/* * Single-precision vector log(x + 1) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "pl_sig.h" #include "pl_test.h" #include "poly_sve_f32.h" static const struct data { float poly[8]; float ln2, exp_bias; uint32_t four, three_quarters; } data = {.poly = {/* Do not store first term of polynomial, which is -0.5, as this can be fmov-ed directly instead of including it in the main load-and-mla polynomial schedule. */ 0x1.5555aap-2f, -0x1.000038p-2f, 0x1.99675cp-3f, -0x1.54ef78p-3f, 0x1.28a1f4p-3f, -0x1.0da91p-3f, 0x1.abcb6p-4f, -0x1.6f0d5ep-5f}, .ln2 = 0x1.62e43p-1f, .exp_bias = 0x1p-23f, .four = 0x40800000, .three_quarters = 0x3f400000}; #define SignExponentMask 0xff800000 static svfloat32_t NOINLINE special_case (svfloat32_t x, svfloat32_t y, svbool_t special) { return sv_call_f32 (log1pf, x, y, special); } /* Vector log1pf approximation using polynomial on reduced interval. Worst-case error is 1.27 ULP very close to 0.5. _ZGVsMxv_log1pf(0x1.fffffep-2) got 0x1.9f324p-2 want 0x1.9f323ep-2. */ svfloat32_t SV_NAME_F1 (log1p) (svfloat32_t x, svbool_t pg) { const struct data *d = ptr_barrier (&data); /* x < -1, Inf/Nan. */ svbool_t special = svcmpeq (pg, svreinterpret_u32 (x), 0x7f800000); special = svorn_z (pg, special, svcmpge (pg, x, -1)); /* With x + 1 = t * 2^k (where t = m + 1 and k is chosen such that m is in [-0.25, 0.5]): log1p(x) = log(t) + log(2^k) = log1p(m) + k*log(2). We approximate log1p(m) with a polynomial, then scale by k*log(2). Instead of doing this directly, we use an intermediate scale factor s = 4*k*log(2) to ensure the scale is representable as a normalised fp32 number. */ svfloat32_t m = svadd_x (pg, x, 1); /* Choose k to scale x to the range [-1/4, 1/2]. */ svint32_t k = svand_x (pg, svsub_x (pg, svreinterpret_s32 (m), d->three_quarters), sv_s32 (SignExponentMask)); /* Scale x by exponent manipulation. */ svfloat32_t m_scale = svreinterpret_f32 ( svsub_x (pg, svreinterpret_u32 (x), svreinterpret_u32 (k))); /* Scale up to ensure that the scale factor is representable as normalised fp32 number, and scale m down accordingly. */ svfloat32_t s = svreinterpret_f32 (svsubr_x (pg, k, d->four)); m_scale = svadd_x (pg, m_scale, svmla_x (pg, sv_f32 (-1), s, 0.25)); /* Evaluate polynomial on reduced interval. */ svfloat32_t ms2 = svmul_x (pg, m_scale, m_scale), ms4 = svmul_x (pg, ms2, ms2); svfloat32_t p = sv_estrin_7_f32_x (pg, m_scale, ms2, ms4, d->poly); p = svmad_x (pg, m_scale, p, -0.5); p = svmla_x (pg, m_scale, m_scale, svmul_x (pg, m_scale, p)); /* The scale factor to be applied back at the end - by multiplying float(k) by 2^-23 we get the unbiased exponent of k. */ svfloat32_t scale_back = svmul_x (pg, svcvt_f32_x (pg, k), d->exp_bias); /* Apply the scaling back. */ svfloat32_t y = svmla_x (pg, p, scale_back, d->ln2); if (unlikely (svptest_any (pg, special))) return special_case (x, y, special); return y; } PL_SIG (SV, F, 1, log1p, -0.9, 10.0) PL_TEST_ULP (SV_NAME_F1 (log1p), 0.77) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (log1p), 0, 0x1p-23, 5000) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (log1p), 0x1p-23, 1, 5000) PL_TEST_INTERVAL (SV_NAME_F1 (log1p), 1, inf, 10000) PL_TEST_INTERVAL (SV_NAME_F1 (log1p), -1, -inf, 10)