""; case EM_386: case EM_IAMCU: switch(type) { case 0: return "R_386_NONE"; case 1: return "R_386_32"; case 2: return "R_386_PC32"; case 3: return "R_386_GOT32"; case 4: return "R_386_PLT32"; case 5: return "R_386_COPY"; case 6: return "R_386_GLOB_DAT"; case 7: return "R_386_JMP_SLOT"; case 8: return "R_386_RELATIVE"; case 9: return "R_386_GOTOFF"; case 10: return "R_386_GOTPC"; case 14: return "R_386_TLS_TPOFF"; case 15: return "R_386_TLS_IE"; case 16: return "R_386_TLS_GOTIE"; case 17: return "R_386_TLS_LE"; case 18: return "R_386_TLS_GD"; case 19: return "R_386_TLS_LDM"; case 24: return "R_386_TLS_GD_32"; case 25: return "R_386_TLS_GD_PUSH"; case 26: return "R_386_TLS_GD_CALL"; case 27: return "R_386_TLS_GD_POP"; case 28: return "R_386_TLS_LDM_32"; case 29: return "R_386_TLS_LDM_PUSH"; case 30: return "R_386_TLS_LDM_CALL"; case 31: return "R_386_TLS_LDM_POP"; case 32: return "R_386_TLS_LDO_32"; case 33: return "R_386_TLS_IE_32"; case 34: return "R_386_TLS_LE_32"; case 35: return "R_386_TLS_DTPMOD32"; case 36: return "R_386_TLS_DTPOFF32"; case 37: return "R_386_TLS_TPOFF32"; default: return ""; } case EM_AARCH64: switch(type) { case 0: return "R_AARCH64_NONE"; case 257: return "R_AARCH64_ABS64"; case 258: return "R_AARCH64_ABS32"; case 259: return "R_AARCH64_ABS16"; case 260: return "R_AARCH64_PREL64"; case 261: return "R_AARCH64_PREL32"; case 262: return "R_AARCH64_PREL16"; case 263: return "R_AARCH64_MOVW_UABS_G0"; case 264: return "R_AARCH64_MOVW_UABS_G0_NC"; case 265: return "R_AARCH64_MOVW_UABS_G1"; case 266: return "R_AARCH64_MOVW_UABS_G1_NC"; case 267: return "R_AARCH64_MOVW_UABS_G2"; case 268: return "R_AARCH64_MOVW_UABS_G2_NC"; case 269: return "R_AARCH64_MOVW_UABS_G3"; case 270: return "R_AARCH64_MOVW_SABS_G0"; case 271: return "R_AARCH64_MOVW_SABS_G1"; case 272: return "R_AARCH64_MOVW_SABS_G2"; case 273: return "R_AARCH64_LD_PREL_LO19"; case 274: return "R_AARCH64_ADR_PREL_LO21"; case 275: return "R_AARCH64_ADR_PREL_PG_HI21"; case 276: return "R_AARCH64_ADR_PREL_PG_HI21_NC"; case 277: return "R_AARCH64_ADD_ABS_LO12_NC"; case 278: return "R_AARCH64_LDST8_ABS_LO12_NC"; case 279: return "R_AARCH64_TSTBR14"; case 280: return "R_AARCH64_CONDBR19"; case 282: return "R_AARCH64_JUMP26"; case 283: return "R_AARCH64_CALL26"; case 284: return "R_AARCH64_LDST16_ABS_LO12_NC"; case 285: return "R_AARCH64_LDST32_ABS_LO12_NC"; case 286: return "R_AARCH64_LDST64_ABS_LO12_NC"; case 287: return "R_AARCH64_MOVW_PREL_G0"; case 288: return "R_AARCH64_MOVW_PREL_G0_NC"; case 289: return "R_AARCH64_MOVW_PREL_G1"; case 290: return "R_AARCH64_MOVW_PREL_G1_NC"; case 291: return "R_AARCH64_MOVW_PREL_G2"; case 292: return "R_AARCH64_MOVW_PREL_G2_NC"; case 293: return "R_AARCH64_MOVW_PREL_G3"; case 299: return "R_AARCH64_LDST128_ABS_LO12_NC"; case 300: return "R_AARCH64_MOVW_GOTOFF_G0"; case 301: return "R_AARCH64_MOVW_GOTOFF_G0_NC"; case 302: return "R_AARCH64_MOVW_GOTOFF_G1"; case 303: return "R_AARCH64_MOVW_GOTOFF_G1_NC"; case 304: return "R_AARCH64_MOVW_GOTOFF_G2"; case 305: return "R_AARCH64_MOVW_GOTOFF_G2_NC"; case 306: return "R_AARCH64_MOVW_GOTOFF_G3"; case 307: return "R_AARCH64_GOTREL64"; case 308: return "R_AARCH64_GOTREL32"; case 309: return "R_AARCH64_GOT_LD_PREL19"; case 310: return "R_AARCH64_LD64_GOTOFF_LO15"; case 311: return "R_AARCH64_ADR_GOT_PAGE"; case 312: return "R_AARCH64_LD64_GOT_LO12_NC"; case 313: return "R_AARCH64_LD64_GOTPAGE_LO15"; case 1024: return "R_AARCH64_COPY"; case 1025: return "R_AARCH64_GLOB_DAT"; case 1026: return "R_AARCH64_JUMP_SLOT"; case 1027: return "R_AARCH64_RELATIVE"; case 1028: return "R_AARCH64_TLS_DTPREL64"; case 1029: return "R_AARCH64_TLS_DTPMOD64"; case 1030: return "R_AARCH64_TLS_TPREL64"; case 1031: return "R_AARCH64_TLSDESC"; case 1032: return "R_AARCH64_IRELATIVE"; default: return ""; } case EM_ARM: switch(type) { case 0: return "R_ARM_NONE"; case 1: return "R_ARM_PC24"; case 2: return "R_ARM_ABS32"; case 3: return "R_ARM_REL32"; case 4: return "R_ARM_PC13"; case 5: return "R_ARM_ABS16"; case 6: return "R_ARM_ABS12"; case 7: return "R_ARM_THM_ABS5"; case 8: return "R_ARM_ABS8"; case 9: return "R_ARM_SBREL32"; case 10: return "R_ARM_THM_PC22"; case 11: return "R_ARM_THM_PC8"; case 12: return "R_ARM_AMP_VCALL9"; case 13: return "R_ARM_SWI24"; case 14: return "R_ARM_THM_SWI8"; case 15: return "R_ARM_XPC25"; case 16: return "R_ARM_THM_XPC22"; case 20: return "R_ARM_COPY"; case 21: return "R_ARM_GLOB_DAT"; case 22: return "R_ARM_JUMP_SLOT"; case 23: return "R_ARM_RELATIVE"; case 24: return "R_ARM_GOTOFF"; case 25: return "R_ARM_GOTPC"; case 26: return "R_ARM_GOT32"; case 27: return "R_ARM_PLT32"; case 100: return "R_ARM_GNU_VTENTRY"; case 101: return "R_ARM_GNU_VTINHERIT"; case 250: return "R_ARM_RSBREL32"; case 251: return "R_ARM_THM_RPC22"; case 252: return "R_ARM_RREL32"; case 253: return "R_ARM_RABS32"; case 254: return "R_ARM_RPC24"; case 255: return "R_ARM_RBASE"; default: return ""; } case EM_IA_64: switch(type) { case 0: return "R_IA_64_NONE"; case 33: return "R_IA_64_IMM14"; case 34: return "R_IA_64_IMM22"; case 35: return "R_IA_64_IMM64"; case 36: return "R_IA_64_DIR32MSB"; case 37: return "R_IA_64_DIR32LSB"; case 38: return "R_IA_64_DIR64MSB"; case 39: return "R_IA_64_DIR64LSB"; case 42: return "R_IA_64_GPREL22"; case 43: return "R_IA_64_GPREL64I"; case 44: return "R_IA_64_GPREL32MSB"; case 45: return "R_IA_64_GPREL32LSB"; case 46: return "R_IA_64_GPREL64MSB"; case 47: return "R_IA_64_GPREL64LSB"; case 50: return "R_IA_64_LTOFF22"; case 51: return "R_IA_64_LTOFF64I"; case 58: return "R_IA_64_PLTOFF22"; case 59: return "R_IA_64_PLTOFF64I"; case 62: return "R_IA_64_PLTOFF64MSB"; case 63: return "R_IA_64_PLTOFF64LSB"; case 67: return "R_IA_64_FPTR64I"; case 68: return "R_IA_64_FPTR32MSB"; case 69: return "R_IA_64_FPTR32LSB"; case 70: return "R_IA_64_FPTR64MSB"; case 71: return "R_IA_64_FPTR64LSB"; case 72: return "R_IA_64_PCREL60B"; case 73: return "R_IA_64_PCREL21B"; case 74: return "R_IA_64_PCREL21M"; case 75: return "R_IA_64_PCREL21F"; case 76: return "R_IA_64_PCREL32MSB"; case 77: return "R_IA_64_PCREL32LSB"; case 78: return "R_IA_64_PCREL64MSB"; case 79: return "R_IA_64_PCREL64LSB"; case 82: return "R_IA_64_LTOFF_FPTR22"; case 83: return "R_IA_64_LTOFF_FPTR64I"; case 84: return "R_IA_64_LTOFF_FPTR32MSB"; case 85: return "R_IA_64_LTOFF_FPTR32LSB"; case 86: return "R_IA_64_LTOFF_FPTR64MSB"; case 87: return "R_IA_64_LTOFF_FPTR64LSB"; case 92: return "R_IA_64_SEGREL32MSB"; case 93: return "R_IA_64_SEGREL32LSB"; case 94: return "R_IA_64_SEGREL64MSB"; case 95: return "R_IA_64_SEGREL64LSB"; case 100: return "R_IA_64_SECREL32MSB"; case 101: return "R_IA_64_SECREL32LSB"; case 102: return "R_IA_64_SECREL64MSB"; case 103: return "R_IA_64_SECREL64LSB"; case 108: return "R_IA_64_REL32MSB"; case 109: return "R_IA_64_REL32LSB"; case 110: return "R_IA_64_REL64MSB"; case 111: return "R_IA_64_REL64LSB"; case 116: return "R_IA_64_LTV32MSB"; case 117: return "R_IA_64_LTV32LSB"; case 118: return "R_IA_64_LTV64MSB"; case 119: return "R_IA_64_LTV64LSB"; case 121: return "R_IA_64_PCREL21BI"; case 122: return "R_IA_64_PCREL22"; case 123: return "R_IA_64_PCREL64I"; case 128: return "R_IA_64_IPLTMSB"; case 129: return "R_IA_64_IPLTLSB"; case 133: return "R_IA_64_SUB"; case 134: return "R_IA_64_LTOFF22X"; case 135: return "R_IA_64_LDXMOV"; case 145: return "R_IA_64_TPREL14"; case 146: return "R_IA_64_TPREL22"; case 147: return "R_IA_64_TPREL64I"; case 150: return "R_IA_64_TPREL64MSB"; case 151: return "R_IA_64_TPREL64LSB"; case 154: return "R_IA_64_LTOFF_TPREL22"; case 166: return "R_IA_64_DTPMOD64MSB"; case 167: return "R_IA_64_DTPMOD64LSB"; case 170: return "R_IA_64_LTOFF_DTPMOD22"; case 177: return "R_IA_64_DTPREL14"; case 178: return "R_IA_64_DTPREL22"; case 179: return "R_IA_64_DTPREL64I"; case 180: return "R_IA_64_DTPREL32MSB"; case 181: return "R_IA_64_DTPREL32LSB"; case 182: return "R_IA_64_DTPREL64MSB"; case 183: return "R_IA_64_DTPREL64LSB"; case 186: return "R_IA_64_LTOFF_DTPREL22"; default: return ""; } case EM_MIPS: switch(type) { case 0: return "R_MIPS_NONE"; case 1: return "R_MIPS_16"; case 2: return "R_MIPS_32"; case 3: return "R_MIPS_REL32"; case 4: return "R_MIPS_26"; case 5: return "R_MIPS_HI16"; case 6: return "R_MIPS_LO16"; case 7: return "R_MIPS_GPREL16"; case 8: return "R_MIPS_LITERAL"; case 9: return "R_MIPS_GOT16"; case 10: return "R_MIPS_PC16"; case 11: return "R_MIPS_CALL16"; case 12: return "R_MIPS_GPREL32"; case 21: return "R_MIPS_GOTHI16"; case 22: return "R_MIPS_GOTLO16"; case 30: return "R_MIPS_CALLHI16"; case 31: return "R_MIPS_CALLLO16"; default: return ""; } case EM_PPC: switch(type) { case 0: return "R_PPC_NONE"; case 1: return "R_PPC_ADDR32"; case 2: return "R_PPC_ADDR24"; case 3: return "R_PPC_ADDR16"; case 4: return "R_PPC_ADDR16_LO"; case 5: return "R_PPC_ADDR16_HI"; case 6: return "R_PPC_ADDR16_HA"; case 7: return "R_PPC_ADDR14"; case 8: return "R_PPC_ADDR14_BRTAKEN"; case 9: return "R_PPC_ADDR14_BRNTAKEN"; case 10: return "R_PPC_REL24"; case 11: return "R_PPC_REL14"; case 12: return "R_PPC_REL14_BRTAKEN"; case 13: return "R_PPC_REL14_BRNTAKEN"; case 14: return "R_PPC_GOT16"; case 15: return "R_PPC_GOT16_LO"; case 16: return "R_PPC_GOT16_HI"; case 17: return "R_PPC_GOT16_HA"; case 18: return "R_PPC_PLTREL24"; case 19: return "R_PPC_COPY"; case 20: return "R_PPC_GLOB_DAT"; case 21: return "R_PPC_JMP_SLOT"; case 22: return "R_PPC_RELATIVE"; case 23: return "R_PPC_LOCAL24PC"; case 24: return "R_PPC_UADDR32"; case 25: return "R_PPC_UADDR16"; case 26: return "R_PPC_REL32"; case 27: return "R_PPC_PLT32"; case 28: return "R_PPC_PLTREL32"; case 29: return "R_PPC_PLT16_LO"; case 30: return "R_PPC_PLT16_HI"; case 31: return "R_PPC_PLT16_HA"; case 32: return "R_PPC_SDAREL16"; case 33: return "R_PPC_SECTOFF"; case 34: return "R_PPC_SECTOFF_LO"; case 35: return "R_PPC_SECTOFF_HI"; case 36: return "R_PPC_SECTOFF_HA"; case 67: return "R_PPC_TLS"; case 68: return "R_PPC_DTPMOD32"; case 69: return "R_PPC_TPREL16"; case 70: return "R_PPC_TPREL16_LO"; case 71: return "R_PPC_TPREL16_HI"; case 72: return "R_PPC_TPREL16_HA"; case 73: return "R_PPC_TPREL32"; case 74: return "R_PPC_DTPREL16"; case 75: return "R_PPC_DTPREL16_LO"; case 76: return "R_PPC_DTPREL16_HI"; case 77: return "R_PPC_DTPREL16_HA"; case 78: return "R_PPC_DTPREL32"; case 79: return "R_PPC_GOT_TLSGD16"; case 80: return "R_PPC_GOT_TLSGD16_LO"; case 81: return "R_PPC_GOT_TLSGD16_HI"; case 82: return "R_PPC_GOT_TLSGD16_HA"; case 83: return "R_PPC_GOT_TLSLD16"; case 84: return "R_PPC_GOT_TLSLD16_LO"; case 85: return "R_PPC_GOT_TLSLD16_HI"; case 86: return "R_PPC_GOT_TLSLD16_HA"; case 87: return "R_PPC_GOT_TPREL16"; case 88: return "R_PPC_GOT_TPREL16_LO"; case 89: return "R_PPC_GOT_TPREL16_HI"; case 90: return "R_PPC_GOT_TPREL16_HA"; case 101: return "R_PPC_EMB_NADDR32"; case 102: return "R_PPC_EMB_NADDR16"; case 103: return "R_PPC_EMB_NADDR16_LO"; case 104: return "R_PPC_EMB_NADDR16_HI"; case 105: return "R_PPC_EMB_NADDR16_HA"; case 106: return "R_PPC_EMB_SDAI16"; case 107: return "R_PPC_EMB_SDA2I16"; case 108: return "R_PPC_EMB_SDA2REL"; case 109: return "R_PPC_EMB_SDA21"; case 110: return "R_PPC_EMB_MRKREF"; case 111: return "R_PPC_EMB_RELSEC16"; case 112: return "R_PPC_EMB_RELST_LO"; case 113: return "R_PPC_EMB_RELST_HI"; case 114: return "R_PPC_EMB_RELST_HA"; case 115: return "R_PPC_EMB_BIT_FLD"; case 116: return "R_PPC_EMB_RELSDA"; default: return ""; } case EM_SPARC: case EM_SPARCV9: switch(type) { case 0: return "R_SPARC_NONE"; case 1: return "R_SPARC_8"; case 2: return "R_SPARC_16"; case 3: return "R_SPARC_32"; case 4: return "R_SPARC_DISP8"; case 5: return "R_SPARC_DISP16"; case 6: return "R_SPARC_DISP32"; case 7: return "R_SPARC_WDISP30"; case 8: return "R_SPARC_WDISP22"; case 9: return "R_SPARC_HI22"; case 10: return "R_SPARC_22"; case 11: return "R_SPARC_13"; case 12: return "R_SPARC_LO10"; case 13: return "R_SPARC_GOT10"; case 14: return "R_SPARC_GOT13"; case 15: return "R_SPARC_GOT22"; case 16: return "R_SPARC_PC10"; case 17: return "R_SPARC_PC22"; case 18: return "R_SPARC_WPLT30"; case 19: return "R_SPARC_COPY"; case 20: return "R_SPARC_GLOB_DAT"; case 21: return "R_SPARC_JMP_SLOT"; case 22: return "R_SPARC_RELATIVE"; case 23: return "R_SPARC_UA32"; case 24: return "R_SPARC_PLT32"; case 25: return "R_SPARC_HIPLT22"; case 26: return "R_SPARC_LOPLT10"; case 27: return "R_SPARC_PCPLT32"; case 28: return "R_SPARC_PCPLT22"; case 29: return "R_SPARC_PCPLT10"; case 30: return "R_SPARC_10"; case 31: return "R_SPARC_11"; case 32: return "R_SPARC_64"; case 33: return "R_SPARC_OLO10"; case 34: return "R_SPARC_HH22"; case 35: return "R_SPARC_HM10"; case 36: return "R_SPARC_LM22"; case 37: return "R_SPARC_PC_HH22"; case 38: return "R_SPARC_PC_HM10"; case 39: return "R_SPARC_PC_LM22"; case 40: return "R_SPARC_WDISP16"; case 41: return "R_SPARC_WDISP19"; case 42: return "R_SPARC_GLOB_JMP"; case 43: return "R_SPARC_7"; case 44: return "R_SPARC_5"; case 45: return "R_SPARC_6"; case 46: return "R_SPARC_DISP64"; case 47: return "R_SPARC_PLT64"; case 48: return "R_SPARC_HIX22"; case 49: return "R_SPARC_LOX10"; case 50: return "R_SPARC_H44"; case 51: return "R_SPARC_M44"; case 52: return "R_SPARC_L44"; case 53: return "R_SPARC_REGISTER"; case 54: return "R_SPARC_UA64"; case 55: return "R_SPARC_UA16"; case 56: return "R_SPARC_TLS_GD_HI22"; case 57: return "R_SPARC_TLS_GD_LO10"; case 58: return "R_SPARC_TLS_GD_ADD"; case 59: return "R_SPARC_TLS_GD_CALL"; case 60: return "R_SPARC_TLS_LDM_HI22"; case 61: return "R_SPARC_TLS_LDM_LO10"; case 62: return "R_SPARC_TLS_LDM_ADD"; case 63: return "R_SPARC_TLS_LDM_CALL"; case 64: return "R_SPARC_TLS_LDO_HIX22"; case 65: return "R_SPARC_TLS_LDO_LOX10"; case 66: return "R_SPARC_TLS_LDO_ADD"; case 67: return "R_SPARC_TLS_IE_HI22"; case 68: return "R_SPARC_TLS_IE_LO10"; case 69: return "R_SPARC_TLS_IE_LD"; case 70: return "R_SPARC_TLS_IE_LDX"; case 71: return "R_SPARC_TLS_IE_ADD"; case 72: return "R_SPARC_TLS_LE_HIX22"; case 73: return "R_SPARC_TLS_LE_LOX10"; case 74: return "R_SPARC_TLS_DTPMOD32"; case 75: return "R_SPARC_TLS_DTPMOD64"; case 76: return "R_SPARC_TLS_DTPOFF32"; case 77: return "R_SPARC_TLS_DTPOFF64"; case 78: return "R_SPARC_TLS_TPOFF32"; case 79: return "R_SPARC_TLS_TPOFF64"; default: return ""; } case EM_X86_64: switch(type) { case 0: return "R_X86_64_NONE"; case 1: return "R_X86_64_64"; case 2: return "R_X86_64_PC32"; case 3: return "R_X86_64_GOT32"; case 4: return "R_X86_64_PLT32"; case 5: return "R_X86_64_COPY"; case 6: return "R_X86_64_GLOB_DAT"; case 7: return "R_X86_64_JMP_SLOT"; case 8: return "R_X86_64_RELATIVE"; case 9: return "R_X86_64_GOTPCREL"; case 10: return "R_X86_64_32"; case 11: return "R_X86_64_32S"; case 12: return "R_X86_64_16"; case 13: return "R_X86_64_PC16"; case 14: return "R_X86_64_8"; case 15: return "R_X86_64_PC8"; case 16: return "R_X86_64_DTPMOD64"; case 17: return "R_X86_64_DTPOFF64"; case 18: return "R_X86_64_TPOFF64"; case 19: return "R_X86_64_TLSGD"; case 20: return "R_X86_64_TLSLD"; case 21: return "R_X86_64_DTPOFF32"; case 22: return "R_X86_64_GOTTPOFF"; case 23: return "R_X86_64_TPOFF32"; case 24: return "R_X86_64_PC64"; case 25: return "R_X86_64_GOTOFF64"; case 26: return "R_X86_64_GOTPC32"; case 27: return "R_X86_64_GOT64"; case 28: return "R_X86_64_GOTPCREL64"; case 29: return "R_X86_64_GOTPC64"; case 30: return "R_X86_64_GOTPLT64"; case 31: return "R_X86_64_PLTOFF64"; case 32: return "R_X86_64_SIZE32"; case 33: return "R_X86_64_SIZE64"; case 34: return "R_X86_64_GOTPC32_TLSDESC"; case 35: return "R_X86_64_TLSDESC_CALL"; case 36: return "R_X86_64_TLSDESC"; case 37: return "R_X86_64_IRELATIVE"; default: return ""; } default: return ""; } } static const char * note_type(const char *name, unsigned int et, unsigned int nt) { if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) && et == ET_CORE) return note_type_linux_core(nt); else if (strcmp(name, "FreeBSD") == 0) if (et == ET_CORE) return note_type_freebsd_core(nt); else return note_type_freebsd(nt); else if (strcmp(name, "GNU") == 0 && et != ET_CORE) return note_type_gnu(nt); else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE) return note_type_netbsd(nt); else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE) return note_type_openbsd(nt); return note_type_unknown(nt); } static const char * note_type_freebsd(unsigned int nt) { switch (nt) { case 1: return "NT_FREEBSD_ABI_TAG"; case 2: return "NT_FREEBSD_NOINIT_TAG"; case 3: return "NT_FREEBSD_ARCH_TAG"; default: return (note_type_unknown(nt)); } } static const char * note_type_freebsd_core(unsigned int nt) { switch (nt) { case 1: return "NT_PRSTATUS"; case 2: return "NT_FPREGSET"; case 3: return "NT_PRPSINFO"; case 7: return "NT_THRMISC"; case 8: return "NT_PROCSTAT_PROC"; case 9: return "NT_PROCSTAT_FILES"; case 10: return "NT_PROCSTAT_VMMAP"; case 11: return "NT_PROCSTAT_GROUPS"; case 12: return "NT_PROCSTAT_UMASK"; case 13: return "NT_PROCSTAT_RLIMIT"; case 14: return "NT_PROCSTAT_OSREL"; case 15: return "NT_PROCSTAT_PSSTRINGS"; case 16: return "NT_PROCSTAT_AUXV"; case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; default: return (note_type_unknown(nt)); } } static const char * note_type_linux_core(unsigned int nt) { switch (nt) { case 1: return "NT_PRSTATUS (Process status)"; case 2: return "NT_FPREGSET (Floating point information)"; case 3: return "NT_PRPSINFO (Process information)"; case 4: return "NT_TASKSTRUCT (Task structure)"; case 6: return "NT_AUXV (Auxiliary vector)"; case 10: return "NT_PSTATUS (Linux process status)"; case 12: return "NT_FPREGS (Linux floating point regset)"; case 13: return "NT_PSINFO (Linux process information)"; case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)"; case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)"; case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)"; case 0x100: return "NT_PPC_VMX (ppc Altivec registers)"; case 0x102: return "NT_PPC_VSX (ppc VSX registers)"; case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)"; case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)"; case 0x301: return "NT_S390_TIMER (s390 timer register)"; case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)"; case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)"; case 0x304: return "NT_S390_CTRS (s390 control registers)"; case 0x305: return "NT_S390_PREFIX (s390 prefix register)"; case 0x400: return "NT_ARM_VFP (arm VFP registers)"; case 0x46494c45UL: return "NT_FILE (mapped files)"; case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)"; case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)"; default: return (note_type_unknown(nt)); } } static const char * note_type_gnu(unsigned int nt) { switch (nt) { case 1: return "NT_GNU_ABI_TAG"; case 2: return "NT_GNU_HWCAP (Hardware capabilities)"; case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))"; case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)"; default: return (note_type_unknown(nt)); } } static const char * note_type_netbsd(unsigned int nt) { switch (nt) { case 1: return "NT_NETBSD_IDENT"; default: return (note_type_unknown(nt)); } } static const char * note_type_openbsd(unsigned int nt) { switch (nt) { case 1: return "NT_OPENBSD_IDENT"; default: return (note_type_unknown(nt)); } } static const char * note_type_unknown(unsigned int nt) { static char s_nt[32]; snprintf(s_nt, sizeof(s_nt), nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt); return (s_nt); } static struct { const char *name; int value; } l_flag[] = { {"EXACT_MATCH", LL_EXACT_MATCH}, {"IGNORE_INT_VER", LL_IGNORE_INT_VER}, {"REQUIRE_MINOR", LL_REQUIRE_MINOR}, {"EXPORTS", LL_EXPORTS}, {"DELAY_LOAD", LL_DELAY_LOAD}, {"DELTA", LL_DELTA}, {NULL, 0} }; static struct mips_option mips_exceptions_option[] = { {OEX_PAGE0, "PAGE0"}, {OEX_SMM, "SMM"}, {OEX_PRECISEFP, "PRECISEFP"}, {OEX_DISMISS, "DISMISS"}, {0, NULL} }; static struct mips_option mips_pad_option[] = { {OPAD_PREFIX, "PREFIX"}, {OPAD_POSTFIX, "POSTFIX"}, {OPAD_SYMBOL, "SYMBOL"}, {0, NULL} }; static struct mips_option mips_hwpatch_option[] = { {OHW_R4KEOP, "R4KEOP"}, {OHW_R8KPFETCH, "R8KPFETCH"}, {OHW_R5KEOP, "R5KEOP"}, {OHW_R5KCVTL, "R5KCVTL"}, {0, NULL} }; static struct mips_option mips_hwa_option[] = { {OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"}, {OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"}, {0, NULL} }; static struct mips_option mips_hwo_option[] = { {OHWO0_FIXADE, "FIXADE"}, {0, NULL} }; static const char * option_kind(uint8_t kind) { static char s_kind[32]; switch (kind) { case ODK_NULL: return "NULL"; case ODK_REGINFO: return "REGINFO"; case ODK_EXCEPTIONS: return "EXCEPTIONS"; case ODK_PAD: return "PAD"; case ODK_HWPATCH: return "HWPATCH"; case ODK_FILL: return "FILL"; case ODK_TAGS: return "TAGS"; case ODK_HWAND: return "HWAND"; case ODK_HWOR: return "HWOR"; case ODK_GP_GROUP: return "GP_GROUP"; case ODK_IDENT: return "IDENT"; default: snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind); return (s_kind); } } static const char * top_tag(unsigned int tag) { static char s_top_tag[32]; switch (tag) { case 1: return "File Attributes"; case 2: return "Section Attributes"; case 3: return "Symbol Attributes"; default: snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag); return (s_top_tag); } } static const char * aeabi_cpu_arch(uint64_t arch) { static char s_cpu_arch[32]; switch (arch) { case 0: return "Pre-V4"; case 1: return "ARM v4"; case 2: return "ARM v4T"; case 3: return "ARM v5T"; case 4: return "ARM v5TE"; case 5: return "ARM v5TEJ"; case 6: return "ARM v6"; case 7: return "ARM v6KZ"; case 8: return "ARM v6T2"; case 9: return "ARM v6K"; case 10: return "ARM v7"; case 11: return "ARM v6-M"; case 12: return "ARM v6S-M"; case 13: return "ARM v7E-M"; default: snprintf(s_cpu_arch, sizeof(s_cpu_arch), "Unknown (%ju)", (uintmax_t) arch); return (s_cpu_arch); } } static const char * aeabi_cpu_arch_profile(uint64_t pf) { static char s_arch_profile[32]; switch (pf) { case 0: return "Not applicable"; case 0x41: /* 'A' */ return "Application Profile"; case 0x52: /* 'R' */ return "Real-Time Profile"; case 0x4D: /* 'M' */ return "Microcontroller Profile"; case 0x53: /* 'S' */ return "Application or Real-Time Profile"; default: snprintf(s_arch_profile, sizeof(s_arch_profile), "Unknown (%ju)\n", (uintmax_t) pf); return (s_arch_profile); } } static const char * aeabi_arm_isa(uint64_t ai) { static char s_ai[32]; switch (ai) { case 0: return "No"; case 1: return "Yes"; default: snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n", (uintmax_t) ai); return (s_ai); } } static const char * aeabi_thumb_isa(uint64_t ti) { static char s_ti[32]; switch (ti) { case 0: return "No"; case 1: return "16-bit Thumb"; case 2: return "32-bit Thumb"; default: snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n", (uintmax_t) ti); return (s_ti); } } static const char * aeabi_fp_arch(uint64_t fp) { static char s_fp_arch[32]; switch (fp) { case 0: return "No"; case 1: return "VFPv1"; case 2: return "VFPv2"; case 3: return "VFPv3"; case 4: return "VFPv3-D16"; case 5: return "VFPv4"; case 6: return "VFPv4-D16"; default: snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)", (uintmax_t) fp); return (s_fp_arch); } } static const char * aeabi_wmmx_arch(uint64_t wmmx) { static char s_wmmx[32]; switch (wmmx) { case 0: return "No"; case 1: return "WMMXv1"; case 2: return "WMMXv2"; default: snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)", (uintmax_t) wmmx); return (s_wmmx); } } static const char * aeabi_adv_simd_arch(uint64_t simd) { static char s_simd[32]; switch (simd) { case 0: return "No"; case 1: return "NEONv1"; case 2: return "NEONv2"; default: snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)", (uintmax_t) simd); return (s_simd); } } static const char * aeabi_pcs_config(uint64_t pcs) { static char s_pcs[32]; switch (pcs) { case 0: return "None"; case 1: return "Bare platform"; case 2: return "Linux"; case 3: return "Linux DSO"; case 4: return "Palm OS 2004"; case 5: return "Palm OS (future)"; case 6: return "Symbian OS 2004"; case 7: return "Symbian OS (future)"; default: snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)", (uintmax_t) pcs); return (s_pcs); } } static const char * aeabi_pcs_r9(uint64_t r9) { static char s_r9[32]; switch (r9) { case 0: return "V6"; case 1: return "SB"; case 2: return "TLS pointer"; case 3: return "Unused"; default: snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9); return (s_r9); } } static const char * aeabi_pcs_rw(uint64_t rw) { static char s_rw[32]; switch (rw) { case 0: return "Absolute"; case 1: return "PC-relative"; case 2: return "SB-relative"; case 3: return "None"; default: snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw); return (s_rw); } } static const char * aeabi_pcs_ro(uint64_t ro) { static char s_ro[32]; switch (ro) { case 0: return "Absolute"; case 1: return "PC-relative"; case 2: return "None"; default: snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro); return (s_ro); } } static const char * aeabi_pcs_got(uint64_t got) { static char s_got[32]; switch (got) { case 0: return "None"; case 1: return "direct"; case 2: return "indirect via GOT"; default: snprintf(s_got, sizeof(s_got), "Unknown (%ju)", (uintmax_t) got); return (s_got); } } static const char * aeabi_pcs_wchar_t(uint64_t wt) { static char s_wt[32]; switch (wt) { case 0: return "None"; case 2: return "wchar_t size 2"; case 4: return "wchar_t size 4"; default: snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt); return (s_wt); } } static const char * aeabi_enum_size(uint64_t es) { static char s_es[32]; switch (es) { case 0: return "None"; case 1: return "smallest"; case 2: return "32-bit"; case 3: return "visible 32-bit"; default: snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es); return (s_es); } } static const char * aeabi_align_needed(uint64_t an) { static char s_align_n[64]; switch (an) { case 0: return "No"; case 1: return "8-byte align"; case 2: return "4-byte align"; case 3: return "Reserved"; default: if (an >= 4 && an <= 12) snprintf(s_align_n, sizeof(s_align_n), "8-byte align" " and up to 2^%ju-byte extended align", (uintmax_t) an); else snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)", (uintmax_t) an); return (s_align_n); } } static const char * aeabi_align_preserved(uint64_t ap) { static char s_align_p[128]; switch (ap) { case 0: return "No"; case 1: return "8-byte align"; case 2: return "8-byte align and SP % 8 == 0"; case 3: return "Reserved"; default: if (ap >= 4 && ap <= 12) snprintf(s_align_p, sizeof(s_align_p), "8-byte align" " and SP %% 8 == 0 and up to 2^%ju-byte extended" " align", (uintmax_t) ap); else snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)", (uintmax_t) ap); return (s_align_p); } } static const char * aeabi_fp_rounding(uint64_t fr) { static char s_fp_r[32]; switch (fr) { case 0: return "Unused"; case 1: return "Needed"; default: snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)", (uintmax_t) fr); return (s_fp_r); } } static const char * aeabi_fp_denormal(uint64_t fd) { static char s_fp_d[32]; switch (fd) { case 0: return "Unused"; case 1: return "Needed"; case 2: return "Sign Only"; default: snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)", (uintmax_t) fd); return (s_fp_d); } } static const char * aeabi_fp_exceptions(uint64_t fe) { static char s_fp_e[32]; switch (fe) { case 0: return "Unused"; case 1: return "Needed"; default: snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)", (uintmax_t) fe); return (s_fp_e); } } static const char * aeabi_fp_user_exceptions(uint64_t fu) { static char s_fp_u[32]; switch (fu) { case 0: return "Unused"; case 1: return "Needed"; default: snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)", (uintmax_t) fu); return (s_fp_u); } } static const char * aeabi_fp_number_model(uint64_t fn) { static char s_fp_n[32]; switch (fn) { case 0: return "Unused"; case 1: return "IEEE 754 normal"; case 2: return "RTABI"; case 3: return "IEEE 754"; default: snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)", (uintmax_t) fn); return (s_fp_n); } } static const char * aeabi_fp_16bit_format(uint64_t fp16) { static char s_fp_16[64]; switch (fp16) { case 0: return "None"; case 1: return "IEEE 754"; case 2: return "VFPv3/Advanced SIMD (alternative format)"; default: snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)", (uintmax_t) fp16); return (s_fp_16); } } static const char * aeabi_mpext(uint64_t mp) { static char s_mp[32]; switch (mp) { case 0: return "Not allowed"; case 1: return "Allowed"; default: snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)", (uintmax_t) mp); return (s_mp); } } static const char * aeabi_div(uint64_t du) { static char s_du[32]; switch (du) { case 0: return "Yes (V7-R/V7-M)"; case 1: return "No"; case 2: return "Yes (V7-A)"; default: snprintf(s_du, sizeof(s_du), "Unknown (%ju)", (uintmax_t) du); return (s_du); } } static const char * aeabi_t2ee(uint64_t t2ee) { static char s_t2ee[32]; switch (t2ee) { case 0: return "Not allowed"; case 1: return "Allowed"; default: snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)", (uintmax_t) t2ee); return (s_t2ee); } } static const char * aeabi_hardfp(uint64_t hfp) { static char s_hfp[32]; switch (hfp) { case 0: return "Tag_FP_arch"; case 1: return "only SP"; case 2: return "only DP"; case 3: return "both SP and DP"; default: snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)", (uintmax_t) hfp); return (s_hfp); } } static const char * aeabi_vfp_args(uint64_t va) { static char s_va[32]; switch (va) { case 0: return "AAPCS (base variant)"; case 1: return "AAPCS (VFP variant)"; case 2: return "toolchain-specific"; default: snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va); return (s_va); } } static const char * aeabi_wmmx_args(uint64_t wa) { static char s_wa[32]; switch (wa) { case 0: return "AAPCS (base variant)"; case 1: return "Intel WMMX"; case 2: return "toolchain-specific"; default: snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa); return (s_wa); } } static const char * aeabi_unaligned_access(uint64_t ua) { static char s_ua[32]; switch (ua) { case 0: return "Not allowed"; case 1: return "Allowed"; default: snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua); return (s_ua); } } static const char * aeabi_fp_hpext(uint64_t fh) { static char s_fh[32]; switch (fh) { case 0: return "Not allowed"; case 1: return "Allowed"; default: snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh); return (s_fh); } } static const char * aeabi_optm_goal(uint64_t og) { static char s_og[32]; switch (og) { case 0: return "None"; case 1: return "Speed"; case 2: return "Speed aggressive"; case 3: return "Space"; case 4: return "Space aggressive"; case 5: return "Debugging"; case 6: return "Best Debugging"; default: snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og); return (s_og); } } static const char * aeabi_fp_optm_goal(uint64_t fog) { static char s_fog[32]; switch (fog) { case 0: return "None"; case 1: return "Speed"; case 2: return "Speed aggressive"; case 3: return "Space"; case 4: return "Space aggressive"; case 5: return "Accurary"; case 6: return "Best Accurary"; default: snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)", (uintmax_t) fog); return (s_fog); } } static const char * aeabi_virtual(uint64_t vt) { static char s_virtual[64]; switch (vt) { case 0: return "No"; case 1: return "TrustZone"; case 2: return "Virtualization extension"; case 3: return "TrustZone and virtualization extension"; default: snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)", (uintmax_t) vt); return (s_virtual); } } static struct { uint64_t tag; const char *s_tag; const char *(*get_desc)(uint64_t val); } aeabi_tags[] = { {4, "Tag_CPU_raw_name", NULL}, {5, "Tag_CPU_name", NULL}, {6, "Tag_CPU_arch", aeabi_cpu_arch}, {7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile}, {8, "Tag_ARM_ISA_use", aeabi_arm_isa}, {9, "Tag_THUMB_ISA_use", aeabi_thumb_isa}, {10, "Tag_FP_arch", aeabi_fp_arch}, {11, "Tag_WMMX_arch", aeabi_wmmx_arch}, {12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch}, {13, "Tag_PCS_config", aeabi_pcs_config}, {14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9}, {15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw}, {16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro}, {17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got}, {18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t}, {19, "Tag_ABI_FP_rounding", aeabi_fp_rounding}, {20, "Tag_ABI_FP_denormal", aeabi_fp_denormal}, {21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions}, {22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions}, {23, "Tag_ABI_FP_number_model", aeabi_fp_number_model}, {24, "Tag_ABI_align_needed", aeabi_align_needed}, {25, "Tag_ABI_align_preserved", aeabi_align_preserved}, {26, "Tag_ABI_enum_size", aeabi_enum_size}, {27, "Tag_ABI_HardFP_use", aeabi_hardfp}, {28, "Tag_ABI_VFP_args", aeabi_vfp_args}, {29, "Tag_ABI_WMMX_args", aeabi_wmmx_args}, {30, "Tag_ABI_optimization_goals", aeabi_optm_goal}, {31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal}, {32, "Tag_compatibility", NULL}, {34, "Tag_CPU_unaligned_access", aeabi_unaligned_access}, {36, "Tag_FP_HP_extension", aeabi_fp_hpext}, {38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format}, {42, "Tag_MPextension_use", aeabi_mpext}, {44, "Tag_DIV_use", aeabi_div}, {64, "Tag_nodefaults", NULL}, {65, "Tag_also_compatible_with", NULL}, {66, "Tag_T2EE_use", aeabi_t2ee}, {67, "Tag_conformance", NULL}, {68, "Tag_Virtualization_use", aeabi_virtual}, {70, "Tag_MPextension_use", aeabi_mpext}, }; static const char * mips_abi_fp(uint64_t fp) { static char s_mips_abi_fp[64]; switch (fp) { case 0: return "N/A"; case 1: return "Hard float (double precision)"; case 2: return "Hard float (single precision)"; case 3: return "Soft float"; case 4: return "64-bit float (-mips32r2 -mfp64)"; default: snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)", (uintmax_t) fp); return (s_mips_abi_fp); } } static const char * ppc_abi_fp(uint64_t fp) { static char s_ppc_abi_fp[64]; switch (fp) { case 0: return "N/A"; case 1: return "Hard float (double precision)"; case 2: return "Soft float"; case 3: return "Hard float (single precision)"; default: snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)", (uintmax_t) fp); return (s_ppc_abi_fp); } } static const char * ppc_abi_vector(uint64_t vec) { static char s_vec[64]; switch (vec) { case 0: return "N/A"; case 1: return "Generic purpose registers"; case 2: return "AltiVec registers"; case 3: return "SPE registers"; default: snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec); return (s_vec); } } static const char * dwarf_reg(unsigned int mach, unsigned int reg) { switch (mach) { case EM_386: case EM_IAMCU: switch (reg) { case 0: return "eax"; case 1: return "ecx"; case 2: return "edx"; case 3: return "ebx"; case 4: return "esp"; case 5: return "ebp"; case 6: return "esi"; case 7: return "edi"; case 8: return "eip"; case 9: return "eflags"; case 11: return "st0"; case 12: return "st1"; case 13: return "st2"; case 14: return "st3"; case 15: return "st4"; case 16: return "st5"; case 17: return "st6"; case 18: return "st7"; case 21: return "xmm0"; case 22: return "xmm1"; case 23: return "xmm2"; case 24: return "xmm3"; case 25: return "xmm4"; case 26: return "xmm5"; case 27: return "xmm6"; case 28: return "xmm7"; case 29: return "mm0"; case 30: return "mm1"; case 31: return "mm2"; case 32: return "mm3"; case 33: return "mm4"; case 34: return "mm5"; case 35: return "mm6"; case 36: return "mm7"; case 37: return "fcw"; case 38: return "fsw"; case 39: return "mxcsr"; case 40: return "es"; case 41: return "cs"; case 42: return "ss"; case 43: return "ds"; case 44: return "fs"; case 45: return "gs"; case 48: return "tr"; case 49: return "ldtr"; default: return (NULL); } case EM_X86_64: switch (reg) { case 0: return "rax"; case 1: return "rdx"; case 2: return "rcx"; case 3: return "rbx"; case 4: return "rsi"; case 5: return "rdi"; case 6: return "rbp"; case 7: return "rsp"; case 16: return "rip"; case 17: return "xmm0"; case 18: return "xmm1"; case 19: return "xmm2"; case 20: return "xmm3"; case 21: return "xmm4"; case 22: return "xmm5"; case 23: return "xmm6"; case 24: return "xmm7"; case 25: return "xmm8"; case 26: return "xmm9"; case 27: return "xmm10"; case 28: return "xmm11"; case 29: return "xmm12"; case 30: return "xmm13"; case 31: return "xmm14"; case 32: return "xmm15"; case 33: return "st0"; case 34: return "st1"; case 35: return "st2"; case 36: return "st3"; case 37: return "st4"; case 38: return "st5"; case 39: return "st6"; case 40: return "st7"; case 41: return "mm0"; case 42: return "mm1"; case 43: return "mm2"; case 44: return "mm3"; case 45: return "mm4"; case 46: return "mm5"; case 47: return "mm6"; case 48: return "mm7"; case 49: return "rflags"; case 50: return "es"; case 51: return "cs"; case 52: return "ss"; case 53: return "ds"; case 54: return "fs"; case 55: return "gs"; case 58: return "fs.base"; case 59: return "gs.base"; case 62: return "tr"; case 63: return "ldtr"; case 64: return "mxcsr"; case 65: return "fcw"; case 66: return "fsw"; default: return (NULL); } default: return (NULL); } } static void dump_ehdr(struct readelf *re) { size_t shnum, shstrndx; int i; printf("ELF Header:\n"); /* e_ident[]. */ printf(" Magic: "); for (i = 0; i < EI_NIDENT; i++) printf("%.2x ", re->ehdr.e_ident[i]); putchar('\n'); /* EI_CLASS. */ printf("%-37s%s\n", " Class:", elf_class(re->ehdr.e_ident[EI_CLASS])); /* EI_DATA. */ printf("%-37s%s\n", " Data:", elf_endian(re->ehdr.e_ident[EI_DATA])); /* EI_VERSION. */ printf("%-37s%d %s\n", " Version:", re->ehdr.e_ident[EI_VERSION], elf_ver(re->ehdr.e_ident[EI_VERSION])); /* EI_OSABI. */ printf("%-37s%s\n", " OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI])); /* EI_ABIVERSION. */ printf("%-37s%d\n", " ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]); /* e_type. */ printf("%-37s%s\n", " Type:", elf_type(re->ehdr.e_type)); /* e_machine. */ printf("%-37s%s\n", " Machine:", elf_machine(re->ehdr.e_machine)); /* e_version. */ printf("%-37s%#x\n", " Version:", re->ehdr.e_version); /* e_entry. */ printf("%-37s%#jx\n", " Entry point address:", (uintmax_t)re->ehdr.e_entry); /* e_phoff. */ printf("%-37s%ju (bytes into file)\n", " Start of program headers:", (uintmax_t)re->ehdr.e_phoff); /* e_shoff. */ printf("%-37s%ju (bytes into file)\n", " Start of section headers:", (uintmax_t)re->ehdr.e_shoff); /* e_flags. */ printf("%-37s%#x", " Flags:", re->ehdr.e_flags); dump_eflags(re, re->ehdr.e_flags); putchar('\n'); /* e_ehsize. */ printf("%-37s%u (bytes)\n", " Size of this header:", re->ehdr.e_ehsize); /* e_phentsize. */ printf("%-37s%u (bytes)\n", " Size of program headers:", re->ehdr.e_phentsize); /* e_phnum. */ printf("%-37s%u\n", " Number of program headers:", re->ehdr.e_phnum); /* e_shentsize. */ printf("%-37s%u (bytes)\n", " Size of section headers:", re->ehdr.e_shentsize); /* e_shnum. */ printf("%-37s%u", " Number of section headers:", re->ehdr.e_shnum); if (re->ehdr.e_shnum == SHN_UNDEF) { /* Extended section numbering is in use. */ if (elf_getshnum(re->elf, &shnum)) printf(" (%ju)", (uintmax_t)shnum); } putchar('\n'); /* e_shstrndx. */ printf("%-37s%u", " Section header string table index:", re->ehdr.e_shstrndx); if (re->ehdr.e_shstrndx == SHN_XINDEX) { /* Extended section numbering is in use. */ if (elf_getshstrndx(re->elf, &shstrndx)) printf(" (%ju)", (uintmax_t)shstrndx); } putchar('\n'); } static void dump_eflags(struct readelf *re, uint64_t e_flags) { struct eflags_desc *edesc; int arm_eabi; edesc = NULL; switch (re->ehdr.e_machine) { case EM_ARM: arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24; if (arm_eabi == 0) printf(", GNU EABI"); else if (arm_eabi <= 5) printf(", Version%d EABI", arm_eabi); edesc = arm_eflags_desc; break; case EM_MIPS: case EM_MIPS_RS3_LE: switch ((e_flags & EF_MIPS_ARCH) >> 28) { case 0: printf(", mips1"); break; case 1: printf(", mips2"); break; case 2: printf(", mips3"); break; case 3: printf(", mips4"); break; case 4: printf(", mips5"); break; case 5: printf(", mips32"); break; case 6: printf(", mips64"); break; case 7: printf(", mips32r2"); break; case 8: printf(", mips64r2"); break; default: break; } switch ((e_flags & 0x00FF0000) >> 16) { case 0x81: printf(", 3900"); break; case 0x82: printf(", 4010"); break; case 0x83: printf(", 4100"); break; case 0x85: printf(", 4650"); break; case 0x87: printf(", 4120"); break; case 0x88: printf(", 4111"); break; case 0x8a: printf(", sb1"); break; case 0x8b: printf(", octeon"); break; case 0x8c: printf(", xlr"); break; case 0x91: printf(", 5400"); break; case 0x98: printf(", 5500"); break; case 0x99: printf(", 9000"); break; case 0xa0: printf(", loongson-2e"); break; case 0xa1: printf(", loongson-2f"); break; default: break; } switch ((e_flags & 0x0000F000) >> 12) { case 1: printf(", o32"); break; case 2: printf(", o64"); break; case 3: printf(", eabi32"); break; case 4: printf(", eabi64"); break; default: break; } edesc = mips_eflags_desc; break; case EM_PPC: case EM_PPC64: edesc = powerpc_eflags_desc; break; case EM_SPARC: case EM_SPARC32PLUS: case EM_SPARCV9: switch ((e_flags & EF_SPARCV9_MM)) { case EF_SPARCV9_TSO: printf(", tso"); break; case EF_SPARCV9_PSO: printf(", pso"); break; case EF_SPARCV9_MM: printf(", rmo"); break; default: break; } edesc = sparc_eflags_desc; break; default: break; } if (edesc != NULL) { while (edesc->desc != NULL) { if (e_flags & edesc->flag) printf(", %s", edesc->desc); edesc++; } } } static void dump_phdr(struct readelf *re) { const char *rawfile; GElf_Phdr phdr; size_t phnum, size; int i, j; #define PH_HDR "Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz", \ "MemSiz", "Flg", "Align" #define PH_CT phdr_type(phdr.p_type), (uintmax_t)phdr.p_offset, \ (uintmax_t)phdr.p_vaddr, (uintmax_t)phdr.p_paddr, \ (uintmax_t)phdr.p_filesz, (uintmax_t)phdr.p_memsz, \ phdr.p_flags & PF_R ? 'R' : ' ', \ phdr.p_flags & PF_W ? 'W' : ' ', \ phdr.p_flags & PF_X ? 'E' : ' ', \ (uintmax_t)phdr.p_align if (elf_getphnum(re->elf, &phnum) == 0) { warnx("elf_getphnum failed: %s", elf_errmsg(-1)); return; } if (phnum == 0) { printf("\nThere are no program headers in this file.\n"); return; } printf("\nElf file type is %s", elf_type(re->ehdr.e_type)); printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry); printf("There are %ju program headers, starting at offset %ju\n", (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff); /* Dump program headers. */ printf("\nProgram Headers:\n"); if (re->ec == ELFCLASS32) printf(" %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR); else if (re->options & RE_WW) printf(" %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR); else printf(" %-15s%-19s%-19s%s\n %-19s%-20s" "%-7s%s\n", PH_HDR); for (i = 0; (size_t) i < phnum; i++) { if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); continue; } /* TODO: Add arch-specific segment type dump. */ if (re->ec == ELFCLASS32) printf(" %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx " "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT); else if (re->options & RE_WW) printf(" %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx " "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT); else printf(" %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n" " 0x%16.16jx 0x%16.16jx %c%c%c" " %#jx\n", PH_CT); if (phdr.p_type == PT_INTERP) { if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) { warnx("elf_rawfile failed: %s", elf_errmsg(-1)); continue; } if (phdr.p_offset >= size) { warnx("invalid program header offset"); continue; } printf(" [Requesting program interpreter: %s]\n", rawfile + phdr.p_offset); } } /* Dump section to segment mapping. */ if (re->shnum == 0) return; printf("\n Section to Segment mapping:\n"); printf(" Segment Sections...\n"); for (i = 0; (size_t)i < phnum; i++) { if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); continue; } printf(" %2.2d ", i); /* skip NULL section. */ for (j = 1; (size_t)j < re->shnum; j++) if (re->sl[j].off >= phdr.p_offset && re->sl[j].off + re->sl[j].sz <= phdr.p_offset + phdr.p_memsz) printf("%s ", re->sl[j].name); printf("\n"); } #undef PH_HDR #undef PH_CT } static char * section_flags(struct readelf *re, struct section *s) { #define BUF_SZ 256 static char buf[BUF_SZ]; int i, p, nb; p = 0; nb = re->ec == ELFCLASS32 ? 8 : 16; if (re->options & RE_T) { snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb, (uintmax_t)s->flags); p += nb + 4; } for (i = 0; section_flag[i].ln != NULL; i++) { if ((s->flags & section_flag[i].value) == 0) continue; if (re->options & RE_T) { snprintf(&buf[p], BUF_SZ - p, "%s, ", section_flag[i].ln); p += strlen(section_flag[i].ln) + 2; } else buf[p++] = section_flag[i].sn; } if (re->options & RE_T && p > nb + 4) p -= 2; buf[p] = '\0'; return (buf); } static void dump_shdr(struct readelf *re) { struct section *s; int i; #define S_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ "Flg", "Lk", "Inf", "Al" #define S_HDRL "[Nr] Name", "Type", "Address", "Offset", "Size", \ "EntSize", "Flags", "Link", "Info", "Align" #define ST_HDR "[Nr] Name", "Type", "Addr", "Off", "Size", "ES", \ "Lk", "Inf", "Al", "Flags" #define ST_HDRL "[Nr] Name", "Type", "Address", "Offset", "Link", \ "Size", "EntSize", "Info", "Align", "Flags" #define S_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ (uintmax_t)s->entsize, section_flags(re, s), \ s->link, s->info, (uintmax_t)s->align #define ST_CT i, s->name, section_type(re->ehdr.e_machine, s->type), \ (uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\ (uintmax_t)s->entsize, s->link, s->info, \ (uintmax_t)s->align, section_flags(re, s) #define ST_CTL i, s->name, section_type(re->ehdr.e_machine, s->type), \ (uintmax_t)s->addr, (uintmax_t)s->off, s->link, \ (uintmax_t)s->sz, (uintmax_t)s->entsize, s->info, \ (uintmax_t)s->align, section_flags(re, s) if (re->shnum == 0) { printf("\nThere are no sections in this file.\n"); return; } printf("There are %ju section headers, starting at offset 0x%jx:\n", (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff); printf("\nSection Headers:\n"); if (re->ec == ELFCLASS32) { if (re->options & RE_T) printf(" %s\n %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n" "%12s\n", ST_HDR); else printf(" %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", S_HDR); } else if (re->options & RE_WW) { if (re->options & RE_T) printf(" %s\n %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n" "%12s\n", ST_HDR); else printf(" %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n", S_HDR); } else { if (re->options & RE_T) printf(" %s\n %-18s%-17s%-18s%s\n %-18s" "%-17s%-18s%s\n%12s\n", ST_HDRL); else printf(" %-23s%-17s%-18s%s\n %-18s%-17s%-7s%" "-6s%-6s%s\n", S_HDRL); } for (i = 0; (size_t)i < re->shnum; i++) { s = &re->sl[i]; if (re->ec == ELFCLASS32) { if (re->options & RE_T) printf(" [%2d] %s\n %-15.15s %8.8jx" " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" " %s\n", ST_CT); else printf(" [%2d] %-17.17s %-15.15s %8.8jx" " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", S_CT); } else if (re->options & RE_WW) { if (re->options & RE_T) printf(" [%2d] %s\n %-15.15s %16.16jx" " %6.6jx %6.6jx %2.2jx %2u %3u %2ju\n" " %s\n", ST_CT); else printf(" [%2d] %-17.17s %-15.15s %16.16jx" " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n", S_CT); } else { if (re->options & RE_T) printf(" [%2d] %s\n %-15.15s %16.16jx" " %16.16jx %u\n %16.16jx %16.16jx" " %-16u %ju\n %s\n", ST_CTL); else printf(" [%2d] %-17.17s %-15.15s %16.16jx" " %8.8jx\n %16.16jx %16.16jx " "%3s %2u %3u %ju\n", S_CT); } } if ((re->options & RE_T) == 0) printf("Key to Flags:\n W (write), A (alloc)," " X (execute), M (merge), S (strings)\n" " I (info), L (link order), G (group), x (unknown)\n" " O (extra OS processing required)" " o (OS specific), p (processor specific)\n"); #undef S_HDR #undef S_HDRL #undef ST_HDR #undef ST_HDRL #undef S_CT #undef ST_CT #undef ST_CTL } /* * Return number of entries in the given section. We'd prefer ent_count be a * size_t *, but libelf APIs already use int for section indices. */ static int get_ent_count(struct section *s, int *ent_count) { if (s->entsize == 0) { warnx("section %s has entry size 0", s->name); return (0); } else if (s->sz / s->entsize > INT_MAX) { warnx("section %s has invalid section count", s->name); return (0); } *ent_count = (int)(s->sz / s->entsize); return (1); } static void dump_dynamic(struct readelf *re) { GElf_Dyn dyn; Elf_Data *d; struct section *s; int elferr, i, is_dynamic, j, jmax, nentries; is_dynamic = 0; for (i = 0; (size_t)i < re->shnum; i++) { s = &re->sl[i]; if (s->type != SHT_DYNAMIC) continue; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); continue; } if (d->d_size <= 0) continue; is_dynamic = 1; /* Determine the actual number of table entries. */ nentries = 0; if (!get_ent_count(s, &jmax)) continue; for (j = 0; j < jmax; j++) { if (gelf_getdyn(d, j, &dyn) != &dyn) { warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); continue; } nentries ++; if (dyn.d_tag == DT_NULL) break; } printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off); printf(" contains %u entries:\n", nentries); if (re->ec == ELFCLASS32) printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value"); else printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value"); for (j = 0; j < nentries; j++) { if (gelf_getdyn(d, j, &dyn) != &dyn) continue; /* Dump dynamic entry type. */ if (re->ec == ELFCLASS32) printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag); else printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag); printf(" %-20s", dt_type(re->ehdr.e_machine, dyn.d_tag)); /* Dump dynamic entry value. */ dump_dyn_val(re, &dyn, s->link); } } if (!is_dynamic) printf("\nThere is no dynamic section in this file.\n"); } static char * timestamp(time_t ti) { static char ts[32]; struct tm *t; t = gmtime(&ti); snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); return (ts); } static const char * dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val) { const char *name; if (stab == SHN_UNDEF) name = "ERROR"; else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) { (void) elf_errno(); /* clear error */ name = "ERROR"; } return (name); } static void dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) { const char *name; switch (re->ehdr.e_machine) { case EM_MIPS: case EM_MIPS_RS3_LE: switch (dyn->d_tag) { case DT_MIPS_RLD_VERSION: case DT_MIPS_LOCAL_GOTNO: case DT_MIPS_CONFLICTNO: case DT_MIPS_LIBLISTNO: case DT_MIPS_SYMTABNO: case DT_MIPS_UNREFEXTNO: case DT_MIPS_GOTSYM: case DT_MIPS_HIPAGENO: case DT_MIPS_DELTA_CLASS_NO: case DT_MIPS_DELTA_INSTANCE_NO: case DT_MIPS_DELTA_RELOC_NO: case DT_MIPS_DELTA_SYM_NO: case DT_MIPS_DELTA_CLASSSYM_NO: case DT_MIPS_LOCALPAGE_GOTIDX: case DT_MIPS_LOCAL_GOTIDX: case DT_MIPS_HIDDEN_GOTIDX: case DT_MIPS_PROTECTED_GOTIDX: printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); break; case DT_MIPS_ICHECKSUM: case DT_MIPS_FLAGS: case DT_MIPS_BASE_ADDRESS: case DT_MIPS_CONFLICT: case DT_MIPS_LIBLIST: case DT_MIPS_RLD_MAP: case DT_MIPS_DELTA_CLASS: case DT_MIPS_DELTA_INSTANCE: case DT_MIPS_DELTA_RELOC: case DT_MIPS_DELTA_SYM: case DT_MIPS_DELTA_CLASSSYM: case DT_MIPS_CXX_FLAGS: case DT_MIPS_PIXIE_INIT: case DT_MIPS_SYMBOL_LIB: case DT_MIPS_OPTIONS: case DT_MIPS_INTERFACE: case DT_MIPS_DYNSTR_ALIGN: case DT_MIPS_INTERFACE_SIZE: case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: case DT_MIPS_COMPACT_SIZE: case DT_MIPS_GP_VALUE: case DT_MIPS_AUX_DYNAMIC: case DT_MIPS_PLTGOT: case DT_MIPS_RLD_OBJ_UPDATE: case DT_MIPS_RWPLT: printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); break; case DT_MIPS_IVERSION: case DT_MIPS_PERF_SUFFIX: case DT_AUXILIARY: case DT_FILTER: name = dyn_str(re, stab, dyn->d_un.d_val); printf(" %s\n", name); break; case DT_MIPS_TIME_STAMP: printf(" %s\n", timestamp(dyn->d_un.d_val)); break; } break; default: printf("\n"); break; } } static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab) { const char *name; if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC) { dump_arch_dyn_val(re, dyn, stab); return; } /* These entry values are index into the string table. */ name = NULL; if (dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME || dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH) name = dyn_str(re, stab, dyn->d_un.d_val); switch(dyn->d_tag) { case DT_NULL: case DT_PLTGOT: case DT_HASH: case DT_STRTAB: case DT_SYMTAB: case DT_RELA: case DT_INIT: case DT_SYMBOLIC: case DT_REL: case DT_DEBUG: case DT_TEXTREL: case DT_JMPREL: case DT_FINI: case DT_VERDEF: case DT_VERNEED: case DT_VERSYM: case DT_GNU_HASH: case DT_GNU_LIBLIST: case DT_GNU_CONFLICT: printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val); break; case DT_PLTRELSZ: case DT_RELASZ: case DT_RELAENT: case DT_STRSZ: case DT_SYMENT: case DT_RELSZ: case DT_RELENT: case DT_INIT_ARRAYSZ: case DT_FINI_ARRAYSZ: case DT_GNU_CONFLICTSZ: case DT_GNU_LIBLISTSZ: printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val); break; case DT_RELACOUNT: case DT_RELCOUNT: case DT_VERDEFNUM: case DT_VERNEEDNUM: printf(" %ju\n", (uintmax_t) dyn->d_un.d_val); break; case DT_NEEDED: printf(" Shared library: [%s]\n", name); break; case DT_SONAME: printf(" Library soname: [%s]\n", name); break; case DT_RPATH: printf(" Library rpath: [%s]\n", name); break; case DT_RUNPATH: printf(" Library runpath: [%s]\n", name); break; case DT_PLTREL: printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val)); break; case DT_GNU_PRELINKED: printf(" %s\n", timestamp(dyn->d_un.d_val)); break; default: printf("\n"); } } static void dump_rel(struct readelf *re, struct section *s, Elf_Data *d) { GElf_Rel r; const char *symname; uint64_t symval; int i, len; #define REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name" #define REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ (uintmax_t)symval, symname #define REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ (uintmax_t)symval, symname printf("\nRelocation section (%s):\n", s->name); if (re->ec == ELFCLASS32) printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR); else { if (re->options & RE_WW) printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR); else printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR); } assert(d->d_size == s->sz); if (!get_ent_count(s, &len)) return; for (i = 0; i < len; i++) { if (gelf_getrel(d, i, &r) != &r) { warnx("gelf_getrel failed: %s", elf_errmsg(-1)); continue; } if (s->link >= re->shnum) { warnx("invalid section link index %u", s->link); continue; } symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); if (re->ec == ELFCLASS32) { r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), ELF64_R_TYPE(r.r_info)); printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32); } else { if (re->options & RE_WW) printf("%16.16jx %16.16jx %-24.24s" " %16.16jx %s\n", REL_CT64); else printf("%12.12jx %12.12jx %-19.19s" " %16.16jx %s\n", REL_CT64); } } #undef REL_HDR #undef REL_CT } static void dump_rela(struct readelf *re, struct section *s, Elf_Data *d) { GElf_Rela r; const char *symname; uint64_t symval; int i, len; #define RELA_HDR "r_offset", "r_info", "r_type", "st_value", \ "st_name + r_addend" #define RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ r_type(re->ehdr.e_machine, ELF32_R_TYPE(r.r_info)), \ (uintmax_t)symval, symname #define RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info, \ r_type(re->ehdr.e_machine, ELF64_R_TYPE(r.r_info)), \ (uintmax_t)symval, symname printf("\nRelocation section with addend (%s):\n", s->name); if (re->ec == ELFCLASS32) printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR); else { if (re->options & RE_WW) printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR); else printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR); } assert(d->d_size == s->sz); if (!get_ent_count(s, &len)) return; for (i = 0; i < len; i++) { if (gelf_getrela(d, i, &r) != &r) { warnx("gelf_getrel failed: %s", elf_errmsg(-1)); continue; } if (s->link >= re->shnum) { warnx("invalid section link index %u", s->link); continue; } symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info)); symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info)); if (re->ec == ELFCLASS32) { r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info), ELF64_R_TYPE(r.r_info)); printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32); printf(" + %x\n", (uint32_t) r.r_addend); } else { if (re->options & RE_WW) printf("%16.16jx %16.16jx %-24.24s" " %16.16jx %s", RELA_CT64); else printf("%12.12jx %12.12jx %-19.19s" " %16.16jx %s", RELA_CT64); printf(" + %jx\n", (uintmax_t) r.r_addend); } } #undef RELA_HDR #undef RELA_CT } static void dump_reloc(struct readelf *re) { struct section *s; Elf_Data *d; int i, elferr; for (i = 0; (size_t)i < re->shnum; i++) { s = &re->sl[i]; if (s->type == SHT_REL || s->type == SHT_RELA) { (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } if (s->type == SHT_REL) dump_rel(re, s, d); else dump_rela(re, s, d); } } } static void dump_symtab(struct readelf *re, int i) { struct section *s; Elf_Data *d; GElf_Sym sym; const char *name; int elferr, stab, j, len; s = &re->sl[i]; stab = s->link; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size <= 0) return; if (!get_ent_count(s, &len)) return; printf("Symbol table (%s)", s->name); printf(" contains %d entries:\n", len); printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type", "Bind", "Vis", "Ndx", "Name"); for (j = 0; j < len; j++) { if (gelf_getsym(d, j, &sym) != &sym) { warnx("gelf_getsym failed: %s", elf_errmsg(-1)); continue; } printf("%6d:", j); printf(" %16.16jx", (uintmax_t)sym.st_value); printf(" %5ju", sym.st_size); printf(" %-7s", st_type(GELF_ST_TYPE(sym.st_info))); printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info))); printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other))); printf(" %3s", st_shndx(sym.st_shndx)); if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL) printf(" %s", name); /* Append symbol version string for SHT_DYNSYM symbol table. */ if (s->type == SHT_DYNSYM && re->ver != NULL && re->vs != NULL && re->vs[j] > 1) { if (re->vs[j] & 0x8000 || re->ver[re->vs[j] & 0x7fff].type == 0) printf("@%s (%d)", re->ver[re->vs[j] & 0x7fff].name, re->vs[j] & 0x7fff); else printf("@@%s (%d)", re->ver[re->vs[j]].name, re->vs[j]); } putchar('\n'); } } static void dump_symtabs(struct readelf *re) { GElf_Dyn dyn; Elf_Data *d; struct section *s; uint64_t dyn_off; int elferr, i, len; /* * If -D is specified, only dump the symbol table specified by * the DT_SYMTAB entry in the .dynamic section. */ dyn_off = 0; if (re->options & RE_DD) { s = NULL; for (i = 0; (size_t)i < re->shnum; i++) if (re->sl[i].type == SHT_DYNAMIC) { s = &re->sl[i]; break; } if (s == NULL) return; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_size <= 0) return; if (!get_ent_count(s, &len)) return; for (i = 0; i < len; i++) { if (gelf_getdyn(d, i, &dyn) != &dyn) { warnx("gelf_getdyn failed: %s", elf_errmsg(-1)); continue; } if (dyn.d_tag == DT_SYMTAB) { dyn_off = dyn.d_un.d_val; break; } } } /* Find and dump symbol tables. */ for (i = 0; (size_t)i < re->shnum; i++) { s = &re->sl[i]; if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) { if (re->options & RE_DD) { if (dyn_off == s->addr) { dump_symtab(re, i); break; } } else dump_symtab(re, i); } } } static void dump_svr4_hash(struct section *s) { Elf_Data *d; uint32_t *buf; uint32_t nbucket, nchain; uint32_t *bucket, *chain; uint32_t *bl, *c, maxl, total; int elferr, i, j; /* Read and parse the content of .hash section. */ (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size < 2 * sizeof(uint32_t)) { warnx(".hash section too small"); return; } buf = d->d_buf; nbucket = buf[0]; nchain = buf[1]; if (nbucket <= 0 || nchain <= 0) { warnx("Malformed .hash section"); return; } if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { warnx("Malformed .hash section"); return; } bucket = &buf[2]; chain = &buf[2 + nbucket]; maxl = 0; if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint32_t)i < nbucket; i++) for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) if (++bl[i] > maxl) maxl = bl[i]; if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint32_t)i < nbucket; i++) c[bl[i]]++; printf("\nHistogram for bucket list length (total of %u buckets):\n", nbucket); printf(" Length\tNumber\t\t%% of total\tCoverage\n"); total = 0; for (i = 0; (uint32_t)i <= maxl; i++) { total += c[i] * i; printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); } free(c); free(bl); } static void dump_svr4_hash64(struct readelf *re, struct section *s) { Elf_Data *d, dst; uint64_t *buf; uint64_t nbucket, nchain; uint64_t *bucket, *chain; uint64_t *bl, *c, maxl, total; int elferr, i, j; /* * ALPHA uses 64-bit hash entries. Since libelf assumes that * .hash section contains only 32-bit entry, an explicit * gelf_xlatetom is needed here. */ (void) elf_errno(); if ((d = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_rawdata failed: %s", elf_errmsg(elferr)); return; } d->d_type = ELF_T_XWORD; memcpy(&dst, d, sizeof(Elf_Data)); if (gelf_xlatetom(re->elf, &dst, d, re->ehdr.e_ident[EI_DATA]) != &dst) { warnx("gelf_xlatetom failed: %s", elf_errmsg(-1)); return; } if (dst.d_size < 2 * sizeof(uint64_t)) { warnx(".hash section too small"); return; } buf = dst.d_buf; nbucket = buf[0]; nchain = buf[1]; if (nbucket <= 0 || nchain <= 0) { warnx("Malformed .hash section"); return; } if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) { warnx("Malformed .hash section"); return; } bucket = &buf[2]; chain = &buf[2 + nbucket]; maxl = 0; if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint32_t)i < nbucket; i++) for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j]) if (++bl[i] > maxl) maxl = bl[i]; if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint64_t)i < nbucket; i++) c[bl[i]]++; printf("Histogram for bucket list length (total of %ju buckets):\n", (uintmax_t)nbucket); printf(" Length\tNumber\t\t%% of total\tCoverage\n"); total = 0; for (i = 0; (uint64_t)i <= maxl; i++) { total += c[i] * i; printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i], c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); } free(c); free(bl); } static void dump_gnu_hash(struct readelf *re, struct section *s) { struct section *ds; Elf_Data *d; uint32_t *buf; uint32_t *bucket, *chain; uint32_t nbucket, nchain, symndx, maskwords; uint32_t *bl, *c, maxl, total; int elferr, dynsymcount, i, j; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size < 4 * sizeof(uint32_t)) { warnx(".gnu.hash section too small"); return; } buf = d->d_buf; nbucket = buf[0]; symndx = buf[1]; maskwords = buf[2]; buf += 4; ds = &re->sl[s->link]; if (!get_ent_count(ds, &dynsymcount)) return; nchain = dynsymcount - symndx; if (d->d_size != 4 * sizeof(uint32_t) + maskwords * (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) + (nbucket + nchain) * sizeof(uint32_t)) { warnx("Malformed .gnu.hash section"); return; } bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2); chain = bucket + nbucket; maxl = 0; if ((bl = calloc(nbucket, sizeof(*bl))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint32_t)i < nbucket; i++) for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain; j++) { if (++bl[i] > maxl) maxl = bl[i]; if (chain[j - symndx] & 1) break; } if ((c = calloc(maxl + 1, sizeof(*c))) == NULL) errx(EXIT_FAILURE, "calloc failed"); for (i = 0; (uint32_t)i < nbucket; i++) c[bl[i]]++; printf("Histogram for bucket list length (total of %u buckets):\n", nbucket); printf(" Length\tNumber\t\t%% of total\tCoverage\n"); total = 0; for (i = 0; (uint32_t)i <= maxl; i++) { total += c[i] * i; printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i], c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1)); } free(c); free(bl); } static void dump_hash(struct readelf *re) { struct section *s; int i; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) { if (s->type == SHT_GNU_HASH) dump_gnu_hash(re, s); else if (re->ehdr.e_machine == EM_ALPHA && s->entsize == 8) dump_svr4_hash64(re, s); else dump_svr4_hash(s); } } } static void dump_notes(struct readelf *re) { struct section *s; const char *rawfile; GElf_Phdr phdr; Elf_Data *d; size_t phnum; int i, elferr; if (re->ehdr.e_type == ET_CORE) { /* * Search program headers in the core file for * PT_NOTE entry. */ if (elf_getphnum(re->elf, &phnum) == 0) { warnx("elf_getphnum failed: %s", elf_errmsg(-1)); return; } if (phnum == 0) return; if ((rawfile = elf_rawfile(re->elf, NULL)) == NULL) { warnx("elf_rawfile failed: %s", elf_errmsg(-1)); return; } for (i = 0; (size_t) i < phnum; i++) { if (gelf_getphdr(re->elf, i, &phdr) != &phdr) { warnx("gelf_getphdr failed: %s", elf_errmsg(-1)); continue; } if (phdr.p_type == PT_NOTE) dump_notes_content(re, rawfile + phdr.p_offset, phdr.p_filesz, phdr.p_offset); } } else { /* * For objects other than core files, Search for * SHT_NOTE sections. */ for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type == SHT_NOTE) { (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } dump_notes_content(re, d->d_buf, d->d_size, s->off); } } } } static void dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off) { Elf_Note *note; const char *end, *name; printf("\nNotes at offset %#010jx with length %#010jx:\n", (uintmax_t) off, (uintmax_t) sz); printf(" %-13s %-15s %s\n", "Owner", "Data size", "Description"); end = buf + sz; while (buf < end) { if (buf + sizeof(*note) > end) { warnx("invalid note header"); return; } note = (Elf_Note *)(uintptr_t) buf; name = (char *)(uintptr_t)(note + 1); /* * The name field is required to be nul-terminated, and * n_namesz includes the terminating nul in observed * implementations (contrary to the ELF-64 spec). A special * case is needed for cores generated by some older Linux * versions, which write a note named "CORE" without a nul * terminator and n_namesz = 4. */ if (note->n_namesz == 0) name = ""; else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0) name = "CORE"; else if (strnlen(name, note->n_namesz) >= note->n_namesz) name = "<invalid>"; printf(" %-13s %#010jx", name, (uintmax_t) note->n_descsz); printf(" %s\n", note_type(name, re->ehdr.e_type, note->n_type)); buf += sizeof(Elf_Note) + roundup2(note->n_namesz, 4) + roundup2(note->n_descsz, 4); } } /* * Symbol versioning sections are the same for 32bit and 64bit * ELF objects. */ #define Elf_Verdef Elf32_Verdef #define Elf_Verdaux Elf32_Verdaux #define Elf_Verneed Elf32_Verneed #define Elf_Vernaux Elf32_Vernaux #define SAVE_VERSION_NAME(x, n, t) \ do { \ while (x >= re->ver_sz) { \ nv = realloc(re->ver, \ sizeof(*re->ver) * re->ver_sz * 2); \ if (nv == NULL) { \ warn("realloc failed"); \ free(re->ver); \ return; \ } \ re->ver = nv; \ for (i = re->ver_sz; i < re->ver_sz * 2; i++) { \ re->ver[i].name = NULL; \ re->ver[i].type = 0; \ } \ re->ver_sz *= 2; \ } \ if (x > 1) { \ re->ver[x].name = n; \ re->ver[x].type = t; \ } \ } while (0) static void dump_verdef(struct readelf *re, int dump) { struct section *s; struct symver *nv; Elf_Data *d; Elf_Verdef *vd; Elf_Verdaux *vda; uint8_t *buf, *end, *buf2; const char *name; int elferr, i, j; if ((s = re->vd_s) == NULL) return; if (re->ver == NULL) { re->ver_sz = 16; if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == NULL) { warn("calloc failed"); return; } re->ver[0].name = "*local*"; re->ver[1].name = "*global*"; } if (dump) printf("\nVersion definition section (%s):\n", s->name); (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size == 0) return; buf = d->d_buf; end = buf + d->d_size; while (buf + sizeof(Elf_Verdef) <= end) { vd = (Elf_Verdef *) (uintptr_t) buf; if (dump) { printf(" 0x%4.4lx", (unsigned long) (buf - (uint8_t *)d->d_buf)); printf(" vd_version: %u vd_flags: %d" " vd_ndx: %u vd_cnt: %u", vd->vd_version, vd->vd_flags, vd->vd_ndx, vd->vd_cnt); } buf2 = buf + vd->vd_aux; j = 0; while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) { vda = (Elf_Verdaux *) (uintptr_t) buf2; name = get_string(re, s->link, vda->vda_name); if (j == 0) { if (dump) printf(" vda_name: %s\n", name); SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1); } else if (dump) printf(" 0x%4.4lx parent: %s\n", (unsigned long) (buf2 - (uint8_t *)d->d_buf), name); if (vda->vda_next == 0) break; buf2 += vda->vda_next; j++; } if (vd->vd_next == 0) break; buf += vd->vd_next; } } static void dump_verneed(struct readelf *re, int dump) { struct section *s; struct symver *nv; Elf_Data *d; Elf_Verneed *vn; Elf_Vernaux *vna; uint8_t *buf, *end, *buf2; const char *name; int elferr, i, j; if ((s = re->vn_s) == NULL) return; if (re->ver == NULL) { re->ver_sz = 16; if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) == NULL) { warn("calloc failed"); return; } re->ver[0].name = "*local*"; re->ver[1].name = "*global*"; } if (dump) printf("\nVersion needed section (%s):\n", s->name); (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size == 0) return; buf = d->d_buf; end = buf + d->d_size; while (buf + sizeof(Elf_Verneed) <= end) { vn = (Elf_Verneed *) (uintptr_t) buf; if (dump) { printf(" 0x%4.4lx", (unsigned long) (buf - (uint8_t *)d->d_buf)); printf(" vn_version: %u vn_file: %s vn_cnt: %u\n", vn->vn_version, get_string(re, s->link, vn->vn_file), vn->vn_cnt); } buf2 = buf + vn->vn_aux; j = 0; while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) { vna = (Elf32_Vernaux *) (uintptr_t) buf2; if (dump) printf(" 0x%4.4lx", (unsigned long) (buf2 - (uint8_t *)d->d_buf)); name = get_string(re, s->link, vna->vna_name); if (dump) printf(" vna_name: %s vna_flags: %u" " vna_other: %u\n", name, vna->vna_flags, vna->vna_other); SAVE_VERSION_NAME((int)vna->vna_other, name, 0); if (vna->vna_next == 0) break; buf2 += vna->vna_next; j++; } if (vn->vn_next == 0) break; buf += vn->vn_next; } } static void dump_versym(struct readelf *re) { int i; if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL) return; printf("\nVersion symbol section (%s):\n", re->vs_s->name); for (i = 0; i < re->vs_sz; i++) { if ((i & 3) == 0) { if (i > 0) putchar('\n'); printf(" %03x:", i); } if (re->vs[i] & 0x8000) printf(" %3xh %-12s ", re->vs[i] & 0x7fff, re->ver[re->vs[i] & 0x7fff].name); else printf(" %3x %-12s ", re->vs[i], re->ver[re->vs[i]].name); } putchar('\n'); } static void dump_ver(struct readelf *re) { if (re->vs_s && re->ver && re->vs) dump_versym(re); if (re->vd_s) dump_verdef(re, 1); if (re->vn_s) dump_verneed(re, 1); } static void search_ver(struct readelf *re) { struct section *s; Elf_Data *d; int elferr, i; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type == SHT_SUNW_versym) re->vs_s = s; if (s->type == SHT_SUNW_verneed) re->vn_s = s; if (s->type == SHT_SUNW_verdef) re->vd_s = s; } if (re->vd_s) dump_verdef(re, 0); if (re->vn_s) dump_verneed(re, 0); if (re->vs_s && re->ver != NULL) { (void) elf_errno(); if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size == 0) return; re->vs = d->d_buf; re->vs_sz = d->d_size / sizeof(Elf32_Half); } } #undef Elf_Verdef #undef Elf_Verdaux #undef Elf_Verneed #undef Elf_Vernaux #undef SAVE_VERSION_NAME /* * Elf32_Lib and Elf64_Lib are identical. */ #define Elf_Lib Elf32_Lib static void dump_liblist(struct readelf *re) { struct section *s; struct tm *t; time_t ti; char tbuf[20]; Elf_Data *d; Elf_Lib *lib; int i, j, k, elferr, first, len; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type != SHT_GNU_LIBLIST) continue; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } if (d->d_size <= 0) continue; lib = d->d_buf; if (!get_ent_count(s, &len)) continue; printf("\nLibrary list section '%s' ", s->name); printf("contains %d entries:\n", len); printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp", "Checksum", "Version", "Flags"); for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) { printf("%3d: ", j); printf("%-20.20s ", get_string(re, s->link, lib->l_name)); ti = lib->l_time_stamp; t = gmtime(&ti); snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d" ":%2d", t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec); printf("%-19.19s ", tbuf); printf("0x%08x ", lib->l_checksum); printf("%-7d %#x", lib->l_version, lib->l_flags); if (lib->l_flags != 0) { first = 1; putchar('('); for (k = 0; l_flag[k].name != NULL; k++) { if ((l_flag[k].value & lib->l_flags) == 0) continue; if (!first) putchar(','); else first = 0; printf("%s", l_flag[k].name); } putchar(')'); } putchar('\n'); lib++; } } } #undef Elf_Lib static void dump_section_groups(struct readelf *re) { struct section *s; const char *symname; Elf_Data *d; uint32_t *w; int i, j, elferr; size_t n; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type != SHT_GROUP) continue; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } if (d->d_size <= 0) continue; w = d->d_buf; /* We only support COMDAT section. */ #ifndef GRP_COMDAT #define GRP_COMDAT 0x1 #endif if ((*w++ & GRP_COMDAT) == 0) return; if (s->entsize == 0) s->entsize = 4; symname = get_symbol_name(re, s->link, s->info); n = s->sz / s->entsize; if (n-- < 1) return; printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju" " sections:\n", i, s->name, symname, (uintmax_t)n); printf(" %-10.10s %s\n", "[Index]", "Name"); for (j = 0; (size_t) j < n; j++, w++) { if (*w >= re->shnum) { warnx("invalid section index: %u", *w); continue; } printf(" [%5u] %s\n", *w, re->sl[*w].name); } } } static uint8_t * dump_unknown_tag(uint64_t tag, uint8_t *p) { uint64_t val; /* * According to ARM EABI: For tags > 32, even numbered tags have * a ULEB128 param and odd numbered ones have NUL-terminated * string param. This rule probably also applies for tags <= 32 * if the object arch is not ARM. */ printf(" Tag_unknown_%ju: ", (uintmax_t) tag); if (tag & 1) { printf("%s\n", (char *) p); p += strlen((char *) p) + 1; } else { val = _decode_uleb128(&p); printf("%ju\n", (uintmax_t) val); } return (p); } static uint8_t * dump_compatibility_tag(uint8_t *p) { uint64_t val; val = _decode_uleb128(&p); printf("flag = %ju, vendor = %s\n", val, p); p += strlen((char *) p) + 1; return (p); } static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) { uint64_t tag, val; size_t i; int found, desc; (void) re; while (p < pe) { tag = _decode_uleb128(&p); found = desc = 0; for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]); i++) { if (tag == aeabi_tags[i].tag) { found = 1; printf(" %s: ", aeabi_tags[i].s_tag); if (aeabi_tags[i].get_desc) { desc = 1; val = _decode_uleb128(&p); printf("%s\n", aeabi_tags[i].get_desc(val)); } break; } if (tag < aeabi_tags[i].tag) break; } if (!found) { p = dump_unknown_tag(tag, p); continue; } if (desc) continue; switch (tag) { case 4: /* Tag_CPU_raw_name */ case 5: /* Tag_CPU_name */ case 67: /* Tag_conformance */ printf("%s\n", (char *) p); p += strlen((char *) p) + 1; break; case 32: /* Tag_compatibility */ p = dump_compatibility_tag(p); break; case 64: /* Tag_nodefaults */ /* ignored, written as 0. */ (void) _decode_uleb128(&p); printf("True\n"); break; case 65: /* Tag_also_compatible_with */ val = _decode_uleb128(&p); /* Must be Tag_CPU_arch */ if (val != 6) { printf("unknown\n"); break; } val = _decode_uleb128(&p); printf("%s\n", aeabi_cpu_arch(val)); /* Skip NUL terminator. */ p++; break; default: putchar('\n'); break; } } } #ifndef Tag_GNU_MIPS_ABI_FP #define Tag_GNU_MIPS_ABI_FP 4 #endif static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe) { uint64_t tag, val; (void) re; while (p < pe) { tag = _decode_uleb128(&p); switch (tag) { case Tag_GNU_MIPS_ABI_FP: val = _decode_uleb128(&p); printf(" Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val)); break; case 32: /* Tag_compatibility */ p = dump_compatibility_tag(p); break; default: p = dump_unknown_tag(tag, p); break; } } } #ifndef Tag_GNU_Power_ABI_FP #define Tag_GNU_Power_ABI_FP 4 #endif #ifndef Tag_GNU_Power_ABI_Vector #define Tag_GNU_Power_ABI_Vector 8 #endif static void dump_ppc_attributes(uint8_t *p, uint8_t *pe) { uint64_t tag, val; while (p < pe) { tag = _decode_uleb128(&p); switch (tag) { case Tag_GNU_Power_ABI_FP: val = _decode_uleb128(&p); printf(" Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val)); break; case Tag_GNU_Power_ABI_Vector: val = _decode_uleb128(&p); printf(" Tag_GNU_Power_ABI_Vector: %s\n", ppc_abi_vector(val)); break; case 32: /* Tag_compatibility */ p = dump_compatibility_tag(p); break; default: p = dump_unknown_tag(tag, p); break; } } } static void dump_attributes(struct readelf *re) { struct section *s; Elf_Data *d; uint8_t *p, *sp; size_t len, seclen, nlen, sublen; uint64_t val; int tag, i, elferr; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->type != SHT_GNU_ATTRIBUTES && (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3)) continue; (void) elf_errno(); if ((d = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_rawdata failed: %s", elf_errmsg(elferr)); continue; } if (d->d_size <= 0) continue; p = d->d_buf; if (*p != 'A') { printf("Unknown Attribute Section Format: %c\n", (char) *p); continue; } len = d->d_size - 1; p++; while (len > 0) { if (len < 4) { warnx("truncated attribute section length"); break; } seclen = re->dw_decode(&p, 4); if (seclen > len) { warnx("invalid attribute section length"); break; } len -= seclen; nlen = strlen((char *) p) + 1; if (nlen + 4 > seclen) { warnx("invalid attribute section name"); break; } printf("Attribute Section: %s\n", (char *) p); p += nlen; seclen -= nlen + 4; while (seclen > 0) { sp = p; tag = *p++; sublen = re->dw_decode(&p, 4); if (sublen > seclen) { warnx("invalid attribute sub-section" " length"); break; } seclen -= sublen; printf("%s", top_tag(tag)); if (tag == 2 || tag == 3) { putchar(':'); for (;;) { val = _decode_uleb128(&p); if (val == 0) break; printf(" %ju", (uintmax_t) val); } } putchar('\n'); if (re->ehdr.e_machine == EM_ARM && s->type == SHT_LOPROC + 3) dump_arm_attributes(re, p, sp + sublen); else if (re->ehdr.e_machine == EM_MIPS || re->ehdr.e_machine == EM_MIPS_RS3_LE) dump_mips_attributes(re, p, sp + sublen); else if (re->ehdr.e_machine == EM_PPC) dump_ppc_attributes(p, sp + sublen); p = sp + sublen; } } } } static void dump_mips_specific_info(struct readelf *re) { struct section *s; int i, options_found; options_found = 0; s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") || (s->type == SHT_MIPS_OPTIONS))) { dump_mips_options(re, s); options_found = 1; } } /* * According to SGI mips64 spec, .reginfo should be ignored if * .MIPS.options section is present. */ if (!options_found) { for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && (!strcmp(s->name, ".reginfo") || (s->type == SHT_MIPS_REGINFO))) dump_mips_reginfo(re, s); } } } static void dump_mips_reginfo(struct readelf *re, struct section *s) { Elf_Data *d; int elferr, len; (void) elf_errno(); if ((d = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_rawdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size <= 0) return; if (!get_ent_count(s, &len)) return; printf("\nSection '%s' contains %d entries:\n", s->name, len); dump_mips_odk_reginfo(re, d->d_buf, d->d_size); } static void dump_mips_options(struct readelf *re, struct section *s) { Elf_Data *d; uint32_t info; uint16_t sndx; uint8_t *p, *pe; uint8_t kind, size; int elferr; (void) elf_errno(); if ((d = elf_rawdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_rawdata failed: %s", elf_errmsg(elferr)); return; } if (d->d_size == 0) return; printf("\nSection %s contains:\n", s->name); p = d->d_buf; pe = p + d->d_size; while (p < pe) { if (pe - p < 8) { warnx("Truncated MIPS option header"); return; } kind = re->dw_decode(&p, 1); size = re->dw_decode(&p, 1); sndx = re->dw_decode(&p, 2); info = re->dw_decode(&p, 4); if (size < 8 || size - 8 > pe - p) { warnx("Malformed MIPS option header"); return; } size -= 8; switch (kind) { case ODK_REGINFO: dump_mips_odk_reginfo(re, p, size); break; case ODK_EXCEPTIONS: printf(" EXCEPTIONS FPU_MIN: %#x\n", info & OEX_FPU_MIN); printf("%11.11s FPU_MAX: %#x\n", "", info & OEX_FPU_MAX); dump_mips_option_flags("", mips_exceptions_option, info); break; case ODK_PAD: printf(" %-10.10s section: %ju\n", "OPAD", (uintmax_t) sndx); dump_mips_option_flags("", mips_pad_option, info); break; case ODK_HWPATCH: dump_mips_option_flags("HWPATCH", mips_hwpatch_option, info); break; case ODK_HWAND: dump_mips_option_flags("HWAND", mips_hwa_option, info); break; case ODK_HWOR: dump_mips_option_flags("HWOR", mips_hwo_option, info); break; case ODK_FILL: printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info); break; case ODK_TAGS: printf(" %-10.10s\n", "TAGS"); break; case ODK_GP_GROUP: printf(" %-10.10s GP group number: %#x\n", "GP_GROUP", info & 0xFFFF); if (info & 0x10000) printf(" %-10.10s GP group is " "self-contained\n", ""); break; case ODK_IDENT: printf(" %-10.10s default GP group number: %#x\n", "IDENT", info & 0xFFFF); if (info & 0x10000) printf(" %-10.10s default GP group is " "self-contained\n", ""); break; case ODK_PAGESIZE: printf(" %-10.10s\n", "PAGESIZE"); break; default: break; } p += size; } } static void dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info) { int first; first = 1; for (; opt->desc != NULL; opt++) { if (info & opt->flag) { printf(" %-10.10s %s\n", first ? name : "", opt->desc); first = 0; } } } static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz) { uint32_t ri_gprmask; uint32_t ri_cprmask[4]; uint64_t ri_gp_value; uint8_t *pe; int i; pe = p + sz; while (p < pe) { ri_gprmask = re->dw_decode(&p, 4); /* Skip ri_pad padding field for mips64. */ if (re->ec == ELFCLASS64) re->dw_decode(&p, 4); for (i = 0; i < 4; i++) ri_cprmask[i] = re->dw_decode(&p, 4); if (re->ec == ELFCLASS32) ri_gp_value = re->dw_decode(&p, 4); else ri_gp_value = re->dw_decode(&p, 8); printf(" %s ", option_kind(ODK_REGINFO)); printf("ri_gprmask: 0x%08jx\n", (uintmax_t) ri_gprmask); for (i = 0; i < 4; i++) printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i, (uintmax_t) ri_cprmask[i]); printf("%12.12s", ""); printf("ri_gp_value: %#jx\n", (uintmax_t) ri_gp_value); } } static void dump_arch_specific_info(struct readelf *re) { dump_liblist(re); dump_attributes(re); switch (re->ehdr.e_machine) { case EM_MIPS: case EM_MIPS_RS3_LE: dump_mips_specific_info(re); default: break; } } static const char * dwarf_regname(struct readelf *re, unsigned int num) { static char rx[32]; const char *rn; if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL) return (rn); snprintf(rx, sizeof(rx), "r%u", num); return (rx); } static void dump_dwarf_line(struct readelf *re) { struct section *s; Dwarf_Die die; Dwarf_Error de; Dwarf_Half tag, version, pointer_size; Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize; Dwarf_Small minlen, defstmt, lrange, opbase, oplen; Elf_Data *d; char *pn; uint64_t address, file, line, column, isa, opsize, udelta; int64_t sdelta; uint8_t *p, *pe; int8_t lbase; int i, is_stmt, dwarf_size, elferr, ret; printf("\nDump of debug contents of section .debug_line:\n"); s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && !strcmp(s->name, ".debug_line")) break; } if ((size_t) i >= re->shnum) return; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_size <= 0) return; while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, NULL, &de)) == DW_DLV_OK) { die = NULL; while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) { if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); return; } /* XXX: What about DW_TAG_partial_unit? */ if (tag == DW_TAG_compile_unit) break; } if (die == NULL) { warnx("could not find DW_TAG_compile_unit die"); return; } if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset, &de) != DW_DLV_OK) continue; length = re->dw_read(d, &offset, 4); if (length == 0xffffffff) { dwarf_size = 8; length = re->dw_read(d, &offset, 8); } else dwarf_size = 4; if (length > d->d_size - offset) { warnx("invalid .dwarf_line section"); continue; } endoff = offset + length; version = re->dw_read(d, &offset, 2); hdrlen = re->dw_read(d, &offset, dwarf_size); minlen = re->dw_read(d, &offset, 1); defstmt = re->dw_read(d, &offset, 1); lbase = re->dw_read(d, &offset, 1); lrange = re->dw_read(d, &offset, 1); opbase = re->dw_read(d, &offset, 1); printf("\n"); printf(" Length:\t\t\t%ju\n", (uintmax_t) length); printf(" DWARF version:\t\t%u\n", version); printf(" Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen); printf(" Minimum Instruction Length:\t%u\n", minlen); printf(" Initial value of 'is_stmt':\t%u\n", defstmt); printf(" Line Base:\t\t\t%d\n", lbase); printf(" Line Range:\t\t\t%u\n", lrange); printf(" Opcode Base:\t\t\t%u\n", opbase); (void) dwarf_get_address_size(re->dbg, &pointer_size, &de); printf(" (Pointer size:\t\t%u)\n", pointer_size); printf("\n"); printf(" Opcodes:\n"); for (i = 1; i < opbase; i++) { oplen = re->dw_read(d, &offset, 1); printf(" Opcode %d has %u args\n", i, oplen); } printf("\n"); printf(" The Directory Table:\n"); p = (uint8_t *) d->d_buf + offset; while (*p != '\0') { printf(" %s\n", (char *) p); p += strlen((char *) p) + 1; } p++; printf("\n"); printf(" The File Name Table:\n"); printf(" Entry\tDir\tTime\tSize\tName\n"); i = 0; while (*p != '\0') { i++; pn = (char *) p; p += strlen(pn) + 1; dirndx = _decode_uleb128(&p); mtime = _decode_uleb128(&p); fsize = _decode_uleb128(&p); printf(" %d\t%ju\t%ju\t%ju\t%s\n", i, (uintmax_t) dirndx, (uintmax_t) mtime, (uintmax_t) fsize, pn); } #define RESET_REGISTERS \ do { \ address = 0; \ file = 1; \ line = 1; \ column = 0; \ is_stmt = defstmt; \ } while(0) #define LINE(x) (lbase + (((x) - opbase) % lrange)) #define ADDRESS(x) ((((x) - opbase) / lrange) * minlen) p++; pe = (uint8_t *) d->d_buf + endoff; printf("\n"); printf(" Line Number Statements:\n"); RESET_REGISTERS; while (p < pe) { if (*p == 0) { /* * Extended Opcodes. */ p++; opsize = _decode_uleb128(&p); printf(" Extended opcode %u: ", *p); switch (*p) { case DW_LNE_end_sequence: p++; RESET_REGISTERS; printf("End of Sequence\n"); break; case DW_LNE_set_address: p++; address = re->dw_decode(&p, pointer_size); printf("set Address to %#jx\n", (uintmax_t) address); break; case DW_LNE_define_file: p++; pn = (char *) p; p += strlen(pn) + 1; dirndx = _decode_uleb128(&p); mtime = _decode_uleb128(&p); fsize = _decode_uleb128(&p); printf("define new file: %s\n", pn); break; default: /* Unrecognized extened opcodes. */ p += opsize; printf("unknown opcode\n"); } } else if (*p > 0 && *p < opbase) { /* * Standard Opcodes. */ switch(*p++) { case DW_LNS_copy: printf(" Copy\n"); break; case DW_LNS_advance_pc: udelta = _decode_uleb128(&p) * minlen; address += udelta; printf(" Advance PC by %ju to %#jx\n", (uintmax_t) udelta, (uintmax_t) address); break; case DW_LNS_advance_line: sdelta = _decode_sleb128(&p); line += sdelta; printf(" Advance Line by %jd to %ju\n", (intmax_t) sdelta, (uintmax_t) line); break; case DW_LNS_set_file: file = _decode_uleb128(&p); printf(" Set File to %ju\n", (uintmax_t) file); break; case DW_LNS_set_column: column = _decode_uleb128(&p); printf(" Set Column to %ju\n", (uintmax_t) column); break; case DW_LNS_negate_stmt: is_stmt = !is_stmt; printf(" Set is_stmt to %d\n", is_stmt); break; case DW_LNS_set_basic_block: printf(" Set basic block flag\n"); break; case DW_LNS_const_add_pc: address += ADDRESS(255); printf(" Advance PC by constant %ju" " to %#jx\n", (uintmax_t) ADDRESS(255), (uintmax_t) address); break; case DW_LNS_fixed_advance_pc: udelta = re->dw_decode(&p, 2); address += udelta; printf(" Advance PC by fixed value " "%ju to %#jx\n", (uintmax_t) udelta, (uintmax_t) address); break; case DW_LNS_set_prologue_end: printf(" Set prologue end flag\n"); break; case DW_LNS_set_epilogue_begin: printf(" Set epilogue begin flag\n"); break; case DW_LNS_set_isa: isa = _decode_uleb128(&p); printf(" Set isa to %ju\n", isa); break; default: /* Unrecognized extended opcodes. */ printf(" Unknown extended opcode %u\n", *(p - 1)); break; } } else { /* * Special Opcodes. */ line += LINE(*p); address += ADDRESS(*p); printf(" Special opcode %u: advance Address " "by %ju to %#jx and Line by %jd to %ju\n", *p - opbase, (uintmax_t) ADDRESS(*p), (uintmax_t) address, (intmax_t) LINE(*p), (uintmax_t) line); p++; } } } if (ret == DW_DLV_ERROR) warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); #undef RESET_REGISTERS #undef LINE #undef ADDRESS } static void dump_dwarf_line_decoded(struct readelf *re) { Dwarf_Die die; Dwarf_Line *linebuf, ln; Dwarf_Addr lineaddr; Dwarf_Signed linecount, srccount; Dwarf_Unsigned lineno, fn; Dwarf_Error de; const char *dir, *file; char **srcfiles; int i, ret; printf("Decoded dump of debug contents of section .debug_line:\n\n"); while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, NULL, &de)) == DW_DLV_OK) { if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK) continue; if (dwarf_attrval_string(die, DW_AT_name, &file, &de) != DW_DLV_OK) file = NULL; if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) != DW_DLV_OK) dir = NULL; printf("CU: "); if (dir && file) printf("%s/", dir); if (file) printf("%s", file); putchar('\n'); printf("%-37s %11s %s\n", "Filename", "Line Number", "Starting Address"); if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK) continue; if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK) continue; for (i = 0; i < linecount; i++) { ln = linebuf[i]; if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK) continue; if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK) continue; if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK) continue; printf("%-37s %11ju %#18jx\n", basename(srcfiles[fn - 1]), (uintmax_t) lineno, (uintmax_t) lineaddr); } putchar('\n'); } } static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level) { Dwarf_Attribute *attr_list; Dwarf_Die ret_die; Dwarf_Off dieoff, cuoff, culen, attroff; Dwarf_Unsigned ate, lang, v_udata, v_sig; Dwarf_Signed attr_count, v_sdata; Dwarf_Off v_off; Dwarf_Addr v_addr; Dwarf_Half tag, attr, form; Dwarf_Block *v_block; Dwarf_Bool v_bool, is_info; Dwarf_Sig8 v_sig8; Dwarf_Error de; Dwarf_Ptr v_expr; const char *tag_str, *attr_str, *ate_str, *lang_str; char unk_tag[32], unk_attr[32]; char *v_str; uint8_t *b, *p; int i, j, abc, ret; if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) { warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de)); goto cont_search; } printf(" <%d><%jx>: ", level, (uintmax_t) dieoff); if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) { warnx("dwarf_die_CU_offset_range failed: %s", dwarf_errmsg(de)); cuoff = 0; } abc = dwarf_die_abbrev_code(die); if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); goto cont_search; } if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); tag_str = unk_tag; } printf("Abbrev Number: %d (%s)\n", abc, tag_str); if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != DW_DLV_OK) { if (ret == DW_DLV_ERROR) warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); goto cont_search; } for (i = 0; i < attr_count; i++) { if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { snprintf(unk_attr, sizeof(unk_attr), "[Unknown AT: %#x]", attr); attr_str = unk_attr; } if (dwarf_attroffset(attr_list[i], &attroff, &de) != DW_DLV_OK) { warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de)); attroff = 0; } printf(" <%jx> %-18s: ", (uintmax_t) attroff, attr_str); switch (form) { case DW_FORM_ref_addr: case DW_FORM_sec_offset: if (dwarf_global_formref(attr_list[i], &v_off, &de) != DW_DLV_OK) { warnx("dwarf_global_formref failed: %s", dwarf_errmsg(de)); continue; } if (form == DW_FORM_ref_addr) printf("<0x%jx>", (uintmax_t) v_off); else printf("0x%jx", (uintmax_t) v_off); break; case DW_FORM_ref1: case DW_FORM_ref2: case DW_FORM_ref4: case DW_FORM_ref8: case DW_FORM_ref_udata: if (dwarf_formref(attr_list[i], &v_off, &de) != DW_DLV_OK) { warnx("dwarf_formref failed: %s", dwarf_errmsg(de)); continue; } v_off += cuoff; printf("<0x%jx>", (uintmax_t) v_off); break; case DW_FORM_addr: if (dwarf_formaddr(attr_list[i], &v_addr, &de) != DW_DLV_OK) { warnx("dwarf_formaddr failed: %s", dwarf_errmsg(de)); continue; } printf("%#jx", (uintmax_t) v_addr); break; case DW_FORM_data1: case DW_FORM_data2: case DW_FORM_data4: case DW_FORM_data8: case DW_FORM_udata: if (dwarf_formudata(attr_list[i], &v_udata, &de) != DW_DLV_OK) { warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); continue; } if (attr == DW_AT_high_pc) printf("0x%jx", (uintmax_t) v_udata); else printf("%ju", (uintmax_t) v_udata); break; case DW_FORM_sdata: if (dwarf_formsdata(attr_list[i], &v_sdata, &de) != DW_DLV_OK) { warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); continue; } printf("%jd", (intmax_t) v_sdata); break; case DW_FORM_flag: if (dwarf_formflag(attr_list[i], &v_bool, &de) != DW_DLV_OK) { warnx("dwarf_formflag failed: %s", dwarf_errmsg(de)); continue; } printf("%jd", (intmax_t) v_bool); break; case DW_FORM_flag_present: putchar('1'); break; case DW_FORM_string: case DW_FORM_strp: if (dwarf_formstring(attr_list[i], &v_str, &de) != DW_DLV_OK) { warnx("dwarf_formstring failed: %s", dwarf_errmsg(de)); continue; } if (form == DW_FORM_string) printf("%s", v_str); else printf("(indirect string) %s", v_str); break; case DW_FORM_block: case DW_FORM_block1: case DW_FORM_block2: case DW_FORM_block4: if (dwarf_formblock(attr_list[i], &v_block, &de) != DW_DLV_OK) { warnx("dwarf_formblock failed: %s", dwarf_errmsg(de)); continue; } printf("%ju byte block:", (uintmax_t) v_block->bl_len); b = v_block->bl_data; for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++) printf(" %x", b[j]); printf("\t("); dump_dwarf_block(re, v_block->bl_data, v_block->bl_len); putchar(')'); break; case DW_FORM_exprloc: if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr, &de) != DW_DLV_OK) { warnx("dwarf_formexprloc failed: %s", dwarf_errmsg(de)); continue; } printf("%ju byte block:", (uintmax_t) v_udata); b = v_expr; for (j = 0; (Dwarf_Unsigned) j < v_udata; j++) printf(" %x", b[j]); printf("\t("); dump_dwarf_block(re, v_expr, v_udata); putchar(')'); break; case DW_FORM_ref_sig8: if (dwarf_formsig8(attr_list[i], &v_sig8, &de) != DW_DLV_OK) { warnx("dwarf_formsig8 failed: %s", dwarf_errmsg(de)); continue; } p = (uint8_t *)(uintptr_t) &v_sig8.signature[0]; v_sig = re->dw_decode(&p, 8); printf("signature: 0x%jx", (uintmax_t) v_sig); } switch (attr) { case DW_AT_encoding: if (dwarf_attrval_unsigned(die, attr, &ate, &de) != DW_DLV_OK) break; if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK) ate_str = "DW_ATE_UNKNOWN"; printf("\t(%s)", &ate_str[strlen("DW_ATE_")]); break; case DW_AT_language: if (dwarf_attrval_unsigned(die, attr, &lang, &de) != DW_DLV_OK) break; if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK) break; printf("\t(%s)", &lang_str[strlen("DW_LANG_")]); break; case DW_AT_location: case DW_AT_string_length: case DW_AT_return_addr: case DW_AT_data_member_location: case DW_AT_frame_base: case DW_AT_segment: case DW_AT_static_link: case DW_AT_use_location: case DW_AT_vtable_elem_location: switch (form) { case DW_FORM_data4: case DW_FORM_data8: case DW_FORM_sec_offset: printf("\t(location list)"); break; default: break; } default: break; } putchar('\n'); } cont_search: /* Search children. */ ret = dwarf_child(die, &ret_die, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_child: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) dump_dwarf_die(re, ret_die, level + 1); /* Search sibling. */ is_info = dwarf_get_die_infotypes_flag(die); ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) dump_dwarf_die(re, ret_die, level); dwarf_dealloc(re->dbg, die, DW_DLA_DIE); } static void set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize, Dwarf_Half ver) { re->cu_psize = psize; re->cu_osize = osize; re->cu_ver = ver; } static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info) { struct section *s; Dwarf_Die die; Dwarf_Error de; Dwarf_Half tag, version, pointer_size, off_size; Dwarf_Off cu_offset, cu_length; Dwarf_Off aboff; Dwarf_Unsigned typeoff; Dwarf_Sig8 sig8; Dwarf_Unsigned sig; uint8_t *p; const char *sn; int i, ret; sn = is_info ? ".debug_info" : ".debug_types"; s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && !strcmp(s->name, sn)) break; } if ((size_t) i >= re->shnum) return; do { printf("\nDump of debug contents of section %s:\n", sn); while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL, &version, &aboff, &pointer_size, &off_size, NULL, &sig8, &typeoff, NULL, &de)) == DW_DLV_OK) { set_cu_context(re, pointer_size, off_size, version); die = NULL; while (dwarf_siblingof_b(re->dbg, die, &die, is_info, &de) == DW_DLV_OK) { if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); continue; } /* XXX: What about DW_TAG_partial_unit? */ if ((is_info && tag == DW_TAG_compile_unit) || (!is_info && tag == DW_TAG_type_unit)) break; } if (die == NULL && is_info) { warnx("could not find DW_TAG_compile_unit " "die"); continue; } else if (die == NULL && !is_info) { warnx("could not find DW_TAG_type_unit die"); continue; } if (dwarf_die_CU_offset_range(die, &cu_offset, &cu_length, &de) != DW_DLV_OK) { warnx("dwarf_die_CU_offset failed: %s", dwarf_errmsg(de)); continue; } cu_length -= off_size == 4 ? 4 : 12; sig = 0; if (!is_info) { p = (uint8_t *)(uintptr_t) &sig8.signature[0]; sig = re->dw_decode(&p, 8); } printf("\n Type Unit @ offset 0x%jx:\n", (uintmax_t) cu_offset); printf(" Length:\t\t%#jx (%d-bit)\n", (uintmax_t) cu_length, off_size == 4 ? 32 : 64); printf(" Version:\t\t%u\n", version); printf(" Abbrev Offset:\t0x%jx\n", (uintmax_t) aboff); printf(" Pointer Size:\t%u\n", pointer_size); if (!is_info) { printf(" Signature:\t\t0x%016jx\n", (uintmax_t) sig); printf(" Type Offset:\t0x%jx\n", (uintmax_t) typeoff); } dump_dwarf_die(re, die, 0); } if (ret == DW_DLV_ERROR) warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); if (is_info) break; } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); } static void dump_dwarf_abbrev(struct readelf *re) { Dwarf_Abbrev ab; Dwarf_Off aboff, atoff; Dwarf_Unsigned length, attr_count; Dwarf_Signed flag, form; Dwarf_Half tag, attr; Dwarf_Error de; const char *tag_str, *attr_str, *form_str; char unk_tag[32], unk_attr[32], unk_form[32]; int i, j, ret; printf("\nContents of section .debug_abbrev:\n\n"); while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff, NULL, NULL, &de)) == DW_DLV_OK) { printf(" Number TAG\n"); i = 0; while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length, &attr_count, &de)) == DW_DLV_OK) { if (length == 1) { dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); break; } aboff += length; printf("%4d", ++i); if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) { warnx("dwarf_get_abbrev_tag failed: %s", dwarf_errmsg(de)); goto next_abbrev; } if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) { snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag); tag_str = unk_tag; } if (dwarf_get_abbrev_children_flag(ab, &flag, &de) != DW_DLV_OK) { warnx("dwarf_get_abbrev_children_flag failed:" " %s", dwarf_errmsg(de)); goto next_abbrev; } printf(" %s %s\n", tag_str, flag ? "[has children]" : "[no children]"); for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) { if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j, &attr, &form, &atoff, &de) != DW_DLV_OK) { warnx("dwarf_get_abbrev_entry failed:" " %s", dwarf_errmsg(de)); continue; } if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) { snprintf(unk_attr, sizeof(unk_attr), "[Unknown AT: %#x]", attr); attr_str = unk_attr; } if (dwarf_get_FORM_name(form, &form_str) != DW_DLV_OK) { snprintf(unk_form, sizeof(unk_form), "[Unknown Form: %#x]", (Dwarf_Half) form); form_str = unk_form; } printf(" %-18s %s\n", attr_str, form_str); } next_abbrev: dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV); } if (ret != DW_DLV_OK) warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de)); } if (ret == DW_DLV_ERROR) warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); } static void dump_dwarf_pubnames(struct readelf *re) { struct section *s; Dwarf_Off die_off; Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length; Dwarf_Signed cnt; Dwarf_Global *globs; Dwarf_Half nt_version; Dwarf_Error de; Elf_Data *d; char *glob_name; int i, dwarf_size, elferr; printf("\nContents of the .debug_pubnames section:\n"); s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && !strcmp(s->name, ".debug_pubnames")) break; } if ((size_t) i >= re->shnum) return; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_size <= 0) return; /* Read in .debug_pubnames section table header. */ offset = 0; length = re->dw_read(d, &offset, 4); if (length == 0xffffffff) { dwarf_size = 8; length = re->dw_read(d, &offset, 8); } else dwarf_size = 4; if (length > d->d_size - offset) { warnx("invalid .dwarf_pubnames section"); return; } nt_version = re->dw_read(d, &offset, 2); nt_cu_offset = re->dw_read(d, &offset, dwarf_size); nt_cu_length = re->dw_read(d, &offset, dwarf_size); printf(" Length:\t\t\t\t%ju\n", (uintmax_t) length); printf(" Version:\t\t\t\t%u\n", nt_version); printf(" Offset into .debug_info section:\t%ju\n", (uintmax_t) nt_cu_offset); printf(" Size of area in .debug_info section:\t%ju\n", (uintmax_t) nt_cu_length); if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) { warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de)); return; } printf("\n Offset Name\n"); for (i = 0; i < cnt; i++) { if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) { warnx("dwarf_globname failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_global_die_offset(globs[i], &die_off, &de) != DW_DLV_OK) { warnx("dwarf_global_die_offset failed: %s", dwarf_errmsg(de)); continue; } printf(" %-11ju %s\n", (uintmax_t) die_off, glob_name); } } static void dump_dwarf_aranges(struct readelf *re) { struct section *s; Dwarf_Arange *aranges; Dwarf_Addr start; Dwarf_Unsigned offset, length, as_cu_offset; Dwarf_Off die_off; Dwarf_Signed cnt; Dwarf_Half as_version, as_addrsz, as_segsz; Dwarf_Error de; Elf_Data *d; int i, dwarf_size, elferr; printf("\nContents of section .debug_aranges:\n"); s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && !strcmp(s->name, ".debug_aranges")) break; } if ((size_t) i >= re->shnum) return; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_size <= 0) return; /* Read in the .debug_aranges section table header. */ offset = 0; length = re->dw_read(d, &offset, 4); if (length == 0xffffffff) { dwarf_size = 8; length = re->dw_read(d, &offset, 8); } else dwarf_size = 4; if (length > d->d_size - offset) { warnx("invalid .dwarf_aranges section"); return; } as_version = re->dw_read(d, &offset, 2); as_cu_offset = re->dw_read(d, &offset, dwarf_size); as_addrsz = re->dw_read(d, &offset, 1); as_segsz = re->dw_read(d, &offset, 1); printf(" Length:\t\t\t%ju\n", (uintmax_t) length); printf(" Version:\t\t\t%u\n", as_version); printf(" Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset); printf(" Pointer Size:\t\t\t%u\n", as_addrsz); printf(" Segment Size:\t\t\t%u\n", as_segsz); if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) { warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de)); return; } printf("\n Address Length\n"); for (i = 0; i < cnt; i++) { if (dwarf_get_arange_info(aranges[i], &start, &length, &die_off, &de) != DW_DLV_OK) { warnx("dwarf_get_arange_info failed: %s", dwarf_errmsg(de)); continue; } printf(" %08jx %ju\n", (uintmax_t) start, (uintmax_t) length); } } static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base) { Dwarf_Attribute *attr_list; Dwarf_Ranges *ranges; Dwarf_Die ret_die; Dwarf_Error de; Dwarf_Addr base0; Dwarf_Half attr; Dwarf_Signed attr_count, cnt; Dwarf_Unsigned off, bytecnt; int i, j, ret; if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != DW_DLV_OK) { if (ret == DW_DLV_ERROR) warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); goto cont_search; } for (i = 0; i < attr_count; i++) { if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); continue; } if (attr != DW_AT_ranges) continue; if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_get_ranges(re->dbg, (Dwarf_Off) off, &ranges, &cnt, &bytecnt, &de) != DW_DLV_OK) continue; base0 = base; for (j = 0; j < cnt; j++) { printf(" %08jx ", (uintmax_t) off); if (ranges[j].dwr_type == DW_RANGES_END) { printf("%s\n", "<End of list>"); continue; } else if (ranges[j].dwr_type == DW_RANGES_ADDRESS_SELECTION) { base0 = ranges[j].dwr_addr2; continue; } if (re->ec == ELFCLASS32) printf("%08jx %08jx\n", ranges[j].dwr_addr1 + base0, ranges[j].dwr_addr2 + base0); else printf("%016jx %016jx\n", ranges[j].dwr_addr1 + base0, ranges[j].dwr_addr2 + base0); } } cont_search: /* Search children. */ ret = dwarf_child(die, &ret_die, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_child: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) dump_dwarf_ranges_foreach(re, ret_die, base); /* Search sibling. */ ret = dwarf_siblingof(re->dbg, die, &ret_die, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) dump_dwarf_ranges_foreach(re, ret_die, base); } static void dump_dwarf_ranges(struct readelf *re) { Dwarf_Ranges *ranges; Dwarf_Die die; Dwarf_Signed cnt; Dwarf_Unsigned bytecnt; Dwarf_Half tag; Dwarf_Error de; Dwarf_Unsigned lowpc; int ret; if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) != DW_DLV_OK) return; printf("Contents of the .debug_ranges section:\n\n"); if (re->ec == ELFCLASS32) printf(" %-8s %-8s %s\n", "Offset", "Begin", "End"); else printf(" %-8s %-16s %s\n", "Offset", "Begin", "End"); while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL, NULL, &de)) == DW_DLV_OK) { die = NULL; if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) continue; if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); continue; } /* XXX: What about DW_TAG_partial_unit? */ lowpc = 0; if (tag == DW_TAG_compile_unit) { if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, &de) != DW_DLV_OK) lowpc = 0; } dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc); } putchar('\n'); } static void dump_dwarf_macinfo(struct readelf *re) { Dwarf_Unsigned offset; Dwarf_Signed cnt; Dwarf_Macro_Details *md; Dwarf_Error de; const char *mi_str; char unk_mi[32]; int i; #define _MAX_MACINFO_ENTRY 65535 printf("\nContents of section .debug_macinfo:\n\n"); offset = 0; while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY, &cnt, &md, &de) == DW_DLV_OK) { for (i = 0; i < cnt; i++) { offset = md[i].dmd_offset + 1; if (md[i].dmd_type == 0) break; if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) != DW_DLV_OK) { snprintf(unk_mi, sizeof(unk_mi), "[Unknown MACINFO: %#x]", md[i].dmd_type); mi_str = unk_mi; } printf(" %s", mi_str); switch (md[i].dmd_type) { case DW_MACINFO_define: case DW_MACINFO_undef: printf(" - lineno : %jd macro : %s\n", (intmax_t) md[i].dmd_lineno, md[i].dmd_macro); break; case DW_MACINFO_start_file: printf(" - lineno : %jd filenum : %jd\n", (intmax_t) md[i].dmd_lineno, (intmax_t) md[i].dmd_fileindex); break; default: putchar('\n'); break; } } } #undef _MAX_MACINFO_ENTRY } static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc, Dwarf_Debug dbg) { Dwarf_Frame_Op *oplist; Dwarf_Signed opcnt, delta; Dwarf_Small op; Dwarf_Error de; const char *op_str; char unk_op[32]; int i; if (dwarf_expand_frame_instructions(cie, insts, len, &oplist, &opcnt, &de) != DW_DLV_OK) { warnx("dwarf_expand_frame_instructions failed: %s", dwarf_errmsg(de)); return; } for (i = 0; i < opcnt; i++) { if (oplist[i].fp_base_op != 0) op = oplist[i].fp_base_op << 6; else op = oplist[i].fp_extended_op; if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) { snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]", op); op_str = unk_op; } printf(" %s", op_str); switch (op) { case DW_CFA_advance_loc: delta = oplist[i].fp_offset * caf; pc += delta; printf(": %ju to %08jx", (uintmax_t) delta, (uintmax_t) pc); break; case DW_CFA_offset: case DW_CFA_offset_extended: case DW_CFA_offset_extended_sf: delta = oplist[i].fp_offset * daf; printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register, dwarf_regname(re, oplist[i].fp_register), (intmax_t) delta); break; case DW_CFA_restore: printf(": r%u (%s)", oplist[i].fp_register, dwarf_regname(re, oplist[i].fp_register)); break; case DW_CFA_set_loc: pc = oplist[i].fp_offset; printf(": to %08jx", (uintmax_t) pc); break; case DW_CFA_advance_loc1: case DW_CFA_advance_loc2: case DW_CFA_advance_loc4: pc += oplist[i].fp_offset; printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset, (uintmax_t) pc); break; case DW_CFA_def_cfa: printf(": r%u (%s) ofs %ju", oplist[i].fp_register, dwarf_regname(re, oplist[i].fp_register), (uintmax_t) oplist[i].fp_offset); break; case DW_CFA_def_cfa_sf: printf(": r%u (%s) ofs %jd", oplist[i].fp_register, dwarf_regname(re, oplist[i].fp_register), (intmax_t) (oplist[i].fp_offset * daf)); break; case DW_CFA_def_cfa_register: printf(": r%u (%s)", oplist[i].fp_register, dwarf_regname(re, oplist[i].fp_register)); break; case DW_CFA_def_cfa_offset: printf(": %ju", (uintmax_t) oplist[i].fp_offset); break; case DW_CFA_def_cfa_offset_sf: printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf)); break; default: break; } putchar('\n'); } dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK); } static char * get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off) { static char rs[16]; if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE) snprintf(rs, sizeof(rs), "%c", 'u'); else if (reg == DW_FRAME_CFA_COL) snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off); else snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg), (intmax_t) off); return (rs); } static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra) { Dwarf_Regtable rt; Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc; Dwarf_Error de; char *vec; int i; #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7)) #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7))) #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7))) #define RT(x) rt.rules[(x)] vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1); if (vec == NULL) err(EXIT_FAILURE, "calloc failed"); pre_pc = ~((Dwarf_Addr) 0); cur_pc = pc; end_pc = pc + func_len; for (; cur_pc < end_pc; cur_pc++) { if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", dwarf_errmsg(de)); return (-1); } if (row_pc == pre_pc) continue; pre_pc = row_pc; for (i = 1; i < DW_REG_TABLE_SIZE; i++) { if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE) BIT_SET(vec, i); } } printf(" LOC CFA "); for (i = 1; i < DW_REG_TABLE_SIZE; i++) { if (BIT_ISSET(vec, i)) { if ((Dwarf_Half) i == cie_ra) printf("ra "); else printf("%-5s", dwarf_regname(re, (unsigned int) i)); } } putchar('\n'); pre_pc = ~((Dwarf_Addr) 0); cur_pc = pc; end_pc = pc + func_len; for (; cur_pc < end_pc; cur_pc++) { if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_info_for_all_regs failed: %s\n", dwarf_errmsg(de)); return (-1); } if (row_pc == pre_pc) continue; pre_pc = row_pc; printf("%08jx ", (uintmax_t) row_pc); printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum, RT(0).dw_offset)); for (i = 1; i < DW_REG_TABLE_SIZE; i++) { if (BIT_ISSET(vec, i)) { printf("%-5s", get_regoff_str(re, RT(i).dw_regnum, RT(i).dw_offset)); } } putchar('\n'); } free(vec); return (0); #undef BIT_SET #undef BIT_CLR #undef BIT_ISSET #undef RT } static void dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt) { Dwarf_Cie *cie_list, cie, pre_cie; Dwarf_Fde *fde_list, fde; Dwarf_Off cie_offset, fde_offset; Dwarf_Unsigned cie_length, fde_instlen; Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length; Dwarf_Signed cie_count, fde_count, cie_index; Dwarf_Addr low_pc; Dwarf_Half cie_ra; Dwarf_Small cie_version; Dwarf_Ptr fde_addr, fde_inst, cie_inst; char *cie_aug, c; int i, eh_frame; Dwarf_Error de; printf("\nThe section %s contains:\n\n", s->name); if (!strcmp(s->name, ".debug_frame")) { eh_frame = 0; if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count, &fde_list, &fde_count, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_list failed: %s", dwarf_errmsg(de)); return; } } else if (!strcmp(s->name, ".eh_frame")) { eh_frame = 1; if (dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count, &fde_list, &fde_count, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_list_eh failed: %s", dwarf_errmsg(de)); return; } } else return; pre_cie = NULL; for (i = 0; i < fde_count; i++) { if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr, &fde_length, &cie_offset, &cie_index, &fde_offset, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_range failed: %s", dwarf_errmsg(de)); continue; } if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen, &de) != DW_DLV_OK) { warnx("dwarf_get_fde_instr_bytes failed: %s", dwarf_errmsg(de)); continue; } if (pre_cie == NULL || cie != pre_cie) { pre_cie = cie; if (dwarf_get_cie_info(cie, &cie_length, &cie_version, &cie_aug, &cie_caf, &cie_daf, &cie_ra, &cie_inst, &cie_instlen, &de) != DW_DLV_OK) { warnx("dwarf_get_cie_info failed: %s", dwarf_errmsg(de)); continue; } printf("%08jx %08jx %8.8jx CIE", (uintmax_t) cie_offset, (uintmax_t) cie_length, (uintmax_t) (eh_frame ? 0 : ~0U)); if (!alt) { putchar('\n'); printf(" Version:\t\t\t%u\n", cie_version); printf(" Augmentation:\t\t\t\""); while ((c = *cie_aug++) != '\0') putchar(c); printf("\"\n"); printf(" Code alignment factor:\t%ju\n", (uintmax_t) cie_caf); printf(" Data alignment factor:\t%jd\n", (intmax_t) cie_daf); printf(" Return address column:\t%ju\n", (uintmax_t) cie_ra); putchar('\n'); dump_dwarf_frame_inst(re, cie, cie_inst, cie_instlen, cie_caf, cie_daf, 0, re->dbg); putchar('\n'); } else { printf(" \""); while ((c = *cie_aug++) != '\0') putchar(c); putchar('"'); printf(" cf=%ju df=%jd ra=%ju\n", (uintmax_t) cie_caf, (uintmax_t) cie_daf, (uintmax_t) cie_ra); dump_dwarf_frame_regtable(re, fde, low_pc, 1, cie_ra); putchar('\n'); } } printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n", (uintmax_t) fde_offset, (uintmax_t) fde_length, (uintmax_t) cie_offset, (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset : cie_offset), (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len)); if (!alt) dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen, cie_caf, cie_daf, low_pc, re->dbg); else dump_dwarf_frame_regtable(re, fde, low_pc, func_len, cie_ra); putchar('\n'); } } static void dump_dwarf_frame(struct readelf *re, int alt) { struct section *s; int i; (void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL); for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && (!strcmp(s->name, ".debug_frame") || !strcmp(s->name, ".eh_frame"))) dump_dwarf_frame_section(re, s, alt); } } static void dump_dwarf_str(struct readelf *re) { struct section *s; Elf_Data *d; unsigned char *p; int elferr, end, i, j; printf("\nContents of section .debug_str:\n"); s = NULL; for (i = 0; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (s->name != NULL && !strcmp(s->name, ".debug_str")) break; } if ((size_t) i >= re->shnum) return; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(-1)); return; } if (d->d_size <= 0) return; for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) { printf(" 0x%08x", (unsigned int) i); if ((size_t) i + 16 > d->d_size) end = d->d_size; else end = i + 16; for (j = i; j < i + 16; j++) { if ((j - i) % 4 == 0) putchar(' '); if (j >= end) { printf(" "); continue; } printf("%02x", (uint8_t) p[j]); } putchar(' '); for (j = i; j < end; j++) { if (isprint(p[j])) putchar(p[j]); else if (p[j] == 0) putchar('.'); else putchar(' '); } putchar('\n'); } } struct loc_at { Dwarf_Attribute la_at; Dwarf_Unsigned la_off; Dwarf_Unsigned la_lowpc; Dwarf_Half la_cu_psize; Dwarf_Half la_cu_osize; Dwarf_Half la_cu_ver; TAILQ_ENTRY(loc_at) la_next; }; static TAILQ_HEAD(, loc_at) lalist = TAILQ_HEAD_INITIALIZER(lalist); static void search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc) { Dwarf_Attribute *attr_list; Dwarf_Die ret_die; Dwarf_Unsigned off; Dwarf_Off ref; Dwarf_Signed attr_count; Dwarf_Half attr, form; Dwarf_Bool is_info; Dwarf_Error de; struct loc_at *la, *nla; int i, ret; is_info = dwarf_get_die_infotypes_flag(die); if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) != DW_DLV_OK) { if (ret == DW_DLV_ERROR) warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de)); goto cont_search; } for (i = 0; i < attr_count; i++) { if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) { warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de)); continue; } if (attr != DW_AT_location && attr != DW_AT_string_length && attr != DW_AT_return_addr && attr != DW_AT_data_member_location && attr != DW_AT_frame_base && attr != DW_AT_segment && attr != DW_AT_static_link && attr != DW_AT_use_location && attr != DW_AT_vtable_elem_location) continue; if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) { warnx("dwarf_whatform failed: %s", dwarf_errmsg(de)); continue; } if (form == DW_FORM_data4 || form == DW_FORM_data8) { if (dwarf_formudata(attr_list[i], &off, &de) != DW_DLV_OK) { warnx("dwarf_formudata failed: %s", dwarf_errmsg(de)); continue; } } else if (form == DW_FORM_sec_offset) { if (dwarf_global_formref(attr_list[i], &ref, &de) != DW_DLV_OK) { warnx("dwarf_global_formref failed: %s", dwarf_errmsg(de)); continue; } off = ref; } else continue; TAILQ_FOREACH(la, &lalist, la_next) { if (off == la->la_off) break; if (off < la->la_off) { if ((nla = malloc(sizeof(*nla))) == NULL) err(EXIT_FAILURE, "malloc failed"); nla->la_at = attr_list[i]; nla->la_off = off; nla->la_lowpc = lowpc; nla->la_cu_psize = re->cu_psize; nla->la_cu_osize = re->cu_osize; nla->la_cu_ver = re->cu_ver; TAILQ_INSERT_BEFORE(la, nla, la_next); break; } } if (la == NULL) { if ((nla = malloc(sizeof(*nla))) == NULL) err(EXIT_FAILURE, "malloc failed"); nla->la_at = attr_list[i]; nla->la_off = off; nla->la_lowpc = lowpc; nla->la_cu_psize = re->cu_psize; nla->la_cu_osize = re->cu_osize; nla->la_cu_ver = re->cu_ver; TAILQ_INSERT_TAIL(&lalist, nla, la_next); } } cont_search: /* Search children. */ ret = dwarf_child(die, &ret_die, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_child: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) search_loclist_at(re, ret_die, lowpc); /* Search sibling. */ ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de); if (ret == DW_DLV_ERROR) warnx("dwarf_siblingof: %s", dwarf_errmsg(de)); else if (ret == DW_DLV_OK) search_loclist_at(re, ret_die, lowpc); } static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr) { const char *op_str; char unk_op[32]; uint8_t *b, n; int i; if (dwarf_get_OP_name(lr->lr_atom, &op_str) != DW_DLV_OK) { snprintf(unk_op, sizeof(unk_op), "[Unknown OP: %#x]", lr->lr_atom); op_str = unk_op; } printf("%s", op_str); switch (lr->lr_atom) { case DW_OP_reg0: case DW_OP_reg1: case DW_OP_reg2: case DW_OP_reg3: case DW_OP_reg4: case DW_OP_reg5: case DW_OP_reg6: case DW_OP_reg7: case DW_OP_reg8: case DW_OP_reg9: case DW_OP_reg10: case DW_OP_reg11: case DW_OP_reg12: case DW_OP_reg13: case DW_OP_reg14: case DW_OP_reg15: case DW_OP_reg16: case DW_OP_reg17: case DW_OP_reg18: case DW_OP_reg19: case DW_OP_reg20: case DW_OP_reg21: case DW_OP_reg22: case DW_OP_reg23: case DW_OP_reg24: case DW_OP_reg25: case DW_OP_reg26: case DW_OP_reg27: case DW_OP_reg28: case DW_OP_reg29: case DW_OP_reg30: case DW_OP_reg31: printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0)); break; case DW_OP_deref: case DW_OP_lit0: case DW_OP_lit1: case DW_OP_lit2: case DW_OP_lit3: case DW_OP_lit4: case DW_OP_lit5: case DW_OP_lit6: case DW_OP_lit7: case DW_OP_lit8: case DW_OP_lit9: case DW_OP_lit10: case DW_OP_lit11: case DW_OP_lit12: case DW_OP_lit13: case DW_OP_lit14: case DW_OP_lit15: case DW_OP_lit16: case DW_OP_lit17: case DW_OP_lit18: case DW_OP_lit19: case DW_OP_lit20: case DW_OP_lit21: case DW_OP_lit22: case DW_OP_lit23: case DW_OP_lit24: case DW_OP_lit25: case DW_OP_lit26: case DW_OP_lit27: case DW_OP_lit28: case DW_OP_lit29: case DW_OP_lit30: case DW_OP_lit31: case DW_OP_dup: case DW_OP_drop: case DW_OP_over: case DW_OP_swap: case DW_OP_rot: case DW_OP_xderef: case DW_OP_abs: case DW_OP_and: case DW_OP_div: case DW_OP_minus: case DW_OP_mod: case DW_OP_mul: case DW_OP_neg: case DW_OP_not: case DW_OP_or: case DW_OP_plus: case DW_OP_shl: case DW_OP_shr: case DW_OP_shra: case DW_OP_xor: case DW_OP_eq: case DW_OP_ge: case DW_OP_gt: case DW_OP_le: case DW_OP_lt: case DW_OP_ne: case DW_OP_nop: case DW_OP_push_object_address: case DW_OP_form_tls_address: case DW_OP_call_frame_cfa: case DW_OP_stack_value: case DW_OP_GNU_push_tls_address: case DW_OP_GNU_uninit: break; case DW_OP_const1u: case DW_OP_pick: case DW_OP_deref_size: case DW_OP_xderef_size: case DW_OP_const2u: case DW_OP_bra: case DW_OP_skip: case DW_OP_const4u: case DW_OP_const8u: case DW_OP_constu: case DW_OP_plus_uconst: case DW_OP_regx: case DW_OP_piece: printf(": %ju", (uintmax_t) lr->lr_number); break; case DW_OP_const1s: case DW_OP_const2s: case DW_OP_const4s: case DW_OP_const8s: case DW_OP_consts: printf(": %jd", (intmax_t) lr->lr_number); break; case DW_OP_breg0: case DW_OP_breg1: case DW_OP_breg2: case DW_OP_breg3: case DW_OP_breg4: case DW_OP_breg5: case DW_OP_breg6: case DW_OP_breg7: case DW_OP_breg8: case DW_OP_breg9: case DW_OP_breg10: case DW_OP_breg11: case DW_OP_breg12: case DW_OP_breg13: case DW_OP_breg14: case DW_OP_breg15: case DW_OP_breg16: case DW_OP_breg17: case DW_OP_breg18: case DW_OP_breg19: case DW_OP_breg20: case DW_OP_breg21: case DW_OP_breg22: case DW_OP_breg23: case DW_OP_breg24: case DW_OP_breg25: case DW_OP_breg26: case DW_OP_breg27: case DW_OP_breg28: case DW_OP_breg29: case DW_OP_breg30: case DW_OP_breg31: printf(" (%s): %jd", dwarf_regname(re, lr->lr_atom - DW_OP_breg0), (intmax_t) lr->lr_number); break; case DW_OP_fbreg: printf(": %jd", (intmax_t) lr->lr_number); break; case DW_OP_bregx: printf(": %ju (%s) %jd", (uintmax_t) lr->lr_number, dwarf_regname(re, (unsigned int) lr->lr_number), (intmax_t) lr->lr_number2); break; case DW_OP_addr: case DW_OP_GNU_encoded_addr: printf(": %#jx", (uintmax_t) lr->lr_number); break; case DW_OP_GNU_implicit_pointer: printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number, (intmax_t) lr->lr_number2); break; case DW_OP_implicit_value: printf(": %ju byte block:", (uintmax_t) lr->lr_number); b = (uint8_t *)(uintptr_t) lr->lr_number2; for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++) printf(" %x", b[i]); break; case DW_OP_GNU_entry_value: printf(": ("); dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2, lr->lr_number); putchar(')'); break; case DW_OP_GNU_const_type: printf(": <0x%jx> ", (uintmax_t) lr->lr_number); b = (uint8_t *)(uintptr_t) lr->lr_number2; n = *b; for (i = 1; (uint8_t) i < n; i++) printf(" %x", b[i]); break; case DW_OP_GNU_regval_type: printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number, dwarf_regname(re, (unsigned int) lr->lr_number), (uintmax_t) lr->lr_number2); break; case DW_OP_GNU_convert: case DW_OP_GNU_deref_type: case DW_OP_GNU_parameter_ref: case DW_OP_GNU_reinterpret: printf(": <0x%jx>", (uintmax_t) lr->lr_number); break; default: break; } } static void dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len) { Dwarf_Locdesc *llbuf; Dwarf_Signed lcnt; Dwarf_Error de; int i; if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize, re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) { warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de)); return; } for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) { dump_dwarf_loc(re, &llbuf->ld_s[i]); if (i < llbuf->ld_cents - 1) printf("; "); } dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK); dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC); } static void dump_dwarf_loclist(struct readelf *re) { Dwarf_Die die; Dwarf_Locdesc **llbuf; Dwarf_Unsigned lowpc; Dwarf_Signed lcnt; Dwarf_Half tag, version, pointer_size, off_size; Dwarf_Error de; struct loc_at *la; int i, j, ret; printf("\nContents of section .debug_loc:\n"); /* Search .debug_info section. */ while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL, &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) { set_cu_context(re, pointer_size, off_size, version); die = NULL; if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) continue; if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); continue; } /* XXX: What about DW_TAG_partial_unit? */ lowpc = 0; if (tag == DW_TAG_compile_unit) { if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, &de) != DW_DLV_OK) lowpc = 0; } /* Search attributes for reference to .debug_loc section. */ search_loclist_at(re, die, lowpc); } if (ret == DW_DLV_ERROR) warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); /* Search .debug_types section. */ do { while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL, &version, NULL, &pointer_size, &off_size, NULL, NULL, NULL, NULL, &de)) == DW_DLV_OK) { set_cu_context(re, pointer_size, off_size, version); die = NULL; if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK) continue; if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) { warnx("dwarf_tag failed: %s", dwarf_errmsg(de)); continue; } lowpc = 0; if (tag == DW_TAG_type_unit) { if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc, &de) != DW_DLV_OK) lowpc = 0; } /* * Search attributes for reference to .debug_loc * section. */ search_loclist_at(re, die, lowpc); } if (ret == DW_DLV_ERROR) warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de)); } while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK); if (TAILQ_EMPTY(&lalist)) return; printf(" Offset Begin End Expression\n"); TAILQ_FOREACH(la, &lalist, la_next) { if (dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de) != DW_DLV_OK) { warnx("dwarf_loclist_n failed: %s", dwarf_errmsg(de)); continue; } set_cu_context(re, la->la_cu_psize, la->la_cu_osize, la->la_cu_ver); for (i = 0; i < lcnt; i++) { printf(" %8.8jx ", la->la_off); if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) { printf("<End of list>\n"); continue; } /* TODO: handle base selection entry. */ printf("%8.8jx %8.8jx ", (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc), (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc)); putchar('('); for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) { dump_dwarf_loc(re, &llbuf[i]->ld_s[j]); if (j < llbuf[i]->ld_cents - 1) printf("; "); } putchar(')'); if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc) printf(" (start == end)"); putchar('\n'); } for (i = 0; i < lcnt; i++) { dwarf_dealloc(re->dbg, llbuf[i]->ld_s, DW_DLA_LOC_BLOCK); dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC); } dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST); } } /* * Retrieve a string using string table section index and the string offset. */ static const char* get_string(struct readelf *re, int strtab, size_t off) { const char *name; if ((name = elf_strptr(re->elf, strtab, off)) == NULL) return (""); return (name); } /* * Retrieve the name of a symbol using the section index of the symbol * table and the index of the symbol within that table. */ static const char * get_symbol_name(struct readelf *re, int symtab, int i) { struct section *s; const char *name; GElf_Sym sym; Elf_Data *data; int elferr; s = &re->sl[symtab]; if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) return (""); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return (""); } if (gelf_getsym(data, i, &sym) != &sym) return (""); /* Return section name for STT_SECTION symbol. */ if (GELF_ST_TYPE(sym.st_info) == STT_SECTION && re->sl[sym.st_shndx].name != NULL) return (re->sl[sym.st_shndx].name); if ((name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL) return (""); return (name); } static uint64_t get_symbol_value(struct readelf *re, int symtab, int i) { struct section *s; GElf_Sym sym; Elf_Data *data; int elferr; s = &re->sl[symtab]; if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM) return (0); (void) elf_errno(); if ((data = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); return (0); } if (gelf_getsym(data, i, &sym) != &sym) return (0); return (sym.st_value); } static void hex_dump(struct readelf *re) { struct section *s; Elf_Data *d; uint8_t *buf; size_t sz, nbytes; uint64_t addr; int elferr, i, j; for (i = 1; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL) continue; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } if (d->d_size <= 0 || d->d_buf == NULL) { printf("\nSection '%s' has no data to dump.\n", s->name); continue; } buf = d->d_buf; sz = d->d_size; addr = s->addr; printf("\nHex dump of section '%s':\n", s->name); while (sz > 0) { printf(" 0x%8.8jx ", (uintmax_t)addr); nbytes = sz > 16? 16 : sz; for (j = 0; j < 16; j++) { if ((size_t)j < nbytes) printf("%2.2x", buf[j]); else printf(" "); if ((j & 3) == 3) printf(" "); } for (j = 0; (size_t)j < nbytes; j++) { if (isprint(buf[j])) printf("%c", buf[j]); else printf("."); } printf("\n"); buf += nbytes; addr += nbytes; sz -= nbytes; } } } static void str_dump(struct readelf *re) { struct section *s; Elf_Data *d; unsigned char *start, *end, *buf_end; unsigned int len; int i, j, elferr, found; for (i = 1; (size_t) i < re->shnum; i++) { s = &re->sl[i]; if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL) continue; (void) elf_errno(); if ((d = elf_getdata(s->scn, NULL)) == NULL) { elferr = elf_errno(); if (elferr != 0) warnx("elf_getdata failed: %s", elf_errmsg(elferr)); continue; } if (d->d_size <= 0 || d->d_buf == NULL) { printf("\nSection '%s' has no data to dump.\n", s->name); continue; } buf_end = (unsigned char *) d->d_buf + d->d_size; start = (unsigned char *) d->d_buf; found = 0; printf("\nString dump of section '%s':\n", s->name); for (;;) { while (start < buf_end && !isprint(*start)) start++; if (start >= buf_end) break; end = start + 1; while (end < buf_end && isprint(*end)) end++; printf(" [%6lx] ", (long) (start - (unsigned char *) d->d_buf)); len = end - start; for (j = 0; (unsigned int) j < len; j++) putchar(start[j]); putchar('\n'); found = 1; if (end >= buf_end) break; start = end + 1; } if (!found) printf(" No strings found in this section."); putchar('\n'); } } static void load_sections(struct readelf *re) { struct section *s; const char *name; Elf_Scn *scn; GElf_Shdr sh; size_t shstrndx, ndx; int elferr; /* Allocate storage for internal section list. */ if (!elf_getshnum(re->elf, &re->shnum)) { warnx("elf_getshnum failed: %s", elf_errmsg(-1)); return; } if (re->sl != NULL) free(re->sl); if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL) err(EXIT_FAILURE, "calloc failed"); /* Get the index of .shstrtab section. */ if (!elf_getshstrndx(re->elf, &shstrndx)) { warnx("elf_getshstrndx failed: %s", elf_errmsg(-1)); return; } if ((scn = elf_getscn(re->elf, 0)) == NULL) return; (void) elf_errno(); do { if (gelf_getshdr(scn, &sh) == NULL) { warnx("gelf_getshdr failed: %s", elf_errmsg(-1)); (void) elf_errno(); continue; } if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) { (void) elf_errno(); name = "ERROR"; } if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) { if ((elferr = elf_errno()) != 0) warnx("elf_ndxscn failed: %s", elf_errmsg(elferr)); continue; } if (ndx >= re->shnum) { warnx("section index of '%s' out of range", name); continue; } s = &re->sl[ndx]; s->name = name; s->scn = scn; s->off = sh.sh_offset; s->sz = sh.sh_size; s->entsize = sh.sh_entsize; s->align = sh.sh_addralign; s->type = sh.sh_type; s->flags = sh.sh_flags; s->addr = sh.sh_addr; s->link = sh.sh_link; s->info = sh.sh_info; } while ((scn = elf_nextscn(re->elf, scn)) != NULL); elferr = elf_errno(); if (elferr != 0) warnx("elf_nextscn failed: %s", elf_errmsg(elferr)); } static void unload_sections(struct readelf *re) { if (re->sl != NULL) { free(re->sl); re->sl = NULL; } re->shnum = 0; re->vd_s = NULL; re->vn_s = NULL; re->vs_s = NULL; re->vs = NULL; re->vs_sz = 0; if (re->ver != NULL) { free(re->ver); re->ver = NULL; re->ver_sz = 0; } } static void dump_elf(struct readelf *re) { /* Fetch ELF header. No need to continue if it fails. */ if (gelf_getehdr(re->elf, &re->ehdr) == NULL) { warnx("gelf_getehdr failed: %s", elf_errmsg(-1)); return; } if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) { warnx("gelf_getclass failed: %s", elf_errmsg(-1)); return; } if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) { re->dw_read = _read_msb; re->dw_decode = _decode_msb; } else { re->dw_read = _read_lsb; re->dw_decode = _decode_lsb; } if (re->options & ~RE_H) load_sections(re); if ((re->options & RE_VV) || (re->options & RE_S)) search_ver(re); if (re->options & RE_H) dump_ehdr(re); if (re->options & RE_L) dump_phdr(re); if (re->options & RE_SS) dump_shdr(re); if (re->options & RE_G) dump_section_groups(re); if (re->options & RE_D) dump_dynamic(re); if (re->options & RE_R) dump_reloc(re); if (re->options & RE_S) dump_symtabs(re); if (re->options & RE_N) dump_notes(re); if (re->options & RE_II) dump_hash(re); if (re->options & RE_X) hex_dump(re); if (re->options & RE_P) str_dump(re); if (re->options & RE_VV) dump_ver(re); if (re->options & RE_AA) dump_arch_specific_info(re); if (re->options & RE_W) dump_dwarf(re); if (re->options & ~RE_H) unload_sections(re); } static void dump_dwarf(struct readelf *re) { int error; Dwarf_Error de; if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) { if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL) errx(EXIT_FAILURE, "dwarf_elf_init failed: %s", dwarf_errmsg(de)); return; } if (re->dop & DW_A) dump_dwarf_abbrev(re); if (re->dop & DW_L) dump_dwarf_line(re); if (re->dop & DW_LL) dump_dwarf_line_decoded(re); if (re->dop & DW_I) { dump_dwarf_info(re, 0); dump_dwarf_info(re, 1); } if (re->dop & DW_P) dump_dwarf_pubnames(re); if (re->dop & DW_R) dump_dwarf_aranges(re); if (re->dop & DW_RR) dump_dwarf_ranges(re); if (re->dop & DW_M) dump_dwarf_macinfo(re); if (re->dop & DW_F) dump_dwarf_frame(re, 0); else if (re->dop & DW_FF) dump_dwarf_frame(re, 1); if (re->dop & DW_S) dump_dwarf_str(re); if (re->dop & DW_O) dump_dwarf_loclist(re); dwarf_finish(re->dbg, &de); } static void dump_ar(struct readelf *re, int fd) { Elf_Arsym *arsym; Elf_Arhdr *arhdr; Elf_Cmd cmd; Elf *e; size_t sz; off_t off; int i; re->ar = re->elf; if (re->options & RE_C) { if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) { warnx("elf_getarsym() failed: %s", elf_errmsg(-1)); goto process_members; } printf("Index of archive %s: (%ju entries)\n", re->filename, (uintmax_t) sz - 1); off = 0; for (i = 0; (size_t) i < sz; i++) { if (arsym[i].as_name == NULL) break; if (arsym[i].as_off != off) { off = arsym[i].as_off; if (elf_rand(re->ar, off) != off) { warnx("elf_rand() failed: %s", elf_errmsg(-1)); continue; } if ((e = elf_begin(fd, ELF_C_READ, re->ar)) == NULL) { warnx("elf_begin() failed: %s", elf_errmsg(-1)); continue; } if ((arhdr = elf_getarhdr(e)) == NULL) { warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); elf_end(e); continue; } printf("Binary %s(%s) contains:\n", re->filename, arhdr->ar_name); } printf("\t%s\n", arsym[i].as_name); } if (elf_rand(re->ar, SARMAG) != SARMAG) { warnx("elf_rand() failed: %s", elf_errmsg(-1)); return; } } process_members: if ((re->options & ~RE_C) == 0) return; cmd = ELF_C_READ; while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) { if ((arhdr = elf_getarhdr(re->elf)) == NULL) { warnx("elf_getarhdr() failed: %s", elf_errmsg(-1)); goto next_member; } if (strcmp(arhdr->ar_name, "/") == 0 || strcmp(arhdr->ar_name, "//") == 0 || strcmp(arhdr->ar_name, "__.SYMDEF") == 0) goto next_member; printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name); dump_elf(re); next_member: cmd = elf_next(re->elf); elf_end(re->elf); } re->elf = re->ar; } static void dump_object(struct readelf *re) { int fd; if ((fd = open(re->filename, O_RDONLY)) == -1) { warn("open %s failed", re->filename); return; } if ((re->flags & DISPLAY_FILENAME) != 0) printf("\nFile: %s\n", re->filename); if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) { warnx("elf_begin() failed: %s", elf_errmsg(-1)); return; } switch (elf_kind(re->elf)) { case ELF_K_NONE: warnx("Not an ELF file."); return; case ELF_K_ELF: dump_elf(re); break; case ELF_K_AR: dump_ar(re, fd); break; default: warnx("Internal: libelf returned unknown elf kind."); return; } elf_end(re->elf); } static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) { struct dumpop *d; if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) { if ((d = calloc(1, sizeof(*d))) == NULL) err(EXIT_FAILURE, "calloc failed"); if (t == DUMP_BY_INDEX) d->u.si = si; else d->u.sn = sn; d->type = t; d->op = op; STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list); } else d->op |= op; } static struct dumpop * find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t) { struct dumpop *d; STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) { if ((op == -1 || op & d->op) && (t == -1 || (unsigned) t == d->type)) { if ((d->type == DUMP_BY_INDEX && d->u.si == si) || (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn))) return (d); } } return (NULL); } static struct { const char *ln; char sn; int value; } dwarf_op[] = { {"rawline", 'l', DW_L}, {"decodedline", 'L', DW_LL}, {"info", 'i', DW_I}, {"abbrev", 'a', DW_A}, {"pubnames", 'p', DW_P}, {"aranges", 'r', DW_R}, {"ranges", 'r', DW_R}, {"Ranges", 'R', DW_RR}, {"macro", 'm', DW_M}, {"frames", 'f', DW_F}, {"frames-interp", 'F', DW_FF}, {"str", 's', DW_S}, {"loc", 'o', DW_O}, {NULL, 0, 0} }; static void parse_dwarf_op_short(struct readelf *re, const char *op) { int i; if (op == NULL) { re->dop |= DW_DEFAULT_OPTIONS; return; } for (; *op != '\0'; op++) { for (i = 0; dwarf_op[i].ln != NULL; i++) { if (dwarf_op[i].sn == *op) { re->dop |= dwarf_op[i].value; break; } } } } static void parse_dwarf_op_long(struct readelf *re, const char *op) { char *p, *token, *bp; int i; if (op == NULL) { re->dop |= DW_DEFAULT_OPTIONS; return; } if ((p = strdup(op)) == NULL) err(EXIT_FAILURE, "strdup failed"); bp = p; while ((token = strsep(&p, ",")) != NULL) { for (i = 0; dwarf_op[i].ln != NULL; i++) { if (!strcmp(token, dwarf_op[i].ln)) { re->dop |= dwarf_op[i].value; break; } } } free(bp); } static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) { uint64_t ret; uint8_t *src; src = (uint8_t *) d->d_buf + *offsetp; ret = 0; switch (bytes_to_read) { case 8: ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; case 4: ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; case 2: ret |= ((uint64_t) src[1]) << 8; case 1: ret |= src[0]; break; default: return (0); } *offsetp += bytes_to_read; return (ret); } static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read) { uint64_t ret; uint8_t *src; src = (uint8_t *) d->d_buf + *offsetp; switch (bytes_to_read) { case 1: ret = src[0]; break; case 2: ret = src[1] | ((uint64_t) src[0]) << 8; break; case 4: ret = src[3] | ((uint64_t) src[2]) << 8; ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; break; case 8: ret = src[7] | ((uint64_t) src[6]) << 8; ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; break; default: return (0); } *offsetp += bytes_to_read; return (ret); } static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read) { uint64_t ret; uint8_t *src; src = *data; ret = 0; switch (bytes_to_read) { case 8: ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40; ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56; case 4: ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24; case 2: ret |= ((uint64_t) src[1]) << 8; case 1: ret |= src[0]; break; default: return (0); } *data += bytes_to_read; return (ret); } static uint64_t _decode_msb(uint8_t **data, int bytes_to_read) { uint64_t ret; uint8_t *src; src = *data; ret = 0; switch (bytes_to_read) { case 1: ret = src[0]; break; case 2: ret = src[1] | ((uint64_t) src[0]) << 8; break; case 4: ret = src[3] | ((uint64_t) src[2]) << 8; ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24; break; case 8: ret = src[7] | ((uint64_t) src[6]) << 8; ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24; ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40; ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56; break; default: return (0); break; } *data += bytes_to_read; return (ret); } static int64_t _decode_sleb128(uint8_t **dp) { int64_t ret = 0; uint8_t b; int shift = 0; uint8_t *src = *dp; do { b = *src++; ret |= ((b & 0x7f) << shift); shift += 7; } while ((b & 0x80) != 0); if (shift < 32 && (b & 0x40) != 0) ret |= (-1 << shift); *dp = src; return (ret); } static uint64_t _decode_uleb128(uint8_t **dp) { uint64_t ret = 0; uint8_t b; int shift = 0; uint8_t *src = *dp; do { b = *src++; ret |= ((b & 0x7f) << shift); shift += 7; } while ((b & 0x80) != 0); *dp = src; return (ret); } static void readelf_version(void) { (void) printf("%s (%s)\n", ELFTC_GETPROGNAME(), elftc_version()); exit(EXIT_SUCCESS); } #define USAGE_MESSAGE "\ Usage: %s [options] file...\n\ Display information about ELF objects and ar(1) archives.\n\n\ Options:\n\ -a | --all Equivalent to specifying options '-dhIlrsASV'.\n\ -c | --archive-index Print the archive symbol table for archives.\n\ -d | --dynamic Print the contents of SHT_DYNAMIC sections.\n\ -e | --headers Print all headers in the object.\n\ -g | --section-groups Print the contents of the section groups.\n\ -h | --file-header Print the file header for the object.\n\ -l | --program-headers Print the PHDR table for the object.\n\ -n | --notes Print the contents of SHT_NOTE sections.\n\ -p INDEX | --string-dump=INDEX\n\ Print the contents of section at index INDEX.\n\ -r | --relocs Print relocation information.\n\ -s | --syms | --symbols Print symbol tables.\n\ -t | --section-details Print additional information about sections.\n\ -v | --version Print a version identifier and exit.\n\ -x INDEX | --hex-dump=INDEX\n\ Display contents of a section as hexadecimal.\n\ -A | --arch-specific (accepted, but ignored)\n\ -D | --use-dynamic Print the symbol table specified by the DT_SYMTAB\n\ entry in the \".dynamic\" section.\n\ -H | --help Print a help message.\n\ -I | --histogram Print information on bucket list lengths for \n\ hash sections.\n\ -N | --full-section-name (accepted, but ignored)\n\ -S | --sections | --section-headers\n\ Print information about section headers.\n\ -V | --version-info Print symbol versoning information.\n\ -W | --wide Print information without wrapping long lines.\n" static void readelf_usage(void) { fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME()); exit(EXIT_FAILURE); } int main(int argc, char **argv) { struct readelf *re, re_storage; unsigned long si; int opt, i; char *ep; re = &re_storage; memset(re, 0, sizeof(*re)); STAILQ_INIT(&re->v_dumpop); while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:", longopts, NULL)) != -1) { switch(opt) { case '?': readelf_usage(); break; case 'A': re->options |= RE_AA; break; case 'a': re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II | RE_L | RE_R | RE_SS | RE_S | RE_VV; break; case 'c': re->options |= RE_C; break; case 'D': re->options |= RE_DD; break; case 'd': re->options |= RE_D; break; case 'e': re->options |= RE_H | RE_L | RE_SS; break; case 'g': re->options |= RE_G; break; case 'H': readelf_usage(); break; case 'h': re->options |= RE_H; break; case 'I': re->options |= RE_II; break; case 'i': /* Not implemented yet. */ break; case 'l': re->options |= RE_L; break; case 'N': re->options |= RE_NN; break; case 'n': re->options |= RE_N; break; case 'p': re->options |= RE_P; si = strtoul(optarg, &ep, 10); if (*ep == '\0') add_dumpop(re, (size_t) si, NULL, STR_DUMP, DUMP_BY_INDEX); else add_dumpop(re, 0, optarg, STR_DUMP, DUMP_BY_NAME); break; case 'r': re->options |= RE_R; break; case 'S': re->options |= RE_SS; break; case 's': re->options |= RE_S; break; case 't': re->options |= RE_T; break; case 'u': re->options |= RE_U; break; case 'V': re->options |= RE_VV; break; case 'v': readelf_version(); break; case 'W': re->options |= RE_WW; break; case 'w': re->options |= RE_W; parse_dwarf_op_short(re, optarg); break; case 'x': re->options |= RE_X; si = strtoul(optarg, &ep, 10); if (*ep == '\0') add_dumpop(re, (size_t) si, NULL, HEX_DUMP, DUMP_BY_INDEX); else add_dumpop(re, 0, optarg, HEX_DUMP, DUMP_BY_NAME); break; case OPTION_DEBUG_DUMP: re->options |= RE_W; parse_dwarf_op_long(re, optarg); } } argv += optind; argc -= optind; if (argc == 0 || re->options == 0) readelf_usage(); if (argc > 1) re->flags |= DISPLAY_FILENAME; if (elf_version(EV_CURRENT) == EV_NONE) errx(EXIT_FAILURE, "ELF library initialization failed: %s", elf_errmsg(-1)); for (i = 0; i < argc; i++) { re->filename = argv[i]; dump_object(re); } exit(EXIT_SUCCESS); }