/* * Double-precision SVE cospi(x) function. * * Copyright (c) 2023, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #include "mathlib.h" #include "sv_math.h" #include "pl_sig.h" #include "pl_test.h" #include "poly_sve_f64.h" static const struct data { double poly[10]; double range_val; } data = { /* Polynomial coefficients generated using Remez algorithm, see sinpi.sollya for details. */ .poly = { 0x1.921fb54442d184p1, -0x1.4abbce625be53p2, 0x1.466bc6775ab16p1, -0x1.32d2cce62dc33p-1, 0x1.507834891188ep-4, -0x1.e30750a28c88ep-8, 0x1.e8f48308acda4p-12, -0x1.6fc0032b3c29fp-16, 0x1.af86ae521260bp-21, -0x1.012a9870eeb7dp-25 }, .range_val = 0x1p53, }; /* A fast SVE implementation of cospi. Maximum error 3.20 ULP: _ZGVsMxv_cospi(0x1.f18ba32c63159p-6) got 0x1.fdabf595f9763p-1 want 0x1.fdabf595f9766p-1. */ svfloat64_t SV_NAME_D1 (cospi) (svfloat64_t x, const svbool_t pg) { const struct data *d = ptr_barrier (&data); /* Using cospi(x) = sinpi(0.5 - x) range reduction and offset into sinpi range -1/2 .. 1/2 r = 0.5 - |x - rint(x)|. */ svfloat64_t n = svrinta_x (pg, x); svfloat64_t r = svsub_x (pg, x, n); r = svsub_x (pg, sv_f64 (0.5), svabs_x (pg, r)); /* Result should be negated based on if n is odd or not. If ax >= 2^53, the result will always be positive. */ svbool_t cmp = svaclt (pg, x, d->range_val); svuint64_t intn = svreinterpret_u64 (svcvt_s64_z (pg, n)); svuint64_t sign = svlsl_z (cmp, intn, 63); /* y = sin(r). */ svfloat64_t r2 = svmul_x (pg, r, r); svfloat64_t r4 = svmul_x (pg, r2, r2); svfloat64_t y = sv_pw_horner_9_f64_x (pg, r2, r4, d->poly); y = svmul_x (pg, y, r); return svreinterpret_f64 (sveor_x (pg, svreinterpret_u64 (y), sign)); } PL_SIG (SV, D, 1, cospi, -0.9, 0.9) PL_TEST_ULP (SV_NAME_D1 (cospi), 2.71) PL_TEST_SYM_INTERVAL (SV_NAME_D1 (cospi), 0, 0x1p-63, 5000) PL_TEST_SYM_INTERVAL (SV_NAME_D1 (cospi), 0x1p-63, 0.5, 10000) PL_TEST_SYM_INTERVAL (SV_NAME_D1 (cospi), 0.5, 0x1p51, 10000) PL_TEST_SYM_INTERVAL (SV_NAME_D1 (cospi), 0x1p51, inf, 100000)