// polynomial for approximating log10(1+x) // // Copyright (c) 2019-2023, Arm Limited. // SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception deg = 6; // poly degree // |log10(1+x)| > 0x1p-5 outside the interval a = -0x1.p-5; b = 0x1.p-5; ln10 = evaluate(log(10),0); invln10hi = double(1/ln10 + 0x1p21) - 0x1p21; // round away last 21 bits invln10lo = double(1/ln10 - invln10hi); // find log10(1+x)/x polynomial with minimal relative error // (minimal relative error polynomial for log10(1+x) is the same * x) deg = deg-1; // because of /x // f = log(1+x)/x; using taylor series f = 0; for i from 0 to 60 do { f = f + (-x)^i/(i+1); }; f = f/ln10; // return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| approx = proc(poly,d) { return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); }; // first coeff is fixed, iteratively find optimal double prec coeffs poly = invln10hi + invln10lo; for i from 1 to deg do { p = roundcoefficients(approx(poly,i), [|D ...|]); poly = poly + x^i*coeff(p,0); }; display = hexadecimal; print("invln10hi:", invln10hi); print("invln10lo:", invln10lo); print("rel error:", accurateinfnorm(1-poly(x)/f(x), [a;b], 30)); print("in [",a,b,"]"); print("coeffs:"); for i from 0 to deg do coeff(poly,i); display = decimal; print("in [",a,b,"]");