/* * ***************************************************************************** * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2018-2024 Gavin D. Howard and contributors. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * ***************************************************************************** * * The bc math library. * */ define e(x){ auto b,s,n,r,d,i,p,f,v b=ibase ibase=A if(x<0){ n=1 x=-x } s=scale r=6+s+.44*x scale=scale(x)+1 while(x>1){ d+=1 x/=2 scale+=1 } scale=r r=x+1 p=x f=v=1 for(i=2;v;++i){ p*=x f*=i v=p/f r+=v } while(d--)r*=r scale=s ibase=b if(n)return(1/r) return(r/1) } define l(x){ auto b,s,r,p,a,q,i,v if(x<=0)return((1-A^scale)/1) b=ibase ibase=A s=scale scale+=6 p=2 while(x>=2){ p*=2 x=sqrt(x) } while(x<=.5){ p*=2 x=sqrt(x) } r=a=(x-1)/(x+1) q=a*a v=1 for(i=3;v;i+=2){ a*=q v=a/i r+=v } r*=p scale=s ibase=b return(r/1) } define s(x){ auto b,s,r,a,q,i if(x<0)return(-s(-x)) b=ibase ibase=A s=scale scale=1.1*s+2 a=a(1) scale=0 q=(x/a+2)/4 x-=4*q*a if(q%2)x=-x scale=s+2 r=a=x q=-x*x for(i=3;a;i+=2){ a*=q/(i*(i-1)) r+=a } scale=s ibase=b return(r/1) } define c(x){ auto b,s b=ibase ibase=A s=scale scale*=1.2 x=s(2*a(1)+x) scale=s ibase=b return(x/1) } define a(x){ auto b,s,r,n,a,m,t,f,i,u b=ibase ibase=A n=1 if(x<0){ n=-1 x=-x } if(scale<65){ if(x==1){ r=.7853981633974483096156608458198757210492923498437764552437361480/n ibase=b return(r) } if(x==.2){ r=.1973955598498807583700497651947902934475851037878521015176889402/n ibase=b return(r) } } s=scale if(x>.2){ scale+=5 a=a(.2) } scale=s+3 while(x>.2){ m+=1 x=(x-.2)/(1+.2*x) } r=u=x f=-x*x t=1 for(i=3;t;i+=2){ u*=f t=u/i r+=t } scale=s ibase=b return((m*a+r)/n) } define j(n,x){ auto b,s,o,a,i,r,v,f b=ibase ibase=A s=scale scale=0 n/=1 if(n<0){ n=-n o=n%2 } a=1 for(i=2;i<=n;++i)a*=i scale=1.5*s a=(x^n)/2^n/a r=v=1 f=-x*x/4 scale+=length(a)-scale(a) for(i=1;v;++i){ v=v*f/i/(n+i) r+=v } scale=s ibase=b if(o)a=-a return(a*r/1) }