/* * Single-precision vector erf(x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "pl_sig.h" #include "pl_test.h" static const struct data { float32x4_t max, shift, third; #if WANT_SIMD_EXCEPT float32x4_t tiny_bound, scale_minus_one; #endif } data = { .max = V4 (3.9375), /* 4 - 8/128. */ .shift = V4 (0x1p16f), .third = V4 (0x1.555556p-2f), /* 1/3. */ #if WANT_SIMD_EXCEPT .tiny_bound = V4 (0x1p-62f), .scale_minus_one = V4 (0x1.06eba8p-3f), /* scale - 1.0. */ #endif }; #define AbsMask 0x7fffffff struct entry { float32x4_t erf; float32x4_t scale; }; static inline struct entry lookup (uint32x4_t i) { struct entry e; float64_t t0 = *((float64_t *) (__erff_data.tab + i[0])); float64_t t1 = *((float64_t *) (__erff_data.tab + i[1])); float64_t t2 = *((float64_t *) (__erff_data.tab + i[2])); float64_t t3 = *((float64_t *) (__erff_data.tab + i[3])); float32x4_t e1 = vreinterpretq_f32_f64 ((float64x2_t){ t0, t1 }); float32x4_t e2 = vreinterpretq_f32_f64 ((float64x2_t){ t2, t3 }); e.erf = vuzp1q_f32 (e1, e2); e.scale = vuzp2q_f32 (e1, e2); return e; } /* Single-precision implementation of vector erf(x). Approximation based on series expansion near x rounded to nearest multiple of 1/128. Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r, erf(x) ~ erf(r) + scale * d * [1 - r * d - 1/3 * d^2] Values of erf(r) and scale are read from lookup tables. For |x| > 3.9375, erf(|x|) rounds to 1.0f. Maximum error: 1.93 ULP _ZGVnN4v_erff(0x1.c373e6p-9) got 0x1.fd686cp-9 want 0x1.fd6868p-9. */ float32x4_t VPCS_ATTR V_NAME_F1 (erf) (float32x4_t x) { const struct data *dat = ptr_barrier (&data); #if WANT_SIMD_EXCEPT /* |x| < 2^-62. */ uint32x4_t cmp = vcaltq_f32 (x, dat->tiny_bound); float32x4_t xm = x; /* If any lanes are special, mask them with 1 and retain a copy of x to allow special case handler to fix special lanes later. This is only necessary if fenv exceptions are to be triggered correctly. */ if (unlikely (v_any_u32 (cmp))) x = vbslq_f32 (cmp, v_f32 (1), x); #endif float32x4_t a = vabsq_f32 (x); uint32x4_t a_gt_max = vcgtq_f32 (a, dat->max); /* Lookup erf(r) and scale(r) in tables, e.g. set erf(r) to 0 and scale to 2/sqrt(pi), when x reduced to r = 0. */ float32x4_t shift = dat->shift; float32x4_t z = vaddq_f32 (a, shift); uint32x4_t i = vsubq_u32 (vreinterpretq_u32_f32 (z), vreinterpretq_u32_f32 (shift)); i = vminq_u32 (i, v_u32 (512)); struct entry e = lookup (i); float32x4_t r = vsubq_f32 (z, shift); /* erf(x) ~ erf(r) + scale * d * (1 - r * d - 1/3 * d^2). */ float32x4_t d = vsubq_f32 (a, r); float32x4_t d2 = vmulq_f32 (d, d); float32x4_t y = vfmaq_f32 (r, dat->third, d); y = vfmaq_f32 (e.erf, e.scale, vfmsq_f32 (d, d2, y)); /* Solves the |x| = inf case. */ y = vbslq_f32 (a_gt_max, v_f32 (1.0f), y); /* Copy sign. */ y = vbslq_f32 (v_u32 (AbsMask), y, x); #if WANT_SIMD_EXCEPT if (unlikely (v_any_u32 (cmp))) return vbslq_f32 (cmp, vfmaq_f32 (xm, dat->scale_minus_one, xm), y); #endif return y; } PL_SIG (V, F, 1, erf, -4.0, 4.0) PL_TEST_ULP (V_NAME_F1 (erf), 1.43) PL_TEST_EXPECT_FENV (V_NAME_F1 (erf), WANT_SIMD_EXCEPT) PL_TEST_SYM_INTERVAL (V_NAME_F1 (erf), 0, 3.9375, 40000) PL_TEST_SYM_INTERVAL (V_NAME_F1 (erf), 3.9375, inf, 40000) PL_TEST_SYM_INTERVAL (V_NAME_F1 (erf), 0, inf, 40000)