/* * Double-precision SVE log(1+x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "poly_sve_f64.h" #include "pl_sig.h" #include "pl_test.h" static const struct data { double poly[19]; double ln2_hi, ln2_lo; uint64_t hfrt2_top, onemhfrt2_top, inf, mone; } data = { /* Generated using Remez in [ sqrt(2)/2 - 1, sqrt(2) - 1]. Order 20 polynomial, however first 2 coefficients are 0 and 1 so are not stored. */ .poly = { -0x1.ffffffffffffbp-2, 0x1.55555555551a9p-2, -0x1.00000000008e3p-2, 0x1.9999999a32797p-3, -0x1.555555552fecfp-3, 0x1.249248e071e5ap-3, -0x1.ffffff8bf8482p-4, 0x1.c71c8f07da57ap-4, -0x1.9999ca4ccb617p-4, 0x1.7459ad2e1dfa3p-4, -0x1.554d2680a3ff2p-4, 0x1.3b4c54d487455p-4, -0x1.2548a9ffe80e6p-4, 0x1.0f389a24b2e07p-4, -0x1.eee4db15db335p-5, 0x1.e95b494d4a5ddp-5, -0x1.15fdf07cb7c73p-4, 0x1.0310b70800fcfp-4, -0x1.cfa7385bdb37ep-6, }, .ln2_hi = 0x1.62e42fefa3800p-1, .ln2_lo = 0x1.ef35793c76730p-45, /* top32(asuint64(sqrt(2)/2)) << 32. */ .hfrt2_top = 0x3fe6a09e00000000, /* (top32(asuint64(1)) - top32(asuint64(sqrt(2)/2))) << 32. */ .onemhfrt2_top = 0x00095f6200000000, .inf = 0x7ff0000000000000, .mone = 0xbff0000000000000, }; #define AbsMask 0x7fffffffffffffff #define BottomMask 0xffffffff static svfloat64_t NOINLINE special_case (svbool_t special, svfloat64_t x, svfloat64_t y) { return sv_call_f64 (log1p, x, y, special); } /* Vector approximation for log1p using polynomial on reduced interval. Maximum observed error is 2.46 ULP: _ZGVsMxv_log1p(0x1.654a1307242a4p+11) got 0x1.fd5565fb590f4p+2 want 0x1.fd5565fb590f6p+2. */ svfloat64_t SV_NAME_D1 (log1p) (svfloat64_t x, svbool_t pg) { const struct data *d = ptr_barrier (&data); svuint64_t ix = svreinterpret_u64 (x); svuint64_t ax = svand_x (pg, ix, AbsMask); svbool_t special = svorr_z (pg, svcmpge (pg, ax, d->inf), svcmpge (pg, ix, d->mone)); /* With x + 1 = t * 2^k (where t = f + 1 and k is chosen such that f is in [sqrt(2)/2, sqrt(2)]): log1p(x) = k*log(2) + log1p(f). f may not be representable exactly, so we need a correction term: let m = round(1 + x), c = (1 + x) - m. c << m: at very small x, log1p(x) ~ x, hence: log(1+x) - log(m) ~ c/m. We therefore calculate log1p(x) by k*log2 + log1p(f) + c/m. */ /* Obtain correctly scaled k by manipulation in the exponent. The scalar algorithm casts down to 32-bit at this point to calculate k and u_red. We stay in double-width to obtain f and k, using the same constants as the scalar algorithm but shifted left by 32. */ svfloat64_t m = svadd_x (pg, x, 1); svuint64_t mi = svreinterpret_u64 (m); svuint64_t u = svadd_x (pg, mi, d->onemhfrt2_top); svint64_t ki = svsub_x (pg, svreinterpret_s64 (svlsr_x (pg, u, 52)), 0x3ff); svfloat64_t k = svcvt_f64_x (pg, ki); /* Reduce x to f in [sqrt(2)/2, sqrt(2)]. */ svuint64_t utop = svadd_x (pg, svand_x (pg, u, 0x000fffff00000000), d->hfrt2_top); svuint64_t u_red = svorr_x (pg, utop, svand_x (pg, mi, BottomMask)); svfloat64_t f = svsub_x (pg, svreinterpret_f64 (u_red), 1); /* Correction term c/m. */ svfloat64_t cm = svdiv_x (pg, svsub_x (pg, x, svsub_x (pg, m, 1)), m); /* Approximate log1p(x) on the reduced input using a polynomial. Because log1p(0)=0 we choose an approximation of the form: x + C0*x^2 + C1*x^3 + C2x^4 + ... Hence approximation has the form f + f^2 * P(f) where P(x) = C0 + C1*x + C2x^2 + ... Assembling this all correctly is dealt with at the final step. */ svfloat64_t f2 = svmul_x (pg, f, f), f4 = svmul_x (pg, f2, f2), f8 = svmul_x (pg, f4, f4), f16 = svmul_x (pg, f8, f8); svfloat64_t p = sv_estrin_18_f64_x (pg, f, f2, f4, f8, f16, d->poly); svfloat64_t ylo = svmla_x (pg, cm, k, d->ln2_lo); svfloat64_t yhi = svmla_x (pg, f, k, d->ln2_hi); svfloat64_t y = svmla_x (pg, svadd_x (pg, ylo, yhi), f2, p); if (unlikely (svptest_any (pg, special))) return special_case (special, x, y); return y; } PL_SIG (SV, D, 1, log1p, -0.9, 10.0) PL_TEST_ULP (SV_NAME_D1 (log1p), 1.97) PL_TEST_SYM_INTERVAL (SV_NAME_D1 (log1p), 0.0, 0x1p-23, 50000) PL_TEST_SYM_INTERVAL (SV_NAME_D1 (log1p), 0x1p-23, 0.001, 50000) PL_TEST_SYM_INTERVAL (SV_NAME_D1 (log1p), 0.001, 1.0, 50000) PL_TEST_INTERVAL (SV_NAME_D1 (log1p), 1, inf, 10000) PL_TEST_INTERVAL (SV_NAME_D1 (log1p), -1, -inf, 10)