/* * memcpy benchmark. * * Copyright (c) 2020-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #define _GNU_SOURCE #include #include #include #include #include "stringlib.h" #include "benchlib.h" #define ITERS 5000 #define ITERS2 20000000 #define ITERS3 200000 #define NUM_TESTS 16384 #define MIN_SIZE 32768 #define MAX_SIZE (1024 * 1024) static uint8_t a[MAX_SIZE + 4096 + 64] __attribute__((__aligned__(64))); static uint8_t b[MAX_SIZE + 4096 + 64] __attribute__((__aligned__(64))); #define F(x) {#x, x}, static const struct fun { const char *name; void *(*fun)(void *, const void *, size_t); } funtab[] = { #if __aarch64__ F(__memcpy_aarch64) # if __ARM_NEON F(__memcpy_aarch64_simd) # endif # if __ARM_FEATURE_SVE F(__memcpy_aarch64_sve) # endif # if WANT_MOPS F(__memcpy_aarch64_mops) # endif #elif __arm__ F(__memcpy_arm) #endif F(memcpy) #undef F {0, 0} }; typedef struct { uint16_t size; uint16_t freq; } freq_data_t; typedef struct { uint8_t align; uint16_t freq; } align_data_t; #define SIZE_NUM 65536 #define SIZE_MASK (SIZE_NUM-1) static uint8_t size_arr[SIZE_NUM]; /* Frequency data for memcpy of less than 4096 bytes based on SPEC2017. */ static freq_data_t size_freq[] = { {32,22320}, { 16,9554}, { 8,8915}, {152,5327}, { 4,2159}, {292,2035}, { 12,1608}, { 24,1343}, {1152,895}, {144, 813}, {884, 733}, {284, 721}, {120, 661}, { 2, 649}, {882, 550}, { 5, 475}, { 7, 461}, {108, 460}, { 10, 361}, { 9, 361}, { 6, 334}, { 3, 326}, {464, 308}, {2048,303}, { 1, 298}, { 64, 250}, { 11, 197}, {296, 194}, { 68, 187}, { 15, 185}, {192, 184}, {1764,183}, { 13, 173}, {560, 126}, {160, 115}, {288, 96}, {104, 96}, {1144, 83}, { 18, 80}, { 23, 78}, { 40, 77}, { 19, 68}, { 48, 63}, { 17, 57}, { 72, 54}, {1280, 51}, { 20, 49}, { 28, 47}, { 22, 46}, {640, 45}, { 25, 41}, { 14, 40}, { 56, 37}, { 27, 35}, { 35, 33}, {384, 33}, { 29, 32}, { 80, 30}, {4095, 22}, {232, 22}, { 36, 19}, {184, 17}, { 21, 17}, {256, 16}, { 44, 15}, { 26, 15}, { 31, 14}, { 88, 14}, {176, 13}, { 33, 12}, {1024, 12}, {208, 11}, { 62, 11}, {128, 10}, {704, 10}, {324, 10}, { 96, 10}, { 60, 9}, {136, 9}, {124, 9}, { 34, 8}, { 30, 8}, {480, 8}, {1344, 8}, {273, 7}, {520, 7}, {112, 6}, { 52, 6}, {344, 6}, {336, 6}, {504, 5}, {168, 5}, {424, 5}, { 0, 4}, { 76, 3}, {200, 3}, {512, 3}, {312, 3}, {240, 3}, {960, 3}, {264, 2}, {672, 2}, { 38, 2}, {328, 2}, { 84, 2}, { 39, 2}, {216, 2}, { 42, 2}, { 37, 2}, {1608, 2}, { 70, 2}, { 46, 2}, {536, 2}, {280, 1}, {248, 1}, { 47, 1}, {1088, 1}, {1288, 1}, {224, 1}, { 41, 1}, { 50, 1}, { 49, 1}, {808, 1}, {360, 1}, {440, 1}, { 43, 1}, { 45, 1}, { 78, 1}, {968, 1}, {392, 1}, { 54, 1}, { 53, 1}, { 59, 1}, {376, 1}, {664, 1}, { 58, 1}, {272, 1}, { 66, 1}, {2688, 1}, {472, 1}, {568, 1}, {720, 1}, { 51, 1}, { 63, 1}, { 86, 1}, {496, 1}, {776, 1}, { 57, 1}, {680, 1}, {792, 1}, {122, 1}, {760, 1}, {824, 1}, {552, 1}, { 67, 1}, {456, 1}, {984, 1}, { 74, 1}, {408, 1}, { 75, 1}, { 92, 1}, {576, 1}, {116, 1}, { 65, 1}, {117, 1}, { 82, 1}, {352, 1}, { 55, 1}, {100, 1}, { 90, 1}, {696, 1}, {111, 1}, {880, 1}, { 79, 1}, {488, 1}, { 61, 1}, {114, 1}, { 94, 1}, {1032, 1}, { 98, 1}, { 87, 1}, {584, 1}, { 85, 1}, {648, 1}, {0, 0} }; #define ALIGN_NUM 1024 #define ALIGN_MASK (ALIGN_NUM-1) static uint8_t src_align_arr[ALIGN_NUM]; static uint8_t dst_align_arr[ALIGN_NUM]; /* Source alignment frequency for memcpy based on SPEC2017. */ static align_data_t src_align_freq[] = { {8, 300}, {16, 292}, {32, 168}, {64, 153}, {4, 79}, {2, 14}, {1, 18}, {0, 0} }; static align_data_t dst_align_freq[] = { {8, 265}, {16, 263}, {64, 209}, {32, 174}, {4, 90}, {2, 10}, {1, 13}, {0, 0} }; typedef struct { uint64_t src : 24; uint64_t dst : 24; uint64_t len : 16; } copy_t; static copy_t test_arr[NUM_TESTS]; typedef char *(*proto_t) (char *, const char *, size_t); static void init_copy_distribution (void) { int i, j, freq, size, n; for (n = i = 0; (freq = size_freq[i].freq) != 0; i++) for (j = 0, size = size_freq[i].size; j < freq; j++) size_arr[n++] = size; assert (n == SIZE_NUM); for (n = i = 0; (freq = src_align_freq[i].freq) != 0; i++) for (j = 0, size = src_align_freq[i].align; j < freq; j++) src_align_arr[n++] = size - 1; assert (n == ALIGN_NUM); for (n = i = 0; (freq = dst_align_freq[i].freq) != 0; i++) for (j = 0, size = dst_align_freq[i].align; j < freq; j++) dst_align_arr[n++] = size - 1; assert (n == ALIGN_NUM); } static size_t init_copies (size_t max_size) { size_t total = 0; /* Create a random set of copies with the given size and alignment distributions. */ for (int i = 0; i < NUM_TESTS; i++) { test_arr[i].dst = (rand32 (0) & (max_size - 1)); test_arr[i].dst &= ~dst_align_arr[rand32 (0) & ALIGN_MASK]; test_arr[i].src = (rand32 (0) & (max_size - 1)); test_arr[i].src &= ~src_align_arr[rand32 (0) & ALIGN_MASK]; test_arr[i].len = size_arr[rand32 (0) & SIZE_MASK]; total += test_arr[i].len; } return total; } int main (void) { init_copy_distribution (); memset (a, 1, sizeof (a)); memset (b, 2, sizeof (b)); printf("Random memcpy (bytes/ns):\n"); for (int f = 0; funtab[f].name != 0; f++) { size_t total = 0; uint64_t tsum = 0; printf ("%22s ", funtab[f].name); rand32 (0x12345678); for (int size = MIN_SIZE; size <= MAX_SIZE; size *= 2) { size_t copy_size = init_copies (size) * ITERS; for (int c = 0; c < NUM_TESTS; c++) funtab[f].fun (b + test_arr[c].dst, a + test_arr[c].src, test_arr[c].len); uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS; i++) for (int c = 0; c < NUM_TESTS; c++) funtab[f].fun (b + test_arr[c].dst, a + test_arr[c].src, test_arr[c].len); t = clock_get_ns () - t; total += copy_size; tsum += t; printf ("%dK: %.2f ", size / 1024, (double)copy_size / t); } printf( "avg %.2f\n", (double)total / tsum); } size_t total = 0; uint64_t tsum = 0; printf ("%22s ", "memcpy_call"); rand32 (0x12345678); for (int size = MIN_SIZE; size <= MAX_SIZE; size *= 2) { size_t copy_size = init_copies (size) * ITERS; for (int c = 0; c < NUM_TESTS; c++) memcpy (b + test_arr[c].dst, a + test_arr[c].src, test_arr[c].len); uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS; i++) for (int c = 0; c < NUM_TESTS; c++) memcpy (b + test_arr[c].dst, a + test_arr[c].src, test_arr[c].len); t = clock_get_ns () - t; total += copy_size; tsum += t; printf ("%dK: %.2f ", size / 1024, (double)copy_size / t); } printf( "avg %.2f\n", (double)total / tsum); printf ("\nAligned medium memcpy (bytes/ns):\n"); for (int f = 0; funtab[f].name != 0; f++) { printf ("%22s ", funtab[f].name); for (int size = 8; size <= 512; size *= 2) { uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS2; i++) funtab[f].fun (b, a, size); t = clock_get_ns () - t; printf ("%dB: %.2f ", size, (double)size * ITERS2 / t); } printf ("\n"); } printf ("%22s ", "memcpy_call"); for (int size = 8; size <= 512; size *= 2) { uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS2; i++) memcpy (b, a, size); t = clock_get_ns () - t; printf ("%dB: %.2f ", size, (double)size * ITERS2 / t); } printf ("\n"); printf ("\nUnaligned medium memcpy (bytes/ns):\n"); for (int f = 0; funtab[f].name != 0; f++) { printf ("%22s ", funtab[f].name); for (int size = 8; size <= 512; size *= 2) { uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS2; i++) funtab[f].fun (b + 3, a + 1, size); t = clock_get_ns () - t; printf ("%dB: %.2f ", size, (double)size * ITERS2 / t); } printf ("\n"); } printf ("%22s ", "memcpy_call"); for (int size = 8; size <= 512; size *= 2) { uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS2; i++) memcpy (b + 3, a + 1, size); t = clock_get_ns () - t; printf ("%dB: %.2f ", size, (double)size * ITERS2 / t); } printf ("\n"); printf ("\nLarge memcpy (bytes/ns):\n"); for (int f = 0; funtab[f].name != 0; f++) { printf ("%22s ", funtab[f].name); for (int size = 1024; size <= 65536; size *= 2) { uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS3; i++) funtab[f].fun (b, a, size); t = clock_get_ns () - t; printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t); } printf ("\n"); } printf ("%22s ", "memcpy_call"); for (int size = 1024; size <= 65536; size *= 2) { uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS3; i++) memcpy (b, a, size); t = clock_get_ns () - t; printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t); } printf ("\n"); printf ("\nUnaligned forwards memmove (bytes/ns):\n"); for (int f = 0; funtab[f].name != 0; f++) { printf ("%22s ", funtab[f].name); for (int size = 1024; size <= 65536; size *= 2) { uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS3; i++) funtab[f].fun (a, a + 256 + (i & 31), size); t = clock_get_ns () - t; printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t); } printf ("\n"); } printf ("\nUnaligned backwards memmove (bytes/ns):\n"); for (int f = 0; funtab[f].name != 0; f++) { printf ("%22s ", funtab[f].name); for (int size = 1024; size <= 65536; size *= 2) { uint64_t t = clock_get_ns (); for (int i = 0; i < ITERS3; i++) funtab[f].fun (a + 256 + (i & 31), a, size); t = clock_get_ns () - t; printf ("%dK: %.2f ", size / 1024, (double)size * ITERS3 / t); } printf ("\n"); } printf ("\n"); return 0; }