/* * Single-precision SVE 2^x function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "include/mathlib.h" #include "pl_sig.h" #include "pl_test.h" #include "poly_sve_f32.h" /* For x < -SpecialBound, the result is subnormal and not handled correctly by FEXPA. */ #define SpecialBound 37.9 static const struct data { float poly[5]; float shift, log10_2, log2_10_hi, log2_10_lo, special_bound; } data = { /* Coefficients generated using Remez algorithm with minimisation of relative error. rel error: 0x1.89dafa3p-24 abs error: 0x1.167d55p-23 in [-log10(2)/2, log10(2)/2] maxerr: 0.52 +0.5 ulp. */ .poly = { 0x1.26bb16p+1f, 0x1.5350d2p+1f, 0x1.04744ap+1f, 0x1.2d8176p+0f, 0x1.12b41ap-1f }, /* 1.5*2^17 + 127, a shift value suitable for FEXPA. */ .shift = 0x1.903f8p17f, .log10_2 = 0x1.a934fp+1, .log2_10_hi = 0x1.344136p-2, .log2_10_lo = -0x1.ec10cp-27, .special_bound = SpecialBound, }; static svfloat32_t NOINLINE special_case (svfloat32_t x, svfloat32_t y, svbool_t special) { return sv_call_f32 (exp10f, x, y, special); } /* Single-precision SVE exp10f routine. Implements the same algorithm as AdvSIMD exp10f. Worst case error is 1.02 ULPs. _ZGVsMxv_exp10f(-0x1.040488p-4) got 0x1.ba5f9ep-1 want 0x1.ba5f9cp-1. */ svfloat32_t SV_NAME_F1 (exp10) (svfloat32_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); /* exp10(x) = 2^(n/N) * 10^r = 2^n * (1 + poly (r)), with poly(r) in [1/sqrt(2), sqrt(2)] and x = r + n * log10(2) / N, with r in [-log10(2)/2N, log10(2)/2N]. */ /* Load some constants in quad-word chunks to minimise memory access (last lane is wasted). */ svfloat32_t log10_2_and_inv = svld1rq (svptrue_b32 (), &d->log10_2); /* n = round(x/(log10(2)/N)). */ svfloat32_t shift = sv_f32 (d->shift); svfloat32_t z = svmla_lane (shift, x, log10_2_and_inv, 0); svfloat32_t n = svsub_x (pg, z, shift); /* r = x - n*log10(2)/N. */ svfloat32_t r = svmls_lane (x, n, log10_2_and_inv, 1); r = svmls_lane (r, n, log10_2_and_inv, 2); svbool_t special = svacgt (pg, x, d->special_bound); svfloat32_t scale = svexpa (svreinterpret_u32 (z)); /* Polynomial evaluation: poly(r) ~ exp10(r)-1. */ svfloat32_t r2 = svmul_x (pg, r, r); svfloat32_t poly = svmla_x (pg, svmul_x (pg, r, d->poly[0]), sv_pairwise_poly_3_f32_x (pg, r, r2, d->poly + 1), r2); if (unlikely (svptest_any (pg, special))) return special_case (x, svmla_x (pg, scale, scale, poly), special); return svmla_x (pg, scale, scale, poly); } PL_SIG (SV, F, 1, exp10, -9.9, 9.9) PL_TEST_ULP (SV_NAME_F1 (exp10), 0.52) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (exp10), 0, SpecialBound, 50000) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (exp10), SpecialBound, inf, 50000)