/* * Single-precision vector e^x function. * * Copyright (c) 2019-2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "pl_sig.h" #include "pl_test.h" #if SV_SUPPORTED #define C(i) __sv_expf_poly[i] #define InvLn2 (0x1.715476p+0f) #define Ln2hi (0x1.62e4p-1f) #define Ln2lo (0x1.7f7d1cp-20f) #if SV_EXPF_USE_FEXPA #define Shift (0x1.903f8p17f) /* 1.5*2^17 + 127. */ #define Thres \ (0x1.5d5e2ap+6f) /* Roughly 87.3. For x < -Thres, the result is subnormal \ and not handled correctly by FEXPA. */ static NOINLINE sv_f32_t special_case (sv_f32_t x, sv_f32_t y, svbool_t special) { /* The special-case handler from the Neon routine does not handle subnormals in a way that is compatible with FEXPA. For the FEXPA variant we just fall back to scalar expf. */ return sv_call_f32 (expf, x, y, special); } #else #define Shift (0x1.8p23f) /* 1.5 * 2^23. */ #define Thres (126.0f) /* Special-case handler adapted from Neon variant. Uses s, y and n to produce the final result (normal cases included). It performs an update of all lanes! Therefore: - all previous computation need to be done on all lanes indicated by input pg - we cannot simply apply the special case to the special-case-activated lanes. Besides it is likely that this would not increase performance (no scatter/gather). */ static inline sv_f32_t specialcase (svbool_t pg, sv_f32_t poly, sv_f32_t n, sv_u32_t e, svbool_t p_cmp1, sv_f32_t scale) { /* s=2^(n/N) may overflow, break it up into s=s1*s2, such that exp = s + s*y can be computed as s1*(s2+s2*y) and s1*s1 overflows only if n>0. */ /* If n<=0 then set b to 0x820...0, 0 otherwise. */ svbool_t p_sign = svcmple_n_f32 (pg, n, 0.0f); /* n <= 0. */ sv_u32_t b = svdup_n_u32_z (p_sign, 0x82000000); /* Inactive lanes set to 0. */ /* Set s1 to generate overflow depending on sign of exponent n. */ sv_f32_t s1 = sv_as_f32_u32 (svadd_n_u32_x (pg, b, 0x7f000000)); /* b + 0x7f000000. */ /* Offset s to avoid overflow in final result if n is below threshold. */ sv_f32_t s2 = sv_as_f32_u32 ( svsub_u32_x (pg, e, b)); /* as_u32 (s) - 0x3010...0 + b. */ /* |n| > 192 => 2^(n/N) overflows. */ svbool_t p_cmp2 = svacgt_n_f32 (pg, n, 192.0f); sv_f32_t r2 = svmul_f32_x (pg, s1, s1); sv_f32_t r1 = sv_fma_f32_x (pg, poly, s2, s2); r1 = svmul_f32_x (pg, r1, s1); sv_f32_t r0 = sv_fma_f32_x (pg, poly, scale, scale); /* Apply condition 1 then 2. Returns r2 if cond2 is true, otherwise if cond1 is true then return r1, otherwise return r0. */ sv_f32_t r = svsel_f32 (p_cmp1, r1, r0); return svsel_f32 (p_cmp2, r2, r); } #endif /* Optimised single-precision SVE exp function. By default this is an SVE port of the Neon algorithm from math/. Alternatively, enable a modification of that algorithm that looks up scale using SVE FEXPA instruction with SV_EXPF_USE_FEXPA. Worst-case error of the default algorithm is 1.95 ulp: __sv_expf(-0x1.4cb74ap+2) got 0x1.6a022cp-8 want 0x1.6a023p-8. Worst-case error when using FEXPA is 1.04 ulp: __sv_expf(0x1.a8eda4p+1) got 0x1.ba74bcp+4 want 0x1.ba74bap+4. */ sv_f32_t __sv_expf_x (sv_f32_t x, const svbool_t pg) { /* exp(x) = 2^n (1 + poly(r)), with 1 + poly(r) in [1/sqrt(2),sqrt(2)] x = ln2*n + r, with r in [-ln2/2, ln2/2]. */ /* n = round(x/(ln2/N)). */ sv_f32_t z = sv_fma_n_f32_x (pg, InvLn2, x, sv_f32 (Shift)); sv_f32_t n = svsub_n_f32_x (pg, z, Shift); /* r = x - n*ln2/N. */ sv_f32_t r = sv_fma_n_f32_x (pg, -Ln2hi, n, x); r = sv_fma_n_f32_x (pg, -Ln2lo, n, r); /* scale = 2^(n/N). */ #if SV_EXPF_USE_FEXPA /* NaNs also need special handling with FEXPA. */ svbool_t is_special_case = svorr_b_z (pg, svacgt_n_f32 (pg, x, Thres), svcmpne_f32 (pg, x, x)); sv_f32_t scale = svexpa_f32 (sv_as_u32_f32 (z)); #else sv_u32_t e = svlsl_n_u32_x (pg, sv_as_u32_f32 (z), 23); svbool_t is_special_case = svacgt_n_f32 (pg, n, Thres); sv_f32_t scale = sv_as_f32_u32 (svadd_n_u32_x (pg, e, 0x3f800000)); #endif /* y = exp(r) - 1 ~= r + C1 r^2 + C2 r^3 + C3 r^4. */ sv_f32_t r2 = svmul_f32_x (pg, r, r); sv_f32_t p = sv_fma_n_f32_x (pg, C (0), r, sv_f32 (C (1))); sv_f32_t q = sv_fma_n_f32_x (pg, C (2), r, sv_f32 (C (3))); q = sv_fma_f32_x (pg, p, r2, q); p = svmul_n_f32_x (pg, r, C (4)); sv_f32_t poly = sv_fma_f32_x (pg, q, r2, p); if (unlikely (svptest_any (pg, is_special_case))) #if SV_EXPF_USE_FEXPA return special_case (x, sv_fma_f32_x (pg, poly, scale, scale), is_special_case); #else return specialcase (pg, poly, n, e, is_special_case, scale); #endif return sv_fma_f32_x (pg, poly, scale, scale); } PL_ALIAS (__sv_expf_x, _ZGVsMxv_expf) PL_SIG (SV, F, 1, exp, -9.9, 9.9) PL_TEST_ULP (__sv_expf, 1.46) PL_TEST_INTERVAL (__sv_expf, 0, 0x1p-23, 40000) PL_TEST_INTERVAL (__sv_expf, 0x1p-23, 1, 50000) PL_TEST_INTERVAL (__sv_expf, 1, 0x1p23, 50000) PL_TEST_INTERVAL (__sv_expf, 0x1p23, inf, 50000) PL_TEST_INTERVAL (__sv_expf, -0, -0x1p-23, 40000) PL_TEST_INTERVAL (__sv_expf, -0x1p-23, -1, 50000) PL_TEST_INTERVAL (__sv_expf, -1, -0x1p23, 50000) PL_TEST_INTERVAL (__sv_expf, -0x1p23, -inf, 50000) #endif // SV_SUPPORTED