# $NetBSD: varmod-indirect.mk,v 1.5 2020/12/27 17:32:25 rillig Exp $ # # Tests for indirect variable modifiers, such as in ${VAR:${M_modifiers}}. # These can be used for very basic purposes like converting a string to either # uppercase or lowercase, as well as for fairly advanced modifiers that first # look like line noise and are hard to decipher. # # TODO: Since when are indirect modifiers supported? # To apply a modifier indirectly via another variable, the whole # modifier must be put into a single variable expression. .if ${value:L:${:US}${:U,value,replacement,}} != "S,value,replacement,}" . warning unexpected .endif # Adding another level of indirection (the 2 nested :U expressions) helps. .if ${value:L:${:U${:US}${:U,value,replacement,}}} != "replacement" . warning unexpected .endif # Multiple indirect modifiers can be applied one after another as long as # they are separated with colons. .if ${value:L:${:US,a,A,}:${:US,e,E,}} != "vAluE" . warning unexpected .endif # An indirect variable that evaluates to the empty string is allowed though. # This makes it possible to define conditional modifiers, like this: # # M.little-endian= S,1234,4321, # M.big-endian= # none .if ${value:L:${:Dempty}S,a,A,} != "vAlue" . warning unexpected .endif # The nested variable expression expands to "tu", and this is interpreted as # a variable modifier for the value "Upper", resulting in "UPPER". .if ${Upper:L:${:Utu}} != "UPPER" . error .endif # The nested variable expression expands to "tl", and this is interpreted as # a variable modifier for the value "Lower", resulting in "lower". .if ${Lower:L:${:Utl}} != "lower" . error .endif # The nested variable expression is ${1 != 1:?Z:tl}, consisting of the # condition "1 != 1", the then-branch "Z" and the else-branch "tl". Since # the condition evaluates to false, the then-branch is ignored (it would # have been an unknown modifier anyway) and the ":tl" modifier is applied. .if ${Mixed:L:${1 != 1:?Z:tl}} != "mixed" . error .endif # The indirect modifier can also replace an ':L' modifier, which allows for # brain twisters since by reading the expression alone, it is not possible # to say whether the variable name will be evaluated as a variable name or # as the immediate value of the expression. VAR= value M_ExpandVar= # an empty modifier M_VarAsValue= L # .if ${VAR:${M_ExpandVar}} != "value" . error .endif .if ${VAR:${M_VarAsValue}} != "VAR" . error .endif # The indirect modifier M_ListToSkip, when applied to a list of patterns, # expands to a sequence of ':N' modifiers, each of which filters one of the # patterns. This list of patterns can then be applied to another variable # to actually filter that variable. # M_ListToSkip= @pat@N$${pat}@:ts: # # The dollar signs need to be doubled in the above modifier expression, # otherwise they would be expanded too early, that is, when parsing the # modifier itself. # # In the following example, M_NoPrimes expands to 'N2:N3:N5:N7:N1[1379]'. # The 'N' comes from the expression 'N${pat}', the separating colons come # from the modifier ':ts:'. # #.MAKEFLAGS: -dcv # Uncomment this line to see the details # PRIMES= 2 3 5 7 1[1379] M_NoPrimes= ${PRIMES:${M_ListToSkip}} .if ${:U:range=20:${M_NoPrimes}} != "1 4 6 8 9 10 12 14 15 16 18 20" . error .endif .MAKEFLAGS: -d0 # In contrast to the .if conditions, the .for loop allows undefined variable # expressions. These expressions expand to empty strings. # An undefined expression without any modifiers expands to an empty string. .for var in before ${UNDEF} after . info ${var} .endfor # An undefined expression with only modifiers that keep the expression # undefined expands to an empty string. .for var in before ${UNDEF:${:US,a,a,}} after . info ${var} .endfor # Even in an indirect modifier based on an undefined variable, the value of # the expression in Var_Parse is a simple empty string. .for var in before ${UNDEF:${:U}} after . info ${var} .endfor # An error in an indirect modifier. .for var in before ${UNDEF:${:UZ}} after . info ${var} .endfor # Another slightly different evaluation context is the right-hand side of # a variable assignment using ':='. .MAKEFLAGS: -dpv # The undefined variable expression is kept as-is. _:= before ${UNDEF} after # The undefined variable expression is kept as-is. _:= before ${UNDEF:${:US,a,a,}} after # XXX: The subexpression ${:U} is fully defined, therefore it is expanded. # This results in ${UNDEF:}, which can lead to tricky parse errors later, # when the variable '_' is expanded further. # # XXX: What should be the correct strategy here? One possibility is to # expand the defined subexpression and replace it with ${:U...}, just like # in .for loops. This would preserve the structure of the expression while # at the same time expanding the expression as far as possible. _:= before ${UNDEF:${:U}} after # XXX: This expands to ${UNDEF:Z}, which will behave differently if the # variable '_' is used in a context where the variable expression ${_} is # parsed but not evaluated. _:= before ${UNDEF:${:UZ}} after .MAKEFLAGS: -d0 .undef _ all: