/* * Double-precision vector erf(x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "pl_sig.h" #include "pl_test.h" static const struct data { float64x2_t third; float64x2_t tenth, two_over_five, two_over_fifteen; float64x2_t two_over_nine, two_over_fortyfive; float64x2_t max, shift; #if WANT_SIMD_EXCEPT float64x2_t tiny_bound, huge_bound, scale_minus_one; #endif } data = { .third = V2 (0x1.5555555555556p-2), /* used to compute 2/3 and 1/6 too. */ .two_over_fifteen = V2 (0x1.1111111111111p-3), .tenth = V2 (-0x1.999999999999ap-4), .two_over_five = V2 (-0x1.999999999999ap-2), .two_over_nine = V2 (-0x1.c71c71c71c71cp-3), .two_over_fortyfive = V2 (0x1.6c16c16c16c17p-5), .max = V2 (5.9921875), /* 6 - 1/128. */ .shift = V2 (0x1p45), #if WANT_SIMD_EXCEPT .huge_bound = V2 (0x1p205), .tiny_bound = V2 (0x1p-226), .scale_minus_one = V2 (0x1.06eba8214db69p-3), /* 2/sqrt(pi) - 1.0. */ #endif }; #define AbsMask 0x7fffffffffffffff struct entry { float64x2_t erf; float64x2_t scale; }; static inline struct entry lookup (uint64x2_t i) { struct entry e; float64x2_t e1 = vld1q_f64 ((float64_t *) (__erf_data.tab + i[0])), e2 = vld1q_f64 ((float64_t *) (__erf_data.tab + i[1])); e.erf = vuzp1q_f64 (e1, e2); e.scale = vuzp2q_f64 (e1, e2); return e; } /* Double-precision implementation of vector erf(x). Approximation based on series expansion near x rounded to nearest multiple of 1/128. Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r, erf(x) ~ erf(r) + scale * d * [ + 1 - r d + 1/3 (2 r^2 - 1) d^2 - 1/6 (r (2 r^2 - 3)) d^3 + 1/30 (4 r^4 - 12 r^2 + 3) d^4 - 1/90 (4 r^4 - 20 r^2 + 15) d^5 ] Maximum measure error: 2.29 ULP V_NAME_D1 (erf)(-0x1.00003c924e5d1p-8) got -0x1.20dd59132ebadp-8 want -0x1.20dd59132ebafp-8. */ float64x2_t VPCS_ATTR V_NAME_D1 (erf) (float64x2_t x) { const struct data *dat = ptr_barrier (&data); float64x2_t a = vabsq_f64 (x); /* Reciprocal conditions that do not catch NaNs so they can be used in BSLs to return expected results. */ uint64x2_t a_le_max = vcleq_f64 (a, dat->max); uint64x2_t a_gt_max = vcgtq_f64 (a, dat->max); #if WANT_SIMD_EXCEPT /* |x| huge or tiny. */ uint64x2_t cmp1 = vcgtq_f64 (a, dat->huge_bound); uint64x2_t cmp2 = vcltq_f64 (a, dat->tiny_bound); uint64x2_t cmp = vorrq_u64 (cmp1, cmp2); /* If any lanes are special, mask them with 1 for small x or 8 for large values and retain a copy of a to allow special case handler to fix special lanes later. This is only necessary if fenv exceptions are to be triggered correctly. */ if (unlikely (v_any_u64 (cmp))) { a = vbslq_f64 (cmp1, v_f64 (8.0), a); a = vbslq_f64 (cmp2, v_f64 (1.0), a); } #endif /* Set r to multiple of 1/128 nearest to |x|. */ float64x2_t shift = dat->shift; float64x2_t z = vaddq_f64 (a, shift); /* Lookup erf(r) and scale(r) in table, without shortcut for small values, but with saturated indices for large values and NaNs in order to avoid segfault. */ uint64x2_t i = vsubq_u64 (vreinterpretq_u64_f64 (z), vreinterpretq_u64_f64 (shift)); i = vbslq_u64 (a_le_max, i, v_u64 (768)); struct entry e = lookup (i); float64x2_t r = vsubq_f64 (z, shift); /* erf(x) ~ erf(r) + scale * d * poly (r, d). */ float64x2_t d = vsubq_f64 (a, r); float64x2_t d2 = vmulq_f64 (d, d); float64x2_t r2 = vmulq_f64 (r, r); /* poly (d, r) = 1 + p1(r) * d + p2(r) * d^2 + ... + p5(r) * d^5. */ float64x2_t p1 = r; float64x2_t p2 = vfmsq_f64 (dat->third, r2, vaddq_f64 (dat->third, dat->third)); float64x2_t p3 = vmulq_f64 (r, vfmaq_f64 (v_f64 (-0.5), r2, dat->third)); float64x2_t p4 = vfmaq_f64 (dat->two_over_five, r2, dat->two_over_fifteen); p4 = vfmsq_f64 (dat->tenth, r2, p4); float64x2_t p5 = vfmaq_f64 (dat->two_over_nine, r2, dat->two_over_fortyfive); p5 = vmulq_f64 (r, vfmaq_f64 (vmulq_f64 (v_f64 (0.5), dat->third), r2, p5)); float64x2_t p34 = vfmaq_f64 (p3, d, p4); float64x2_t p12 = vfmaq_f64 (p1, d, p2); float64x2_t y = vfmaq_f64 (p34, d2, p5); y = vfmaq_f64 (p12, d2, y); y = vfmaq_f64 (e.erf, e.scale, vfmsq_f64 (d, d2, y)); /* Solves the |x| = inf and NaN cases. */ y = vbslq_f64 (a_gt_max, v_f64 (1.0), y); /* Copy sign. */ y = vbslq_f64 (v_u64 (AbsMask), y, x); #if WANT_SIMD_EXCEPT if (unlikely (v_any_u64 (cmp2))) { /* Neutralise huge values of x before fixing small values. */ x = vbslq_f64 (cmp1, v_f64 (1.0), x); /* Fix tiny values that trigger spurious underflow. */ return vbslq_f64 (cmp2, vfmaq_f64 (x, dat->scale_minus_one, x), y); } #endif return y; } PL_SIG (V, D, 1, erf, -6.0, 6.0) PL_TEST_ULP (V_NAME_D1 (erf), 1.79) PL_TEST_EXPECT_FENV (V_NAME_D1 (erf), WANT_SIMD_EXCEPT) PL_TEST_SYM_INTERVAL (V_NAME_D1 (erf), 0, 5.9921875, 40000) PL_TEST_SYM_INTERVAL (V_NAME_D1 (erf), 5.9921875, inf, 40000) PL_TEST_SYM_INTERVAL (V_NAME_D1 (erf), 0, inf, 40000)