/* * Double-precision vector cbrt(x) function. * * Copyright (c) 2022-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "mathlib.h" #include "pl_sig.h" #include "pl_test.h" #if V_SUPPORTED #define AbsMask 0x7fffffffffffffff #define TwoThirds v_f64 (0x1.5555555555555p-1) #define TinyBound 0x001 /* top12 (smallest_normal). */ #define BigBound 0x7ff /* top12 (infinity). */ #define MantissaMask v_u64 (0x000fffffffffffff) #define HalfExp v_u64 (0x3fe0000000000000) #define C(i) v_f64 (__cbrt_data.poly[i]) #define T(i) v_lookup_f64 (__cbrt_data.table, i) static NOINLINE v_f64_t specialcase (v_f64_t x, v_f64_t y, v_u64_t special) { return v_call_f64 (cbrt, x, y, special); } /* Approximation for double-precision vector cbrt(x), using low-order polynomial and two Newton iterations. Greatest observed error is 1.79 ULP. Errors repeat according to the exponent, for instance an error observed for double value m * 2^e will be observed for any input m * 2^(e + 3*i), where i is an integer. __v_cbrt(0x1.fffff403f0bc6p+1) got 0x1.965fe72821e9bp+0 want 0x1.965fe72821e99p+0. */ VPCS_ATTR v_f64_t V_NAME (cbrt) (v_f64_t x) { v_u64_t ix = v_as_u64_f64 (x); v_u64_t iax = ix & AbsMask; v_u64_t ia12 = iax >> 52; /* Subnormal, +/-0 and special values. */ v_u64_t special = v_cond_u64 ((ia12 < TinyBound) | (ia12 >= BigBound)); /* Decompose |x| into m * 2^e, where m is in [0.5, 1.0]. This is a vector version of frexp, which gets subnormal values wrong - these have to be special-cased as a result. */ v_f64_t m = v_as_f64_u64 (v_bsl_u64 (MantissaMask, iax, HalfExp)); v_s64_t e = v_as_s64_u64 (iax >> 52) - 1022; /* Calculate rough approximation for cbrt(m) in [0.5, 1.0], starting point for Newton iterations. */ v_f64_t p_01 = v_fma_f64 (C (1), m, C (0)); v_f64_t p_23 = v_fma_f64 (C (3), m, C (2)); v_f64_t p = v_fma_f64 (m * m, p_23, p_01); /* Two iterations of Newton's method for iteratively approximating cbrt. */ v_f64_t m_by_3 = m / 3; v_f64_t a = v_fma_f64 (TwoThirds, p, m_by_3 / (p * p)); a = v_fma_f64 (TwoThirds, a, m_by_3 / (a * a)); /* Assemble the result by the following: cbrt(x) = cbrt(m) * 2 ^ (e / 3). We can get 2 ^ round(e / 3) using ldexp and integer divide, but since e is not necessarily a multiple of 3 we lose some information. Let q = 2 ^ round(e / 3), then t = 2 ^ (e / 3) / q. Then we know t = 2 ^ (i / 3), where i is the remainder from e / 3, which is an integer in [-2, 2], and can be looked up in the table T. Hence the result is assembled as: cbrt(x) = cbrt(m) * t * 2 ^ round(e / 3) * sign. */ v_s64_t ey = e / 3; v_f64_t my = a * T (v_as_u64_s64 (e % 3 + 2)); /* Vector version of ldexp. */ v_f64_t y = v_as_f64_u64 ((v_as_u64_s64 (ey + 1023) << 52)) * my; /* Copy sign. */ y = v_as_f64_u64 (v_bsl_u64 (v_u64 (AbsMask), v_as_u64_f64 (y), ix)); if (unlikely (v_any_u64 (special))) return specialcase (x, y, special); return y; } VPCS_ALIAS PL_TEST_ULP (V_NAME (cbrt), 1.30) PL_SIG (V, D, 1, cbrt, -10.0, 10.0) PL_TEST_EXPECT_FENV_ALWAYS (V_NAME (cbrt)) PL_TEST_INTERVAL (V_NAME (cbrt), 0, inf, 1000000) PL_TEST_INTERVAL (V_NAME (cbrt), -0, -inf, 1000000) #endif