/* * Single-precision vector erfc(x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "sv_math.h" #include "pl_sig.h" #include "pl_test.h" static const struct data { uint32_t off_idx, off_arr; float max, shift; float third, two_thirds, two_over_fifteen, two_over_five, tenth; } data = { /* Set an offset so the range of the index used for lookup is 644, and it can be clamped using a saturated add. */ .off_idx = 0xb7fffd7b, /* 0xffffffff - asuint(shift) - 644. */ .off_arr = 0xfffffd7b, /* 0xffffffff - 644. */ .max = 10.0625f, /* 644/64. */ .shift = 0x1p17f, .third = 0x1.555556p-2f, .two_thirds = 0x1.555556p-1f, .two_over_fifteen = 0x1.111112p-3f, .two_over_five = -0x1.99999ap-2f, .tenth = -0x1.99999ap-4f, }; #define SignMask 0x80000000 #define TableScale 0x28000000 /* 0x1p-47. */ /* Optimized single-precision vector erfcf(x). Approximation based on series expansion near x rounded to nearest multiple of 1/64. Let d = x - r, and scale = 2 / sqrt(pi) * exp(-r^2). For x near r, erfc(x) ~ erfc(r) - scale * d * poly(r, d), with poly(r, d) = 1 - r d + (2/3 r^2 - 1/3) d^2 - r (1/3 r^2 - 1/2) d^3 + (2/15 r^4 - 2/5 r^2 + 1/10) d^4 Values of erfc(r) and scale are read from lookup tables. Stored values are scaled to avoid hitting the subnormal range. Note that for x < 0, erfc(x) = 2.0 - erfc(-x). Maximum error: 1.63 ULP (~1.0 ULP for x < 0.0). _ZGVsMxv_erfcf(0x1.1dbf7ap+3) got 0x1.f51212p-120 want 0x1.f51216p-120. */ svfloat32_t SV_NAME_F1 (erfc) (svfloat32_t x, const svbool_t pg) { const struct data *dat = ptr_barrier (&data); svfloat32_t a = svabs_x (pg, x); /* Clamp input at |x| <= 10.0 + 4/64. */ a = svmin_x (pg, a, dat->max); /* Reduce x to the nearest multiple of 1/64. */ svfloat32_t shift = sv_f32 (dat->shift); svfloat32_t z = svadd_x (pg, a, shift); /* Saturate index for the NaN case. */ svuint32_t i = svqadd (svreinterpret_u32 (z), dat->off_idx); /* Lookup erfc(r) and 2/sqrt(pi)*exp(-r^2) in tables. */ i = svmul_x (pg, i, 2); const float32_t *p = &__erfcf_data.tab[0].erfc - 2 * dat->off_arr; svfloat32_t erfcr = svld1_gather_index (pg, p, i); svfloat32_t scale = svld1_gather_index (pg, p + 1, i); /* erfc(x) ~ erfc(r) - scale * d * poly(r, d). */ svfloat32_t r = svsub_x (pg, z, shift); svfloat32_t d = svsub_x (pg, a, r); svfloat32_t d2 = svmul_x (pg, d, d); svfloat32_t r2 = svmul_x (pg, r, r); svfloat32_t coeffs = svld1rq (svptrue_b32 (), &dat->third); svfloat32_t third = svdup_lane (coeffs, 0); svfloat32_t p1 = r; svfloat32_t p2 = svmls_lane (third, r2, coeffs, 1); svfloat32_t p3 = svmul_x (pg, r, svmla_lane (sv_f32 (-0.5), r2, coeffs, 0)); svfloat32_t p4 = svmla_lane (sv_f32 (dat->two_over_five), r2, coeffs, 2); p4 = svmls_x (pg, sv_f32 (dat->tenth), r2, p4); svfloat32_t y = svmla_x (pg, p3, d, p4); y = svmla_x (pg, p2, d, y); y = svmla_x (pg, p1, d, y); /* Solves the |x| = inf/nan case. */ y = svmls_x (pg, erfcr, scale, svmls_x (pg, d, d2, y)); /* Offset equals 2.0f if sign, else 0.0f. */ svuint32_t sign = svand_x (pg, svreinterpret_u32 (x), SignMask); svfloat32_t off = svreinterpret_f32 (svlsr_x (pg, sign, 1)); /* Handle sign and scale back in a single fma. */ svfloat32_t fac = svreinterpret_f32 (svorr_x (pg, sign, TableScale)); return svmla_x (pg, off, fac, y); } PL_SIG (SV, F, 1, erfc, -4.0, 10.0) PL_TEST_ULP (SV_NAME_F1 (erfc), 1.14) PL_TEST_SYM_INTERVAL (SV_NAME_F1 (erfc), 0.0, 0x1p-26, 40000) PL_TEST_INTERVAL (SV_NAME_F1 (erfc), 0x1p-26, 10.0625, 40000) PL_TEST_INTERVAL (SV_NAME_F1 (erfc), -0x1p-26, -4.0, 40000) PL_TEST_INTERVAL (SV_NAME_F1 (erfc), 10.0625, inf, 40000) PL_TEST_INTERVAL (SV_NAME_F1 (erfc), -4.0, -inf, 40000)