/* * ***************************************************************************** * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2018-2021 Gavin D. Howard and contributors. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * ***************************************************************************** * * The second bc math library. * */ define p(x,y){ auto a a=y$ if(y==a)return (x^a)@scale return e(y*l(x)) } define r(x,p){ auto t,n if(x==0)return x p=abs(p)$ n=(x<0) x=abs(x) t=x@p if(p=5>>p+1)t+=1>>p if(n)t=-t return t } define ceil(x,p){ auto t,n if(x==0)return x p=abs(p)$ n=(x<0) x=abs(x) t=(x+((x@p>p))@p if(n)t=-t return t } define f(n){ auto r n=abs(n)$ for(r=1;n>1;--n)r*=n return r } define perm(n,k){ auto f,g,s if(k>n)return 0 n=abs(n)$ k=abs(k)$ f=f(n) g=f(n-k) s=scale scale=0 f/=g scale=s return f } define comb(n,r){ auto s,f,g,h if(r>n)return 0 n=abs(n)$ r=abs(r)$ s=scale scale=0 f=f(n) h=f(r) g=f(n-r) f/=h*g scale=s return f } define log(x,b){ auto p,s s=scale if(scalescale)scale=scale(x) scale*=2 p=l(x)/l(b) scale=s return p@s } define l2(x){return log(x,2)} define l10(x){return log(x,A)} define root(x,n){ auto s,m,r,q,p if(n<0)sqrt(n) n=n$ if(n==0)x/n if(x==0||n==1)return x if(n==2)return sqrt(x) s=scale scale=0 if(x<0&&n%2==0)sqrt(x) scale=s+2 m=(x<0) x=abs(x) p=n-1 q=A^ceil((length(x$)/n)$,0) while(r!=q){ r=q q=(p*r+x/r^p)/n } if(m)r=-r scale=s return r@s } define cbrt(x){return root(x,3)} define gcd(a,b){ auto g,s if(!b)return a s=scale scale=0 a=abs(a)$ b=abs(b)$ if(a>p } define ifrand(i,p){return irand(abs(i)$)+frand(p)} define srand(x){ if(irand(2))return -x return x } define brand(){return irand(2)} define void output(x,b){ auto c c=obase obase=b x obase=c } define void hex(x){output(x,G)} define void binary(x){output(x,2)} define ubytes(x){ auto p,i x=abs(x)$ i=2^8 for(p=1;i-1p||(!z&&x==p))n*=2 return n } define s2un(x,n){ auto t,u,s x=x$ if(x<0){ x=abs(x) s=scale scale=0 t=n*8 u=2^(t-1) if(x==u)return x else if(x>u)x%=u scale=s return 2^(t)-x } return x } define s2u(x){return s2un(x,sbytes(x))} define void output_byte(x,i){ auto j,p,y,b j=ibase ibase=A s=scale scale=0 x=abs(x)$ b=x/(2^(i*8)) b%=256 y=log(256,obase) if(b>1)p=log(b,obase)+1 else p=b for(i=y-p;i>0;--i)print 0 if(b)print b scale=s ibase=j } define void output_uint(x,n){ auto i for(i=n-1;i>=0;--i){ output_byte(x,i) if(i)print" " else print"\n" } } define void hex_uint(x,n){ auto o o=obase obase=G output_uint(x,n) obase=o } define void binary_uint(x,n){ auto o o=obase obase=2 output_uint(x,n) obase=o } define void uintn(x,n){ if(scale(x)){ print"Error: ",x," is not an integer.\n" return } if(x<0){ print"Error: ",x," is negative.\n" return } if(x>=2^(n*8)){ print"Error: ",x," cannot fit into ",n," unsigned byte(s).\n" return } binary_uint(x,n) hex_uint(x,n) } define void intn(x,n){ auto t if(scale(x)){ print"Error: ",x," is not an integer.\n" return } t=2^(n*8-1) if(abs(x)>=t&&(x>0||x!=-t)){ print "Error: ",x," cannot fit into ",n," signed byte(s).\n" return } x=s2un(x,n) binary_uint(x,n) hex_uint(x,n) } define void uint8(x){uintn(x,1)} define void int8(x){intn(x,1)} define void uint16(x){uintn(x,2)} define void int16(x){intn(x,2)} define void uint32(x){uintn(x,4)} define void int32(x){intn(x,4)} define void uint64(x){uintn(x,8)} define void int64(x){intn(x,8)} define void uint(x){uintn(x,ubytes(x))} define void int(x){intn(x,sbytes(x))} define bunrev(t){ auto a,s,m[] s=scale scale=0 t=abs(t)$ while(t!=1){ t=divmod(t,2,m[]) a*=2 a+=m[0] } scale=s return a } define band(a,b){ auto s,t,m[],n[] a=abs(a)$ b=abs(b)$ if(b>a){ t=b b=a a=t } s=scale scale=0 t=1 while(b){ a=divmod(a,2,m[]) b=divmod(b,2,n[]) t*=2 t+=(m[0]&&n[0]) } scale=s return bunrev(t) } define bor(a,b){ auto s,t,m[],n[] a=abs(a)$ b=abs(b)$ if(b>a){ t=b b=a a=t } s=scale scale=0 t=1 while(b){ a=divmod(a,2,m[]) b=divmod(b,2,n[]) t*=2 t+=(m[0]||n[0]) } while(a){ a=divmod(a,2,m[]) t*=2 t+=m[0] } scale=s return bunrev(t) } define bxor(a,b){ auto s,t,m[],n[] a=abs(a)$ b=abs(b)$ if(b>a){ t=b b=a a=t } s=scale scale=0 t=1 while(b){ a=divmod(a,2,m[]) b=divmod(b,2,n[]) t*=2 t+=(m[0]+n[0]==1) } while(a){ a=divmod(a,2,m[]) t*=2 t+=m[0] } scale=s return bunrev(t) } define bshl(a,b){return abs(a)$*2^abs(b)$} define bshr(a,b){return (abs(a)$/2^abs(b)$)$} define bnotn(x,n){ auto s,t,m[] s=scale scale=0 t=2^(abs(n)$*8) x=abs(x)$%t+t t=1 while(x!=1){ x=divmod(x,2,m[]) t*=2 t+=!m[0] } scale=s return bunrev(t) } define bnot8(x){return bnotn(x,1)} define bnot16(x){return bnotn(x,2)} define bnot32(x){return bnotn(x,4)} define bnot64(x){return bnotn(x,8)} define bnot(x){return bnotn(x,ubytes(x))} define brevn(x,n){ auto s,t,m[] s=scale scale=0 t=2^(abs(n)$*8) x=abs(x)$%t+t scale=s return bunrev(x) } define brev8(x){return brevn(x,1)} define brev16(x){return brevn(x,2)} define brev32(x){return brevn(x,4)} define brev64(x){return brevn(x,8)} define brev(x){return brevn(x,ubytes(x))} define broln(x,p,n){ auto s,t,m[] s=scale scale=0 n=abs(n)$*8 p=abs(p)$%n t=2^n x=abs(x)$%t if(!p)return x x=divmod(x,2^(n-p),m[]) x+=m[0]*2^p%t scale=s return x } define brol8(x,p){return broln(x,p,1)} define brol16(x,p){return broln(x,p,2)} define brol32(x,p){return broln(x,p,4)} define brol64(x,p){return broln(x,p,8)} define brol(x,p){return broln(x,p,ubytes(x))} define brorn(x,p,n){ auto s,t,m[] s=scale scale=0 n=abs(n)$*8 p=abs(p)$%n t=2^n x=abs(x)$%t if(!p)return x x=divmod(x,2^p,m[]) x+=m[0]*2^(n-p)%t scale=s return x } define bror8(x,p){return brorn(x,p,1)} define bror16(x,p){return brorn(x,p,2)} define bror32(x,p){return brorn(x,p,4)} define bror64(x,p){return brorn(x,p,8)} define brol(x,p){return brorn(x,p,ubytes(x))} define bmodn(x,n){ auto s s=scale scale=0 x=abs(x)$%2^(abs(n)$*8) scale=s return x } define bmod8(x){return bmodn(x,1)} define bmod16(x){return bmodn(x,2)} define bmod32(x){return bmodn(x,4)} define bmod64(x){return bmodn(x,8)}