// polynomial for approximating 10^x // // Copyright (c) 2023, Arm Limited. // SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception // exp10f parameters deg = 5; // poly degree N = 1; // Neon 1, SVE 64 b = log(2)/(2 * N * log(10)); // interval a = -b; wp = single; // exp10 parameters //deg = 4; // poly degree - bump to 5 for ~1 ULP //N = 128; // table size //b = log(2)/(2 * N * log(10)); // interval //a = -b; //wp = D; // find polynomial with minimal relative error f = 10^x; // return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)| approx = proc(poly,d) { return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10); }; // return p that minimizes |f(x) - poly(x) - x^d*p(x)| approx_abs = proc(poly,d) { return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10); }; // first coeff is fixed, iteratively find optimal double prec coeffs poly = 1; for i from 1 to deg do { p = roundcoefficients(approx(poly,i), [|wp ...|]); // p = roundcoefficients(approx_abs(poly,i), [|wp ...|]); poly = poly + x^i*coeff(p,0); }; display = hexadecimal; print("rel error:", accurateinfnorm(1-poly(x)/10^x, [a;b], 30)); print("abs error:", accurateinfnorm(10^x-poly(x), [a;b], 30)); print("in [",a,b,"]"); print("coeffs:"); for i from 0 to deg do coeff(poly,i); log10_2 = round(N * log(10) / log(2), wp, RN); log2_10 = log(2) / (N * log(10)); log2_10_hi = round(log2_10, wp, RN); log2_10_lo = round(log2_10 - log2_10_hi, wp, RN); print(log10_2); print(log2_10_hi); print(log2_10_lo);