/* * Single-precision vector tan(x) function. * * Copyright (c) 2020-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "pl_sig.h" #include "pl_test.h" #if SV_SUPPORTED /* Constants. */ #define NegPio2_1 (sv_f32 (-0x1.921fb6p+0f)) #define NegPio2_2 (sv_f32 (0x1.777a5cp-25f)) #define NegPio2_3 (sv_f32 (0x1.ee59dap-50f)) #define InvPio2 (sv_f32 (0x1.45f306p-1f)) #define RangeVal (sv_f32 (0x1p15f)) #define Shift (sv_f32 (0x1.8p+23f)) #define poly(i) sv_f32 (__tanf_poly_data.poly_tan[i]) /* Use full Estrin's scheme to evaluate polynomial. */ static inline sv_f32_t eval_poly (svbool_t pg, sv_f32_t z) { sv_f32_t z2 = svmul_f32_x (pg, z, z); sv_f32_t z4 = svmul_f32_x (pg, z2, z2); sv_f32_t y_10 = sv_fma_f32_x (pg, z, poly (1), poly (0)); sv_f32_t y_32 = sv_fma_f32_x (pg, z, poly (3), poly (2)); sv_f32_t y_54 = sv_fma_f32_x (pg, z, poly (5), poly (4)); sv_f32_t y_32_10 = sv_fma_f32_x (pg, z2, y_32, y_10); sv_f32_t y = sv_fma_f32_x (pg, z4, y_54, y_32_10); return y; } static NOINLINE sv_f32_t __sv_tanf_specialcase (sv_f32_t x, sv_f32_t y, svbool_t cmp) { return sv_call_f32 (tanf, x, y, cmp); } /* Fast implementation of SVE tanf. Maximum error is 3.45 ULP: __sv_tanf(-0x1.e5f0cap+13) got 0x1.ff9856p-1 want 0x1.ff9850p-1. */ sv_f32_t __sv_tanf_x (sv_f32_t x, const svbool_t pg) { /* Determine whether input is too large to perform fast regression. */ svbool_t cmp = svacge_f32 (pg, x, RangeVal); svbool_t pred_minuszero = svcmpeq_f32 (pg, x, sv_f32 (-0.0)); /* n = rint(x/(pi/2)). */ sv_f32_t q = sv_fma_f32_x (pg, InvPio2, x, Shift); sv_f32_t n = svsub_f32_x (pg, q, Shift); /* n is already a signed integer, simply convert it. */ sv_s32_t in = sv_to_s32_f32_x (pg, n); /* Determine if x lives in an interval, where |tan(x)| grows to infinity. */ sv_s32_t alt = svand_s32_x (pg, in, sv_s32 (1)); svbool_t pred_alt = svcmpne_s32 (pg, alt, sv_s32 (0)); /* r = x - n * (pi/2) (range reduction into 0 .. pi/4). */ sv_f32_t r; r = sv_fma_f32_x (pg, NegPio2_1, n, x); r = sv_fma_f32_x (pg, NegPio2_2, n, r); r = sv_fma_f32_x (pg, NegPio2_3, n, r); /* If x lives in an interval, where |tan(x)| - is finite, then use a polynomial approximation of the form tan(r) ~ r + r^3 * P(r^2) = r + r * r^2 * P(r^2). - grows to infinity then use symmetries of tangent and the identity tan(r) = cotan(pi/2 - r) to express tan(x) as 1/tan(-r). Finally, use the same polynomial approximation of tan as above. */ /* Perform additional reduction if required. */ sv_f32_t z = svneg_f32_m (r, pred_alt, r); /* Evaluate polynomial approximation of tangent on [-pi/4, pi/4]. */ sv_f32_t z2 = svmul_f32_x (pg, z, z); sv_f32_t p = eval_poly (pg, z2); sv_f32_t y = sv_fma_f32_x (pg, svmul_f32_x (pg, z, z2), p, z); /* Transform result back, if necessary. */ sv_f32_t inv_y = svdiv_f32_x (pg, sv_f32 (1.0f), y); y = svsel_f32 (pred_alt, inv_y, y); /* Fast reduction does not handle the x = -0.0 case well, therefore it is fixed here. */ y = svsel_f32 (pred_minuszero, x, y); /* No need to pass pg to specialcase here since cmp is a strict subset, guaranteed by the cmpge above. */ if (unlikely (svptest_any (pg, cmp))) return __sv_tanf_specialcase (x, y, cmp); return y; } PL_ALIAS (__sv_tanf_x, _ZGVsMxv_tanf) PL_SIG (SV, F, 1, tan, -3.1, 3.1) PL_TEST_ULP (__sv_tanf, 2.96) PL_TEST_INTERVAL (__sv_tanf, -0.0, -0x1p126, 100) PL_TEST_INTERVAL (__sv_tanf, 0x1p-149, 0x1p-126, 4000) PL_TEST_INTERVAL (__sv_tanf, 0x1p-126, 0x1p-23, 50000) PL_TEST_INTERVAL (__sv_tanf, 0x1p-23, 0.7, 50000) PL_TEST_INTERVAL (__sv_tanf, 0.7, 1.5, 50000) PL_TEST_INTERVAL (__sv_tanf, 1.5, 100, 50000) PL_TEST_INTERVAL (__sv_tanf, 100, 0x1p17, 50000) PL_TEST_INTERVAL (__sv_tanf, 0x1p17, inf, 50000) #endif