/* * Single-precision vector log(1+x) function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "pl_sig.h" #include "pl_test.h" #if V_SUPPORTED #define AbsMask 0x7fffffff #define TinyBound 0x340 /* asuint32(0x1p-23). ulp=0.5 at 0x1p-23. */ #define MinusOne 0xbf800000 #define Ln2 (0x1.62e43p-1f) #define Four 0x40800000 #define ThreeQuarters v_u32 (0x3f400000) #define C(i) v_f32 (__log1pf_data.coeffs[i]) static inline v_f32_t eval_poly (v_f32_t m) { #ifdef V_LOG1PF_1U3 /* Approximate log(1+m) on [-0.25, 0.5] using Horner scheme. */ v_f32_t p = v_fma_f32 (C (8), m, C (7)); p = v_fma_f32 (p, m, C (6)); p = v_fma_f32 (p, m, C (5)); p = v_fma_f32 (p, m, C (4)); p = v_fma_f32 (p, m, C (3)); p = v_fma_f32 (p, m, C (2)); p = v_fma_f32 (p, m, C (1)); p = v_fma_f32 (p, m, C (0)); return v_fma_f32 (m, m * p, m); #elif defined(V_LOG1PF_2U5) /* Approximate log(1+m) on [-0.25, 0.5] using Estrin scheme. */ v_f32_t p_12 = v_fma_f32 (m, C (1), C (0)); v_f32_t p_34 = v_fma_f32 (m, C (3), C (2)); v_f32_t p_56 = v_fma_f32 (m, C (5), C (4)); v_f32_t p_78 = v_fma_f32 (m, C (7), C (6)); v_f32_t m2 = m * m; v_f32_t p_02 = v_fma_f32 (m2, p_12, m); v_f32_t p_36 = v_fma_f32 (m2, p_56, p_34); v_f32_t p_79 = v_fma_f32 (m2, C (8), p_78); v_f32_t m4 = m2 * m2; v_f32_t p_06 = v_fma_f32 (m4, p_36, p_02); return v_fma_f32 (m4, m4 * p_79, p_06); #else #error No precision specified for v_log1pf #endif } static inline float handle_special (float x) { uint32_t ix = asuint (x); uint32_t ia = ix & AbsMask; if (ix == 0xff800000 || ia > 0x7f800000 || ix > 0xbf800000) { /* x == -Inf => log1pf(x) = NaN. x < -1.0 => log1pf(x) = NaN. x == +/-NaN => log1pf(x) = NaN. */ #if WANT_SIMD_EXCEPT return __math_invalidf (asfloat (ia)); #else return NAN; #endif } if (ix == 0xbf800000) { /* x == -1.0 => log1pf(x) = -Inf. */ #if WANT_SIMD_EXCEPT return __math_divzerof (ix); #else return -INFINITY; #endif } /* |x| < TinyBound => log1p(x) = x. */ return x; } /* Vector log1pf approximation using polynomial on reduced interval. Accuracy is the same as for the scalar algorithm, i.e. worst-case error when using Estrin is roughly 2.02 ULP: log1pf(0x1.21e13ap-2) got 0x1.fe8028p-3 want 0x1.fe802cp-3. */ VPCS_ATTR v_f32_t V_NAME (log1pf) (v_f32_t x) { v_u32_t ix = v_as_u32_f32 (x); v_u32_t ia12 = (ix >> 20) & v_u32 (0x7f8); v_u32_t special_cases = v_cond_u32 (ia12 - v_u32 (TinyBound) >= (0x7f8 - TinyBound)) | v_cond_u32 (ix >= MinusOne); v_f32_t special_arg = x; #if WANT_SIMD_EXCEPT if (unlikely (v_any_u32 (special_cases))) /* Side-step special lanes so fenv exceptions are not triggered inadvertently. */ x = v_sel_f32 (special_cases, v_f32 (1), x); #endif /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m is in [-0.25, 0.5]): log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2). We approximate log1p(m) with a polynomial, then scale by k*log(2). Instead of doing this directly, we use an intermediate scale factor s = 4*k*log(2) to ensure the scale is representable as a normalised fp32 number. */ v_f32_t m = x + v_f32 (1.0f); /* Choose k to scale x to the range [-1/4, 1/2]. */ v_s32_t k = (v_as_s32_f32 (m) - ThreeQuarters) & v_u32 (0xff800000); /* Scale x by exponent manipulation. */ v_f32_t m_scale = v_as_f32_u32 (v_as_u32_f32 (x) - v_as_u32_s32 (k)); /* Scale up to ensure that the scale factor is representable as normalised fp32 number, and scale m down accordingly. */ v_f32_t s = v_as_f32_u32 (v_u32 (Four) - k); m_scale = m_scale + v_fma_f32 (v_f32 (0.25f), s, v_f32 (-1.0f)); /* Evaluate polynomial on the reduced interval. */ v_f32_t p = eval_poly (m_scale); /* The scale factor to be applied back at the end - by multiplying float(k) by 2^-23 we get the unbiased exponent of k. */ v_f32_t scale_back = v_to_f32_s32 (k) * v_f32 (0x1p-23f); /* Apply the scaling back. */ v_f32_t y = v_fma_f32 (scale_back, v_f32 (Ln2), p); if (unlikely (v_any_u32 (special_cases))) return v_call_f32 (handle_special, special_arg, y, special_cases); return y; } VPCS_ALIAS PL_SIG (V, F, 1, log1p, -0.9, 10.0) PL_TEST_ULP (V_NAME (log1pf), 1.53) PL_TEST_EXPECT_FENV (V_NAME (log1pf), WANT_SIMD_EXCEPT) PL_TEST_INTERVAL (V_NAME (log1pf), -10.0, 10.0, 10000) PL_TEST_INTERVAL (V_NAME (log1pf), 0.0, 0x1p-23, 30000) PL_TEST_INTERVAL (V_NAME (log1pf), 0x1p-23, 0.001, 50000) PL_TEST_INTERVAL (V_NAME (log1pf), 0.001, 1.0, 50000) PL_TEST_INTERVAL (V_NAME (log1pf), 0.0, -0x1p-23, 30000) PL_TEST_INTERVAL (V_NAME (log1pf), -0x1p-23, -0.001, 30000) PL_TEST_INTERVAL (V_NAME (log1pf), -0.001, -1.0, 50000) PL_TEST_INTERVAL (V_NAME (log1pf), -1.0, inf, 1000) #endif