/* * Double-precision SVE tan(x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "poly_sve_f64.h" #include "pl_sig.h" #include "pl_test.h" static const struct data { double poly[9]; double half_pi_hi, half_pi_lo, inv_half_pi, range_val, shift; } data = { /* Polynomial generated with FPMinimax. */ .poly = { 0x1.5555555555556p-2, 0x1.1111111110a63p-3, 0x1.ba1ba1bb46414p-5, 0x1.664f47e5b5445p-6, 0x1.226e5e5ecdfa3p-7, 0x1.d6c7ddbf87047p-9, 0x1.7ea75d05b583ep-10, 0x1.289f22964a03cp-11, 0x1.4e4fd14147622p-12, }, .half_pi_hi = 0x1.921fb54442d18p0, .half_pi_lo = 0x1.1a62633145c07p-54, .inv_half_pi = 0x1.45f306dc9c883p-1, .range_val = 0x1p23, .shift = 0x1.8p52, }; static svfloat64_t NOINLINE special_case (svfloat64_t x, svfloat64_t y, svbool_t special) { return sv_call_f64 (tan, x, y, special); } /* Vector approximation for double-precision tan. Maximum measured error is 3.48 ULP: _ZGVsMxv_tan(0x1.4457047ef78d8p+20) got -0x1.f6ccd8ecf7dedp+37 want -0x1.f6ccd8ecf7deap+37. */ svfloat64_t SV_NAME_D1 (tan) (svfloat64_t x, svbool_t pg) { const struct data *dat = ptr_barrier (&data); /* Invert condition to catch NaNs and Infs as well as large values. */ svbool_t special = svnot_z (pg, svaclt (pg, x, dat->range_val)); /* q = nearest integer to 2 * x / pi. */ svfloat64_t shift = sv_f64 (dat->shift); svfloat64_t q = svmla_x (pg, shift, x, dat->inv_half_pi); q = svsub_x (pg, q, shift); svint64_t qi = svcvt_s64_x (pg, q); /* Use q to reduce x to r in [-pi/4, pi/4], by: r = x - q * pi/2, in extended precision. */ svfloat64_t r = x; svfloat64_t half_pi = svld1rq (svptrue_b64 (), &dat->half_pi_hi); r = svmls_lane (r, q, half_pi, 0); r = svmls_lane (r, q, half_pi, 1); /* Further reduce r to [-pi/8, pi/8], to be reconstructed using double angle formula. */ r = svmul_x (pg, r, 0.5); /* Approximate tan(r) using order 8 polynomial. tan(x) is odd, so polynomial has the form: tan(x) ~= x + C0 * x^3 + C1 * x^5 + C3 * x^7 + ... Hence we first approximate P(r) = C1 + C2 * r^2 + C3 * r^4 + ... Then compute the approximation by: tan(r) ~= r + r^3 * (C0 + r^2 * P(r)). */ svfloat64_t r2 = svmul_x (pg, r, r); svfloat64_t r4 = svmul_x (pg, r2, r2); svfloat64_t r8 = svmul_x (pg, r4, r4); /* Use offset version coeff array by 1 to evaluate from C1 onwards. */ svfloat64_t p = sv_estrin_7_f64_x (pg, r2, r4, r8, dat->poly + 1); p = svmad_x (pg, p, r2, dat->poly[0]); p = svmla_x (pg, r, r2, svmul_x (pg, p, r)); /* Recombination uses double-angle formula: tan(2x) = 2 * tan(x) / (1 - (tan(x))^2) and reciprocity around pi/2: tan(x) = 1 / (tan(pi/2 - x)) to assemble result using change-of-sign and conditional selection of numerator/denominator dependent on odd/even-ness of q (hence quadrant). */ svbool_t use_recip = svcmpeq (pg, svand_x (pg, svreinterpret_u64 (qi), 1), 0); svfloat64_t n = svmad_x (pg, p, p, -1); svfloat64_t d = svmul_x (pg, p, 2); svfloat64_t swap = n; n = svneg_m (n, use_recip, d); d = svsel (use_recip, swap, d); if (unlikely (svptest_any (pg, special))) return special_case (x, svdiv_x (svnot_z (pg, special), n, d), special); return svdiv_x (pg, n, d); } PL_SIG (SV, D, 1, tan, -3.1, 3.1) PL_TEST_ULP (SV_NAME_D1 (tan), 2.99) PL_TEST_SYM_INTERVAL (SV_NAME_D1 (tan), 0, 0x1p23, 500000) PL_TEST_SYM_INTERVAL (SV_NAME_D1 (tan), 0x1p23, inf, 5000)