/* * Single-precision vector atan(x) function. * * Copyright (c) 2021-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "v_math.h" #include "pl_sig.h" #include "pl_test.h" #include "poly_advsimd_f32.h" static const struct data { float32x4_t poly[8]; float32x4_t pi_over_2; } data = { /* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on [2**-128, 1.0]. Generated using fpminimax between FLT_MIN and 1. */ .poly = { V4 (-0x1.55555p-2f), V4 (0x1.99935ep-3f), V4 (-0x1.24051ep-3f), V4 (0x1.bd7368p-4f), V4 (-0x1.491f0ep-4f), V4 (0x1.93a2c0p-5f), V4 (-0x1.4c3c60p-6f), V4 (0x1.01fd88p-8f) }, .pi_over_2 = V4 (0x1.921fb6p+0f), }; #define SignMask v_u32 (0x80000000) #define P(i) d->poly[i] #define TinyBound 0x30800000 /* asuint(0x1p-30). */ #define BigBound 0x4e800000 /* asuint(0x1p30). */ #if WANT_SIMD_EXCEPT static float32x4_t VPCS_ATTR NOINLINE special_case (float32x4_t x, float32x4_t y, uint32x4_t special) { return v_call_f32 (atanf, x, y, special); } #endif /* Fast implementation of vector atanf based on atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using z=-1/x and shift = pi/2. Maximum observed error is 2.9ulps: _ZGVnN4v_atanf (0x1.0468f6p+0) got 0x1.967f06p-1 want 0x1.967fp-1. */ float32x4_t VPCS_ATTR V_NAME_F1 (atan) (float32x4_t x) { const struct data *d = ptr_barrier (&data); /* Small cases, infs and nans are supported by our approximation technique, but do not set fenv flags correctly. Only trigger special case if we need fenv. */ uint32x4_t ix = vreinterpretq_u32_f32 (x); uint32x4_t sign = vandq_u32 (ix, SignMask); #if WANT_SIMD_EXCEPT uint32x4_t ia = vandq_u32 (ix, v_u32 (0x7ff00000)); uint32x4_t special = vcgtq_u32 (vsubq_u32 (ia, v_u32 (TinyBound)), v_u32 (BigBound - TinyBound)); /* If any lane is special, fall back to the scalar routine for all lanes. */ if (unlikely (v_any_u32 (special))) return special_case (x, x, v_u32 (-1)); #endif /* Argument reduction: y := arctan(x) for x < 1 y := pi/2 + arctan(-1/x) for x > 1 Hence, use z=-1/a if x>=1, otherwise z=a. */ uint32x4_t red = vcagtq_f32 (x, v_f32 (1.0)); /* Avoid dependency in abs(x) in division (and comparison). */ float32x4_t z = vbslq_f32 (red, vdivq_f32 (v_f32 (1.0f), x), x); float32x4_t shift = vreinterpretq_f32_u32 ( vandq_u32 (red, vreinterpretq_u32_f32 (d->pi_over_2))); /* Use absolute value only when needed (odd powers of z). */ float32x4_t az = vbslq_f32 ( SignMask, vreinterpretq_f32_u32 (vandq_u32 (SignMask, red)), z); /* Calculate the polynomial approximation. Use 2-level Estrin scheme for P(z^2) with deg(P)=7. However, a standard implementation using z8 creates spurious underflow in the very last fma (when z^8 is small enough). Therefore, we split the last fma into a mul and an fma. Horner and single-level Estrin have higher errors that exceed threshold. */ float32x4_t z2 = vmulq_f32 (z, z); float32x4_t z4 = vmulq_f32 (z2, z2); float32x4_t y = vfmaq_f32 ( v_pairwise_poly_3_f32 (z2, z4, d->poly), z4, vmulq_f32 (z4, v_pairwise_poly_3_f32 (z2, z4, d->poly + 4))); /* y = shift + z * P(z^2). */ y = vaddq_f32 (vfmaq_f32 (az, y, vmulq_f32 (z2, az)), shift); /* y = atan(x) if x>0, -atan(-x) otherwise. */ y = vreinterpretq_f32_u32 (veorq_u32 (vreinterpretq_u32_f32 (y), sign)); return y; } PL_SIG (V, F, 1, atan, -10.0, 10.0) PL_TEST_ULP (V_NAME_F1 (atan), 2.5) PL_TEST_EXPECT_FENV (V_NAME_F1 (atan), WANT_SIMD_EXCEPT) PL_TEST_SYM_INTERVAL (V_NAME_F1 (atan), 0, 0x1p-30, 5000) PL_TEST_SYM_INTERVAL (V_NAME_F1 (atan), 0x1p-30, 1, 40000) PL_TEST_SYM_INTERVAL (V_NAME_F1 (atan), 1, 0x1p30, 40000) PL_TEST_SYM_INTERVAL (V_NAME_F1 (atan), 0x1p30, inf, 1000)