/* * Helper for vector double-precision routines which calculate log(1 + x) and do * not need special-case handling * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #ifndef PL_MATH_V_LOG1P_INLINE_H #define PL_MATH_V_LOG1P_INLINE_H #include "v_math.h" #include "poly_advsimd_f64.h" struct v_log1p_data { float64x2_t poly[19], ln2[2]; uint64x2_t hf_rt2_top, one_m_hf_rt2_top, umask; int64x2_t one_top; }; /* Coefficients generated using Remez, deg=20, in [sqrt(2)/2-1, sqrt(2)-1]. */ #define V_LOG1P_CONSTANTS_TABLE \ { \ .poly = { V2 (-0x1.ffffffffffffbp-2), V2 (0x1.55555555551a9p-2), \ V2 (-0x1.00000000008e3p-2), V2 (0x1.9999999a32797p-3), \ V2 (-0x1.555555552fecfp-3), V2 (0x1.249248e071e5ap-3), \ V2 (-0x1.ffffff8bf8482p-4), V2 (0x1.c71c8f07da57ap-4), \ V2 (-0x1.9999ca4ccb617p-4), V2 (0x1.7459ad2e1dfa3p-4), \ V2 (-0x1.554d2680a3ff2p-4), V2 (0x1.3b4c54d487455p-4), \ V2 (-0x1.2548a9ffe80e6p-4), V2 (0x1.0f389a24b2e07p-4), \ V2 (-0x1.eee4db15db335p-5), V2 (0x1.e95b494d4a5ddp-5), \ V2 (-0x1.15fdf07cb7c73p-4), V2 (0x1.0310b70800fcfp-4), \ V2 (-0x1.cfa7385bdb37ep-6) }, \ .ln2 = { V2 (0x1.62e42fefa3800p-1), V2 (0x1.ef35793c76730p-45) }, \ .hf_rt2_top = V2 (0x3fe6a09e00000000), \ .one_m_hf_rt2_top = V2 (0x00095f6200000000), \ .umask = V2 (0x000fffff00000000), .one_top = V2 (0x3ff) \ } #define BottomMask v_u64 (0xffffffff) static inline float64x2_t log1p_inline (float64x2_t x, const struct v_log1p_data *d) { /* Helper for calculating log(x + 1). Copied from v_log1p_2u5.c, with several modifications: - No special-case handling - this should be dealt with by the caller. - Pairwise Horner polynomial evaluation for improved accuracy. - Optionally simulate the shortcut for k=0, used in the scalar routine, using v_sel, for improved accuracy when the argument to log1p is close to 0. This feature is enabled by defining WANT_V_LOG1P_K0_SHORTCUT as 1 in the source of the caller before including this file. See v_log1pf_2u1.c for details of the algorithm. */ float64x2_t m = vaddq_f64 (x, v_f64 (1)); uint64x2_t mi = vreinterpretq_u64_f64 (m); uint64x2_t u = vaddq_u64 (mi, d->one_m_hf_rt2_top); int64x2_t ki = vsubq_s64 (vreinterpretq_s64_u64 (vshrq_n_u64 (u, 52)), d->one_top); float64x2_t k = vcvtq_f64_s64 (ki); /* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */ uint64x2_t utop = vaddq_u64 (vandq_u64 (u, d->umask), d->hf_rt2_top); uint64x2_t u_red = vorrq_u64 (utop, vandq_u64 (mi, BottomMask)); float64x2_t f = vsubq_f64 (vreinterpretq_f64_u64 (u_red), v_f64 (1)); /* Correction term c/m. */ float64x2_t cm = vdivq_f64 (vsubq_f64 (x, vsubq_f64 (m, v_f64 (1))), m); #ifndef WANT_V_LOG1P_K0_SHORTCUT #error \ "Cannot use v_log1p_inline.h without specifying whether you need the k0 shortcut for greater accuracy close to 0" #elif WANT_V_LOG1P_K0_SHORTCUT /* Shortcut if k is 0 - set correction term to 0 and f to x. The result is that the approximation is solely the polynomial. */ uint64x2_t k0 = vceqzq_f64 (k); cm = v_zerofy_f64 (cm, k0); f = vbslq_f64 (k0, x, f); #endif /* Approximate log1p(f) on the reduced input using a polynomial. */ float64x2_t f2 = vmulq_f64 (f, f); float64x2_t p = v_pw_horner_18_f64 (f, f2, d->poly); /* Assemble log1p(x) = k * log2 + log1p(f) + c/m. */ float64x2_t ylo = vfmaq_f64 (cm, k, d->ln2[1]); float64x2_t yhi = vfmaq_f64 (f, k, d->ln2[0]); return vfmaq_f64 (vaddq_f64 (ylo, yhi), f2, p); } #endif // PL_MATH_V_LOG1P_INLINE_H